JP4873599B2 - Animal model of autoimmune disease - Google Patents

Animal model of autoimmune disease Download PDF

Info

Publication number
JP4873599B2
JP4873599B2 JP2004332700A JP2004332700A JP4873599B2 JP 4873599 B2 JP4873599 B2 JP 4873599B2 JP 2004332700 A JP2004332700 A JP 2004332700A JP 2004332700 A JP2004332700 A JP 2004332700A JP 4873599 B2 JP4873599 B2 JP 4873599B2
Authority
JP
Japan
Prior art keywords
dnaseγ
autoimmune disease
model animal
function
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004332700A
Other languages
Japanese (ja)
Other versions
JP2006141232A (en
Inventor
靖一 田沼
大介 北村
龍信 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2004332700A priority Critical patent/JP4873599B2/en
Publication of JP2006141232A publication Critical patent/JP2006141232A/en
Application granted granted Critical
Publication of JP4873599B2 publication Critical patent/JP4873599B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本発明は、自己免疫疾患モデル動物及びその作製方法、並びに、自己免疫疾患モデル動物を用いた自己免疫疾患の予防、改善又は治療に有用な物質のスクリーニング方法に関する。   The present invention relates to an autoimmune disease model animal, a method for producing the same, and a method for screening a substance useful for the prevention, amelioration, or treatment of an autoimmune disease using the autoimmune disease model animal.

全身性エリテマトーデス、バセドウ氏病、重症筋無力症、インスリン抵抗性糖尿病などの自己免疫疾患は、それぞれ抗核抗体、抗TSH受容体抗体、抗アセチルコリンレセプター抗体、抗インスリン受容体抗体などの自己抗体の産生の増加に起因することが知られている。   Autoimmune diseases such as systemic lupus erythematosus, Graves' disease, myasthenia gravis, and insulin-resistant diabetes mellitus are associated with anti-nuclear antibodies, anti-TSH receptor antibodies, anti-acetylcholine receptor antibodies, and anti-insulin receptor antibodies, respectively. It is known to result from increased production.

近年、このような自己免疫疾患を発症するモデル動物、例えば、Fas又はFasリガンドの機能を欠損したマウス(非特許文献1及び2参照)や、DNaseI遺伝子を欠損したマウス(非特許文献3参照)を作製し、自己免疫疾患に対して予防、改善、又は治療に有用な物質の開発が試みられている。
Cell 76, 969-976, 1994 Nature 356, 314-317, 1992 Nat. Genet. 25, 177-181, 2000
In recent years, model animals that develop such autoimmune diseases, such as mice lacking the function of Fas or Fas ligand (see Non-Patent Documents 1 and 2), and mice deficient in the DNaseI gene (see Non-Patent Document 3). Attempts have been made to develop substances useful for the prevention, amelioration, or treatment of autoimmune diseases.
Cell 76, 969-976, 1994 Nature 356, 314-317, 1992 Nat. Genet. 25, 177-181, 2000

本発明は、新規な自己免疫疾患モデル動物及びその作製方法、並びに、自己免疫疾患モデル動物を用いた自己免疫疾患の予防、改善又は治療に有用な物質のスクリーニング方法を提供することを目的とする。   An object of the present invention is to provide a novel autoimmune disease model animal, a method for producing the same, and a method for screening a substance useful for the prevention, amelioration, or treatment of the autoimmune disease using the autoimmune disease model animal. .

DNaseγは、DNAを切断する際、二重鎖DNAを解離させる。そのうち一方のDNA鎖が結合する活性中心に存在する2つのHis(GenBank Accession No.AAD09222のアミノ酸配列における160及び279番目のHis)のどちらか一方に変異を導入すると、DNaseγのDNase活性を完全に抑制できることが明らかとなっている。   DNaseγ dissociates double-stranded DNA when cleaving DNA. When a mutation is introduced into one of the two Hiss (160 and 279th His in the amino acid sequence of GenBank Accession No. AAD09222) present in the active center to which one of the DNA strands binds, the DNase activity of DNaseγ is completely eliminated. It is clear that it can be suppressed.

そこで、本発明者らは、DNaseγのin vivoにおける役割を明らかにするために、160番目のHisをコードするヌクレオチドを含むエクソン5の一部を欠失したノックアウトマウスを作製し、ホモ接合にすることによりDNaseγ欠損マウスを得た。このDNaseγ欠損マウスの血清中には、野生型マウスに比べて自己抗体(抗dsDNA抗体)の濃度が増加していた。この結果から、DNaseγの機能を欠損させることにより、その動物において自己免疫疾患が発症することが示され、本発明者らは本発明を完成するに至った。   Therefore, in order to clarify the role of DNaseγ in vivo, the present inventors produced a knockout mouse in which a part of exon 5 containing a nucleotide encoding 160th His was deleted and made homozygous. Thus, DNaseγ-deficient mice were obtained. In the serum of this DNaseγ-deficient mouse, the concentration of the autoantibody (anti-dsDNA antibody) was increased compared to the wild-type mouse. From this result, it was shown that autoimmune disease develops in the animal by deficient in the function of DNaseγ, and the present inventors have completed the present invention.

すなわち、本発明に係る自己免疫疾患モデル動物は、ヒト以外の脊椎動物であって、DNaseγの機能が完全に又は部分的に欠損したことを特徴とする。前記DNaseγの機能は、例えば、DNase活性などである。上記モデル動物は、DNaseγ遺伝子の変異によりDNaseγの機能が完全に又は部分的に欠損したことを特徴としてもよい。   That is, the autoimmune disease model animal according to the present invention is a vertebrate other than a human and is characterized in that the DNaseγ function is completely or partially lost. The function of DNaseγ is, for example, DNase activity. The model animal may be characterized in that the DNaseγ function is completely or partially lost due to mutation of the DNaseγ gene.

前記自己免疫疾患は、例えば、抗dsDNA抗体の産生に起因する疾患であることが好ましい。具体的には、全身性エリトマトーデスなどである。   The autoimmune disease is preferably a disease caused by production of anti-dsDNA antibodies, for example. Specifically, systemic lupus erythematosus.

また、本発明に係る自己免疫疾患モデル動物の作製方法は、ヒト以外の脊椎動物においてDNaseγの機能を完全に又は部分的に欠損させる工程を含む。前記DNaseγの機能は、例えば、DNase活性などである。上記作製方法は、DNaseγ遺伝子を変異させることによりDNaseγの機能を完全に又は部分的に欠損させる工程を含むこととしてもよい。   In addition, the method for producing an autoimmune disease model animal according to the present invention includes a step of completely or partially deficient in the function of DNaseγ in vertebrates other than humans. The function of DNaseγ is, for example, DNase activity. The production method described above may include a step of completely or partially deleting the DNaseγ function by mutating the DNaseγ gene.

さらに、本発明に係るスクリーニング方法は、自己免疫疾患に対する予防、改善又は治療に有用な物質をスクリーニングする方法であって、ヒト以外の脊椎動物であってDNaseγの機能が欠損した自己免疫疾患モデル動物を用いることを特徴とする。上記スクリーニング方法は、前記モデル動物にスクリーニング対象物質を投与する前後で、前記モデル動物における自己抗体量を測定し、前記物質を投与する前後の前記自己抗体量を比較する工程を含むこととしてもよい。   Furthermore, the screening method according to the present invention is a method for screening a substance useful for prevention, amelioration, or treatment of an autoimmune disease, and is a non-human vertebrate animal that lacks DNaseγ function. It is characterized by using. The screening method may include a step of measuring the amount of autoantibodies in the model animal before and after administering the substance to be screened to the model animal, and comparing the amount of autoantibodies before and after administering the substance. .

なお、本発明の自己免疫疾患モデル動物としては、例えば、マウス、ラットなどのヒト以外の脊椎動物である。   The autoimmune disease model animal of the present invention is a non-human vertebrate such as a mouse or a rat, for example.

また、本発明において「自己免疫疾患」とは、自己抗体の産生に起因する疾患をいう。自己抗体としては、例えば、抗dsDNA抗体などがある。   In the present invention, the “autoimmune disease” refers to a disease caused by autoantibody production. Examples of autoantibodies include anti-dsDNA antibodies.

本発明によれば、新規な自己免疫疾患モデル動物及びその作製方法、並びに、自己免疫疾患モデル動物を用いた自己免疫疾患の予防、改善又は治療に有用な物質のスクリーニング方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the novel autoimmune disease model animal, its preparation method, and the screening method of a substance useful for the prevention, improvement, or treatment of an autoimmune disease using an autoimmune disease model animal can be provided. .

以下、上記知見に基づき完成した本発明の実施の形態を、実施例を挙げながら詳細に説明する。実施の形態及び実施例に特に説明がない場合には、J. Sambrook, E. F. Fritsch & T. Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd edition), Cold Spring Harbor Press, Cold Spring Harbor, New York (2001); F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J.G. Seidman, J. A. Smith, K. Struhl (Ed.), Current Protocols in Molecular Biology, John Wiley & Sons Ltd.などの標準的なプロトコール集に記載の方法、あるいはそれを修飾したり、改変した方法を用いる。また、市販の試薬キットや測定装置を用いている場合には、特に説明が無い場合、それらに添付のプロトコールを用いる。   Hereinafter, embodiments of the present invention completed based on the above knowledge will be described in detail with reference to examples. Unless otherwise stated in the embodiments and examples, J. Sambrook, EF Fritsch & T. Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd edition), Cold Spring Harbor Press, Cold Spring Harbor, New York (2001); FM Ausubel, R. Brent, RE Kingston, DD Moore, JG Seidman, JA Smith, K. Struhl (Ed.), Standard Protocols in Molecular Biology, John Wiley & Sons Ltd. The method described in the protocol collection, or a modified or modified method thereof is used. In addition, when using commercially available reagent kits and measuring devices, unless otherwise explained, protocols attached to them are used.

なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的に実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。   The objects, features, advantages, and ideas of the present invention will be apparent to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification. it can. The embodiments and specific examples of the invention described below show preferred embodiments of the present invention, and are shown for illustration or explanation. It is not limited. It will be apparent to those skilled in the art that various modifications and variations can be made based on the description of the present specification within the spirit and scope of the present invention disclosed herein.

==自己免疫疾患モデル動物の有用性==
DNaseγは、アポトーシスの最終段階で、DNAを切断する酵素として知られている。DNaseγのDNase活性中心の一つである160番目のHis残基をコードするヌクレオチドを含むDNaseγ遺伝子のエクソン5の一部を欠失させたノックアウトマウスを作製したところ、このマウスが自己免疫疾患の症状(血清中の自己抗体の増加)を示すことが明らかになった。この自己抗体の増加は、DNaseγ遺伝子のエクソン5の一部を欠失させたことにより、DNaseγのDNase活性が欠失又は低下し、アポトーシスを起こした細胞から、切断されなかったDNAが多量に遊離して、自己抗原として作用することにより生じたと考えられる。
== Usefulness of autoimmune disease model animals ==
DNaseγ is known as an enzyme that cleaves DNA at the final stage of apoptosis. A knockout mouse in which a part of exon 5 of the DNaseγ gene containing a nucleotide encoding the 160th His residue, which is one of the DNase active centers of DNaseγ, was created. It was revealed to show (increase in autoantibodies in serum). This increase in autoantibodies is caused by the deletion of a part of exon 5 of the DNaseγ gene, which results in the deletion or reduction of DNaseγ DNase activity, and release of a large amount of uncut DNA from cells that have undergone apoptosis. Thus, it is thought to have been caused by acting as a self-antigen.

以上のことから、DNaseγのDNase活性を欠損又は低下させた動物は、ヒトの自己免疫疾患のモデルとして有用であると考えられる。このモデル動物は、抗dsDNA抗体の増加を示すことから、全身性エリテマトーデス(特に活動性ループス腎炎や円板状ループス)、シェーグレン症候群などの膠原病、混合性結合組織病、自己免疫性リウマチ疾患などのモデルとして有用であると考えられる。   From the above, it is considered that an animal in which DNase activity of DNaseγ is deficient or reduced is useful as a model of human autoimmune disease. Since this model animal shows an increase in anti-dsDNA antibodies, systemic lupus erythematosus (especially active lupus nephritis and discoid lupus), collagen diseases such as Sjogren's syndrome, mixed connective tissue disease, autoimmune rheumatic diseases, etc. This is considered to be useful as a model.

さらに、DNaseγのDNase活性を欠損又は低下させた動物を用いることにより、上記疾患に対する予防、改善又は治療するための物質をスクリーニングすることができると考えられる。   Furthermore, it is considered that a substance for preventing, ameliorating or treating the above diseases can be screened by using an animal in which DNase activity of DNaseγ is deficient or reduced.

==自己免疫疾患モデル動物の作製==
自己免疫疾患モデル動物は、動物個体に対し、DNaseγの機能(DNAを切断するDNase活性)を欠損又は低下させる処理を施すことにより作製することができる。動物においてDNaseγの機能を欠損又は低下させるには、少なくともDNaseγの機能に重要な部位、又はそれらをコードするDNA又はその転写産物を標的とする。例えば、相同組換えなどを用いたDNaseγ遺伝子への変異(欠失、置換、付加、挿入などを含む)の導入による変異体(条件突然変異体も含む)の作製、ドミナント・ネガティブ変異をもつ変異タンパク質を有するトランスジェニック動物の作製、アンチセンスRNAやRNAi、またはそれらをコードするDNAを用いたノックダウン動物の作製を用いることにより行うことができる。
== Production of autoimmune disease model animal ==
An autoimmune disease model animal can be produced by subjecting an animal individual to a treatment that deletes or reduces the function of DNaseγ (DNase activity that cleaves DNA). In order to lack or reduce the DNaseγ function in an animal, at least a site important for the DNaseγ function, or a DNA encoding the same or a transcription product thereof is targeted. For example, creating mutants (including conditional mutants) by introducing mutations (including deletions, substitutions, additions, insertions, etc.) into the DNaseγ gene using homologous recombination, mutations with dominant negative mutations It can be carried out by using the production of a transgenic animal having a protein, the production of a knockdown animal using antisense RNA or RNAi, or DNA encoding them.

上述のDNaseγの機能に重要な部位としては、核内移行活性を有するDNaseγのC末端ドメイン(GenBank Accession No.AAD09222のアミノ酸配列における302〜306番目のアミノ酸配列)、2本鎖DNAを解離しながらDNAを切断する際に、切断する側のDNA鎖が結合するDNaseγの酵素活性中心(GenBank Accession No.AAD09222のアミノ酸配列における160及び279番目のHisを含む領域)、及び、切断されるDNA鎖とは異なるもう一方のDNA鎖が結合するDNA結合ポケットを構成すると考えられているアミノ酸残基(GenBank Accession No.AAD09222のアミノ酸配列における35〜39番目、64〜69番目、97番目、102〜106番目のアミノ酸残基)などの部位を挙げることができるが、これらに限定されるものではない。   As a site important for the above-mentioned DNaseγ function, the C-terminal domain of DNaseγ having nuclear translocation activity (amino acid sequence 302 to 306 in the amino acid sequence of GenBank Accession No. AAD09222) while dissociating double-stranded DNA DNaseγ enzyme activity center (region containing 160th and 279th His in the amino acid sequence of GenBank Accession No. AAD09222) to which the DNA strand to be cleaved binds when cleaving DNA, and the DNA strand to be cleaved Is an amino acid residue that is thought to constitute a DNA binding pocket to which another different DNA strand binds (GenBank Accession No. AAD09222 amino acid sequence 35-39, 64-69, 97, 102-106) Examples of the amino acid residues are not limited to these.

なお、上述においては、DNaseγの機能に重要な部位若しくはそれを含む領域、又はそれらをコードするDNA又はRNAを標的としているが、遺伝子を変異させることによってDNaseγの機能が損なわれるものであれば、これらに限定されるものではない。   In addition, in the above, a site important for the function of DNaseγ or a region containing it, or DNA or RNA encoding them is targeted, but if the function of DNaseγ is impaired by mutating the gene, It is not limited to these.

他の手段として、DNaseγの機能を阻害又は抑制する物質を用いて、動物個体におけるDNaseγの機能を欠損又は低下させてもよい。例えば、DNaseγは、アポトーシスの誘発に伴い核内に移行し、DNAを切断するため、DNaseγ遺伝子を欠失させること以外に、DNaseγが有する核内移行活性や、DNAを切断するDNase活性などの機能を阻害することにより、DNaseγの機能を欠損又は低下させることができると考えられる。   As another means, a DNaseγ function in an animal individual may be lost or reduced using a substance that inhibits or suppresses the DNaseγ function. For example, DNaseγ moves into the nucleus when apoptosis is induced and cleaves DNA. In addition to deleting the DNaseγ gene, DNaseγ has functions such as nuclear translocation activity and DNase activity that cleaves DNA. It is considered that the function of DNaseγ can be deficient or reduced by inhibiting.

上述のDNaseγの機能を阻害又は抑制する物質としては、例えば、DNaseγのDNase活性を阻害する下式(1)〜(4)のいずれかの化合物、抗DNaseγ抗体などを用いることができる。

Figure 0004873599
As a substance that inhibits or suppresses the above-mentioned DNaseγ function, for example, a compound of any one of the following formulas (1) to (4) that inhibits the DNase activity of DNaseγ, an anti-DNaseγ antibody, and the like can be used.
Figure 0004873599

==自己免疫疾患モデル動物を用いたスクリーニング方法==
本発明の自己免疫疾患モデル動物を用いることにより、自己免疫疾患に対して予防、改善又は治療に有用な物質をスクリーニングすることができる。
== Screening method using autoimmune disease model animal ==
By using the autoimmune disease model animal of the present invention, a substance useful for prevention, amelioration or treatment of autoimmune disease can be screened.

例えば、DNaseγの機能が欠損した自己免疫疾患モデル動物に、スクリーニングの対象となる物質を投与する。そして、投与前後で、自己免疫疾患モデル動物から血清を採取し、血清中における自己抗体の量を測定する。自己抗体の量は、例えば、EIA(enzyme immunoassay)、ELISA(Enzyme Iinked Immunosorbent Assay)、PHA(Passive Hemagglutination Assay)、二重免疫拡散法(Double Radial Immunodiffusion)、FAT(fluorescent antibody test)、PA(Particle Agglutination)法、RIA(radioimmunoassay)等によって測定することができる。   For example, a substance to be screened is administered to an autoimmune disease model animal deficient in DNaseγ function. Then, before and after administration, serum is collected from the autoimmune disease model animal, and the amount of autoantibodies in the serum is measured. The amount of autoantibodies is, for example, EIA (enzyme immunoassay), ELISA (Enzyme Iinked Immunosorbent Assay), PHA (Passive Hemagglutination Assay), double immunodiffusion method (FAT), FAT (fluorescent antibody test), PA (Particle Agglutination), RIA (radioimmunoassay), etc.

投与前後の自己抗体の量を比較し、投与後に自己抗体の量が減少しているかどうかを調べることにより、自己免疫疾患に対して予防、改善又は治療に有用な物質を同定することができる。なお、スクリーニング対象となる物質を投与した動物における自己抗体量は、同じ動物個体の投与前の自己抗体量と比較しているが、同じ種類の正常動物個体における自己抗体量と比較してもよい。   By comparing the amount of autoantibodies before and after administration and examining whether the amount of autoantibodies is reduced after administration, substances useful for prevention, amelioration or treatment of autoimmune diseases can be identified. The amount of autoantibodies in animals administered with the substance to be screened is compared with the amount of autoantibodies before administration of the same animal individual, but may be compared with the amount of autoantibodies in normal animal individuals of the same type. .

以下、本発明の実施例について詳細に述べる。   Examples of the present invention will be described in detail below.

[実施例1]DNaseγノックアウトマウスの作製
1−1 マウスDNaseγ遺伝子のゲノムDNAの単離
C57BL/6マウスゲノムライブラリーより、プラークハイブリダイゼーション法でマウスDNaseγ遺伝子をスクリーニングした。
[Example 1] Preparation of DNaseγ knockout mouse 1-1 Isolation of genomic DNA of mouse DNaseγ gene
The mouse DNaseγ gene was screened from the C57BL / 6 mouse genomic library by plaque hybridization.

まず、約1×106プラークをBiodyne A nylon membrane (PALL)へトランスファーし、そのフィルターをAlkaline Solution(1.5M NaCl, 0.5N NaOH)中で変性させ(5分)、Neutralizing Solution (1.5M NaCl, 0.5M Tris-HCl)で中和し(5分)、2×SSCでリンス(5分)した後、UV照射にてファージDNAをフィルターへ固定した。そのフィルターをハイブリダイゼーションバッファー(50% ホルムアミド, 5×SSPE(0.15M NaCl, 10mM NaHPO4(pH7.4), 1mM EDTA), 5% Irish Cream, 0.1% SDS)中で、32Pでランダムラベルしたエクソン5を含む0.5kbのEcoRI/DNA断片をプローブとして42℃で一晩ハイブリダイゼーションした。その後、2×SSC-0.1%SDSで洗い(65℃,30分)を行った後、0.1×SSC-0.1%SDSで洗い(65℃,30分×2回)を行い、X線フィルムに-80℃で感光させた。単離したファージクローンのDNAをlambda DNA Maxi preparation kit(QIAGEN)で抽出し、DNaseγ遺伝子のイントロン4からエクソン8の一部を含む14.5kbのDNA断片(図1のA参照)をpBSSK(+) vector(STRATAGENE)にサブクローニングした (NotIサイトへ挿入)。 First, transfer about 1 × 10 6 plaques to Biodyne A nylon membrane (PALL), denature the filter in Alkaline Solution (1.5M NaCl, 0.5N NaOH) (5 min), Neutralizing Solution (1.5M NaCl, After neutralization with 0.5M Tris-HCl (5 minutes) and rinsing with 2 × SSC (5 minutes), phage DNA was immobilized on the filter by UV irradiation. The filter was randomly labeled with 32 P in hybridization buffer (50% formamide, 5 × SSPE (0.15M NaCl, 10 mM NaHPO 4 (pH7.4), 1 mM EDTA), 5% Irish Cream, 0.1% SDS). Hybridization was performed overnight at 42 ° C. using a 0.5 kb EcoRI / DNA fragment containing exon 5 as a probe. After washing with 2 x SSC-0.1% SDS (65 ° C, 30 minutes), washing with 0.1 x SSC-0.1% SDS (65 ° C, 30 minutes x 2 times) Sensitized at 80 ° C. The DNA of the isolated phage clone was extracted with a lambda DNA Maxi preparation kit (QIAGEN), and a 14.5 kb DNA fragment (see A in FIG. 1) containing part of exon 8 from intron 4 of DNaseγ gene was pBSSK (+) Subcloned into vector (STRATAGENE) (inserted into NotI site).

1−2 マウスDNaseγ遺伝子のターゲティングベクター (pLNTK-γ-KO3)の作製
A.5’-armのサブクローニング
クローニングしたDNaseγゲノムDNAと、プライマー(DNaseF8 (SalI linker;GACGTCGACCCCCAACAACTTGGCTATGGGTCC:配列番号1)及びDNaseR4 (SpeI linker;CTCACTAGTGGGGACAATCACGAAGTCCTTGAC:配列番号2))とを用いて、PfuTurbo DNA Polymerase (STRATAGENE)によるPCRを行い、ターゲッティングベクターの5’-側の相同領域となる部分を増幅した。増幅した4.9kbの断片をpCR-XL-TOPO (STRATAGENE)へサブクローニングした。
1-2. Preparation of mouse DNaseγ gene targeting vector (pLNTK-γ-KO3) 5'-arm subcloning Using cloned DNaseγ genomic DNA and primers (DNaseF8 (SalI linker; GACGTCGACCCCCAACAACTTGGCTATGGGTCC: SEQ ID NO: 1) and DNaseR4 (SpeI linker; CTCACTAGTGGGGACAATCACGAAGTCCTTGAC: SEQ ID NO: 2)), PfuTurATA DNA Polymerase PCR was carried out to amplify the 5′-side homology region of the targeting vector. The amplified 4.9 kb fragment was subcloned into pCR-XL-TOPO (STRATAGENE).

B.3’-armのサブクローニング
クローニングしたDNaseγゲノムDNAをAcc Iで切断し、Klenow処理を行って平滑末端にした後、6.0kbの断片をpUK21(GenBank Accession No. AF223640)のSma Iサイトへサブクローニングした。
B. Subcloning of 3′-arm The cloned DNaseγ genomic DNA was cleaved with Acc I and subjected to Klenow treatment to make it blunt, and then the 6.0 kb fragment was subcloned into the Sma I site of pUK21 (GenBank Accession No. AF223640).

C.ターゲッティングベクターの作製
4.9kbの断片を含むpCR-XL-TOPOをSal I及びXho Iで切断することにより得られた5’-arm断片(4.9kb)をpLNTK(Immunity 5, 241-252, 1996;図1のB参照)のSal Iサイトへ挿入した。次に、6.0kbの断片を含むpUK21をSal I及びXho Iで切断することにより得られた3’-arm断片(6.0kb)を、5’-arm断片を含むpLNTKのXho Iサイトへ挿入し、5’-arm、両端にloxP配列を含むPGK-Neomycin resistance遺伝子(NEO)、3’-arm、及びherpes simplex virus Thymidine kinase (HSV-TK)を含む全長18.0kbのターゲッティングベクター (pLNTK-γ-KO3)を作製した(図1参照)。
C. Production of targeting vector
A 5′-arm fragment (4.9 kb) obtained by cleaving pCR-XL-TOPO containing a 4.9 kb fragment with Sal I and Xho I was converted into pLNTK (Immunity 5, 241-252, 1996; FIG. 1B (See) Sal I site. Next, the 3′-arm fragment (6.0 kb) obtained by cleaving pUK21 containing the 6.0 kb fragment with Sal I and Xho I was inserted into the Xho I site of pLNTK containing the 5′-arm fragment. , 5'-arm, PGK-Neomycin resistance gene (NEO) containing loxP sequences at both ends, 3'-arm, and a 18.0 kb targeting vector (pLNTK-γ-) containing herpes simplex virus Thymidine kinase (HSV-TK) KO3) was produced (see FIG. 1).

1−3 DNaseγヘテロ変異体ES細胞の調製
A.ES (Embryonic Stem) 細胞の培養
0.1% ゼラチンでコートした細胞培養用ディッシュ(10cm)に、マイトマイシンCで処理したBALB/c由来のEF(Embryonic Fibroblast)細胞(フィーダー細胞;3×106個)を播種し、翌日、C57BL/6の胚盤胞由来のES細胞(Bruce4細胞株;5×106個)を播種してCO2インキュベーターを用いて37℃で培養した。なお、培養培地として、DMEM (ダルベッコ改変イーグル培地;GIBCO), 15% FCS, 10μM 2-ME (2-メルカプトエタノール), 5×10-4 LIF (leukemia inhibitory factor)からなる培地を用いた。
1-3. Preparation of DNaseγ heterozygous mutant ES cells ES (Embryonic Stem) cell culture
Cell culture dishes (10 cm) coated with 0.1% gelatin were seeded with BALB / c-derived EF (Embryonic Fibroblast) cells (feeder cells; 3 × 10 6 cells) treated with mitomycin C. The following day, C57BL / 6 ES cells derived from blastocysts (Bruce4 cell line; 5 × 10 6 cells) were seeded and cultured at 37 ° C. using a CO 2 incubator. As the culture medium, a medium composed of DMEM (Dulbecco's modified Eagle medium; GIBCO), 15% FCS, 10 μM 2-ME (2-mercaptoethanol), 5 × 10 −4 LIF (leukemia inhibitory factor) was used.

B.ターゲッティングベクターの導入
GENE PULSER II (BIORAD)及びCAPACITANCE EXTENDER II (BIORAD)を用いて、210V・500μFの条件で、0.8mlの培養液中で1×107個のES細胞にpLNTK-γ-KO3 (PvuIで切断) 25μgを導入する操作を3回繰り返し行った。
B. Introduction of targeting vector
Using GENE PULSER II (BIORAD) and CAPACITANCE EXTENDER II (BIORAD), pLNTK-γ-KO3 (cleaved with PvuI) into 1 × 10 7 ES cells in 0.8 ml culture medium under conditions of 210 V and 500 μF The operation of introducing 25 μg was repeated 3 times.

C.スクリーニング
pLNTK-γ-KO3を導入したES細胞(3×107個)を48時間培養し、その後、G418による選別 (200μg/ml)(Positive Selection)を開始し、さらに、2日後にガンシクロビア(GANC)による選別 (2μM)(Negative Selection)を開始し、生き残ったG418・GANC耐性のES細胞コロニー(96個)を単離した。
C. screening
ES cells (3 × 10 7 cells) transfected with pLNTK-γ-KO3 were cultured for 48 hours, after which G418 selection (200 μg / ml) (Positive Selection) was started, and ganciclovia (GANC) two days later (2 μM) (Negative Selection) was started, and surviving G418 / GANC-resistant ES cell colonies (96 cells) were isolated.

D.サザンブロット解析
単離したES細胞からDNAを抽出し、得られたDNAをHind III、Spe I及びKpn Iでそれぞれ切断し、サザンブロット解析により相同組換えを起こしたES細胞(DNaseγヘテロ変異体ES細胞)を同定した。なお、サザンブロット解析は、2つのプローブ(5’-プローブ及び3’-プローブ)を用いて行った(図1参照)。5’-プローブとしては、C57BL/6ゲノムDNAと、プライマー(mG3(GCTTGAGCACAAGGCTGCTAGTGAGTC:配列番号3)及びmNGSP4(CTCCATCCTGATAGTCATGGTAGTGG:配列番号4))とを用いて、LA-PCR polymerase (TAKARA)によるPCRを行って増幅した6.3kbの断片(エクソン2及び3、ならびにその周辺部を含む)を鋳型として、プライマー(DNaseF5(CCTTGTCAACAACAACCACC:配列番号5)及びDNaseR3(ACCATGCCTTGCCTAGAATC:配列番号6))を用いたPCRにより増幅した366bpの断片(エクソン3及びその周辺部)を用いた。また、3’-プローブとしては、DNaseγゲノムDNAと、プライマー(mGSP5(AGTCAACTCCGTGGTTCCCCGTTCC:配列番号7)及びHA1(GTGATCACTGACATCCAGGG:配列番号8))とを用いたPCRにより増幅した306bpの断片(エクソン8及びその周辺部)を用いた。
D. Southern blot analysis DNA was extracted from isolated ES cells, and the resulting DNA was cleaved with Hind III, Spe I and Kpn I, and subjected to homologous recombination by Southern blot analysis (DNaseγ heterozygous mutant ES Cell). The Southern blot analysis was performed using two probes (5′-probe and 3′-probe) (see FIG. 1). As the 5′-probe, PCR was performed with LA-PCR polymerase (TAKARA) using C57BL / 6 genomic DNA and primers (mG3 (GCTTGAGCACAAGGCTGCTAGTGAGTC: SEQ ID NO: 3) and mNGSP4 (CTCCATCCTGATAGTCATGGTAGTGG: SEQ ID NO: 4)). Amplified by PCR using primers (DNaseF5 (CCTTGTCAACAACAACCACC: SEQ ID NO: 5) and DNaseR3 (ACCATGCCTTGCCTAGAATC: SEQ ID NO: 6)) using the 6.3 kb fragment (including exons 2 and 3 and its peripheral part) as a template. The 366 bp fragment (exon 3 and its periphery) was used. As a 3'-probe, a 306 bp fragment (exon 8 and its fragment) amplified by PCR using DNaseγ genomic DNA and primers (mGSP5 (AGTCAACTCCGTGGTTCCCCGTTCC: SEQ ID NO: 7) and HA1 (GTGATCACTGACATCCAGGG: SEQ ID NO: 8)). Peripheral part) was used.

1−4 DNaseγ欠損マウスの作製
DNaseγヘテロ変異体ES細胞(C57BL/6由来)を、Balb/cマウスから取り出した胚盤胞へマイクロインジェクションし、偽妊娠マウス(ICR系)の卵巣へ移植してキメラマウス(ヘテロ接合体;DNaseγ+/-マウス)を得た。続いて、ヘテロ接合マウス同士を交配させて、DNaseγのDNase活性を消失したDNaseγ欠損マウス(DNaseγ-/-マウス)を得た。
1-4 Preparation of DNaseγ-deficient mice
DNaseγ heterozygous mutant ES cells (derived from C57BL / 6) were microinjected into blastocysts extracted from Balb / c mice, and transplanted into the ovaries of pseudopregnant mice (ICR strain), chimeric mice (heterozygotes; DNaseγ +/- mice). Subsequently, heterozygous mice were mated to obtain a DNaseγ-deficient mouse (DNaseγ − / − mouse) in which the DNase activity of DNaseγ disappeared.

[実施例2]DNaseγの機能の欠損による自己抗体価の上昇
実施例1で得られたDNaseγ欠損マウスは、外見上特に異常が認められなかった。そこで、DNaseγの機能の欠損による影響を明らかにするため、DNaseγ欠損マウスから血清を採取し、自己抗体の産生量の変化を調べた。
[Example 2] Increase in autoantibody titer due to deficiency in DNase γ function The DNase γ-deficient mice obtained in Example 1 did not show any abnormalities in appearance. Therefore, in order to clarify the effects of deficiency in DNaseγ function, serum was collected from DNaseγ-deficient mice and changes in autoantibody production were examined.

96ウエルプレートに、蒸留水で希釈した0.001% 硫酸プロタミンを50μlずつ分注し、室温で1時間放置した後、蒸留水で洗浄した。その後、0.15M NaCl及び0.015M クエン酸ナトリウムを含む溶液(pH8.0)で希釈したdsDNA (最終濃度で20μg/ml) を50μlずつ96ウエルプレートに分注し、完全にウエル内の水分が完全になくなるまで37℃で約12〜18時間乾燥させた。   To a 96-well plate, 50 μl of 0.001% protamine sulfate diluted with distilled water was dispensed and allowed to stand at room temperature for 1 hour, followed by washing with distilled water. Then, dispense 50 μl of dsDNA (20 μg / ml at a final concentration) diluted with a solution containing 0.15 M NaCl and 0.015 M sodium citrate (pH 8.0) into a 96-well plate to ensure that the water in the well is completely It was dried at 37 ° C. for about 12-18 hours until it disappeared.

このようにしてウエル底面に抗原をコートした96ウエルプレートを、0.05% Tweenを含むPBS-で洗浄した後、3% BSAを含むPBS-を100μlずつ分注して37℃で1時間放置してブロッキングした。続いて自己免疫疾患モデルマウス(NZB/W F1マウス)の血清をスタンダードとして用いて、野生型マウス、DNaseγ欠損マウス、及びNZB/W F1マウスから採取した血清の希釈系列を作製し、ブロッキングしたプレートに50μlずつ添加し、37℃で1時間放置した。その後、0.05% Tweenを含む PBS-で洗浄し、ヤギ由来の抗-マウスIgG(H+L)-HRP (Southern Biotechnology Associates,Inc.) をPBS-で1000倍に希釈した溶液を50μlずつ添加して37℃で1時間放置した。その後、0.05% tweenを含むPBS-で洗浄し、TMB Peroxidase EIA Substrate Kit (BIO-RAD) を用いて発色させて450nmの吸光度で抗dsDNA-IgG抗体の量を測定し、NZB/W F1マウスに対する抗体価の比を求めた。その結果を図2に示す。 Thus the 96-well plates coated with antigen in the wells bottom in the, PBS containing 0.05% Tween - After washing with, PBS containing 3% BSA - was allowed to stand for 1 hour at 37 ° C. was dispensed one by 100μl Blocked. Subsequently, using a serum from an autoimmune disease model mouse (NZB / W F1 mouse) as a standard, a dilution series of sera collected from wild type mice, DNaseγ-deficient mice, and NZB / W F1 mice was prepared and blocked. 50 μl was added to each and left at 37 ° C. for 1 hour. Thereafter, PBS containing 0.05% Tween - washed with, goat anti - added solution diluted 1000 fold with a one by 50 [mu] l - mice IgG (H + L) -HRP ( . Southern Biotechnology Associates, Inc) in PBS And left at 37 ° C. for 1 hour. Thereafter, PBS containing 0.05% tween - for washing with, TMB Peroxidase EIA Substrate Kit (BIO -RAD) developed using by measuring the amount of anti-dsDNA-IgG antibody at 450nm absorbance, NZB / W F1 mice The ratio of antibody titers was determined. The result is shown in FIG.

図2に示すように、10週齢(10W)の野生型マウス(WT)とDNaseγ欠損マウス(KO)との間においては、抗dsDNA-IgG抗体量の有意な差が確認できなかったが、週齢をかさねるごとにDNaseγ欠損マウスでの抗dsDNA-IgG抗体量が高くなっていくことがわかった。特に70週齢以上のマウスではすべてのマウスにおいて野生型マウスに比べて抗体量が高くなっていた。   As shown in FIG. 2, a significant difference in the amount of anti-dsDNA-IgG antibody could not be confirmed between a 10-week-old (10W) wild-type mouse (WT) and a DNaseγ-deficient mouse (KO). It was found that the amount of anti-dsDNA-IgG antibody in DNaseγ-deficient mice increased with increasing age. In particular, the amount of antibody in mice of 70 weeks of age or higher was higher in all mice than in wild-type mice.

本発明の一実施例において、野生型対立遺伝子、ターゲッティングベクター、及びターゲッティングベクターによって相同組換えを起こした変異型対立遺伝子の構造、並びに、pLNTKベクターの構造を示す図である。In one Example of this invention, it is a figure which shows the structure of the mutant allele which raise | generated homologous recombination by the wild type allele, the targeting vector, and the targeting vector, and the structure of pLNTK vector. 本発明の一実施例において、作製された遺伝子組換えマウスの血清における抗dsDNA抗体量を測定した結果を示す図である。なお、図中の「n」は、個体数を、バーは平均値をそれぞれ意味する。In one Example of this invention, it is a figure which shows the result of having measured the amount of anti- dsDNA antibodies in the serum of the produced transgenic mouse. In the figure, “n” means the number of individuals, and the bar means an average value.

Claims (9)

ヒト以外の脊椎動物であって、DNaseγの機能が完全に欠損した、抗dsDNA抗体の産生に起因する自己免疫疾患モデル動物。 A model animal of autoimmune disease caused by production of anti-dsDNA antibody , which is a non-human vertebrate and completely deficient in DNaseγ function. 前記DNaseγの機能が、DNase活性であることを特徴とする請求項1に記載のモデル動物。   The model animal according to claim 1, wherein the function of DNaseγ is DNase activity. DNaseγ遺伝子の変異によりDNaseγの機能が完全に欠損したことを特徴とする請求項1又は2に記載のモデル動物。 The model animal according to claim 1 or 2, wherein the DNaseγ function is completely lost due to mutation of the DNaseγ gene. 前記自己免疫疾患が、全身性エリトマトーデス(systemic lupus erythematosus;SLE)であることを特徴とする請求項1〜のいずれかに記載のモデル動物。 The model animal according to any one of claims 1 to 3 , wherein the autoimmune disease is systemic lupus erythematosus (SLE). ヒト以外の脊椎動物においてDNaseγの機能を完全に欠損させる工程を含む、抗dsDNA抗体の産生に起因する自己免疫疾患モデル動物の作製方法。 A method for producing a model animal of an autoimmune disease caused by production of an anti-dsDNA antibody, comprising a step of completely deficient in the function of DNaseγ in a vertebrate other than human. 前記DNaseγの機能が、DNase活性であることを特徴とする請求項に記載の作製方法。 The production method according to claim 5 , wherein the function of DNaseγ is DNase activity. DNaseγ遺伝子を変異させることによりDNaseγの機能を完全に欠損させることを特徴とする請求項またはに記載の作製方法。 The method according to claim 5 or 6 , wherein the DNaseγ function is completely deleted by mutating the DNaseγ gene. 自己免疫疾患に対する予防、改善又は治療に有用な物質をスクリーニングする方法であって、
ヒト以外の脊椎動物であってDNaseγの機能が完全に欠損した、抗dsDNA抗体の産生に起因する自己免疫疾患モデル動物を用いることを特徴とするスクリーニング方法。
A method for screening a substance useful for prevention, amelioration or treatment of an autoimmune disease,
A non-human vertebrate, features DNaseγ is completely deficient, a screening method which comprises using a model animal of autoimmune diseases caused by the production of anti-dsDNA antibodies.
前記モデル動物にスクリーニング対象物質を投与する前後で、前記モデル動物における自己抗体量を測定し、
前記物質を投与する前後の前記自己抗体量を比較することを特徴とする請求項に記載のスクリーニング方法。
Before and after administering the screening target substance to the model animal, measure the amount of autoantibodies in the model animal,
The screening method according to claim 8 , wherein the autoantibody amounts before and after administration of the substance are compared.
JP2004332700A 2004-11-17 2004-11-17 Animal model of autoimmune disease Expired - Fee Related JP4873599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004332700A JP4873599B2 (en) 2004-11-17 2004-11-17 Animal model of autoimmune disease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004332700A JP4873599B2 (en) 2004-11-17 2004-11-17 Animal model of autoimmune disease

Publications (2)

Publication Number Publication Date
JP2006141232A JP2006141232A (en) 2006-06-08
JP4873599B2 true JP4873599B2 (en) 2012-02-08

Family

ID=36621607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332700A Expired - Fee Related JP4873599B2 (en) 2004-11-17 2004-11-17 Animal model of autoimmune disease

Country Status (1)

Country Link
JP (1) JP4873599B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122900A (en) * 1999-10-21 2001-05-08 Yasukazu Tanuma ANTI-DNASE gamma ANTIBODY AND ITS PREPARATION AND USE

Also Published As

Publication number Publication date
JP2006141232A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
TWI848486B (en) Tissue selective transgene expression
Langa et al. Generation and phenotypic analysis of sigma receptor type I (σ1) knockout mice
RU2743589C2 (en) Mice with limited heavy chain immunoglobulin
US7829757B2 (en) SGRF gene-modified mouse
JPWO2006035741A1 (en) ES cell specific expression gene and use thereof
EP1416046A1 (en) Use of histamine receptor h3 gene in controlling body weight or food intake
JP4873599B2 (en) Animal model of autoimmune disease
WO2005041649A1 (en) Transgenic nonhuman mammal
EP1790724A1 (en) Knockout nonhuman animal
JP4905901B2 (en) Diagnosis and treatment of autism with CD38
CN112501203B (en) Construction method and application of IL17RB gene humanized non-human animal
JP4255052B2 (en) Alstrem syndrome gene
WO2002053729A1 (en) Bhlh-pas proteins, genes thereof and utilization of the same
Takahashi et al. Identification of the cell-type-specific ER membrane protein Tanmp expressed in hypothalamic tanycytes and subsets of neurons
US20040142387A1 (en) Mutants of GAD65 and Ian5 relating to diabetes
US20030157076A1 (en) Disruption of the Akt2 gene
JP5099535B2 (en) Use of Kank4 gene for cancer therapy, cancer detection and drug discovery
WO2001025425A1 (en) NUCLEAR LOCALIZED RecQ5 TYPE DNA HELICASE
JP2006141329A (en) POLtheta-KNOCKOUT ANIMAL, COMPOSITION FOR REGULATING IMMUNE FUNCTION AND METHOD FOR SCREENING THE SAME
WO2014126225A1 (en) Knock-in mouse
US20060031947A1 (en) Novel mutated mammalian cells and animals
WO2003054190A1 (en) Novel proteins and dnas thereof
JP2001048803A (en) Pharmaceutical
WO2004076662A1 (en) Scaffold associated regions sequences and the use thereof
JP2001050951A (en) Screening method using cd100

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4873599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees