JP4873443B2 - Fine particle generation method and apparatus - Google Patents

Fine particle generation method and apparatus Download PDF

Info

Publication number
JP4873443B2
JP4873443B2 JP2005139128A JP2005139128A JP4873443B2 JP 4873443 B2 JP4873443 B2 JP 4873443B2 JP 2005139128 A JP2005139128 A JP 2005139128A JP 2005139128 A JP2005139128 A JP 2005139128A JP 4873443 B2 JP4873443 B2 JP 4873443B2
Authority
JP
Japan
Prior art keywords
fine particles
laser
substrate
light source
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005139128A
Other languages
Japanese (ja)
Other versions
JP2006314900A (en
Inventor
英彦 屋代
敏尚 富江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005139128A priority Critical patent/JP4873443B2/en
Publication of JP2006314900A publication Critical patent/JP2006314900A/en
Application granted granted Critical
Publication of JP4873443B2 publication Critical patent/JP4873443B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は微粒子の発生法およびそれを用いる輻射光源に関するものである。   The present invention relates to a method for generating fine particles and a radiation light source using the same.

パルスレーザーを固体ターゲットに照射し微粒子を発生させる方法がある(下記非特許文献1参照)。これは、加熱され溶融した固体表面が、パルスレーザーで生成されたプラズマの圧力で揺すぶられて液滴として発生すると説明できる。この機構で発生する微粒子の大きさは、数μmを中心に数十nmから数十μmまで広い分布を持っている。   There is a method for generating fine particles by irradiating a solid target with a pulse laser (see Non-Patent Document 1 below). This can be explained by the fact that the heated and melted solid surface is shaken by the pressure of the plasma generated by the pulse laser and is generated as droplets. The size of the fine particles generated by this mechanism has a wide distribution from several tens of nanometers to several tens of micrometers centering on several micrometers.

レーザー照射により数千度から数万度の超高温に加熱された固体ターゲットから気化した蒸気凝集用のガス中で凝集させて数nmから数十nmの超微粒子を形成する手法も知られている(下記非特許文献2参照)。
Z.Toth et al.Appl. Surface Science, 138-139, 130-134, (1999) H.Kroto, et.al.Nature, 318, p162, (1985)
There is also a known method of forming ultrafine particles of several nm to several tens of nm by agglomerating in a vapor aggregating gas vaporized from a solid target heated to an ultrahigh temperature of several thousand to several tens of thousands of degrees by laser irradiation. (See Non-Patent Document 2 below).
Z. Toth et al. Appl. Surface Science, 138-139, 130-134, (1999) H. Kroto, et.al. Nature, 318, p162, (1985)

サブμmから数μmの粒子径の微粒子が必要な幾つかの応用がある。例えば、プラズマ光源において波長サブnmないし数十nmの極端紫外光を発生させる場合に、極限の変換効率が、数百μmの直径で、均一分布で、固体密度の1/10000程度のターゲットで得られる。これは、サブμmの微粒子群を供給することにより実現可能である。   There are several applications that require fine particles with particle sizes from sub-μm to several μm. For example, when extreme ultraviolet light with a wavelength of sub-nm to several tens of nm is generated in a plasma light source, the ultimate conversion efficiency is obtained with a target with a diameter of several hundred μm, a uniform distribution, and a solid density of about 1/10000 It is done. This can be realized by supplying sub-μm fine particle groups.

ところが、上述のプラズマの衝撃で発生する微粒子は、粒径分布が数十nmから数μmまでと広く、必要なサブμmの微粒子の割合を大きくすることができない。また、レーザーで加熱され溶融された固体表面が、表面で発生するプラズマの飛散時に反作用で強く揺すぶられる。その結果、溶融された固体表面の極一部が千切れ、微粒子が放出されるので、微粒子の大きさは制御できない。また、溶融した物質の一部しか微粒子として飛散しないため、パルスレーザー1ショットで発生される微粒子量が十分でないなどの問題がある。また、気化物質を気中で凝集する方法では、微粒子径を数十nm以上にするのは容易ではないという問題がある。   However, the fine particles generated by the above-described plasma bombardment have a wide particle size distribution from several tens of nm to several μm, and the required proportion of fine particles of sub-μm cannot be increased. Further, the solid surface heated and melted by the laser is strongly shaken by a reaction when the plasma generated on the surface is scattered. As a result, a very small part of the melted solid surface is broken and fine particles are released, so that the size of the fine particles cannot be controlled. In addition, since only a part of the melted material is scattered as fine particles, there is a problem that the amount of fine particles generated by one shot of the pulse laser is not sufficient. Further, the method of aggregating the vaporized substance in the air has a problem that it is not easy to make the fine particle diameter several tens nm or more.

上記の従来技術の問題を解決するために、第1に、微粒子化すべき物質を透明な基板の上に蒸着、メッキ、接着その他の方法により付着させ、基板に対して透明な波長のレーザーを基板側から照射して該付着させた物質を微粒子として放出することを特徴とする微粒子発生方法を提供する。   In order to solve the above problems of the prior art, first, a material to be finely divided is deposited on a transparent substrate by vapor deposition, plating, adhesion, or other methods, and a laser having a wavelength transparent to the substrate is formed on the substrate. There is provided a method for generating fine particles, characterized in that the adhered substance is released as fine particles by irradiation from the side.

第2に、基板の上に付着させた物資を、格子状あるいはその他の形状に細分化したことを特徴とする微粒子発生方法を提供する。   Second, the present invention provides a fine particle generation method characterized in that a material adhered on a substrate is subdivided into a lattice shape or other shapes.

第3に、照射するレーザーのビームパターンを、干渉、回折、あるいは画像転送の手段で成形して細分化したパターンで基板を照射することを特徴とする微粒子発生方法を提供する。   Thirdly, the present invention provides a fine particle generation method characterized by irradiating a substrate with a subdivided pattern obtained by shaping a beam pattern of a laser to be irradiated by means of interference, diffraction, or image transfer.

第4に、微粒子化すべき物質が付着した透明な基板を、テープ状もしくは板状で連続的に移動し供給することを特徴とする微粒子発生方法を提供する。   Fourth, the present invention provides a method for generating fine particles, characterized in that a transparent substrate on which a substance to be made fine is attached is continuously moved and supplied in a tape shape or a plate shape.

透明基板に付着させた物質を基板側からパルスレーザーで加熱すると、該物質は、基板との界面で高温プラズマになり高い圧力が発生する。この圧力により、付着した物質を基板から剥離することができる。基板に付着させる物質の膜厚を制御すれば、発生する物質量を制御することができる。   When a substance attached to the transparent substrate is heated with a pulse laser from the substrate side, the substance becomes high-temperature plasma at the interface with the substrate, and high pressure is generated. By this pressure, the adhered substance can be peeled off from the substrate. By controlling the film thickness of the substance attached to the substrate, the amount of the substance generated can be controlled.

基板から剥離した薄膜は、大面積の薄膜のままで運動することはできず、剥離のための高い圧力で粉砕され、その後に表面張力で球形になる。   The thin film peeled off from the substrate cannot move as a large-area thin film, and is pulverized with a high pressure for peeling, and then becomes spherical with surface tension.

薄膜の厚さや、剥離する際の圧力等を制御することにより、粉砕される大きさを或る程度制御することができ、微粒子径を制御することができる。剥離する膜に予め切れ目を入れておけば、より精度良く、粒径を制御することができる。   By controlling the thickness of the thin film, the pressure at the time of peeling, etc., the size to be crushed can be controlled to some extent, and the particle size can be controlled. If the film to be peeled is cut in advance, the particle size can be controlled with higher accuracy.

膜に切れ目を入れるのではなく、干渉、回折、イメージ転送の方法でレーザービームパターンを成形することでも、微粒子径を制御することができる。   The particle diameter can be controlled by forming a laser beam pattern by interference, diffraction, or image transfer, instead of making a cut in the film.

長尺のテープを基板とすれば高繰り返しで供給できる。剛体の回転円板を基板とすることでも高繰り返し供給できる。   If a long tape is used as a substrate, it can be supplied with high repetition. Highly repetitive supply is possible by using a rigid rotating disk as a substrate.

本願発明は、蒸着膜等の付着を行った物質に透明側の背面からレーザー照射し微粒子を発生する。界面で蒸着物質を剥離する構造なため、固体に表面からレーザーアブレーションを行うものと比較して微粒子総量で大きなものを得ることができる。蒸着膜を細分化する方法、レーザーパターンを細分化し蒸着膜に照射し微粒子を放出する方法においては目的とする均一な微粒子径を得ることができる。そのため、狭帯域な粒度分布が要求される応用に必要な供給量を少ない微粒子総量により供給することが可能となる。   In the present invention, fine particles are generated by irradiating a deposited material such as a deposited film with a laser beam from the back side of the transparent side. Since the deposited material is peeled off at the interface, a larger total amount of fine particles can be obtained as compared with the case where laser ablation is performed on the solid from the surface. In the method of subdividing the vapor deposition film and the method of subdividing the laser pattern and irradiating the vapor deposition film to release the fine particles, the desired uniform particle diameter can be obtained. Therefore, it is possible to supply a supply amount necessary for an application requiring a narrow-band particle size distribution with a small total amount of fine particles.

また、テープ状、板状の蒸着ターゲットにおいては移動、回転が簡便に行えるため、高繰り返し動作が可能である。以上の点から、目的とされる微粒子径が限定される場合、少ない照射面積で粒子径のそろった微粒子を発生させることができる。そのため、供給すべきテープ等の速度は、遅くできるとともに長時間の連続供給にも対応できる構造となる。さらにアブレーション用レーザーの出力が抑えられるため、小型レーザーの使用が可能となり、装置の小型化をはかることができる。   In addition, since the tape-shaped and plate-shaped vapor deposition targets can be moved and rotated easily, highly repetitive operations are possible. In view of the above, when the target particle size is limited, it is possible to generate particles having a uniform particle size with a small irradiation area. For this reason, the speed of the tape or the like to be supplied can be reduced and the structure can be adapted to continuous supply for a long time. Further, since the output of the ablation laser can be suppressed, a small laser can be used, and the apparatus can be miniaturized.

以下に本願発明を実施するための最良の形態を説明する。   The best mode for carrying out the present invention will be described below.

図1に示すように、高繰り返し可能なパルスレーザーを透明媒質1の方向から照射し、透明媒質1及び蒸着膜2の界面においてレーザーエネルギーを吸収させることにより、該界面において高圧力のプラズマが生じる。該蒸着膜2は、該高圧力のプラズマにより剥離される。この際、加熱で液化した該蒸着物質は、蒸着膜の厚さ、粘性、プラズマからの圧力で微粒子として分離され同時に放出される。   As shown in FIG. 1, a highly repeatable pulse laser is irradiated from the direction of the transparent medium 1, and laser energy is absorbed at the interface between the transparent medium 1 and the vapor deposition film 2, thereby generating high-pressure plasma at the interface. . The deposited film 2 is peeled off by the high pressure plasma. At this time, the vapor deposition material liquefied by heating is separated as fine particles by the thickness of the vapor deposition film, the viscosity, and the pressure from the plasma and simultaneously released.

100nmの蒸着膜にレーザーアブレーションのしきい値程度の照射強度2J/cm2のYAGレーザー照射では、背面の透明基板側からレーザー照射した場合には、蒸着膜は、完全に微粒子として放出されたが、正面の蒸着面側から照射された場合には、蒸着膜は完全には放出されなかった。 In the case of YAG laser irradiation with an irradiation intensity of 2 J / cm 2 at the laser ablation threshold level on a 100 nm vapor-deposited film, when the laser was irradiated from the back transparent substrate side, the vapor-deposited film was completely released as fine particles. When irradiated from the front deposition surface side, the deposited film was not completely released.

この背面からレーザー照射を行い放出された微粒子のほとんどは、1μm径以下の直径であり、最大でも2μm程度であった。塊の固体ターゲットに同様な条件でレーザーアブレーションを行った場合、数10μm以上の多数の微粒子が放出される。これらは体積としてはサブμmの微粒子の数千倍の体積を持つ。微粒子径がサブμmに限定される極端紫外プラズマ光源の場合、使用可能な微粒子量は大幅に減少する。   Most of the fine particles released by laser irradiation from the back surface had a diameter of 1 μm or less, and about 2 μm at the maximum. When laser ablation is performed on a lump solid target under similar conditions, a large number of fine particles of several tens of μm or more are released. These have a volume several thousand times that of sub-μm fine particles. In the case of an extreme ultraviolet plasma light source in which the particle size is limited to sub-μm, the amount of usable particles is greatly reduced.

蒸着ターゲットの場合、照射強度、パルス幅にも依存するが、パルス幅10nsのYAGレーザーの照射強度2J/cm2において、液化が行われるアブレーション深さは、数100nmであるため、蒸着膜厚み数100nmのターゲットにおいては微細化できる。 In the case of a vapor deposition target, depending on the irradiation intensity and pulse width, the ablation depth at which liquefaction is performed at a irradiation intensity of 2 J / cm 2 of a YAG laser with a pulse width of 10 ns is several hundred nm. A 100 nm target can be miniaturized.

膜厚が1μmを超えるターゲットに関しては、レーザーによる加熱では表面まで液化されず、面方向の強度を十分残し微粒子とならず、面状で放出される。したがって、微粒子化を目的とした場合の蒸着膜の厚みの最大値は約1μmである。   For a target having a film thickness of more than 1 μm, it is not liquefied to the surface by heating with a laser, leaving a sufficient strength in the plane direction and not being a fine particle, but being released in a planar shape. Therefore, the maximum value of the thickness of the deposited film for the purpose of atomization is about 1 μm.

ただし、図2に示した微細構造の膜に関しては、面方向で分離されているため、膜厚の最大値はこの限りではない。   However, since the fine-structure film shown in FIG. 2 is separated in the plane direction, the maximum value of the film thickness is not limited to this.

また、膜厚の最小は、照射されるレーザーのエネルギーを吸収できる厚みである。典型的な例として、YAGレーザー(波長1.06μm)をSn蒸着膜に照射する場合、減衰係数k=8.05であるため、10nmで約60%のレーザー光を吸収する。このため、膜厚の最小限は、レーザー光の大半を吸収できる10nm以上である。したがって、対象となる膜厚の範囲は10nmから1μmと考えられる。   The minimum film thickness is a thickness that can absorb the energy of the irradiated laser. As a typical example, when a YAG laser (wavelength: 1.06 μm) is irradiated onto an Sn vapor deposition film, the attenuation coefficient k is 8.05, and therefore, approximately 60% of laser light is absorbed at 10 nm. For this reason, the minimum film thickness is 10 nm or more that can absorb most of the laser light. Therefore, the target film thickness range is considered to be 10 nm to 1 μm.

放出されるアブレーション物質は、レーザーの発振波長において膜状で吸収率の高い物質でなくてはならず、金属などがこれに該当する。なお、微粒子の不純物の物質、量ともに問題にならない場合、蒸着膜には1,2の中間層に密着性の高い別の材質の薄い層を吸収率向上のため設けても構わない。   The ablation material to be released must be a film-like material having a high absorption rate at the oscillation wavelength of the laser, such as a metal. In the case where both the substance and the amount of the fine particle impurities do not matter, the vapor deposition film may be provided with a thin layer of another material having high adhesion on the intermediate layers 1 and 2 for improving the absorption rate.

蒸着膜の製造は、真空蒸着、イオン銃、RFプラズマのスパッタ蒸着等の方法が考えられる。また、片側の蒸着膜にメッキ加工を行い、膜厚を制御したものでもかまわない。透明な接着剤を用いて片面に膜を付着したもの、絶縁物質を帯電等により片側に微粒子を付着したものでもかまわない。   For the production of the deposited film, methods such as vacuum deposition, ion gun, and RF plasma sputter deposition are conceivable. Moreover, the film thickness may be controlled by plating the deposited film on one side. It is possible to use a transparent adhesive with a film attached on one side, or an insulating substance with fine particles attached on one side by charging or the like.

透明基板である被付着材は、フィルム状、板状を構成できるポリエチレン、塩化ビニール等の高分子材料、ガラス、石英等の材料が考えられる。   The material to be adhered, which is a transparent substrate, may be a polymer material such as polyethylene or vinyl chloride that can form a film shape or a plate shape, or a material such as glass or quartz.

透明基板の厚さは、フィルムとして湾曲して取り扱える、数μmから100μm程度の厚みが適当となる。また、板として回転、移動して取り扱う場合は剛体として取れ扱える1mmから10mm程度の厚みが適当となる。   As the thickness of the transparent substrate, a thickness of about several μm to 100 μm that can be handled as a film is suitable. Also, when rotating and moving as a plate, a thickness of about 1 mm to 10 mm that can be handled as a rigid body is appropriate.

アブレーションを行うためのレーザーとしては、パルスレーザーが使われる。代表例としては、発振波長で上記のような透明な材料が得られやすい可視、近赤外域のYAGレーザー(波長1.06μm、0.53μm)等が考えられる。   A pulse laser is used as a laser for ablation. As a typical example, a visible and near infrared YAG laser (wavelengths 1.06 μm, 0.53 μm), which can easily obtain the above transparent material at the oscillation wavelength, can be considered.

レーザー照射面積には制限がないが、搬送管の作動排気を利用して微粒子を捕獲、輸送する方法においては、レーザーアブレーションにより発生させた微粒子の捕獲効率は、100Torr空気圧力中において、作動排気入り口直径3mmにおいて発生した微粒子は、30%まで捕集することができるが、直径20mmにおいては1〜2%程度までに落ちる。したがって、レーザー照射面積を増加させることにより微粒子量を増加することにはつながらない。現実的なレーザー照射面積としては直径1cm程度と考えられる。   The laser irradiation area is not limited, but in the method of capturing and transporting fine particles using the working exhaust of the transfer pipe, the trapping efficiency of the fine particles generated by laser ablation is 100 Torr air pressure at the working exhaust inlet Fine particles generated at a diameter of 3 mm can be collected up to 30%, but at a diameter of 20 mm, they fall to about 1-2%. Therefore, the amount of fine particles cannot be increased by increasing the laser irradiation area. The realistic laser irradiation area is considered to be about 1 cm in diameter.

図2に示すように、蒸着膜は、予め格子状及びそれに類似する方法により分離することで、目的とする一定の大きさに分離する方法もある。この方法においては膜自体が細分化されているため膜厚による影響は全く受けない。   As shown in FIG. 2, there is also a method in which the deposited film is separated into a desired fixed size by separating in advance by a lattice shape or a similar method. In this method, since the film itself is subdivided, it is not affected at all by the film thickness.

同様に、図3に示すように、レーザーパターンを格子状等にすることにより粒子径を制御することも可能である。この場合、均一な粒子を取り出すためには膜自体は細分化されていないため、図1に示す程度の厚みとなる。また、照射パターンは、照射暗部に照射明部のアブレーション深さに相当する熱伝導の影響を受けないため、1μm以上の間隔が必要である。照射暗部には10nsパルス幅を持つYAGレーザーの場合、レーザーアブレーションしきい値である約1J/cm以下である必要があり、明部にはそれ以上が要求される。 Similarly, as shown in FIG. 3, the particle size can be controlled by making the laser pattern into a lattice pattern or the like. In this case, since the film itself is not subdivided in order to take out uniform particles, the thickness is as shown in FIG. Further, since the irradiation pattern is not affected by the heat conduction corresponding to the ablation depth of the irradiation bright portion in the irradiation dark portion, an interval of 1 μm or more is necessary. In the case of a YAG laser having a pulse width of 10 ns in the dark area, the laser ablation threshold needs to be about 1 J / cm 2 or less, and the bright area needs to be more than that.

微粒子群ターゲットを10nsパルス幅のYAGレーザーにより極端紫外プラズマ光源とする場合において、中心までプラズマ化を行うことのできる径は、約1μmである。微粒子中心までプラズマ化することにより飛散物の汚染の影響を低減することが可能である。このため、微粒子径は、1μm以下に設定する必要がある。   When the fine particle group target is an extreme ultraviolet plasma light source using a YAG laser with a pulse width of 10 ns, the diameter that can be converted to plasma is about 1 μm. It is possible to reduce the influence of the contamination of the scattered matter by converting the plasma to the center of the fine particles. For this reason, the fine particle diameter needs to be set to 1 μm or less.

レーザーパルス幅に関しては、界面にエネルギーを注入でき、アブレーションにより発生する高圧の気体でもって膜を剥離し、微粒子に微細化するのに十分短いパルス幅が必要である。上記のように10nsパルスのレーザーによる膜厚の最大値が1μm程度であるように、短パルスになるにつれ膜厚も減少する。そのため、微粒子としての供給量も減少する。一方、長パルスレーザーでは、最適な膜厚は厚いものになるが、発生する微粒子の最大径は、大型化する。対象とする微粒子径がサブμm径のような極端紫外光源の場合、中心までプラズマ化できない径が発生することとなる。したがって、効果的かつプラズマ光源への最適径での微粒子発生を考えた場合、レーザーパルス幅は10nsが最適と考えられる。   As for the laser pulse width, energy can be injected into the interface, and a pulse width that is sufficiently short is required to peel off the film with a high-pressure gas generated by ablation and make it finer. As described above, as the maximum value of the film thickness by a 10 ns pulse laser is about 1 μm, the film thickness decreases as the pulse becomes shorter. Therefore, the supply amount as fine particles is also reduced. On the other hand, with a long pulse laser, the optimum film thickness is large, but the maximum diameter of the generated fine particles increases. In the case of an extreme ultraviolet light source whose target fine particle diameter is a sub-μm diameter, a diameter that cannot be converted to plasma is generated to the center. Therefore, when considering the generation of fine particles with an optimum diameter to the plasma light source, the laser pulse width is considered to be optimal at 10 ns.

図1の配置において、YAGレーザーを照射することにより微少粒子群を過渡的に発生させる。放出した微粒子を捕獲、輸送することでプラズマ光源等の応用として用いることができる。さらに放出された微粒子群をさらにレーザーで照射することによりプラズマ光源を生成することも可能である。この際に1μm以上の蒸着膜が厚すぎてアブレーション放出時の圧力で細分できないほど強度なものには適応できない。   In the arrangement of FIG. 1, a minute particle group is transiently generated by irradiating with a YAG laser. By capturing and transporting the emitted fine particles, it can be used as an application of a plasma light source or the like. It is also possible to generate a plasma light source by further irradiating the emitted fine particle group with a laser. At this time, a deposited film of 1 μm or more is too thick and cannot be applied to such a strength that it cannot be subdivided by the pressure at the time of ablation discharge.

図2に示すように、蒸着面が格子状又はそれに類する形状に細分化し、該細分化された蒸着面にパルスレーザーを透明側の背面から界面へ照射することにより、レーザー光を吸収し、界面で剥離することにより予め細分化された微粒子として放出することができる。実施例1と同様の微粒子ターゲットとして描画、プラズマ源等に用いることができる。蒸着膜が厚い場合でも予め蒸着膜の横方向のつながりが無いため、厚みに関係なく微粒子を放出することができる。   As shown in FIG. 2, the vapor deposition surface is subdivided into a lattice shape or a similar shape, and the laser beam is absorbed by irradiating the subdivided vapor deposition surface from the back side of the transparent side to the interface. Can be released as finely divided fine particles. The same fine particle target as in Example 1 can be used for drawing, a plasma source, and the like. Even when the vapor deposition film is thick, since there is no connection in the lateral direction of the vapor deposition film in advance, fine particles can be released regardless of the thickness.

図3に示すように、界面をアブレーションさせるレーザー光を細分化させることにより、界面に照射した際、レーザー照射される位置とされない場所に細分化し、実施例2と同様の効果を生じさせることができる。実施例1と同様にアブレーションによる圧力で細分化できないほど厚い場合、適さない場合がある。同時に暗部の幅は、明部に照射されたレーザーエネルギーが熱伝導で伝わらない1μm程度の間隔を必要とする。   As shown in FIG. 3, by subdividing the laser light for ablating the interface, when the interface is irradiated, the laser beam is subdivided into a place not to be irradiated with the laser, and the same effect as in Example 2 can be produced. it can. In the same manner as in Example 1, when it is too thick to be subdivided by ablation pressure, it may not be suitable. At the same time, the width of the dark part needs an interval of about 1 μm so that the laser energy applied to the bright part is not transmitted by heat conduction.

本願発明に係る、最も基本的なレーザー照射による微粒子発生方法を説明する図The figure explaining the fine particle generation method by the most basic laser irradiation based on this invention 本願発明に係る、改良されたレーザー照射による微粒子発生方法を説明する図The figure explaining the fine particle generation method by the improved laser irradiation based on this invention 本願発明に係る、別の改良されたレーザー照射による微粒子発生方法を説明する図The figure explaining the fine particle generation method by another improved laser irradiation based on this invention

符号の説明Explanation of symbols

1 透明媒質
2 蒸着膜
3 アブレーション領域
4 放出粒子
DESCRIPTION OF SYMBOLS 1 Transparent medium 2 Deposition film 3 Ablation area | region 4 Emitted particle

Claims (10)

プラズマ光源に用いる粒子径がサブμmの微粒子の発生方法であって、微粒子化すべき物質を透明な基板の上に蒸着により1μm以下の蒸着膜を付着させ、該基板に対して透明な波長のレーザーを基板側から照射することにより、該物質を微粒子として放出することを特徴とする微粒子発生方法。 A method for generating fine particles having a particle size of sub-μm used for a plasma light source, in which a vapor deposition film having a thickness of 1 μm or less is deposited on a transparent substrate by vapor deposition on a transparent substrate, and a laser having a wavelength transparent to the substrate A method for generating fine particles, wherein the substance is released as a group of fine particles by irradiating from the substrate side. 上記レーザーは、パルスレーザーであることを特徴とする請求項1に記載の微粒子発生方法。   The fine particle generation method according to claim 1, wherein the laser is a pulse laser. 上記物質を細分化したことを特徴とする請求項1又は2に記載の微粒子発生方法。   The method for generating fine particles according to claim 1 or 2, wherein the substance is subdivided. 上記レーザーのビームパターンを干渉、回折又は画像転送の手段により細分化し基板に照射することを特徴とする請求項1から3のいずれかに記載の微粒子発生方法。   4. The fine particle generating method according to claim 1, wherein the laser beam pattern is subdivided by means of interference, diffraction or image transfer and irradiated onto the substrate. 上記基板の形態をテープ状又は板状とし、連続的に供給することを特徴とする請求項1から4のいずれかに記載の微粒子発生方法。   The method for generating fine particles according to any one of claims 1 to 4, wherein the substrate is formed in a tape shape or a plate shape and continuously supplied. 上記物質として金属を用いたことを特徴とする請求項1から5のいずれかに記載の微粒子発生方法。   6. The method for generating fine particles according to claim 1, wherein a metal is used as the substance. 上記物質は、Al,Ti,Cr,Fe,Ni,Cu,Zn,Zr,Mo,Ag,In,Sn,Ta,W,Ta,Pt,Au若しくはPb又はそれらの酸化物であることを特徴とする請求項1から6のいずれかに記載の微粒子発生方法。   The substance is Al, Ti, Cr, Fe, Ni, Cu, Zn, Zr, Mo, Ag, In, Sn, Ta, W, Ta, Pt, Au, or Pb or an oxide thereof. The method for generating fine particles according to any one of claims 1 to 6. 請求項1から7に記載の微粒子発生方法により生成した微粒子群を他のパルスレーザーにより照射し、生成したプラズマを光源とすることを特徴とするプラズマ輻射光源。   A plasma radiation light source, wherein the fine particle group generated by the fine particle generation method according to claim 1 is irradiated with another pulse laser, and the generated plasma is used as a light source. プラズマ光源に用いる粒子径がサブμmの微粒子を発生させる微粒子発生装置であって、微粒子化すべき物質からなる1μm以下の蒸着膜を付着した透明な基板、該付着した物質を剥離するための該基板に対して透明な波長のレーザー及び該レーザーを該基板側から照射する手段を有し、該物質を微粒子群として放出することを特徴とする微粒子発生装置。 A fine particle generator for generating fine particles having a particle diameter of sub-μm used for a plasma light source, a transparent substrate having a deposited film of 1 μm or less made of a material to be atomized, and the substrate for peeling the adhered material A fine particle generator characterized by having a laser having a transparent wavelength and means for irradiating the laser from the substrate side and emitting the substance as a group of fine particles. 輻射光源装置であって、パルスレーザー、請求項1乃至7のいずれか1項記載の微粒子発生方法により微粒子を発生する装置、発生した微粒子群を他のパルスレーザーにより照射する手段、該照射により生成されたプラズマを光源とすることを特徴とする輻射光源装置。   A radiation light source device, comprising: a pulse laser; an apparatus for generating fine particles by the method for generating fine particles according to any one of claims 1 to 7; a means for irradiating the generated fine particle group with another pulse laser; Radiation light source device characterized in that the plasma is used as a light source.
JP2005139128A 2005-05-11 2005-05-11 Fine particle generation method and apparatus Expired - Fee Related JP4873443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005139128A JP4873443B2 (en) 2005-05-11 2005-05-11 Fine particle generation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005139128A JP4873443B2 (en) 2005-05-11 2005-05-11 Fine particle generation method and apparatus

Publications (2)

Publication Number Publication Date
JP2006314900A JP2006314900A (en) 2006-11-24
JP4873443B2 true JP4873443B2 (en) 2012-02-08

Family

ID=37536032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005139128A Expired - Fee Related JP4873443B2 (en) 2005-05-11 2005-05-11 Fine particle generation method and apparatus

Country Status (1)

Country Link
JP (1) JP4873443B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102962466A (en) * 2012-11-29 2013-03-13 哈尔滨工业大学 Method for preparing metal nanoparticles through laser

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5866690B2 (en) * 2009-09-04 2016-02-17 国立研究開発法人産業技術総合研究所 Method for producing spherical nanoparticles and spherical nanoparticles obtained by the production method
JP5594770B2 (en) * 2010-08-31 2014-09-24 国立大学法人東北大学 Structure analysis method and structure analysis system
JP2012177158A (en) * 2011-02-25 2012-09-13 Toyota Central R&D Labs Inc Silver nanoparticle, silver colloid, pesticide and method for manufacturing silver nanoparticle
FR2974021B1 (en) * 2011-04-18 2013-04-05 Commissariat Energie Atomique PROCESS FOR THE PREPARATION OF METALLIC PARTICLES
CN102943268A (en) * 2012-12-03 2013-02-27 哈尔滨工业大学 Laser jet repairing method of annular pad
CN105689727B (en) * 2016-01-29 2017-10-03 中国工程物理研究院流体物理研究所 The method that pulsed power technology prepares high bactericidal properties nanometer Ag Cu alloyed powders
CN108893781B (en) * 2018-07-27 2020-08-11 国家纳米科学中心 Method for preparing single crystal nano particles by using laser beam
JP7162335B2 (en) * 2018-10-17 2022-10-28 国立研究開発法人産業技術総合研究所 Laser transfer material for physiologically active substance-supporting calcium phosphate film and method for transferring and forming physiologically active substance-supporting calcium phosphate film using the same
CN113275579B (en) * 2021-05-24 2023-01-24 北京科技大学顺德研究生院 Device for preparing metal powder by laser thermal explosion of metal foil strip and preparation method of metal powder

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2927024B2 (en) * 1991-03-26 1999-07-28 ミノルタ株式会社 Thermal transfer recording device
JP3531006B2 (en) * 1992-03-31 2004-05-24 コニカミノルタホールディングス株式会社 Melt type laser thermal transfer recording method
JPH09150582A (en) * 1995-11-28 1997-06-10 Ricoh Co Ltd Method for forming laser transfer image and device therefor
JPH09306693A (en) * 1996-05-10 1997-11-28 Nippon Telegr & Teleph Corp <Ntt> Laser plasma x-ray generating method and device
JPH1016392A (en) * 1996-07-02 1998-01-20 Ricoh Co Ltd Laser image forming method and apparatus therefor
JP2897005B1 (en) * 1998-02-27 1999-05-31 工業技術院長 Laser plasma light source and radiation generating method using the same
JP3646588B2 (en) * 1999-11-01 2005-05-11 有限会社サイファー社 Laser plasma X-ray generator
JP2002314123A (en) * 2001-04-18 2002-10-25 Sony Corp Method of transferring element, method of arranging element using it, and method of manufacturing image display device
JP2004115861A (en) * 2002-09-26 2004-04-15 Nikon Corp Film-forming method, multilayered-film-forming method, film-forming apparatus and euv exposure device
JP2004153064A (en) * 2002-10-31 2004-05-27 Nikon Corp Aligner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102962466A (en) * 2012-11-29 2013-03-13 哈尔滨工业大学 Method for preparing metal nanoparticles through laser

Also Published As

Publication number Publication date
JP2006314900A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP4873443B2 (en) Fine particle generation method and apparatus
US7527824B2 (en) Methods for producing coated nanoparticles from microparticles
RU2242532C1 (en) Method of production of nanoparticles
Stratakis et al. Laser writing of nanostructures on bulk Al via its ablation in liquids
JP5690714B2 (en) Thin film production method
JP2014129608A5 (en)
JPS6254005A (en) Production of hyperfine particles
Cai et al. Generation of metal nanoparticles by laser ablation of microspheres
Kolasinski et al. Plume and nanoparticle formation during laser ablation
US6275565B1 (en) Laser plasma light source and method of generating radiation using the same
JP2897005B1 (en) Laser plasma light source and radiation generating method using the same
CN109119332B (en) Method for preparing patterned ordered bimetal nanoparticle array by adopting annealing method
Kabashin et al. Laser–ablative nanostructuring of surfaces
CN111333024B (en) Ge2Sb2Te5Metal-column-sphere heterogeneous nano structure and preparation method thereof
Ganeev Involvement of small carbon clusters in the enhancement of high-order harmonic generation of ultrashort pulses in the plasmas produced during ablation of carbon-contained nanoparticles
Austin et al. Laser processing of nanomaterials: From controlling chemistry to manipulating structure at the atomic scale
WO2019146060A1 (en) Method for manufacturing chromel-alumel thermocouple
Boltaev et al. Third and fifth harmonics generation in air and nanoparticle-containing plasmas using 150-kHz fiber laser
Stokker-Cheregi et al. Pulsed laser removal of tungsten nanoparticle aggregates: Surface analysis and visualization of particle ejection dynamics
CN115537737B (en) Preparation method and system of thin coating
Gupta et al. Plume and Nanoparticle Formation During Laser Ablation
Ganeev et al. Deposition of nanoparticles during laser ablation of nanoparticle-containing targets
Marot et al. Synergistic effects of hydrogen plasma exposure, pulsed laser heating and temperature on rhodium surfaces
Caballero-Briones et al. Photoluminescence response in carbon films deposited by pulsed laser deposition onto GaAs substrates at low vacuum
Ossi Cluster synthesis and cluster-assembled film deposition in nanosecond pulsed laser ablation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4873443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees