JP4874824B2 - Distance relay device - Google Patents

Distance relay device Download PDF

Info

Publication number
JP4874824B2
JP4874824B2 JP2007019332A JP2007019332A JP4874824B2 JP 4874824 B2 JP4874824 B2 JP 4874824B2 JP 2007019332 A JP2007019332 A JP 2007019332A JP 2007019332 A JP2007019332 A JP 2007019332A JP 4874824 B2 JP4874824 B2 JP 4874824B2
Authority
JP
Japan
Prior art keywords
voltage
failure
current
rotation vector
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007019332A
Other languages
Japanese (ja)
Other versions
JP2008187825A (en
Inventor
建平 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007019332A priority Critical patent/JP4874824B2/en
Publication of JP2008187825A publication Critical patent/JP2008187825A/en
Application granted granted Critical
Publication of JP4874824B2 publication Critical patent/JP4874824B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

本発明は電力系統の保護に使用される距離継電装置に関するものである。   The present invention relates to a distance relay device used for protection of a power system.

電力系統の保護に使用される各種継電装置の中でも距離継電装置は最も重要な継電装置の1つであり、自端電気量情報のみで、送電線の短絡事故と地絡事故から母線等の電力系統の保護を行うものであって、電力系統に広く使用されている。しかし、従来の距離継電装置は、例えば特開2004−48855号公報(特許文献1)に見られるように、故障後の電圧/電流の全量(故障電圧電流そのもの)を用いて故障点までのインピーダンスを計算しているため、系統脱調や重負荷などにおいて誤動作しないように種々の対策を講じており、リレー動作高速性の実現が難しい(具体的に従来型距離継電装置の主保護動作時間は1サイクル(50Hz系統は20ms)以上である)。また、系統の脱調や動揺において、距離継電装置の誤動作により遮断器をミストリップすることは、電力系統の大規模停電の起因となっているといわれており、最悪の場合は系統が崩壊してしまうこともあり得る。系統脱調を解消するために、専用の脱調継電装置を設置する場合もある。   The distance relay is one of the most important relays among the various relays used to protect the electric power system, and it is a bus line from a short-circuit accident and a ground fault in the transmission line only with its own electricity information. And is widely used in power systems. However, as shown in, for example, Japanese Patent Application Laid-Open No. 2004-48855 (Patent Document 1), the conventional distance relay device uses the entire amount of voltage / current after failure (failure voltage current itself) to reach the failure point. Since the impedance is calculated, various measures are taken to prevent malfunctions due to system outages or heavy loads, and it is difficult to achieve high-speed relay operation (specifically, the main protective operation of conventional distance relays) The time is one cycle (50ms system is 20ms or more). Also, it is said that when the system breaks down or shakes, the stripping of the circuit breaker due to the malfunction of the distance relay device is the cause of the large-scale power outage of the power system. In the worst case, the system collapses. It can happen. A dedicated step-out relay device may be installed to eliminate system step-out.

特開2004−48855号公報(段落番号0002〜0010)JP 2004-48855 A (paragraph numbers 0002 to 0010)

従来の距離継電装置は前述のように故障後の電圧/電流の全量(故障電流/電圧そのもの)を用いて故障点までのインピーダンスを計算しているため、系統脱調や重負荷などにおいて誤動作しないように種々の対策を講じており、リレー動作高速性の実現が難しい。また、従来の距離継電装置は故障点の接地抵抗の大きさに影響されやすい。   Conventional distance relays calculate the impedance up to the point of failure using the total amount of voltage / current after the failure (failure current / voltage itself) as described above. Various measures have been taken so that it is difficult to achieve high-speed relay operation. Further, the conventional distance relay device is easily affected by the magnitude of the ground resistance at the failure point.

この発明は、前述のような実情に鑑みてなされたもので、リレー動作高速性の実現を目的とするものである。   The present invention has been made in view of the above-described circumstances, and aims to realize high-speed relay operation.

この発明に係る距離継電装置は、電力系統から検出された電圧及び電流からサンプリングした電圧時系列瞬時値及び電流時系列瞬時値を取り込む電圧・電流計測手段、電圧時系列瞬時値から電圧回転ベクトル変化分を算出する電圧回転ベクトル変化分算出手段、電流時系列瞬時値から電流回転ベクトル変化分を算出する電流回転ベクトル変化分算出手段、前記検出の場所から所定距離離れた場所である想定点までの送電線インピーダンスと保護対象線路の電流回転ベクトル変化分と母線電圧回転ベクトル変化分とを用いて前記想定点の故障起動時の起動電圧を計算する起動電圧算出手段、保護対象線路電流と母線電圧と前記想定点までの送電線インピーダンスとを用いて前記想定点の故障前電圧を計算する故障前電圧算出手段、及び前記起動電圧と前記故障前電圧とを比較して保護区内故障を判別する区内故障判別手段を備え、前記区内故障判別手段での判別結果、前記起動電圧が前記故障前電圧より大きい場合に前記保護対象線路の遮断器へのトリップ出力を出すものである。   The distance relay device according to the present invention comprises a voltage time series instantaneous value sampled from a voltage and a current detected from the power system and a voltage / current measuring means for taking in the current time series instantaneous value, and a voltage rotation vector from the voltage time series instantaneous value. Voltage rotation vector change calculation means for calculating the change, current rotation vector change calculation means for calculating the current rotation vector change from the current time series instantaneous value, up to an assumed point that is a predetermined distance away from the detection location Starting voltage calculating means for calculating a starting voltage at the time of failure start of the assumed point using the transmission line impedance, the current rotation vector change amount and the bus voltage rotation vector change amount of the protection target line, the protection target line current and the bus voltage Pre-failure voltage calculation means for calculating a pre-failure voltage at the assumed point using the transmission line impedance up to the assumed point, and the start-up A failure determination means for determining a failure in the protected area by comparing the pressure and the voltage before the failure, the determination result in the failure determination means in the area, when the starting voltage is larger than the voltage before the failure The trip output to the circuit breaker of the line to be protected is output.

この発明は、電力系統から検出された電圧及び電流からサンプリングした電圧時系列瞬時値及び電流時系列瞬時値を取り込む電圧・電流計測手段、電圧時系列瞬時値から電圧回転ベクトル変化分を算出する電圧回転ベクトル変化分算出手段、電流時系列瞬時値から電流回転ベクトル変化分を算出する電流回転ベクトル変化分算出手段、前記検出の場所から所定距離離れた場所である想定点までの送電線インピーダンスと保護対象線路の電流回転ベクトル変化分と母線電圧回転ベクトル変化分とを用いて前記想定点の故障起動時の起動電圧を計算する起動電圧算出手段、保護対象線路電流と母線電圧と前記想定点までの送電線インピーダンスとを用いて前記想定点の故障前電圧を計算する故障前電圧算出手段、及び前記起動電圧と前記故障前電圧とを比較して保護区内故障を判別する区内故障判別手段を備え、前記区内故障判別手段での判別結果、前記起動電圧が前記故障前電圧より大きい場合に前記保護対象線路の遮断器へのトリップ出力を出すので、リレー動作高速性を実現できる効果がある。   The present invention provides a voltage time series instantaneous value sampled from a voltage and current detected from a power system and a voltage / current measuring means for taking in a current time series instantaneous value, and a voltage for calculating a voltage rotation vector change from the voltage time series instantaneous value. Rotation vector change calculation means, current rotation vector change calculation means for calculating current rotation vector change from current time-series instantaneous values, transmission line impedance and protection to an assumed point that is a predetermined distance away from the detection location Starting voltage calculation means for calculating a starting voltage at the time of failure start of the assumed point using the current rotation vector change and the bus voltage rotation vector change of the target line, the protection target line current and the bus voltage and the assumption point A pre-failure voltage calculating means for calculating a pre-failure voltage at the assumed point using a transmission line impedance; and the starting voltage and the pre-failure power And a fault breakdown determination unit for determining a fault in the protection zone by comparing with the circuit breaker of the protection target line when the start-up voltage is larger than the pre-failure voltage Since the trip output to is output, there is an effect that high-speed relay operation can be realized.

実施の形態1.
以下この発明の実施の形態1を図1〜図22により説明する。図1は保護対象のモデル系統の図、図2は短絡故障における回転ベクトル変化分等価回路を示す接続図、図3は地絡故障における回転ベクトル変化分等価回路を示す接続図、図4は複素数平面上のリレー配置点の電圧・電流回転ベクトル変化分を示す図、図5は距離継電器の機能ブロック図の一例を示す図、図6は故障判別の処理フローをフローチャートで示す図、図7はリレー動作の検証シミュレーション実施時に採用した代表的な電気学会EAST10モデル系統を示す図、図8は検証シミュレーション実施時の或るケースAの電圧波形を示す図、図9は検証シミュレーション実施時の或るケースAの電流波形を示す図、図10は検証シミュレーション実施時の或るケースAのA相動作電圧波形を示す図、図11は検証シミュレーション実施時の或るケースBの電圧波形を示す図、図12は検証シミュレーション実施時の或るケースBの電流波形を示す図、図13は検証シミュレーション実施時の或るケースBのA相動作電圧波形を示す図、図14は検証シミュレーション実施時の或るケースCの電圧波形を示す図、図15は検証シミュレーション実施時の或るケースCの電流波形を示す図、図16は検証シミュレーション実施時の或るケースCのA相動作電圧波形を示す図、図17は検証シミュレーション実施時の或るケースDの電圧波形を示す図、図18検証シミュレーション実施時の或るケースDの電流波形を示す図、図19は検証シミュレーション実施時の或るケースDのA相動作電圧波形を示す図、図20は検証シミュレーション実施時の或るケースEの電圧波形を示す図、図21は検証シミュレーション実施時の或るケースEの電流波形を示す図、図22は検証シミュレーション実施時の或るケースDのA相動作電圧波形を示す図である。なお、各図中、同一符合は同一部分を示す。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIGS. 1 is a diagram of a model system to be protected, FIG. 2 is a connection diagram showing an equivalent circuit for a rotation vector change in a short-circuit fault, FIG. 3 is a connection diagram showing an equivalent circuit for a rotation vector change in a ground fault, and FIG. 4 is a complex number. FIG. 5 is a diagram showing an example of a functional block diagram of a distance relay, FIG. 6 is a flowchart showing a failure determination processing flow, and FIG. FIG. 8 is a diagram showing a typical electric society EAST10 model system adopted at the time of performing a simulation simulation of relay operation, FIG. 8 is a diagram showing a voltage waveform of a certain case A at the time of executing the verification simulation, and FIG. FIG. 10 is a diagram illustrating a current waveform of case A, FIG. 10 is a diagram illustrating a phase A operation voltage waveform of a certain case A when a verification simulation is performed, and FIG. FIG. 12 is a diagram illustrating a current waveform of a certain case B when the verification simulation is performed, and FIG. 13 is a diagram illustrating a phase A operating voltage waveform of the certain case B when the verification simulation is performed. 14 is a diagram showing a voltage waveform of a certain case C when the verification simulation is performed, FIG. 15 is a diagram showing a current waveform of a certain case C when the verification simulation is performed, and FIG. 16 is a certain case when the verification simulation is performed. FIG. 17 is a diagram showing a phase A operating voltage waveform of C, FIG. 17 is a diagram showing a voltage waveform of a certain case D when the verification simulation is performed, FIG. 18 is a diagram showing a current waveform of a certain case D when the verification simulation is performed, FIG. 20 is a diagram showing an A-phase operating voltage waveform of a certain case D when the verification simulation is performed, and FIG. 20 is a diagram showing a voltage waveform of a certain case E when the verification simulation is performed. 21 is a diagram showing a current waveform of a certain case E at the time of the verification simulation implementation, FIG. 22 is a diagram showing an A-phase operating voltage waveforms of a certain case D at the time of the verification simulation performed. In addition, in each figure, the same code | symbol shows the same part.

図1はこの発明の距離継電装置の基本的な考え方を説明するためのモデル系統図とその等価回路を示すもので、図1(a)は保護対象である電力系統のモデル系統図、図1(b)、(c)は電気回路の重ね合わせの定理によってモデル系統(図1(a))を二つの等価回路に分けたもので、(b)は電源・負荷を含む定常回路、(c)は回転ベクトル変化分等価回路(故障成分等価回路とも呼ばれる)であり、図1(c)の回転ベクトル変化分等価回路は更に、図2に示す短絡故障の場合の短絡故障回転ベクトル変化分等価回路(短絡故障に適用)と、図3に示す地絡故障の場合の地絡故障回転ベクトル変化分等価回路(地絡故障に適用)との二種類に分類し、これら二種類の回転ベクトル変化分回路では故障点に電圧源を入れることを想定し、これら二種類の回転ベクトル変化分回路に基づいて短絡故障及び地絡故障の少なくとも一方に高速に応動する原理的に新しい距離継電装置をこの発明では実現する。   FIG. 1 shows a model system diagram and its equivalent circuit for explaining the basic concept of the distance relay device of the present invention. FIG. 1 (a) is a model system diagram of a power system to be protected, FIG. 1 (b) and (c) are obtained by dividing the model system (FIG. 1 (a)) into two equivalent circuits by the superposition theorem of electric circuits, (b) is a steady circuit including a power source and a load, c) is a rotation vector change equivalent circuit (also referred to as a fault component equivalent circuit), and the rotation vector change equivalent circuit of FIG. 1C further includes a short-circuit fault rotation vector change in the case of a short-circuit fault shown in FIG. Equivalent circuits (applicable to short-circuit faults) and ground fault fault rotation vector change equivalent circuits (applicable to ground faults) in the case of a ground fault shown in FIG. In the variation circuit, it is assumed that a voltage source is inserted at the failure point. Based on these two types of rotation vector variation circuits, a theoretically new distance relay device that responds at high speed to at least one of a short circuit fault and a ground fault is realized in the present invention.

短絡故障回転ベクトル変化分等価回路を示す図2において、距離継電装置はM母線端とN母線端に設置すると想定し、この発明の実施の形態1による距離継電装置では、短絡故障(AB相間故障,BC相間故障,AC相間故障,ABC相間故障)において、線間電流回転ベクトル変化分と線間電圧回転ベクトル変化分と想定点(母線MN間の送電線の検出電圧・検出電流の検出場所から所定距離離れた点、例えば従来の距離継電装置の第1段動作の保護範囲である送電線の80%(母線MN間の送電線の検出電圧・検出電流の検出場所から80%))までのインピーダンスを用いて、起動電圧を計算し、起動電圧が前記想定点の故障前の電圧より大きい場合に、区内故障(内部故障)と判断し、線路遮断器にトリップ指令を出す。
M母線端の距離継電装置とN母線端の距離継電装置は同じものを使用するものとし、後述の短絡故障の場合について具体的な説明はM母線端に設置された距離継電装置を中心に行う。
In FIG. 2 showing the equivalent circuit for the short-circuit fault rotation vector change, it is assumed that the distance relay device is installed at the M bus end and the N bus end, and in the distance relay device according to the first embodiment of the present invention, the short circuit fault (AB (Phase-phase failure, BC-phase failure, AC-phase failure, ABC-phase failure), line current rotation vector change, line voltage rotation vector change, and assumption point (detection of detection voltage / detection current of transmission line between bus MN) A point away from the location, for example, 80% of the transmission line that is the protection range of the first stage operation of the conventional distance relay device (80% from the detection location of the detection voltage / detection current of the transmission line between the buses MN) ) Is used to calculate the starting voltage, and when the starting voltage is higher than the voltage before the failure at the assumed point, it is determined as a failure within the area (internal failure), and a trip command is issued to the line breaker.
The distance relay device at the end of the M bus and the distance relay device at the end of the N bus are the same, and in the case of a short-circuit fault described later, the distance relay installed at the end of the M bus is used. Do it to the center.

地絡故障回転ベクトル変化分等価回路を示す図3において、距離継電装置はM母線端に設置すると想定し、この発明の実施の形態1による距離継電装置では、地絡故障(A相地絡故障,B相地絡故障,C相地絡故障,AB相地絡故障,BC相地絡故障,AC相地絡故障,ABC相地絡故障)において、相電流回転ベクトル変化分と相電圧回転ベクトル変化分と自己零相電流回転ベクトル変化分と相互零相電流回転ベクトル変化分と前記想定点までのインピーダンスを用いて、起動電圧を計算し、起動電圧が前記想定点の故障前の電圧より大きい場合、区内故障(内部故障)と判断し、線路遮断器にトリップ指令を出す。   In FIG. 3 showing the equivalent circuit for the ground fault fault rotation vector change, it is assumed that the distance relay device is installed at the end of the M bus. In the distance relay device according to the first embodiment of the present invention, the ground fault (A phase ground) Phase current rotation vector change and phase voltage in fault fault, phase B ground fault, phase C ground fault, phase AB ground fault, phase BC ground fault, phase AC ground fault, phase ABC fault) Using the rotation vector variation, the self-zero phase current rotation vector variation, the mutual zero-phase current rotation vector variation and the impedance up to the assumed point, the starting voltage is calculated, and the starting voltage is the voltage before the failure of the assumed point. If it is larger, it is judged as a failure within the city (internal failure), and a trip command is issued to the line breaker.

また、この発明の実施の形態1による距離継電装置では、回転ベクトル変化分を計算するとき、1サイクル時間及び電気角度90度に対応するサンプリングを行い、サンプリング時間は本発明者が発明した特開2004−361124号公報に記載の高精度周波数測定手法で得られた実測周波数に基づいて設定することで、高精度な回転ベクトル変化分と起動電圧を計算することができる。   Further, in the distance relay device according to Embodiment 1 of the present invention, when calculating the rotation vector change, sampling corresponding to one cycle time and an electrical angle of 90 degrees is performed, and the sampling time is the characteristic invented by the present inventor. By setting based on the actual measurement frequency obtained by the high-accuracy frequency measurement method described in Japanese Unexamined Patent Application Publication No. 2004-361124, it is possible to calculate the rotation vector change and the start-up voltage with high accuracy.

また、この発明の実施の形態1による距離継電装置で計算された起動電圧は方向性があり、保護対象となる送電線の前方故障のみ大きな起動電圧が生じ、保護対象以外の系統故障に対しては動作電圧しきい値以上の起動電圧は生じない。   In addition, the starting voltage calculated by the distance relay device according to Embodiment 1 of the present invention is directional, and a large starting voltage is generated only in the forward failure of the transmission line to be protected. In this case, a starting voltage exceeding the operating voltage threshold is not generated.

また、この発明の実施の形態1による距離継電装置では、系統動揺/脱調中に誤起動せず、脱調中に故障が発生したら高速起動する。   Further, the distance relay device according to the first embodiment of the present invention does not erroneously start during system oscillation / step out, and starts at high speed when a failure occurs during step out.

また、この発明の実施の形態1による距離継電装置では、接地抵抗を経て地絡した場合であっても、接地抵抗の値に関係なく正確な起動電圧が計算され、高精度の距離継電装置を実現できる。   Further, in the distance relay device according to Embodiment 1 of the present invention, even when a ground fault occurs through the ground resistance, an accurate start-up voltage is calculated regardless of the value of the ground resistance, and the highly accurate distance relay is performed. A device can be realized.

以下、この発明の実施の形態1について、具体的に詳述する。   Hereinafter, Embodiment 1 of the present invention will be described in detail.

前述の図1(a)(b)(c)において、
M,Nは母線、mn1,mn2は各々A,B,C3相の2回線の送電線、
G,G2は電源、
Fは故障点、
は故障直前の定常電圧である想定故障電圧源、
である。
1 (a), (b) and (c) described above,
M and N are bus lines, mn1 and mn2 are two transmission lines of A, B and C3 phases,
G and G2 are power supplies,
F is the failure point,
V F is the contingency voltage source is a constant voltage immediately before the failure,
It is.

短絡故障回転ベクトル変化分等価回路を示す図2において、距離継電装置はM母線端とN母線端に設置すると想定し、M母線端の距離継電装置とN母線端の距離継電装置は同じものを使用するものとし、後述の短絡故障の場合について具体的な説明はM母線端に設置された距離継電装置を中心に行う。
前述の図2において、
はM母線側背後インピーダンス、Zは母線MN間のインピーダンス(1回線分)、
LMは母線Mと故障点F間のインピーダンス、
LNは母線Nと故障点F間のインピーダンス、
は想定故障電圧源(その大きさは故障直前の故障点電圧、その存在時間は1サイクルである)、
Δiは母線M側の線路MFの回転ベクトル電流変化分、
Δiは母線N側の線路NF(母線Nと故障点Fとの間の線路)の回転ベクトル電流変化分、
Δvは母線Mの回転ベクトル電圧変化分、
であり、これらの各符号は後に記載の各式においても同じ意味で使用する。
In FIG. 2 showing the equivalent circuit for the short-circuit fault rotation vector change, it is assumed that the distance relay device is installed at the M bus end and the N bus end, and the distance relay device at the M bus end and the distance relay device at the N bus end are The same thing shall be used, and the concrete description about the case of the short circuit failure mentioned later is given centering on the distance relay apparatus installed in the M bus-line end.
In FIG. 2 described above,
Z M is the impedance behind the M bus, Z L is the impedance between the buses MN (for one line),
ZLM is the impedance between bus M and fault point F,
Z LN is the impedance between bus N and fault point F,
V F is an assumed fault voltage source (the magnitude of which is the fault point voltage immediately before the fault, and its existence time is one cycle),
Δi M is the amount of change in rotation vector current of the line MF on the bus M side,
Δi N is the amount of change in the rotation vector current of the line NF on the side of the bus N (the line between the bus N and the failure point F),
Δv M is the change in rotation vector voltage of bus M,
These symbols are also used in the same meaning in each formula described later.

地絡故障回転ベクトル変化分等価回路を示す図3において、距離継電装置はM母線端に設置すると想定する。   In FIG. 3 showing the equivalent circuit for the ground fault fault rotation vector change, it is assumed that the distance relay device is installed at the end of the M bus.

前述の図3において、
1MはM母線側背後正相インピーダンス、z1Lは母線MN間の正相インピーダンス(1回線分)、
1LMは母線Mと故障点Fとの間の正相インピーダンス、
1LNは母線Nと故障点Fとの間の正相インピーダンス、
は想定故障正相電圧源(その存在時間は1サイクル)、
ΔiM1は母線M側の線路MF(母線Mと故障点Fとの間の線路)の正相回転ベクトル電流変化分、
ΔiN1は母線N側の線路NF(母線Nと故障点Fとの間の線路)の正相回転ベクトル電流変化分、
Δv1Mは母線Mの正相回転ベクトル電圧変化分、
2MはM母線側背後逆相インピーダンス、
2Lは母線MN間の逆相インピーダンス(1回線分)、
2LMは母線Mと故障点F間の逆相インピーダンス、
2LNは母線Nと故障点F間の逆相インピーダンス、
は想定故障逆相電圧源(その存在時間は1サイクルである)、
ΔiM2は母線M側の線路MFの逆相回転ベクトル電流変化分、
ΔiN2は母線N側の線路NFの逆相回転ベクトル電流変化分、
Δv2Mは母線Mの逆相回転ベクトル電圧変化分である。
0MはM母線側背後零相インピーダンス、
0Lは母線MN間の零相インピーダンス(1回線分)、
0LMは母線Mと故障点F間の零相インピーダンス、
0LNは母線Nと故障点F間の零相インピーダンス、
は想定故障零相電圧源(その存在時間は1サイクルである)、
ΔiM0は母線M側の線路MF(母線Mと故障点Fとの間の線路)の零相回転ベクトル電流変化分、
ΔiNOは母線N側の線路NF(母線Nと故障点Fとの間の線路)の零相回転ベクトル電流変化分、
Δv20は母線Mの零相回転ベクトル電圧変化分、
であり、これらの各符号は後に記載の各式においても同じ意味で使用する。
In FIG. 3 described above,
z 1M is the positive phase impedance behind the M bus, z 1L is the positive phase impedance (for one line) between the buses MN,
z 1LM is the positive phase impedance between the bus M and the fault point F,
z 1LN is the positive phase impedance between the bus N and the fault point F,
v 1 is the assumed fault positive phase voltage source (its existence time is one cycle),
Δi M1 is the amount of change in the positive phase rotation vector current of the line MF on the bus M side (the line between the bus M and the failure point F),
Δi N1 is the amount of change in the positive phase rotation vector current of the line NF on the bus N side (the line between the bus N and the failure point F),
Δv 1M is a change amount of the positive phase rotation vector voltage of the bus M,
z 2M is the reverse phase impedance behind the M bus,
z 2L is the negative phase impedance (for one line) between the buses MN,
z 2LM is the negative phase impedance between the bus M and the fault point F,
z 2LN is the negative phase impedance between the bus N and the fault point F,
v 2 is a contingent fault reverse phase voltage source (the existence time is one cycle),
Δi M2 is the amount of change in the reverse phase rotation vector current of the line MF on the bus M side,
Δi N2 is the amount of change in the reverse phase rotation vector current of the line NF on the bus N side,
Δv 2M is the amount of change in the reverse phase rotation vector voltage of the bus M.
z 0M is the zero phase impedance behind the M bus,
z 0L is the zero-phase impedance (for one line) between the buses MN,
z 0LM is the zero-phase impedance between the bus M and the fault point F,
z 0LN is the zero-phase impedance between the bus N and the fault point F,
v 0 is an assumed fault zero-phase voltage source (its existence time is one cycle),
ΔiM0 is a change in the zero-phase rotation vector current of the line MF on the bus M side (the line between the bus M and the failure point F),
Δi NO is the amount of change in the zero-phase rotation vector current of the line NF on the side of the bus N (the line between the bus N and the failure point F),
Δv20 is the amount of change in the zero-phase rotation vector voltage of bus M,
These symbols are also used in the same meaning in each formula described later.

複素数平面上のリレー配置点の電圧回転ベクトル変化分、電流回転ベクトル変化分を示す図4において、
は故障前の電圧回転ベクトル(現時点より1サイクル時間前の電圧回転ベクトル)、
は故障後の電圧回転ベクトル(現時点の電圧回転ベクトル)(但し、図4以外では故障前の電圧を表してある)、
Δvは電圧回転ベクトル変化分(前記v ,v両者の差分)、
は故障前の電流回転ベクトル(現時点より1サイクル時間前の電流回転ベクトル)、iは故障後の電流回転ベクトル(現時点の電流回転ベクトル)、
Δiは電流回転ベクトル変化分(前記i ,i両者の差分)、
であり、これらの各符号は後に記載の各式においても同じ意味で使用する。
In FIG. 4 showing the voltage rotation vector change amount and current rotation vector change amount of the relay arrangement point on the complex plane,
v N is the voltage rotation vector before the failure (voltage rotation vector one cycle time before the current time),
v F is a voltage rotation vector after the failure (current voltage rotation vector) (however, the voltage before the failure is expressed except in FIG. 4),
Δv is a change in voltage rotation vector (difference between both v N and v F ),
i N is the current rotation vector before the failure (current rotation vector one cycle time before the current time), i F is the current rotation vector after the failure (current current rotation vector),
Δi is a change in current rotation vector (difference between both i N and i F ),
These symbols are also used in the same meaning in each formula described later.

電圧回転ベクトル及び電流回転ベクトルは、複素数平面上に反時計回りで回転し、電圧及び電流の瞬時実測値は、電圧回転ベクトル及び電流回転ベクトルの実数部に相当する。
定常状態において、電圧回転ベクトル変化分及び電流回転ベクトル変化分は何れも零である(Δv=0、Δi=0)。
故障がある場合のみ、回転ベクトル変化分電圧と回転ベクトル変換分電流とが存在する。
The voltage rotation vector and the current rotation vector rotate counterclockwise on the complex number plane, and the instantaneous measured values of voltage and current correspond to the real part of the voltage rotation vector and the current rotation vector.
In a steady state, the voltage rotation vector change and the current rotation vector change are both zero (Δv = 0, Δi = 0).
Only when there is a failure, there is a rotation vector change voltage and a rotation vector conversion current.

この発明の実施の形態1に係わる距離継電装置の機能ブロック図である図5において、1は距離継電装置であり、その6個の計算ブロックは並列に計算している。6個の計算ブロックは、それぞれ短絡故障計算ブロックであるAB相間計算ブロック,BC相間計算ブロック,AC相間計算ブロックと、それぞれ地絡故障計算ブロックであるA相計算ブロック,B相計算ブロック,C相計算ブロックである。   In FIG. 5, which is a functional block diagram of the distance relay device according to the first embodiment of the present invention, 1 is the distance relay device, and its six calculation blocks are calculated in parallel. The six calculation blocks are the short-circuit fault calculation block AB-phase calculation block, the BC-phase calculation block, the AC-phase calculation block, and the ground-fault calculation block A-phase calculation block, B-phase calculation block, and C-phase, respectively. It is a calculation block.

2はPT・CT等の出力である検出電圧・検出電流をサンプリングして計測する電圧・電流計測手段で、電力系統の電圧及び電流の瞬時値を時系列に計測し、電圧時系列瞬時値及び電流時系列瞬時値を取り込むものである。
3はA/D変換手段で、電圧・電流計測手段2が計測した電圧・電流の時系列瞬時値のA/D変換を行うものである。
2 is a voltage / current measuring means that samples and measures the detection voltage / current that is an output of PT / CT, etc., and measures the instantaneous value of the voltage and current of the power system in time series. It captures current time series instantaneous values.
A / D conversion means 3 performs A / D conversion of the time-series instantaneous values of the voltage / current measured by the voltage / current measurement means 2.

4は電圧回転ベクトル変化分算出手段で、電圧時系列瞬時値から電圧回転ベクトル変化分を算出するものである。
5は電流回転ベクトル変化分算出手段で、電流時系列瞬時値から電流回転ベクトル変化分を算出するものである。
Reference numeral 4 denotes voltage rotation vector change calculating means for calculating the voltage rotation vector change from the voltage time series instantaneous value.
Reference numeral 5 denotes current rotation vector change calculation means for calculating the current rotation vector change from the current time series instantaneous value.

6は前記想定点の故障前電圧算出手段で、保護対象線路電流と母線電圧と前記想定点までのインピーダンス(例えば従来の距離継電装置の第1段動作の保護範囲である送電線の80%(母線MN間の送電線の検出電圧・検出電流の検出場所から80%)までのインピーダンス)を用いて、前記想定点の故障前電圧vを計算するものである。
7は前記想定点の起動電圧算出手段で、保護対象線路の電流回転ベクトル変化分と母線電圧回転ベクトル変化分と前記想定点までのインピーダンスを用いて前記想定点の故障起動時の起動電圧vを計算するものである。
8は故障起動判別手段で、故障起動かどうかを判別するものであり、例えば、電流瞬時値の1サイクル前後の差分で起動判別を行う。
9は区内故障判別手段で、前記算出した故障前電圧と起動電圧とを比較することで保護区内故障(内部故障とも呼ばれる)を判別するものである。
6 is a pre-failure voltage calculation means for the assumed point. The line current to be protected, the bus voltage, and the impedance to the assumed point (for example, 80% of the transmission line that is the protection range of the first stage operation of the conventional distance relay device) (Impedance up to 80% from the detection location of the detection voltage / detection current of the transmission line between the buses MN) is used to calculate the pre-failure voltage v F at the assumed point.
Reference numeral 7 denotes a starting voltage calculation means for the assumed point, which uses a current rotation vector change amount, a bus voltage rotation vector change amount of the protection target line, and an impedance to the assumption point to start voltage v S at the time of failure of the assumption point. Is calculated.
Reference numeral 8 denotes a failure activation determination means for determining whether or not a failure activation has occurred. For example, the activation determination is performed based on a difference in current instantaneous value around one cycle.
Reference numeral 9 denotes an in-zone fault discriminating means for discriminating a fault in the protected zone (also referred to as an internal fault) by comparing the calculated pre-failure voltage and the starting voltage.

10はインターフェースで、前述の計算結果を外部装置に出力するものである。
11は記憶手段で、前述の計算結果を保存するものである。
12は制御実施手段で、保護対象区間の両端の遮断器をトリップする指令を出すものである。
13は遮断器CBであり、省略のため、単相のみを表示している。
14は電圧測定用変圧器PTであり、省略のため、単相のみを表示している。
15は電流測定用変圧器CTであり、省略のため、単相のみを表示している。
Reference numeral 10 denotes an interface for outputting the above calculation result to an external device.
Reference numeral 11 denotes storage means for storing the above-described calculation results.
A control execution means 12 issues a command to trip the circuit breakers at both ends of the protection target section.
Reference numeral 13 denotes a circuit breaker CB, and only a single phase is displayed for omission.
Reference numeral 14 denotes a voltage measuring transformer PT, and only a single phase is displayed for the sake of omission.
Reference numeral 15 denotes a current measuring transformer CT, and only a single phase is displayed for omission.

以下、図6に示すフローチャートによって、図6に示す矢印で示すフローの順にステップ101〜111が実行される具体的な手順を詳細に説明する。なお、以下の各式における下付文字(サフィックス)re,im,A,B,Cは、各々実数,虚数,A相,B相,C相を意味するものとする。また、(t-T)は時点tより所定時間T前の時点を意味する。   Hereinafter, a specific procedure in which steps 101 to 111 are executed in the order of the flow indicated by the arrows shown in FIG. 6 will be described in detail with reference to the flowchart shown in FIG. 6. In addition, subscripts (suffixes) re, im, A, B, and C in the following expressions respectively mean a real number, an imaginary number, an A phase, a B phase, and a C phase. Further, (t−T) means a time point a predetermined time T before the time point t.

ステップ101では、電力系統の電圧・電流計測手段であるPT/CTにより電圧・電流の時系列瞬時値データを計測し、その出力のA/D変換を行う。
A相電圧(実数部および虚数部)の瞬時値の一般式は以下の(1)式の通りである。

Figure 0004874824
但し、Vは電圧の振幅、ωは角回転速度、φは初期位相角である。vAre(t)は電圧瞬時値で、A相電圧回転ベクトルの実数部である。vAim(t)はA相電圧回転ベクトルの虚数部で、電気角度90度前の電圧瞬時値である。
角回転速度ωは次の(2)式のように計算される。
Figure 0004874824
但し、fは実測系統周波数で、本発明者が発明した高精度周波数測定手法(特開2004−361124号公報を参照)で計測された値である。T は所定時間であり、所定サンプリング数に相当する時間であり、例えば1サイクル時間である。1サイクル時間の場合は、例えば、或る基本波50Hz系統において、実測周波数は49.5Hzであれば、Tは0.02020秒となり、電気角度90度に対応する時間は0.00505秒となる。 In step 101, voltage / current time-series instantaneous value data is measured by PT / CT, which is a voltage / current measuring means of the power system, and A / D conversion of the output is performed.
The general formula of the instantaneous value of the A phase voltage (real part and imaginary part) is as shown in the following formula (1).
Figure 0004874824
Where V A is the voltage amplitude, ω is the angular rotation speed, and φ A is the initial phase angle. v Are (t) is an instantaneous voltage value, which is the real part of the phase A voltage rotation vector. v Aim (t) is an imaginary part of the A-phase voltage rotation vector, which is an instantaneous voltage value 90 degrees before the electrical angle.
The angular rotation speed ω is calculated as in the following equation (2).
Figure 0004874824
However, f is an actually measured system frequency, which is a value measured by a high-accuracy frequency measurement method invented by the present inventor (see Japanese Patent Application Laid-Open No. 2004-361124). T is a predetermined time, which is a time corresponding to a predetermined number of samplings, for example, one cycle time. In the case of one cycle time, for example, if a measured frequency is 49.5 Hz in a certain fundamental wave 50 Hz system, T is 0.02020 seconds, and a time corresponding to an electrical angle of 90 degrees is 0.00505 seconds.

同様にB相、C相電圧の瞬時値の一般式は以下(3)式、(4)式の通りである。

Figure 0004874824
Figure 0004874824
Similarly, general formulas of instantaneous values of the B-phase and C-phase voltages are as shown in the following formulas (3) and (4).
Figure 0004874824
Figure 0004874824

同様に各相電流計算式は以下の通りである。
A相電流の瞬時値の一般式は以下の(5)式の通りである。

Figure 0004874824
但し、Iは電流の振幅、θは初期位相角である。iAre(t)は電流瞬時値で、A相電流回転ベクトルの実数部である。iAim(t)はA相電流回転ベクトルの虚数部で、電気角度90度前の電流瞬時値である。 Similarly, each phase current calculation formula is as follows.
The general formula for the instantaneous value of the A-phase current is as shown in the following formula (5).
Figure 0004874824
However, I A is the amplitude of the current, and θ A is the initial phase angle. i Are (t) is an instantaneous current value, which is a real part of the A-phase current rotation vector. i Aim (t) is an imaginary part of the A-phase current rotation vector, which is an instantaneous current value 90 degrees before the electrical angle.

同様にB相、C相電流の瞬時値の一般式は以下の(6)式、(7)式の通りである。

Figure 0004874824
Figure 0004874824
Similarly, general formulas of instantaneous values of B-phase and C-phase currents are as shown in the following formulas (6) and (7).
Figure 0004874824
Figure 0004874824

零相電流実数部の一般式は以下の(8)式通りである。

Figure 0004874824
The general formula for the real part of the zero-phase current is as follows:
Figure 0004874824

零相電流虚数部の一般式は以下の(9)式通りである。

Figure 0004874824
The general formula of the zero-phase current imaginary part is as shown in the following formula (9).
Figure 0004874824

ステップ102では、電圧回転ベクトル変化分算出手段4により、電圧回転ベクトルの変化分(事故直後の時点tより所定時間T(所定サンプリング数に相当する時間、例えば1サイクル)前の時点(t-T)から事故直後の時点tまでの変化分)を算出する。   In step 102, the voltage rotation vector change calculation means 4 uses the voltage rotation vector change calculation unit 4 to change the voltage rotation vector (a time (t-T) before the time t immediately after the accident by a predetermined time T (a time corresponding to a predetermined sampling number, for example, one cycle). ) To the time t immediately after the accident).

ここでA相、B相、C相の電圧回転ベクトル変化分は以下の(10)〜(12)式の通りであり、電圧回転ベクトル変化分算出手段4により、前記瞬時値の式(1)(3)(4)から求められる。

Figure 0004874824
Figure 0004874824
Figure 0004874824
Here, changes in the voltage rotation vector of the A phase, B phase, and C phase are as shown in the following equations (10) to (12). The voltage rotation vector change calculation means 4 calculates the instantaneous value equation (1). (3) Calculated from (4).
Figure 0004874824
Figure 0004874824
Figure 0004874824

ステップ103では、電流回転ベクトル変化分算出手段5により、電流回転ベクトルの変化分(事故直後の時点tより所定時間T(所定サンプリング数に相当する時間、例えば1サイクル)前の時点(t-T)から事故直後の時点tまでの変化分)を算出する。   In step 103, the current rotation vector change calculation means 5 causes the current rotation vector change (time t-T before a predetermined time T (a time corresponding to a predetermined sampling number, for example, one cycle) from the time t immediately after the accident. ) To the time t immediately after the accident).

ここでA相、B相、C相の電流回転ベクトル変化分は以下の(13)〜(15)式の通りであり、電流回転ベクトル変化分算出手段5により、前記瞬時値の式(5)(6)(7)から求められる。

Figure 0004874824
Figure 0004874824
Figure 0004874824
Here, changes in the current rotation vector of the A phase, B phase, and C phase are as shown in the following equations (13) to (15). The current rotation vector change calculation means 5 calculates the instantaneous value equation (5). (6) Calculated from (7).
Figure 0004874824
Figure 0004874824
Figure 0004874824

零相電流回転ベクトルの変化分は以下の(16)式の通りであり、電流回転ベクトル変化分算出手段5により、前記瞬時値の式(8)(9)から求められる。

Figure 0004874824
The change amount of the zero-phase current rotation vector is as shown in the following equation (16), and is obtained from the instantaneous value equations (8) and (9) by the current rotation vector change amount calculation means 5.
Figure 0004874824

ステップ104では、前記想定点の故障前電圧の瞬時値を、前記想定点の故障前電圧VF算出手段6により算出する。
算出する故障前電圧の演算式は以下の(17)式の通りである。

Figure 0004874824
In step 104, an instantaneous value of the pre-failure voltage at the assumed point is calculated by the pre-failure voltage VF calculating means 6 at the assumed point.
The calculation formula of the pre-failure voltage to be calculated is as the following formula (17).
Figure 0004874824

前記想定点までの送電線インピーダンスは以下の(18)式の通りである。

Figure 0004874824
但し、Rは前記想定点までの送電線抵抗、Xは前記想定点までの送電線インダクタンスである。
なお、これまでの本実施の形態1での説明は、Rを省略して式を展開したが、省略しない場合、同じ手法で式を展開することができる。 The transmission line impedance up to the assumed point is expressed by the following equation (18).
Figure 0004874824
However, the transmission line resistance R 1 until the assumed point, X 1 is a transmission line inductance to the assumed point.
In the above description of the first embodiment, R 1 is omitted and the expression is expanded. However, if not omitted, the expression can be expanded by the same method.

ステップ105では、前記想定点の故障起動電圧を、起動電圧算出手段7により算出する。   In step 105, the starting voltage calculation means 7 calculates the failure starting voltage at the assumed point.

短絡故障の場合の、短絡故障起動電圧vの計算式は以下の(19)式の通りである。

Figure 0004874824
但し、vは起動電圧、Δvは母線Mの電圧回転ベクトル変化分(線間電圧)、Δiは線路MN(故障線)の電流回転ベクトル変化分、Z1は前記想定点までのインピーダンス(例えば送電線の80%地点までのインピーダンス(例えば従来の距離継電装置の第1段動作の保護範囲である送電線の80%(母線MN間の送電線の検出電圧・検出電流の検出場所から80%)までのインピーダンス))である。 In the case of a short-circuit fault, the calculation formula of the short-circuit fault start-up voltage v S is as the following formula (19).
Figure 0004874824
However, v S is the starting voltage, Δv M is the voltage rotation vector change (line voltage) of the bus M, Δi M is the current rotation vector change of the line MN (fault line), and Z1 is the impedance ( For example, the impedance up to 80% of the transmission line (for example, 80% of the transmission line that is the protection range of the first stage operation of the conventional distance relay device (from the detection location of the detection voltage / detection current of the transmission line between the buses MN) Impedance up to 80%))).

線間電圧の一般式は以下の(20)式の通りである。

Figure 0004874824
The general formula of the line voltage is as the following formula (20).
Figure 0004874824

線間電流の一般式は以下の(21)式の通りである。

Figure 0004874824
The general formula of the line-to-line current is as the following formula (21).
Figure 0004874824

電流回転ベクトルの変化分は以下の(22)式の通りであり、電流回転ベクトル変化分算出手段5により求められる。

Figure 0004874824
The change amount of the current rotation vector is as shown in the following equation (22), and is obtained by the current rotation vector change amount calculation means 5.
Figure 0004874824

電圧回転ベクトルの変化分は以下の(23)式の通りであり、電圧回転ベクトル変化分算出手段4により求められる。

Figure 0004874824
The change amount of the voltage rotation vector is expressed by the following equation (23), and is obtained by the voltage rotation vector change amount calculation means 4.
Figure 0004874824

電流回転ベクトル変化分とインピーダンスの式を展開すると、次の(24)式が得られる。

Figure 0004874824
When the equation of the current rotation vector change and impedance is expanded, the following equation (24) is obtained.
Figure 0004874824

起動電圧の実数部は以下の(25)式の通り計算される。

Figure 0004874824
The real part of the starting voltage is calculated according to the following equation (25).
Figure 0004874824

起動電圧の虚数部は以下の(26)式の通り計算される。

Figure 0004874824
The imaginary part of the starting voltage is calculated according to the following equation (26).
Figure 0004874824

短絡故障時の短絡故障起動電圧の実効値V(t)は、起動電圧算出手段7において、以下の(27)式により計算される。

Figure 0004874824
短絡故障時の短絡故障起動電圧の実効値V(t)は、以下の(28)式の手法で計算することもできる。
Figure 0004874824
但し、Nは、基準波の1周期を4N(Nは正の整数)等分したサンプリング手法を使用した場合におけるNである。(リレーの一般的な手法であり、日本の場合、N=3、4N=12、30度サンプリング手法を使用している)
前記二つ実効値計算式(27)(28)を比較した場合、式(27)の方式は、式(28)の方式より高速性がよい。式(28)の方式の起動は少し遅れているが、1サイクルの範囲で積分をしているため、数値の安定性はよい。
距離継電装置のデジタルフィルタの性能により、前記実効値計算式(27)(28)を選択する。デジタルフィルタの性能が高い装置では、式(27)の方式を使用する。デジタルフィルタの性能が低い装置では、式(28)の方式を使用する。 The effective value V S (t) of the short-circuit fault start-up voltage at the time of the short-circuit fault is calculated by the start-up voltage calculation means 7 by the following equation (27).
Figure 0004874824
The effective value V S (t) of the short-circuit failure start-up voltage at the time of the short-circuit failure can also be calculated by the following equation (28).
Figure 0004874824
However, N is N in the case of using a sampling method in which one period of the reference wave is equally divided by 4N (N is a positive integer). (This is a general relay method. In Japan, N = 3, 4N = 12, 30 degree sampling method is used.)
When comparing the two RMS calculation formulas (27) and (28), the formula (27) is faster than the formula (28). Although the start of the method of Equation (28) is slightly delayed, the numerical stability is good because the integration is performed within the range of one cycle.
The effective value calculation formulas (27) and (28) are selected according to the performance of the digital filter of the distance relay device. For a device with high digital filter performance, the method of Equation (27) is used. In a device with a low digital filter performance, the method of Equation (28) is used.

地絡故障の場合の、地絡故障起動電圧vの計算式は以下の(29)式の通りである。

Figure 0004874824
但し、Δiは相電流変化分、Δvは相電圧変化分、kは自己零相補償係数、Δiは自己零相電流回転ベクトル変化分、kは相互零相補償係数(並行2回送電線の隣送電線の零相補償係数)、Δimoは相互零相電流回転ベクトル変化分である。
ここで図2を用いて、電力系統で広く使用された対称座標法における電圧回転ベクトル変化分(正相/逆相/零相)、電流回転ベクトル変化分(正相/逆相/零相)と三相(A相/B相/C相)間の関係を示す(説明はA相を例としている)。以下の展開に相互零相成分は省略している。相互零相成分を考慮する場合、同じ手法を用いて、式を展開することができる。
A相電圧回転ベクトル変化分は、以下の式(30)のように、正相電圧回転ベクトル変化分、逆相電圧回転ベクトル変化分、零相電圧回転ベクトル変化分に分解することができる。
Figure 0004874824
In the case of a ground fault, the calculation formula of the ground fault starting voltage v S is as the following formula (29).
Figure 0004874824
Where Δi is the phase current change, Δv is the phase voltage change, k 1 is the self-zero phase compensation coefficient, Δi 0 is the self-zero phase current rotation vector change, and k 2 is the mutual zero phase compensation coefficient (two parallel transmission lines ), Δi mo is the mutual zero-phase current rotation vector variation.
Here, with reference to FIG. 2, voltage rotation vector change (normal phase / reverse phase / zero phase) and current rotation vector change (normal phase / reverse phase / zero phase) in the symmetric coordinate method widely used in power systems And the three phases (A phase / B phase / C phase) are shown (the explanation is based on the A phase). The mutual zero phase component is omitted in the following development. When considering the mutual zero phase component, the same technique can be used to develop the equation.
The change amount of the A phase voltage rotation vector can be decomposed into a change amount of the positive phase voltage rotation vector, a change amount of the negative phase voltage rotation vector, and a change amount of the zero phase voltage rotation vector as in the following equation (30).
Figure 0004874824

A相電流回転ベクトル変化分は、以下の式(31)のように、正相電流回転ベクトル変化分、逆相電流回転ベクトル変化分、零相電流回転ベクトル変化分に分解することができる。

Figure 0004874824
The change amount of the A phase current rotation vector can be decomposed into the change amount of the positive phase current rotation vector, the change amount of the negative phase current rotation vector, and the change amount of the zero phase current rotation vector as in the following equation (31).
Figure 0004874824

A相故障点の事故前電圧は、以下の式(32)のように、正相電圧回転ベクトル、逆相電圧回転ベクトル、零相電圧回転ベクトルに分解することができる。

Figure 0004874824
The pre-accident voltage at the A phase fault point can be decomposed into a normal phase voltage rotation vector, a negative phase voltage rotation vector, and a zero phase voltage rotation vector as shown in the following equation (32).
Figure 0004874824

地絡故障の場合は、図3に基づいて、故障想定点までの地絡故障起動電圧は、以下の式(33)のように計算される。

Figure 0004874824
但し、kは自己零相補償係数で、以下の(34)式により求める。
Figure 0004874824
このように、(29)式は正しいことであると言える。 In the case of a ground fault, the ground fault start voltage up to the fault assumption point is calculated as in the following equation (33) based on FIG.
Figure 0004874824
However, k 1 is a self zero phase compensation coefficients, obtained by the following equation (34).
Figure 0004874824
Thus, it can be said that equation (29) is correct.

相互零相補償係数を零とする起動電圧の実数部は以下の(35)式の通りである。

Figure 0004874824
相互零相補償係数を零とする起動電圧の虚数部は以下の(36)式の通りである。
Figure 0004874824
相互零相補償係数は零でない場合,上式と同じやり方で展開することができる。ここでは省略する。 The real part of the starting voltage where the mutual zero-phase compensation coefficient is zero is given by the following equation (35).
Figure 0004874824
The imaginary part of the starting voltage where the mutual zero-phase compensation coefficient is zero is expressed by the following equation (36).
Figure 0004874824
If the mutual zero-phase compensation coefficient is not zero, it can be expanded in the same way as the above equation. It is omitted here.

地絡故障時の地絡故障起動電圧の実効値V(t)は、起動電圧算出手段7において、以下の(37)式により計算される。

Figure 0004874824
地絡故障時の地絡故障起動電圧の実効値V(t)は、以下の(38)式の手法で計算することもできる。
Figure 0004874824
但し、Nは、基準波の1周期を4N(Nは正の整数)等分したサンプリング手法を使用した場合におけるNである。(リレーの一般的な手法であり、日本の場合、N=3、4N=12、30度サンプリング手法を使用している) The effective value V S (t) of the ground fault start voltage at the time of the ground fault is calculated by the start voltage calculation means 7 by the following equation (37).
Figure 0004874824
The effective value V S (t) of the ground fault starting voltage at the time of the ground fault can also be calculated by the following equation (38).
Figure 0004874824
However, N is N in the case of using a sampling method in which one period of the reference wave is equally divided by 4N (N is a positive integer). (This is a general relay method. In Japan, N = 3, 4N = 12, 30 degree sampling method is used.)

ステップ106では、故障起動があるかどうかを、前記故障起動判別手段8により判定する。
即ち、故障が発生しているかどうかをチェックする。たとえば、現在の電流値と所定サンプリング数前、例えば1サイクル前、の電流の差分とを比較する。次の式(39)〜(41)任意の一個の条件を満足すれば、故障起動とする。

Figure 0004874824
Figure 0004874824
Figure 0004874824
但し、ISETは整定値である。 In step 106, the failure activation determination means 8 determines whether or not there is a failure activation.
That is, it is checked whether a failure has occurred. For example, the current value is compared with the current difference before a predetermined number of samplings, for example, one cycle before. If any one of the following formulas (39) to (41) is satisfied, a failure is started.
Figure 0004874824
Figure 0004874824
Figure 0004874824
However, I SET is a set value.

故障起動する場合は、ステップ107へ進む。
故障起動しない場合、ステップ111へ進む。
When the failure is activated, the process proceeds to step 107.
If no failure is activated, the process proceeds to step 111.

ステップ107では、つまり故障起動する場合は、前記想定点の故障前電圧をラッチする。   In step 107, that is, when the failure is started, the pre-failure voltage at the assumed point is latched.

次いで、ステップ108では区内故障(内部故障)であるかどうかを、前記区内故障判別手段9により判別する。
以下の(42)式を満足する時点で、区内故障(内部故障)を確定する。(42)式を満足しない場合は、区外故障(外部故障)を確定する。

Figure 0004874824
但し、V(t)は計測された起動電圧、V(t)は故障起動で前記記憶装置11にラッチした故障前の電圧値である。 Next, at step 108, it is determined by the intra-area fault determination means 9 whether or not there is an intra-area fault (internal fault).
When the following equation (42) is satisfied, the ward failure (internal failure) is determined. If the equation (42) is not satisfied, the out-of-range failure (external failure) is determined.
Figure 0004874824
However, V S (t) is a measured starting voltage, and V F (t 0 ) is a voltage value before failure latched in the storage device 11 upon failure activation.

ステップ109では、区内故障(内部故障)であれば、前記制御実施手段12により、線路遮断器CB13へのトリップ指令を出す。   In step 109, if it is a ward failure (internal failure), the control execution means 12 issues a trip command to the line breaker CB13.

ステップ110では、つまり区外故障(外部故障)であれば、線路遮断器CB13へのトリップ指令を出さない。   In step 110, that is, if it is an out-of-city fault (external fault), no trip command is issued to the line breaker CB13.

ステップ111では、終了しない場合は、ステップ101へ戻り、以後、前述の各ステップの処理が実行される。   In step 111, if not finished, the process returns to step 101, and thereafter, the processing of each step described above is executed.

図7に示す日本での代表的な電気学会EAST10モデル系統(50Hz系統)を用いて前述の本実施の形態1における距離継電装置の動作検証シミュレーションを行った結果を図8〜22に示す。   FIGS. 8 to 22 show the results of conducting the operation verification simulation of the distance relay device according to the first embodiment described above using the representative IEEJ EAST10 model system (50 Hz system) shown in FIG.

図7において、線路<11>及び線路<13>は並列2回送電線である。距離継電装置は母線(21)に設置されると想定する。距離継電装置の保護範囲はノード21からノード11に向けて保護区内線路長の80%である。次のA,B,C,D,Eの5ケースのそれぞれについてシミュレーションを行った。
ケースA:設置ノード21のブランチ<11>における線路総長の10%のところにA相地絡故障が 発生した場合。
ケースB:設置ノード21のブランチ<11>における線路総長の50%のところにA相地絡故障が 発生した場合。
ケースC:設置ノード21のブランチ<11>における線路総長の70%のところにA相地絡故障が 発生した場合。
ケースD:設置ノード21のブランチ<11>における線路総長の90%のところにA相地絡故障が 発生した場合。
ケースE:設置ノード21のブランチ<13>における線路総長の50%のところにA相地絡故障が 発生した場合。
In FIG. 7, line <11> and line <13> are two parallel transmission lines. The distance relay device is assumed to be installed on the bus (21). The protection range of the distance relay device is 80% of the line length in the protected area from the node 21 to the node 11. A simulation was performed for each of the following five cases A, B, C, D, and E.
Case A: A phase ground fault occurs at 10% of the total line length in branch <11> of installation node 21.
Case B: A phase ground fault occurs at 50% of the total line length of branch <11> of installation node 21.
Case C: A phase ground fault occurs at 70% of the total line length at branch <11> of installation node 21.
Case D: A phase ground fault occurs at 90% of the total line length at branch <11> of installation node 21.
Case E: A phase ground fault occurs at 50% of the total line length at branch <13> of installation node 21.

各ケースにおいて、三相電圧波形を図8,図11,図14,図17,図20に示し、三相電流波形及び零相電流波形を図9,図12,図15,図18,図21に示し、A相起動電圧波形を図10,図13,図16,図19,図22に示す。
ケースA、ケースB、及びケースCにおいては、図10,図13,図16に示すように、距離継電装置は動作範囲内で正動作し、故障点に近い方が動作は速くなる(ケースAの方がケースCより距離継電装置の動作が速い)ことを確認できた。
ケースDでは動作範囲外であるため、図19に示すように、A相起動電圧波形は故障前電圧V以下となり、距離継電装置は起動しない。
ケースEは背後故障であり、図22に示すように、A相起動電圧波形は故障前電圧V以下となり、距離継電装置は起動しない。このように、この距離継電装置は方向性をもつことも確認できた。
なお、例えば図10に例示のケースAのA相動作電圧波形と距離継電装置の動作との関係を詳述すると、
故障発生前は、電圧回転ベクトル変化分と電流回転ベクトル変化分が零であるため、起動電圧は零である。
故障発生後、起動電圧の値は故障前電圧Vより大きくなり、区内故障(内部故障)と判断し、母線(21)側の送電線<11>の遮断器にトリップ指令を出す。
故障発生の25ms後、故障は継続しているが、電圧回転ベクトル変化分と電流回転ベクトル変化分は再度零となり(1サイクルの差分値)、起動電圧は零に戻る。
このように、前述の本実施の形態1における距離継電装置は、以下の特徴、即ち、故障発生時のみ起動され、高速性(1サイクル以内で動作出力を出す)を有している。
In each case, the three-phase voltage waveform is shown in FIGS. 8, 11, 14, 17, and 20, and the three-phase current waveform and the zero-phase current waveform are shown in FIGS. 9, 12, 15, 18, and 21. The A-phase starting voltage waveforms are shown in FIGS. 10, 13, 16, 19, and 22. FIG.
In case A, case B, and case C, as shown in FIGS. 10, 13, and 16, the distance relay device operates normally within the operating range, and the operation becomes faster as the position is closer to the failure point (case It was confirmed that the distance relay operation of A was faster than Case C).
Since the operation range in case D, as shown in FIG. 19, A-phase starting voltage waveform Prefailure becomes below the voltage V F, the distance relay device does not start.
Case E is behind the failure, as shown in FIG. 22, A-phase starting voltage waveform Prefailure becomes below the voltage V F, the distance relay device does not start. Thus, it was also confirmed that this distance relay device has directionality.
In addition, for example, in detail the relationship between the A phase operating voltage waveform of case A illustrated in FIG. 10 and the operation of the distance relay device,
Before the occurrence of the failure, since the voltage rotation vector change and the current rotation vector change are zero, the starting voltage is zero.
After failure, the value of the starting voltage is greater than the pre-fault voltage V F, determines that the wards fault (internal fault), issues a trip command to the circuit breaker of the bus (21) side of the transmission lines <11>.
Although the failure continues 25 ms after the occurrence of the failure, the voltage rotation vector change and the current rotation vector change again become zero (difference value of one cycle), and the starting voltage returns to zero.
As described above, the distance relay device according to the first embodiment described above has the following characteristics, that is, is activated only when a failure occurs, and has high speed (outputs an operation output within one cycle).

前述のように、この発明の実施の形態1は、故障発生直後において、二つの電気回路に分け(電気回路の重ね定理)、その一つは電源を含む定常回路であり、もう一つは回転ベクトル変化分回路である。回転ベクトル変化分回路では、故障点に電圧源(故障直前の定常電圧)を入れることを想定する。距離継電装置配置点の電圧/電流回転ベクトル変化分を用いて、送電線保護範囲末端(例えば送電線の80%まで)までに動作電圧を求める。動作電圧が故障点電圧より大きければ、保護範囲内と判定し、動作する。動作電圧が故障点電圧より小さい場合、保護範囲以外と判定し、動作しない。   As described above, the first embodiment of the present invention is divided into two electric circuits (electric circuit superposition theorem) immediately after a failure occurs, one of which is a steady circuit including a power source, and the other is a rotating circuit. This is a vector variation circuit. In the rotation vector change circuit, it is assumed that a voltage source (steady voltage immediately before the failure) is input at the failure point. The operating voltage is obtained up to the end of the transmission line protection range (for example, up to 80% of the transmission line) using the voltage / current rotation vector change at the distance relay device arrangement point. If the operating voltage is greater than the failure point voltage, it is determined to be within the protection range and operates. If the operating voltage is smaller than the failure point voltage, it is determined that it is outside the protection range and does not operate.

前述のように、この発明の実施の形態1では(図1を参照)、故障発生直後において、対象電気回路(a)を二つの電気回路(b)と(c)に分ける。(電気回路の重ね定理)。(b)は電源を含む定常回路である。(c)は回転ベクトル変化分等価回路(故障成分等価回路とも呼ばれる)である。母線MN間に並列2回送電線(それぞれABC3相で合計6相)がある。G1とG2は電源,Fは故障点である。vは想定故障電圧源(その値は故障直前の定常電圧)である。更に図1(c)の回路は図2の短絡故障回転ベクトル変化分等価回路(短絡故障に適用)と図3の地絡故障回転ベクトル変化分等価回路(地絡故障に適用)に二種類に分類する。回転ベクトル変化分回路では、故障点に電圧源を入れることを想定する。二種類の回転ベクトル変化分回路を用いて、地絡故障と短絡故障とも対応できる高速距離継電装置である。 As described above, in the first embodiment of the present invention (see FIG. 1), the target electric circuit (a) is divided into two electric circuits (b) and (c) immediately after the occurrence of the failure. (Electric circuit superposition theorem). (b) is a stationary circuit including a power supply. (c) is a rotation vector change equivalent circuit (also called a fault component equivalent circuit). There are two parallel transmission lines between the buses MN (each ABC 3 phase for a total of 6 phases). G1 and G2 are power supplies, and F is the failure point. v F is an assumed fault voltage source (its value is a steady voltage just before the fault). In addition, the circuit of Fig. 1 (c) is divided into two types: the short-circuit fault rotation vector change equivalent circuit (applied to short-circuit fault) in Fig. 2 and the ground fault fault rotation vector change equivalent circuit (applicable to ground fault) in Fig. 3. Classify. In the rotation vector variation circuit, it is assumed that a voltage source is inserted at the failure point. It is a high-speed distance relay device that can cope with both ground faults and short-circuit faults using two types of rotation vector change circuit.

前述のように、この発明の実施の形態1では、   As described above, in the first embodiment of the present invention,

前述のように、この発明の実施の形態1では(図2を参照)、短絡故障(AB相間故障,BC相間故障,AC相間故障,ABC相間故障)において、線間電流回転ベクトル変化分と線間電圧回転ベクトル変化分と想定点までのインピーダンスを用いて、起動電圧を計算する。起動電圧は想定点の故障前の電圧より大きい場合、区内故障と判断し、線路遮断器にトリップ指令を出す。   As described above, in the first embodiment of the present invention (see FIG. 2), in the case of a short-circuit fault (AB phase fault, BC phase fault, AC phase fault, ABC phase fault), the line current rotation vector change and line The starting voltage is calculated using the change in the inter-voltage rotation vector and the impedance up to the assumed point. If the starting voltage is higher than the pre-failure voltage at the assumed point, it is determined that there is a failure in the area, and a trip command is issued to the line breaker.

前述のように、この発明の実施の形態1では(図3を参照)、地絡故障(A相地絡故障,B相地絡故障,C相地絡故障,AB相地絡故障,BC相地絡故障,AC相地絡故障,ABC相地絡故障)において、相電流回転ベクトル変化分と相電圧回転ベクトル変化分と自己零相電流回転ベクトル変化分と相互零相電流回転ベクトル変化分と想定点までのインピーダンスを用いて、起動電圧を計算する。起動電圧は想定点の故障前の電圧より大きい場合、区内故障と判断し、線路遮断器にトリップ指令を出す。   As described above, in the first embodiment of the present invention (see FIG. 3), a ground fault (A phase ground fault, B phase ground fault, C phase ground fault, AB phase ground fault, BC phase) In the case of ground fault, AC phase ground fault, ABC phase ground fault), phase current rotation vector variation, phase voltage rotation vector variation, self-zero phase current rotation vector variation, mutual zero phase current rotation vector variation The starting voltage is calculated using the impedance up to the assumed point. If the starting voltage is higher than the pre-failure voltage at the assumed point, it is determined that there is a failure in the area, and a trip command is issued to the line breaker.

前述のように、この発明の実施の形態1では、距離継電装置は回転ベクトル変化分を計算するとき、1サイクル時間及び電気角度90度に対応するサンプリング時間を使用する。サンプリング時間は本発明者が発明した特開2004−361124号公報に記載の高精度周波数測定手法で得られた実測周波数を使用するため、高精度な回転ベクトル変化分と起動電圧を計算することができる。   As described above, in Embodiment 1 of the present invention, the distance relay device uses a sampling time corresponding to one cycle time and an electrical angle of 90 degrees when calculating the rotation vector change. Since the sampling frequency uses the measured frequency obtained by the high-precision frequency measurement method described in Japanese Patent Application Laid-Open No. 2004-361124 invented by the present inventor, it is possible to calculate the rotation vector change and the starting voltage with high precision. it can.

前述のように、この発明の実施の形態1では、距離継電装置で計算された起動電圧は方向性がある。即ち、保護対象となる送電線の前方故障のみ大きな起動電圧が生じる。対象以外系統故障に対しては起動しない。   As described above, in the first embodiment of the present invention, the starting voltage calculated by the distance relay device is directional. That is, a large starting voltage is generated only in front of the power transmission line to be protected. It does not start for system faults other than the target.

前述のように、この発明の実施の形態1では、系統動揺/脱調中に誤起動しない。脱調中に故障が発生したら高速起動する。   As described above, in the first embodiment of the present invention, there is no erroneous start during system oscillation / step-out. If a failure occurs during step-out, it starts at high speed.

前述のように、この発明の実施の形態1では、故障は故障点の接地抵抗経て地絡した場合、接地抵抗の値に関係なく正確な起動電圧が計算されたため、高精度の距離継電装置を実現できる。   As described above, in the first embodiment of the present invention, when a fault occurs through the ground resistance at the failure point, an accurate start-up voltage is calculated regardless of the value of the ground resistance. Can be realized.

前述のように、この発明の実施の形態1では、高速動作できるし(1サイクル以内で動作する)、系統脱調/動揺/重負荷に誤起動しない。系統脱調/動揺/重負荷において、故障が発生したら、高速に故障起動できるし、故障判別方向性もある。   As described above, the first embodiment of the present invention can operate at high speed (operates within one cycle) and does not erroneously start up due to system out-of-step / sway / heavy load. If a failure occurs in system out-of-step / stabilization / heavy load, the failure can be started at high speed, and there is also a failure determination direction.

前述のように、この発明の実施の形態1は、電力系統から検出された電圧及び電流からサンプリングした電圧時系列瞬時値及び電流時系列瞬時値を取り込む電圧・電流計測手段、電圧時系列瞬時値から電圧回転ベクトル変化分を算出する電圧回転ベクトル変化分算出手段、電流時系列瞬時値から電流回転ベクトル変化分を算出する電流回転ベクトル変化分算出手段、前記検出の場所から所定距離離れた場所である想定点までの送電線インピーダンスと保護対象線路の電流回転ベクトル変化分と母線電圧回転ベクトル変化分とを用いて前記想定点の故障起動時の起動電圧を計算する起動電圧算出手段、保護対象線路電流と母線電圧と前記想定点までの送電線インピーダンスとを用いて前記想定点の故障前電圧を計算する故障前電圧算出手段、及び前記起動電圧と前記故障前電圧とを比較して保護区内故障を判別する区内故障判別手段を備え、前記区内故障判別手段での判別結果、前記起動電圧が前記故障前電圧より大きい場合に前記保護対象線路の遮断器へのトリップ出力を出す距離継電装置である。   As described above, the first embodiment of the present invention is a voltage time-series instantaneous value sampled from a voltage time-series instantaneous value and a current time-series instantaneous value sampled from the voltage and current detected from the power system, and a voltage time-series instantaneous value. Voltage rotation vector change calculating means for calculating the voltage rotation vector change from the current time series instantaneous value current rotation vector change calculating means for calculating the current rotation vector change from the current time-series instantaneous value, at a predetermined distance from the detection location Starting voltage calculating means for calculating a starting voltage at the time of failure starting of the assumed point using the transmission line impedance up to a certain assumed point, the current rotation vector change of the protection target line and the bus voltage rotation vector change, a protection target line A pre-failure voltage calculating means for calculating a pre-failure voltage at the assumed point using a current, a bus voltage, and a transmission line impedance up to the assumed point; and In the case where the start voltage and the pre-failure voltage are compared to determine a failure in the protected area to determine a failure in the protected area, the determination result in the failure detection means in the area, the start voltage is greater than the pre-failure voltage The distance relay device that outputs a trip output to the circuit breaker of the protection target line.

前述のように、この発明の実施の形態1は、電力系統から検出された電圧及び電流からサンプリングした電圧時系列瞬時値及び電流時系列瞬時値を取り込む電圧・電流計測手段、電圧時系列瞬時値から電圧回転ベクトル変化分を算出する電圧回転ベクトル変化分算出手段、電流時系列瞬時値から電流回転ベクトル変化分を算出する電流回転ベクトル変化分算出手段、前記検出の場所から所定距離離れた場所である想定点までの送電線インピーダンスと保護対象線路の電流回転ベクトル変化分と母線電圧回転ベクトル変化分とを用いて前記想定点の故障起動時の起動電圧を計算する起動電圧算出手段、保護対象線路電流と母線電圧と前記想定点までの送電線インピーダンスとを用いて前記想定点の故障前電圧を計算する故障前電圧算出手段、及び前記起動電圧と前記故障前電圧とを比較して保護区内故障を判別する区内故障判別手段を備え、前記区内故障判別手段での判別結果、前記起動電圧が前記故障前電圧より大きい場合に前記保護対象線路の遮断器へのトリップ出力を出す距離継電装置において、重ねの定理に基づく短絡故障回転ベクトル変化分等価回路に基づいて短絡故障起動時の前記起動電圧が計算され、短絡故障に応動するものである。また、前記短絡故障起動時の起動電圧は前記式(27)または式(28)により実効値として算出され、前記故障前電圧は前記式(17)により実効値として算出されるものである。   As described above, the first embodiment of the present invention is a voltage time-series instantaneous value sampled from a voltage time-series instantaneous value and a current time-series instantaneous value sampled from the voltage and current detected from the power system, and a voltage time-series instantaneous value. Voltage rotation vector change calculating means for calculating the voltage rotation vector change from the current time series instantaneous value current rotation vector change calculating means for calculating the current rotation vector change from the current time-series instantaneous value, at a predetermined distance from the detection location Starting voltage calculating means for calculating a starting voltage at the time of failure starting of the assumed point using the transmission line impedance up to a certain assumed point, the current rotation vector change of the protection target line and the bus voltage rotation vector change, a protection target line A pre-failure voltage calculating means for calculating a pre-failure voltage at the assumed point using a current, a bus voltage, and a transmission line impedance up to the assumed point; and In the case where the start voltage and the pre-failure voltage are compared to determine a failure in the protected area to determine a failure in the protected area, the determination result in the failure detection means in the area, the start voltage is greater than the pre-failure voltage In the distance relay device that outputs the trip output to the circuit breaker of the line to be protected, the starting voltage at the start of the short-circuit fault is calculated based on the equivalent circuit for the short-circuit fault rotation vector change based on the overlap theorem, and the short-circuit fault It responds to. Further, the starting voltage at the time of starting the short-circuit failure is calculated as an effective value by the equation (27) or the equation (28), and the pre-failure voltage is calculated as an effective value by the equation (17).

前述のように、この発明の実施の形態1は、電力系統から検出された電圧及び電流からサンプリングした電圧時系列瞬時値及び電流時系列瞬時値を取り込む電圧・電流計測手段、電圧時系列瞬時値から電圧回転ベクトル変化分を算出する電圧回転ベクトル変化分算出手段、電流時系列瞬時値から電流回転ベクトル変化分を算出する電流回転ベクトル変化分算出手段、前記検出の場所から所定距離離れた場所である想定点までの送電線インピーダンスと保護対象線路の電流回転ベクトル変化分と母線電圧回転ベクトル変化分とを用いて前記想定点の故障起動時の起動電圧を計算する起動電圧算出手段、保護対象線路電流と母線電圧と前記想定点までの送電線インピーダンスとを用いて前記想定点の故障前電圧を計算する故障前電圧算出手段、及び前記起動電圧と前記故障前電圧とを比較して保護区内故障を判別する区内故障判別手段を備え、前記区内故障判別手段での判別結果、前記起動電圧が前記故障前電圧より大きい場合に前記保護対象線路の遮断器へのトリップ出力を出す距離継電装置において、重ねの定理に基づく地絡故障回転ベクトル変化分等価回路に基づいて地絡故障起動時の前記起動電圧が計算され、地絡故障に応動するものである。また、前記地絡故障起動時の起動電圧は前記式(37)または式(38)により実効値として算出され、前記故障前電圧は前記式(17)により実効値として算出されるものである。   As described above, the first embodiment of the present invention is a voltage time-series instantaneous value sampled from a voltage time-series instantaneous value and a current time-series instantaneous value sampled from the voltage and current detected from the power system, and a voltage time-series instantaneous value. Voltage rotation vector change calculating means for calculating the voltage rotation vector change from the current time series instantaneous value current rotation vector change calculating means for calculating the current rotation vector change from the current time-series instantaneous value, at a predetermined distance from the detection location Starting voltage calculating means for calculating a starting voltage at the time of failure starting of the assumed point using the transmission line impedance up to a certain assumed point, the current rotation vector change of the protection target line and the bus voltage rotation vector change, a protection target line A pre-failure voltage calculating means for calculating a pre-failure voltage at the assumed point using a current, a bus voltage, and a transmission line impedance up to the assumed point; and In the case where the start voltage and the pre-failure voltage are compared to determine a failure in the protected area to determine a failure in the protected area, the determination result in the failure detection means in the area, the start voltage is greater than the pre-failure voltage In the distance relay device that outputs the trip output to the circuit breaker of the line to be protected, the starting voltage at the time of starting the ground fault is calculated based on the equivalent circuit for the ground fault rotating vector change based on the superposition theorem, Responds to ground faults. Further, the starting voltage at the time of starting the ground fault is calculated as an effective value by the equation (37) or the equation (38), and the pre-failure voltage is calculated as an effective value by the equation (17).

前述のように、この発明の実施の形態1は、電力系統から検出された電圧及び電流からサンプリングした電圧時系列瞬時値及び電流時系列瞬時値を取り込む電圧・電流計測手段、電圧時系列瞬時値から電圧回転ベクトル変化分を算出する電圧回転ベクトル変化分算出手段、電流時系列瞬時値から電流回転ベクトル変化分を算出する電流回転ベクトル変化分算出手段、前記検出の場所から所定距離離れた場所である想定点までの送電線インピーダンスと保護対象線路の電流回転ベクトル変化分と母線電圧回転ベクトル変化分とを用いて前記想定点の故障起動時の起動電圧を計算する起動電圧算出手段、保護対象線路電流と母線電圧と前記想定点までの送電線インピーダンスとを用いて前記想定点の故障前電圧を計算する故障前電圧算出手段、及び前記起動電圧と前記故障前電圧とを比較して保護区内故障を判別する区内故障判別手段を備え、前記区内故障判別手段での判別結果、前記起動電圧が前記故障前電圧より大きい場合に前記保護対象線路の遮断器へのトリップ出力を出す距離継電装置において、重ねの定理に基づく短絡故障回転ベクトル変化分等価回路に基づいて短絡故障起動時の前記起動電圧が計算されると共に、重ねの定理に基づく地絡故障回転ベクトル変化分等価回路に基づいて地絡故障起動時の前記起動電圧が計算され、短絡故障及び地絡故障に応動するものである。また、前記短絡故障起動時の起動電圧は前記式(27)または式(28)により実効値として算出され、前記地絡故障起動時の起動電圧は前記式(37)または式(38)により実効値として算出され、前記故障前電圧は前記式(17)により実効値として算出されるものである。   As described above, the first embodiment of the present invention is a voltage time-series instantaneous value sampled from a voltage time-series instantaneous value and a current time-series instantaneous value sampled from the voltage and current detected from the power system, and a voltage time-series instantaneous value. Voltage rotation vector change calculating means for calculating the voltage rotation vector change from the current time series instantaneous value current rotation vector change calculating means for calculating the current rotation vector change from the current time-series instantaneous value, at a predetermined distance from the detection location Starting voltage calculating means for calculating a starting voltage at the time of failure starting of the assumed point using the transmission line impedance up to a certain assumed point, the current rotation vector change of the protection target line and the bus voltage rotation vector change, a protection target line A pre-failure voltage calculating means for calculating a pre-failure voltage at the assumed point using a current, a bus voltage, and a transmission line impedance up to the assumed point; and In the case where the start voltage and the pre-failure voltage are compared to determine a failure in the protected area to determine a failure in the protected area, the determination result in the failure detection means in the area, the start voltage is greater than the pre-failure voltage In the distance relay device that outputs the trip output to the circuit breaker of the line to be protected, the starting voltage at the time of short-circuit fault start is calculated based on the equivalent circuit for the short-circuit fault rotation vector change based on the overlap theorem, The start-up voltage at the time of starting the ground fault is calculated based on the equivalent circuit of the ground fault fault rotation vector change based on the superposition theorem, and responds to the short-circuit fault and the ground fault. In addition, the starting voltage at the time of short-circuit failure start-up is calculated as an effective value by the above formula (27) or formula (28), and the start-up voltage at the time of ground fault start-up is effective by the above formula (37) or formula (38). The pre-failure voltage is calculated as an effective value according to the equation (17).

前述のように、この発明の実施の形態1は、電力系統から検出された電圧及び電流からサンプリングした電圧時系列瞬時値及び電流時系列瞬時値を取り込む電圧・電流計測手段、電圧時系列瞬時値から電圧回転ベクトル変化分を算出する電圧回転ベクトル変化分算出手段、電流時系列瞬時値から電流回転ベクトル変化分を算出する電流回転ベクトル変化分算出手段、前記検出の場所から所定距離離れた場所である想定点までの送電線インピーダンスと保護対象線路の電流回転ベクトル変化分と母線電圧回転ベクトル変化分とを用いて前記想定点の故障起動時の起動電圧を計算する起動電圧算出手段、保護対象線路電流と母線電圧と前記想定点までの送電線インピーダンスとを用いて前記想定点の故障前電圧を計算する故障前電圧算出手段、及び前記起動電圧と前記故障前電圧とを比較して保護区内故障を判別する区内故障判別手段を備え、前記区内故障判別手段での判別結果、前記起動電圧が前記故障前電圧より大きい場合に前記保護対象線路の遮断器へのトリップ出力を出す距離継電装置において、現在の電流値と所定サンプリング数前の電流値との差分を算出し当該差分から故障であるか判別する故障起動判別手段を備え、前記故障起動判別手段による判別結果が故障である場合に前記前記区内故障判別手段が前記判別を行うものである。また、前記故障起動判別手段は前記式(39)〜(41)の少なくとも一つが満足された場合に故障起動であると判別するものである。また、前記所定サンプリング数前の電流は、例えば1サイクル前の電流である。また、前記サンプリングは、例えば少なくとも1サイクル間隔及び電気角90度のタイミングで行われる。   As described above, the first embodiment of the present invention is a voltage time-series instantaneous value sampled from a voltage time-series instantaneous value and a current time-series instantaneous value sampled from the voltage and current detected from the power system, and a voltage time-series instantaneous value. Voltage rotation vector change calculating means for calculating the voltage rotation vector change from the current time series instantaneous value current rotation vector change calculating means for calculating the current rotation vector change from the current time-series instantaneous value, at a predetermined distance from the detection location Starting voltage calculating means for calculating a starting voltage at the time of failure starting of the assumed point using the transmission line impedance up to a certain assumed point, the current rotation vector change of the protection target line and the bus voltage rotation vector change, a protection target line A pre-failure voltage calculating means for calculating a pre-failure voltage at the assumed point using a current, a bus voltage, and a transmission line impedance up to the assumed point; and In the case where the start voltage and the pre-failure voltage are compared to determine a failure in the protected area to determine a failure in the protected area, the determination result in the failure detection means in the area, the start voltage is greater than the pre-failure voltage In the distance relay device that outputs a trip output to the circuit breaker of the line to be protected, a failure activation determination that calculates a difference between a current value and a current value before a predetermined number of samplings and determines whether or not there is a failure from the difference And the in-zone failure determination unit performs the determination when the determination result by the failure activation determination unit is a failure. Further, the failure activation determining means determines that the failure has been activated when at least one of the equations (39) to (41) is satisfied. Further, the current before the predetermined sampling number is, for example, a current before one cycle. The sampling is performed at a timing of at least one cycle interval and an electrical angle of 90 degrees, for example.

この発明の実施の形態1を示す図で、保護対象のモデル系統の図である。It is a figure which shows Embodiment 1 of this invention, and is a figure of the model system | strain of protection object. この発明の実施の形態1を示す図で、短絡故障における回転ベクトル変化分等価回路を示す接続図である。It is a figure which shows Embodiment 1 of this invention, and is a connection diagram which shows the rotation vector change part equivalent circuit in a short circuit failure. この発明の実施の形態1を示す図で、地絡故障における回転ベクトル変化分等価回路を示す接続図である。It is a figure which shows Embodiment 1 of this invention, and is a connection diagram which shows the rotation vector change part equivalent circuit in a ground fault. この発明の実施の形態1を示す図で、複素数平面上のリレー配置点の電圧・電流回転ベクトル変化分を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the part for the voltage / current rotation vector change of the relay arrangement | positioning point on a complex number plane. この発明の実施の形態1を示す図で、距離継電器の機能ブロック図の一例を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows an example of the functional block diagram of a distance relay. この発明の実施の形態1を示す図で、故障判別の処理フローをフローチャートで示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the processing flow of failure determination with a flowchart. この発明の実施の形態1を示す図で、リレー動作の検証シミュレーション実施時に採用した代表的な電気学会EAST10モデル系統を示す図である。FIG. 5 is a diagram illustrating the first embodiment of the present invention, and is a diagram illustrating a typical IEEJ EAST10 model system adopted when a relay operation verification simulation is performed. この発明の実施の形態1を示す図で、検証シミュレーション実施時の或るケースAの電圧波形を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the voltage waveform of a certain case A at the time of verification simulation implementation. この発明の実施の形態1を示す図で、検証シミュレーション実施時の或るケースAの電流波形を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the current waveform of a certain case A at the time of verification simulation implementation. この発明の実施の形態1を示す図で、検証シミュレーション実施時の或るケースAのA相動作電圧波形を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the A-phase operating voltage waveform of a certain case A at the time of verification simulation implementation. この発明の実施の形態1を示す図で、検証シミュレーション実施時の或るケースBの電圧波形を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the voltage waveform of a certain case B at the time of verification simulation implementation. この発明の実施の形態1を示す図で、検証シミュレーション実施時の或るケースBの電流波形を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the current waveform of a certain case B at the time of verification simulation implementation. この発明の実施の形態1を示す図で、検証シミュレーション実施時の或るケースBのA相動作電圧波形を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the A-phase operating voltage waveform of a certain case B at the time of verification simulation implementation. この発明の実施の形態1を示す図で、検証シミュレーション実施時の或るケースCの電圧波形を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the voltage waveform of a certain case C at the time of verification simulation implementation. この発明の実施の形態1を示す図で、検証シミュレーション実施時の或るケースCの電流波形を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the current waveform of a certain case C at the time of verification simulation implementation. この発明の実施の形態1を示す図で、検証シミュレーション実施時の或るケースCのA相動作電圧波形を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the A phase operating voltage waveform of a certain case C at the time of verification simulation implementation. この発明の実施の形態1を示す図で、検証シミュレーション実施時の或るケースDの電圧波形を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the voltage waveform of a certain case D at the time of verification simulation implementation. この発明の実施の形態1を示す図で、検証シミュレーション実施時の或るケースDの電流波形を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the current waveform of a certain case D at the time of verification simulation implementation. この発明の実施の形態1を示す図で、検証シミュレーション実施時の或るケースDのA相動作電圧波形を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the A-phase operating voltage waveform of a certain case D at the time of verification simulation implementation. この発明の実施の形態1を示す図で、検証シミュレーション実施時の或るケースEの電圧波形を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the voltage waveform of a certain case E at the time of verification simulation implementation. この発明の実施の形態1を示す図で、検証シミュレーション実施時の或るケースEの電流波形を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the current waveform of a certain case E at the time of verification simulation implementation. この発明の実施の形態1を示す図で、検証シミュレーション実施時の或るケースDのA相動作電圧波形を示す図である。It is a figure which shows Embodiment 1 of this invention, and is a figure which shows the A-phase operating voltage waveform of a certain case D at the time of verification simulation implementation.

符号の説明Explanation of symbols

1 距離継電装置、
2 電圧・電流計測手段
3 A/D変換手段、
4 電圧回転ベクトル変化分算出手段、
5 電流回転ベクトル変化分算出手段、
6 想定点の故障前電圧VF算出手段、
7 想定点の起動電圧算出手段、
8 故障起動判別手段、
9 区内故障判別手段、
10 インターフェース、
11 記憶手段、
12 制御実施手段、
13 遮断器CB、
14 PT、
15 CT。
1 distance relay device,
2 Voltage / current measurement means 3 A / D conversion means,
4 voltage rotation vector change calculation means,
5 current rotation vector change calculation means,
6 Pre-failure voltage VF calculation means at the assumed point,
7 Start-up voltage calculation means for assumed point,
8 failure activation determination means,
9 Defect determination means in the ward,
10 interface,
11 storage means,
12 Control implementation means,
13 Circuit breaker CB,
14 PT,
15 CT.

Claims (8)

電力系統から検出された電圧及び電流からサンプリングした電圧時系列瞬時値及び電流時系列瞬時値を取り込む電圧・電流計測手段、
電圧時系列瞬時値から電圧回転ベクトル変化分を算出する電圧回転ベクトル変化分算出手段、
電流時系列瞬時値から電流回転ベクトル変化分を算出する電流回転ベクトル変化分算出手段、
前記検出の場所から所定距離離れた場所である想定点までの送電線インピーダンスと保護対象線路の電流回転ベクトル変化分と母線電圧回転ベクトル変化分とを用いて前記想定点の故障起動時の起動電圧を計算する起動電圧算出手段、
保護対象線路電流と母線電圧と前記想定点までの送電線インピーダンスとを用いて前記想定点の故障前電圧を計算する故障前電圧算出手段、
及び前記起動電圧と前記故障前電圧とを比較して保護区内故障を判別する区内故障判別手段を備え、
前記区内故障判別手段での判別結果、前記起動電圧が前記故障前電圧より大きい場合に前記保護対象線路の遮断器へのトリップ出力を出す距離継電装置。
Voltage / current measurement means for capturing voltage time series instantaneous values and current time series instantaneous values sampled from voltages and currents detected from the power system,
A voltage rotation vector change calculating means for calculating a voltage rotation vector change from a voltage time series instantaneous value;
Current rotation vector change calculation means for calculating the current rotation vector change from the current time series instantaneous value;
Start-up voltage at the time of failure start-up of the assumed point using the transmission line impedance to the assumed point that is a predetermined distance from the detection location, the current rotation vector change of the protection target line, and the bus voltage rotation vector change A starting voltage calculating means for calculating
A pre-failure voltage calculating means for calculating a pre-failure voltage at the assumed point using a line current to be protected, a bus voltage, and a transmission line impedance up to the assumed point;
And a failure determination means in the area for comparing the start-up voltage and the pre-failure voltage to determine a failure in the protected area,
A distance relay device that outputs a trip output to the circuit breaker of the line to be protected when the start-up voltage is larger than the pre-failure voltage as a result of the determination by the in-zone failure determination means.
請求項1に記載の距離継電装置において、重ねの定理に基づく短絡故障回転ベクトル変化分等価回路に基づいて短絡故障起動時の前記起動電圧が計算され、短絡故障に応動する距離継電装置であって、前記短絡故障起動時の起動電圧は以下の式(27)または式(28)により実効値として算出され、前記故障前電圧は以下の式(17)により実効値として算出されることを特徴とする距離継電装置
Figure 0004874824
Figure 0004874824
Figure 0004874824
但し、式(17)、式(27)及び式(28)において、V Sre (t)は起動電圧の実数部、V Sim (t)は起動電圧の虚数部、V Mre (t)はM母線側の電圧の実数部、V Mim (t)はM母線側の電圧の虚数部、
は前記想定点までの送電線インピーダンス、V Mre (t)はM母線側の電圧の実数部、
Mim (t)はM母線側の電圧の虚数部、i Mre (t)はM母線側の電流の実数部、i Sim (t)はM母線側の電流の虚数部、Nは、基準波の1周期を4N(Nは正の整数)等分したサンプリング手法を使用した場合におけるNである。
In distance relay apparatus according to claim 1, it is calculated the activation voltage during short circuit fault activated based on the short-circuit failure rotation vector variation equivalent circuit based on the theorem of overlapping, distance HanareTsugi electrostatic you response to short-circuit failure In the apparatus , the starting voltage at the time of the short-circuit failure starting is calculated as an effective value by the following equation (27) or (28), and the pre-failure voltage is calculated as an effective value by the following equation (17): A distance relay device characterized by that .
Figure 0004874824
Figure 0004874824
Figure 0004874824
However, in Equation (17), Equation (27) and Equation (28), V Sre (t) is the real part of the starting voltage, V Sim (t) is the imaginary part of the starting voltage, and V Mre (t) is the M bus. V Mim (t) is the imaginary part of the voltage on the M bus side,
Z 1 is the transmission line impedance up to the assumed point, V Mre (t) is the real part of the voltage on the M bus side,
V Mim (t) is the imaginary part of the voltage on the M bus side, i Mre (t) is the real part of the current on the M bus side, i Sim (t) is the imaginary part of the current on the M bus side, N is the reference wave N in the case of using a sampling method in which one period is equally divided into 4N (N is a positive integer).
請求項1に記載の距離継電装置において、重ねの定理に基づく地絡故障回転ベクトル変化分等価回路に基づいて地絡故障起動時の前記起動電圧が計算され、地絡故障に応動する距離継電装置であって、前記地絡故障起動時の起動電圧は以下の式(37)または式(38)により実効値として算出され、前記故障前電圧は以下の式(17)により実効値として算出されることを特徴とする距離継電装置
Figure 0004874824
Figure 0004874824
Figure 0004874824
但し、式(17)、式(37)及び式(38)において、V Sre (t)は起動電圧の実数部、V Sim (t)は起動電圧の虚数部、V Mre (t)はM母線側の電圧の実数部、V Mim (t)はM母線側の電圧の虚数部、
は前記想定点までの送電線インピーダンス、V Mre (t)はM母線側の電圧の実数部、
Mim (t)はM母線側の電圧の虚数部、i Mre (t)はM母線側の電流の実数部、i Sim (t)はM母線側の電流の虚数部、Nは、基準波の1周期を4N(Nは正の整数)等分したサンプリング手法を使用した場合におけるNである。
In distance relay apparatus according to claim 1, ground fault startup on the basis of the ground fault rotation vector variation equivalent circuit based on the theorem of overlapping activation voltage is calculated, you in response to a ground fault distance In the power disconnecting device , the starting voltage at the time of the ground fault start is calculated as an effective value by the following formula (37) or formula (38), the voltage before the fault is an effective value by the following formula (17) A distance relay device calculated as:
Figure 0004874824
Figure 0004874824
Figure 0004874824
However, in Equation (17), Equation (37) and Equation (38), V Sre (t) is the real part of the starting voltage, V Sim (t) is the imaginary part of the starting voltage, and V Mre (t) is the M bus. V Mim (t) is the imaginary part of the voltage on the M bus side,
Z 1 is the transmission line impedance up to the assumed point, V Mre (t) is the real part of the voltage on the M bus side,
V Mim (t) is the imaginary part of the voltage on the M bus side, i Mre (t) is the real part of the current on the M bus side, i Sim (t) is the imaginary part of the current on the M bus side, N is the reference wave N in the case of using a sampling method in which one period is equally divided into 4N (N is a positive integer).
請求項1に記載の距離継電装置において、重ねの定理に基づく短絡故障回転ベクトル変
化分等価回路に基づいて短絡故障起動時の前記起動電圧が計算されると共に、重ねの定理に基づく地絡故障回転ベクトル変化分等価回路に基づいて地絡故障起動時の前記起動電圧が計算され、短絡故障及び地絡故障に応動する距離継電装置であって、前記短絡故障起動時の起動電圧は以下の式(27)または式(28)により実効値として算出され、前記地絡故障起動時の起動電圧は以下の式(37)または式(38)により実効値として算出され、前記故障前電圧は以下の式(17)により実効値として算出されることを特徴とする距離継電装置
Figure 0004874824
Figure 0004874824
Figure 0004874824
Figure 0004874824
Figure 0004874824
但し、式(17)、式(27)、式(28)、式(37)及び式(38)において、V Sre (t)は起動電圧の実数部、V Sim (t)は起動電圧の虚数部、V Mre (t)はM母線側の電圧の実数部、V Mim (t)はM母線側の電圧の虚数部、Z は前記想定点までの送電線インピーダンス、V Mre (t)はM
母線側の電圧の実数部、V Mim (t)はM母線側の電圧の虚数部、i Mre (t)はM母線側の電流の実数部、i Sim (t)はM母線側の電流の虚数部、Nは、基準波の1周期を4N(Nは正の整数)等分したサンプリング手法を使用した場合におけるNである。
2. The distance relay device according to claim 1, wherein the start-up voltage at the start of a short-circuit fault is calculated based on a short-circuit fault rotation vector change equivalent circuit based on a superposition theorem, and a ground fault based on the superposition theorem the starting voltage of the ground fault startup based on the rotational vector variation equivalent circuit are calculated, a distance HanareTsugi collector you responding to short-circuit fault and a ground fault, the starting voltage when the short-circuit failure start The following equation (27) or equation (28) is calculated as an effective value, and the start-up voltage at the time of ground fault failure is calculated as an effective value by the following equation (37) or equation (38), and the pre-failure voltage Is calculated as an effective value by the following formula (17) .
Figure 0004874824
Figure 0004874824
Figure 0004874824
Figure 0004874824
Figure 0004874824
However, in Equation (17), Equation (27), Equation (28), Equation (37) and Equation (38), V Sre (t) is the real part of the starting voltage, and V Sim (t) is the imaginary number of the starting voltage. , V Mre (t) is the real part of the voltage on the M bus side, V Mim (t) is the imaginary part of the voltage on the M bus side, Z 1 is the transmission line impedance up to the assumed point, and V Mre (t) is M
The real part of the voltage on the bus side, V Mim (t) is the imaginary part of the voltage on the M bus side, i Mre (t) is the real part of the current on the M bus side, and i Sim (t) is the current part on the M bus side The imaginary part, N, is N in the case of using a sampling method in which one period of the reference wave is equally divided by 4N (N is a positive integer).
請求項1〜の何れか一に記載の距離継電装置において、現在の電流値と所定サンプリング数前の電流値との差分を算出し当該差分から故障であるか判別する故障起動判別手段を備え、前記故障起動判別手段による判別結果が故障である場合に前記前記区内故障判別手段が前記判別を行うことを特徴とする距離継電装置。 In the distance relay device according to any one of claims 1 to 4 , fault activation determination means for calculating a difference between a current value and a current value before a predetermined number of samplings and determining whether or not there is a failure from the difference. The distance relay device according to claim 1, wherein when the determination result by the failure activation determination unit is a failure, the intra-city failure determination unit performs the determination. 請求項に記載の距離継電装置において、前記故障起動判別手段は以下の式(39)〜(41)の少なくとも一つが満足された場合に故障起動であると判別することを特徴とする距離継電装置。
Figure 0004874824
Figure 0004874824
Figure 0004874824
但し、iAre(t)はA相の現在の電流、iAre(t-T)はA相の所定サンプリング数前の電
流、iBre(t)はB相の現在の電流、iBre(t-T)はB相の所定サンプリング数前の電流、
Cre(t)はC相の現在の電流、iCre(t-T)はC相の所定サンプリング数前の電流、ISETは整定値である。
6. The distance relay device according to claim 5 , wherein the failure activation determination means determines that the failure activation has occurred when at least one of the following formulas (39) to (41) is satisfied. Relay device.
Figure 0004874824
Figure 0004874824
Figure 0004874824
Where i Are (t) is the current of the A phase, i Are (t−T) is the current of the A phase before the predetermined sampling number, i Bre (t) is the current of the B phase, and i Bre (t -T) is the current before the predetermined sampling number of phase B,
i Cre (t) is the current of the C phase, i Cre (t−T) is the current before the predetermined sampling number of the C phase, and I SET is a set value.
請求項に記載の距離継電装置において、前記所定サンプリング数前の電流が1サイクル前の電流であることを特徴とする距離継電装置。 The distance relay device according to claim 6 , wherein the current before the predetermined number of samplings is a current before one cycle. 請求項に記載の距離継電装置において、前記サンプリングが、少なくとも1サイクル間隔及び電気角90度のタイミングで行われることを特徴とする距離継電装置。 8. The distance relay device according to claim 7 , wherein the sampling is performed at a timing of at least one cycle interval and an electrical angle of 90 degrees.
JP2007019332A 2007-01-30 2007-01-30 Distance relay device Expired - Fee Related JP4874824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019332A JP4874824B2 (en) 2007-01-30 2007-01-30 Distance relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019332A JP4874824B2 (en) 2007-01-30 2007-01-30 Distance relay device

Publications (2)

Publication Number Publication Date
JP2008187825A JP2008187825A (en) 2008-08-14
JP4874824B2 true JP4874824B2 (en) 2012-02-15

Family

ID=39730480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019332A Expired - Fee Related JP4874824B2 (en) 2007-01-30 2007-01-30 Distance relay device

Country Status (1)

Country Link
JP (1) JP4874824B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253314A (en) * 2011-06-23 2011-11-23 陕西电力科学研究院 Superheat region searching method for fault location of electric distribution network

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5078763B2 (en) * 2008-06-10 2012-11-21 三菱電機株式会社 Transmission line accident location device and transmission line accident location method
BR112013000647B1 (en) * 2010-07-09 2024-04-30 Siemens Aktiengesellschaft METHOD FOR DETECTING A SHORT CIRCUIT IN A LINE OF A MULTIPHASE ELECTRIC POWER SUPPLY NETWORK AND PROTECTIVE DEVICE FOR MONITORING A LINE OF A MULTIPHASE ELECTRIC POWER SUPPLY NETWORK
AT520806B1 (en) * 2018-01-11 2021-02-15 Sprecher Automation Gmbh Procedure for triggering a distance protection relay monitoring a zone
CN110927621B (en) * 2019-11-12 2022-12-27 上海宝钢工业技术服务有限公司 Grounding detection positioning system for closed friction electric track of conveying chain
CN111224385B (en) * 2019-12-09 2021-03-02 国网江苏省电力有限公司镇江供电分公司 Disconnection protection method for comparing voltage amplitude difference of two side wires of line and matching of spare power automatic switching
CN113541112B (en) * 2021-07-16 2024-05-10 北京四方继保工程技术有限公司 Method for rapidly cutting off controllable high-internal-outlet-fault-resistance through line protection
CN115411729B (en) * 2022-09-30 2024-04-16 南方电网科学研究院有限责任公司 Voltage stability judging method and device for power system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920110B2 (en) * 1979-05-22 1984-05-10 東京電力株式会社 Fault point location method for power transmission line fault detection and protection
JPH0429519A (en) * 1990-05-24 1992-01-31 Meidensha Corp Distance relay
JP3857195B2 (en) * 2002-07-09 2006-12-13 株式会社東芝 Distance relay device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253314A (en) * 2011-06-23 2011-11-23 陕西电力科学研究院 Superheat region searching method for fault location of electric distribution network
CN102253314B (en) * 2011-06-23 2013-08-28 陕西电力科学研究院 Superheat region searching method for fault location of electric distribution network

Also Published As

Publication number Publication date
JP2008187825A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP4874824B2 (en) Distance relay device
US7253634B1 (en) Generator protection methods and systems self-tuning to a plurality of characteristics of a machine
US20060198065A1 (en) Apparatus and method for detecting the loss of a current transformer connection coupling a current differential relay to an element of a power system
KR20080063144A (en) Relay device and corresponding method
Silveira et al. Transmission line fault location using two-terminal data without time synchronization
CN110783946B (en) Method for locating phase faults in a microgrid
CN109507516A (en) Earth-fault detecting method, system and storage medium based on steady state fault amount
Rajaraman et al. Robust fault analysis in transmission lines using Synchrophasor measurements
KR100542448B1 (en) Distance relay apparatus
JP4738274B2 (en) Insulation monitoring apparatus and method for electrical equipment
CN111740379B (en) Method for automatically adjusting zero sequence protection two-segment and three-segment time constant values on line
KR101989350B1 (en) Appatus for protecting of microgrid using superimposed reactive energy and method thereof
JP2019165569A (en) Failure determination device and protective relay device
Kumar et al. Fault detection in a series compensated line during power swing using superimposed apparent power
JP6161527B2 (en) Transmission line protection relay
Yin et al. A new principle based on Pearson correlation coefficient to avoid mal-operation of the restricted earth fault protection
JP4979339B2 (en) Digital directional relay
CN115603286A (en) Self-adaptive distance protection method for unbalanced short circuit of photovoltaic power supply tie line
JP5078763B2 (en) Transmission line accident location device and transmission line accident location method
JP5063171B2 (en) Distance relay device
CN109997287B (en) Method and control system for fault direction detection
Velasco-Gómez et al. Unbalance compensated distance relay for active distribution networks
Rao et al. A faulty line detection technique for series compensated line using synchrophasor data
JP6362569B2 (en) Distance relay device and power line protection method
Liang et al. Processing synchrophasor data using a feature selection procedure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4874824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees