JP4873325B2 - In-furnace atmosphere control method for heating furnace - Google Patents

In-furnace atmosphere control method for heating furnace Download PDF

Info

Publication number
JP4873325B2
JP4873325B2 JP2007264506A JP2007264506A JP4873325B2 JP 4873325 B2 JP4873325 B2 JP 4873325B2 JP 2007264506 A JP2007264506 A JP 2007264506A JP 2007264506 A JP2007264506 A JP 2007264506A JP 4873325 B2 JP4873325 B2 JP 4873325B2
Authority
JP
Japan
Prior art keywords
flow rate
furnace
combustion air
burner
adjustment valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007264506A
Other languages
Japanese (ja)
Other versions
JP2009092328A (en
Inventor
幸博 緒方
勝也 甲斐
広幸 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007264506A priority Critical patent/JP4873325B2/en
Publication of JP2009092328A publication Critical patent/JP2009092328A/en
Application granted granted Critical
Publication of JP4873325B2 publication Critical patent/JP4873325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼材を加熱する加熱炉の炉内雰囲気(酸素濃度)を制御する方法に関する。特に、本発明は、速やかに炉温を低下させる場合であっても、炉内雰囲気を安定化させることができ、ひいては鋼材の品質を維持したり、発煙を防止することが可能な加熱炉の炉内雰囲気制御方法に関する。   The present invention relates to a method for controlling a furnace atmosphere (oxygen concentration) of a heating furnace for heating a steel material. In particular, the present invention is a heating furnace capable of stabilizing the furnace atmosphere even when the furnace temperature is quickly lowered, and thus maintaining the quality of the steel material and preventing smoke generation. The present invention relates to a furnace atmosphere control method.

従来より、鋳片や鋼片等の鋼材の加熱炉は、鋼材を分塊圧延したり熱間圧延する場合に、それら圧延に適した温度に鋼材を加熱するために用いられている。   Conventionally, heating furnaces for steel materials such as cast slabs and steel slabs have been used to heat steel materials to a temperature suitable for rolling when the steel materials are subjected to ingot rolling or hot rolling.

加熱炉は、一般的に、鋼材の装入側から順に予熱帯、加熱帯及び均熱帯を有する。加熱炉は、生産性を重視して速やかに鋼材の温度を上昇させる必要があるため、熱処理炉のようにラジアントチューブを用いるのではなく、少なくとも加熱帯及び均熱帯にバーナーが設けられている。そして、この設置されたバーナーで燃料と燃焼用空気とを直接混合させて燃焼させることにより、炉内を所定温度に加熱保持している。装入扉から予熱帯に導入された鋼材は、搬送路上を移動し、加熱帯、均熱帯を経て、均熱帯出側の抽出扉から炉外へ搬出される間に、所定温度に加熱される。なお、バーナーでの燃焼によって生じた排ガスは、予熱帯の入側に設けられた煙道から炉外に排出される。その際、煙道に設けたレキュペレータによって、バーナーに供給する燃焼用空気の予熱を行って排ガス中の熱を回収している。さらに、煙道には、炉圧を制御するためのダンパーも配置されている。   A heating furnace generally has a pre-tropical zone, a heating zone, and a soaking zone in order from the steel material charging side. Since the heating furnace needs to raise the temperature of the steel material promptly with emphasis on productivity, a radiant tube is not used as in the heat treatment furnace, but a burner is provided at least in the heating zone and the soaking zone. The furnace is heated and held at a predetermined temperature by directly mixing and burning the fuel and combustion air with the installed burner. The steel material introduced into the pre-tropical zone from the charging door moves on the conveyance path, passes through the heating zone and the soaking zone, and is heated to a predetermined temperature while being transported from the extraction door on the soaking zone to the outside of the furnace. . In addition, the exhaust gas produced by the combustion in the burner is discharged out of the furnace through a flue provided on the entrance side of the pre-tropical zone. At that time, the recuperator provided in the flue preheats the combustion air supplied to the burner to recover the heat in the exhaust gas. Furthermore, a damper for controlling the furnace pressure is also arranged in the flue.

ここで、加熱炉の炉圧が低下すると、炉外から空気が流入して、炉内の酸素濃度が上昇することにより、鋼材の表面に形成される脱炭層や酸化スケール層が増加したり、表面肌が荒れるといった鋼材の品質低下を招く虞がある。このため、従来より、炉圧を適切に制御する方法が種々提案されている(例えば、特許文献1参照)。   Here, when the furnace pressure of the heating furnace decreases, air flows in from the outside of the furnace, and the oxygen concentration in the furnace increases, thereby increasing the decarburization layer and oxide scale layer formed on the surface of the steel material, There is a possibility that the quality of the steel material is deteriorated such that the surface skin becomes rough. For this reason, conventionally, various methods for appropriately controlling the furnace pressure have been proposed (see, for example, Patent Document 1).

一方、加熱炉の炉温は、バーナーに供給される燃料の流量によって制御される。また、バーナーに供給される燃焼用空気の流量は、バーナーに供給される燃料の流量と、燃焼効率等の観点から決定された空燃比(バーナーに供給される燃焼用空気の流量と燃料の流量との比率)とに応じて調整される。より具体的には、バーナーに対して燃焼用空気を供給するための配管に流量調整弁を設け、この流量調整弁の開度を調整することにより、燃焼用空気の流量を調整している。この空燃比が変動して燃焼用空気の流量が過剰になった場合には、炉内の酸素濃度が上昇するため、前述した炉圧が低下する場合と同様に、鋼材の表面に形成される脱炭層や酸化スケール層が増加したり、表面肌が荒れるといった鋼材の品質低下を招く虞がある。一方、空燃比が変動して燃焼用空気の流量が過少になった場合には、不完全燃焼により、発煙が生じる虞がある。このため、従来より、空燃比を適切に制御する方法が種々提案されている(例えば、特許文献2参照)。
特開2002−220620号公報 特開昭60−129594号公報
On the other hand, the furnace temperature of the heating furnace is controlled by the flow rate of fuel supplied to the burner. The flow rate of the combustion air supplied to the burner is the air flow ratio determined from the viewpoint of the flow rate of the fuel supplied to the burner and the combustion efficiency (the flow rate of the combustion air supplied to the burner and the flow rate of the fuel And the ratio). More specifically, a flow rate adjustment valve is provided in a pipe for supplying combustion air to the burner, and the flow rate of the combustion air is adjusted by adjusting the opening of the flow rate adjustment valve. When the air-fuel ratio fluctuates and the flow rate of combustion air becomes excessive, the oxygen concentration in the furnace increases, so that it is formed on the surface of the steel material as in the case where the furnace pressure decreases. There is a risk of degrading the quality of the steel material, such as an increase in the decarburized layer and oxide scale layer, and rough surface. On the other hand, if the air-fuel ratio fluctuates and the flow rate of combustion air becomes too low, there is a risk that smoke may be generated due to incomplete combustion. For this reason, conventionally, various methods for appropriately controlling the air-fuel ratio have been proposed (see, for example, Patent Document 2).
JP 2002-220620 A JP-A-60-129594

しかしながら、従来の炉圧や空燃比を制御する方法では、鋼材の品質低下や発煙が生じる虞を回避できない場合がある。   However, the conventional method of controlling the furnace pressure and the air-fuel ratio cannot avoid the possibility that the quality of the steel material deteriorates or smoke is generated.

例えば、鋼材の圧延操業の状況に応じて鋼材の在炉時間が長くなった場合、脱炭層や酸化スケール層が増加して、鋼材の品質が低下する虞がある。これを回避するために、速やかに炉温を低下させなければならない場合がある。また、鋼材の材質によっては、加熱温度を低めに保たなければならない場合がある。このため、昨今の生産量が拡大する状況において、同じ加熱炉を用いて、多種の鋼材を生産性を低下させずに処理するには、速やかに炉温を変更する必要がある。このようなケースにおいて、速やかに炉温を低下させるには、バーナーに供給する燃料の流量を低下させればよいが、適切な空燃比が得られるように、これに応じてバーナーに供給する燃焼用空気の流量も低下させなければならない。   For example, when the in-furnace time of the steel material becomes longer depending on the state of rolling operation of the steel material, the decarburized layer and the oxide scale layer may increase, and the quality of the steel material may be deteriorated. In order to avoid this, the furnace temperature may need to be quickly reduced. Moreover, depending on the material of the steel material, the heating temperature may have to be kept low. For this reason, it is necessary to change the furnace temperature promptly in order to process various steel materials without lowering the productivity by using the same heating furnace in a situation where the production volume is increasing recently. In such a case, in order to quickly lower the furnace temperature, the flow rate of the fuel supplied to the burner may be reduced, but the combustion supplied to the burner according to this in order to obtain an appropriate air-fuel ratio. The air flow rate must also be reduced.

しかしながら、流量調整弁の機械的特性上の問題により、所定値未満の低流量域では燃焼用空気の流量を適切に制御できないという問題がある。例えば、本発明者らが行った試験では、流量調整弁の開度を10%未満にすると、流量調整弁の開度と流量とが比例しないため、燃焼用空気の流量を適切に制御することができなかった。このため、供給する燃料の流量に対して燃焼用空気の流量が過剰になり、その結果、脱炭層や酸化スケール層の生成が顕著となって、鋼材の品質低下を招いたり、逆に供給する燃料の流量に対して燃焼用空気の流量が過少になって発煙が生じる虞がある。従って、速やかに炉温を変更するには、限界があった。   However, there is a problem that the flow rate of the combustion air cannot be appropriately controlled in a low flow rate range below a predetermined value due to a problem in mechanical characteristics of the flow rate adjusting valve. For example, in a test conducted by the present inventors, if the opening degree of the flow rate adjustment valve is less than 10%, the opening degree of the flow rate adjustment valve and the flow rate are not proportional. I could not. For this reason, the flow rate of the combustion air becomes excessive with respect to the flow rate of the fuel to be supplied, and as a result, the formation of the decarburized layer and the oxide scale layer becomes remarkable, leading to the deterioration of the quality of the steel material or the reverse supply. There is a risk that smoke will be generated when the flow rate of combustion air becomes too small relative to the flow rate of fuel. Therefore, there is a limit to quickly changing the furnace temperature.

本発明は、斯かる従来技術の問題を解決するためになされたものであり、速やかに炉温を低下させる場合であっても、炉内雰囲気を安定化させることができ、ひいては鋼材の品質を維持したり、発煙を防止することが可能な加熱炉の炉内雰囲気制御方法を提供することを課題とする。   The present invention has been made to solve such problems of the prior art, and even when the furnace temperature is quickly lowered, the atmosphere in the furnace can be stabilized, and consequently the quality of the steel material can be improved. It is an object of the present invention to provide a furnace atmosphere control method for a heating furnace that can maintain or prevent smoke generation.

前記課題を解決するため、本発明は、予熱帯、加熱帯及び均熱帯を有する加熱炉の炉内雰囲気を制御する方法であって、少なくとも均熱帯に設けたバーナーに対して燃焼用空気を供給するための主配管に第1の流量調整弁を設けると共に、前記主配管に連通し前記主配管よりも小径のバイパス配管に第2の流量調整弁を設け、前記バーナーに供給する燃焼用空気の流量を所定値未満に制御する場合、前記第1の流量調整弁の開度を0%に設定し、前記第2の流量調整弁の開度調整のみで前記燃焼用空気の流量を制御することを特徴とする加熱炉の炉内雰囲気制御方法を提供する。   In order to solve the above problems, the present invention is a method for controlling the atmosphere in a furnace having a pretropical zone, a heating zone and a soaking zone, and supplying combustion air to a burner provided at least in the soaking zone A first flow rate adjusting valve is provided in the main pipe for performing the operation, and a second flow rate adjusting valve is provided in the bypass pipe having a smaller diameter than the main pipe so as to communicate with the main pipe, and the combustion air supplied to the burner When the flow rate is controlled to be less than a predetermined value, the opening degree of the first flow rate adjustment valve is set to 0%, and the flow rate of the combustion air is controlled only by adjusting the opening degree of the second flow rate adjustment valve. A furnace atmosphere control method for a heating furnace is provided.

本発明に係る方法によれば、少なくとも均熱帯に設けたバーナーに対して燃焼用空気を供給するための主配管に第1の流量調整弁が設けられると共に、主配管に連通し主配管よりも小径のバイパス配管に第2の流量調整弁が設けられる。従って、少なくとも高温であるために脱炭層や酸化スケール層の増加に影響を及ぼし易い均熱帯に設けたバーナーに対して供給される燃焼用空気の流量は、第1及び第2の流量調整弁の開度をそれぞれ調整することによって調整可能である。例えば、小径のバイパス配管に設けられた第2の流量調整弁の開度を0%にして、主配管に設けられた第1の流量調整弁の開度のみを調整するのであれば、主配管のみを用いた従来方法と同様になる。すなわち、第1の流量調整弁の開度を所定値未満(例えば、10%未満)にすると、第1の流量調整弁の開度と主配管を流れる燃焼用空気の流量とが比例しないため、燃焼用空気の流量を適切に制御することができない。   According to the method of the present invention, the first flow rate adjusting valve is provided in the main pipe for supplying combustion air to the burner provided at least in the soaking zone, and communicates with the main pipe rather than the main pipe. A second flow rate adjustment valve is provided in the small diameter bypass pipe. Accordingly, the flow rate of the combustion air supplied to the burner provided in the soaking zone that is likely to affect the increase in the decarburization layer and the oxide scale layer at least because of the high temperature is that of the first and second flow control valves. It can be adjusted by adjusting the opening degree. For example, if the opening degree of the second flow rate adjustment valve provided in the small diameter bypass pipe is set to 0% and only the opening degree of the first flow rate adjustment valve provided in the main pipe is adjusted, the main pipe It becomes the same as the conventional method using only. That is, when the opening degree of the first flow rate adjustment valve is less than a predetermined value (for example, less than 10%), the opening degree of the first flow rate adjustment valve and the flow rate of the combustion air flowing through the main pipe are not proportional. The flow rate of combustion air cannot be controlled properly.

そこで、本発明に係る方法は、バーナーに供給する燃焼用空気の流量を所定値未満に制御する場合、第1の流量調整弁の開度を0%に設定し、第2の流量調整弁の開度調整のみで燃焼用空気の流量を制御することを特徴としている。バイパス配管に設けられた第2の流量調整弁の開度を所定値未満にすると、第1の流量調整弁の場合と同様に、第2の流量調整弁の開度とバイパス配管を流れる燃焼用空気の流量とは比例しなくなる。しかしながら、バイパス配管は主配管よりも小径であるため、たとえ第2の流量調整弁が第1の流量調整弁と同程度の開度で燃焼用空気の流量を適切に制御できなくなるとしても、制御可能な燃焼用空気の流量の下限は、主配管よりも小さくなる。従って、本発明によれば、低流量域でも燃焼用空気の流量を適切に制御することができる。   Therefore, in the method according to the present invention, when the flow rate of the combustion air supplied to the burner is controlled to be less than a predetermined value, the opening degree of the first flow rate adjustment valve is set to 0%, It is characterized by controlling the flow rate of combustion air only by adjusting the opening. When the opening degree of the second flow rate adjustment valve provided in the bypass pipe is less than a predetermined value, the opening degree of the second flow rate adjustment valve and the combustion flow through the bypass pipe are the same as in the case of the first flow rate adjustment valve. It is no longer proportional to the air flow. However, since the bypass pipe has a smaller diameter than the main pipe, even if the second flow rate adjustment valve cannot control the flow rate of the combustion air properly with the same degree of opening as the first flow rate adjustment valve, the bypass pipe is controlled. The lower limit of the possible flow rate of combustion air is smaller than that of the main pipe. Therefore, according to the present invention, the flow rate of combustion air can be appropriately controlled even in a low flow rate region.

本発明に係る加熱炉の炉内雰囲気制御方法によれば、低流量域でも燃焼用空気の流量を適切に制御することができるため、速やかに炉温を低下させる場合であっても、炉内雰囲気を安定化させることができ、ひいては鋼材の品質を維持したり、発煙を防止することが可能である。   According to the furnace atmosphere control method for a heating furnace according to the present invention, the flow rate of combustion air can be appropriately controlled even in a low flow rate region, so even if the furnace temperature is quickly lowered, The atmosphere can be stabilized, and as a result, the quality of the steel material can be maintained and smoke generation can be prevented.

以下、添付図面を適宜参照しつつ、本発明の一実施形態について説明する。
図1は、本発明に係る炉内雰囲気制御方法を適用する加熱炉及びその付帯設備の概略構成を示す模式図である。図2は、図1に示す構成の一部(図1のAで示す部分)を拡大して示す模式図である。図1に示すように、加熱炉100は、鋼材Mの装入側から順に予熱帯、加熱帯及び均熱帯を有する。一般的に、予熱帯の炉温は500〜700℃、加熱帯の炉温は900〜1150℃、均熱帯の炉温は1050〜1250℃に制御される。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings as appropriate.
FIG. 1 is a schematic diagram showing a schematic configuration of a heating furnace and its incidental equipment to which the furnace atmosphere control method according to the present invention is applied. FIG. 2 is an enlarged schematic view showing a part of the configuration shown in FIG. 1 (the part indicated by A in FIG. 1). As shown in FIG. 1, the heating furnace 100 has a pretropical zone, a heating zone, and a soaking zone in order from the charging side of the steel material M. Generally, the pre-tropical furnace temperature is controlled to 500 to 700 ° C, the furnace temperature in the heating zone is controlled to 900 to 1150 ° C, and the soaking furnace temperature is controlled to 1050 to 1250 ° C.

加熱炉100には、少なくとも加熱帯及び均熱帯にバーナー1が設けられている。図1に示す例では、加熱帯の上部域にバーナー1a、加熱帯の下部域にバーナー1b、均熱帯の上部域にバーナー1c、均熱帯の下部域にバーナー1dが設けられている。そして、この設置されたバーナー1(1a〜1d)で燃料と燃焼用空気とを直接混合させて燃焼させることにより、加熱炉100の炉内を前述したような所定温度に加熱保持している。装入扉(図示せず)から予熱帯に導入された鋼材Mは、搬送路2上を矢符Xの方向に移動し、加熱帯、均熱帯を経て、均熱帯出側の抽出扉(図示せず)から炉外へ搬出される間に、所定温度に加熱される。   The heating furnace 100 is provided with a burner 1 at least in the heating zone and in the soaking zone. In the example shown in FIG. 1, a burner 1a is provided in the upper area of the heating zone, a burner 1b is provided in the lower area of the heating zone, a burner 1c is provided in the upper area of the soaking zone, and a burner 1d is provided in the lower zone of the soaking zone. Then, the furnace and the combustion air are directly mixed and burned by the installed burner 1 (1a to 1d), whereby the inside of the heating furnace 100 is heated and held at the predetermined temperature as described above. The steel material M introduced into the pre-tropical zone from the charging door (not shown) moves in the direction of the arrow X on the conveyance path 2, passes through the heating zone and the soaking zone, and is extracted from the soaking zone (see FIG. (Not shown) while being carried out of the furnace.

なお、バーナー1での燃焼によって生じた排ガスは、予熱帯の入側に設けられた煙道3から炉外に排出される。その際、煙道3に設けたレキュペレータ4によって、バーナー1に供給する燃焼用空気の予熱を行って排ガス中の熱を回収している。煙道3には炉圧を制御するためのダンパー5が配置され、予熱帯には炉圧計6が配置されている。炉圧計6による炉圧測定値に基づきダンパー5を開閉することにより、加熱炉100の炉圧が制御される。すなわち、炉圧計6による炉圧測定値が、予め設定した目標炉圧よりも低い場合にはダンパー5を閉じ、目標炉圧よりも高い場合にはダンパー5を開くように制御される。   In addition, the exhaust gas produced by the combustion in the burner 1 is discharged out of the furnace from the flue 3 provided on the pre-tropical entry side. At that time, the recuperator 4 provided in the flue 3 preheats the combustion air supplied to the burner 1 to recover the heat in the exhaust gas. A damper 5 for controlling the furnace pressure is disposed in the flue 3, and a furnace pressure gauge 6 is disposed in the pre-tropical zone. The furnace pressure of the heating furnace 100 is controlled by opening and closing the damper 5 based on the furnace pressure measurement value by the furnace pressure gauge 6. That is, when the furnace pressure measurement value by the furnace pressure gauge 6 is lower than the preset target furnace pressure, the damper 5 is closed, and when the furnace pressure measurement value is higher than the target furnace pressure, the damper 5 is opened.

図1及び図2に示すように、本発明に係る炉内雰囲気制御方法は、以上に説明した構成を有する加熱炉100の少なくとも均熱帯(本実施形態では、均熱帯及び加熱帯の双方)に設けたバーナー1に対して燃焼用空気を供給するための主配管10(10a〜10d)に第1の流量調整弁11を設けると共に、主配管10に連通し主配管10よりも小径のバイパス配管20(20a〜20d)に第2の流量調整弁21を設けることを特徴としている。本実施形態では、バイパス配管20の内径は主配管10の内径の3/7、すなわちバイパス配管20の断面積は主配管10の断面積の18%とされている。   As shown in FIGS. 1 and 2, the furnace atmosphere control method according to the present invention is applied to at least the soaking zone (both soaking zone and heating zone in this embodiment) of the heating furnace 100 having the above-described configuration. A first flow rate adjusting valve 11 is provided in a main pipe 10 (10a to 10d) for supplying combustion air to the provided burner 1, and a bypass pipe that communicates with the main pipe 10 and has a smaller diameter than the main pipe 10. The second flow rate adjusting valve 21 is provided at 20 (20a to 20d). In the present embodiment, the inner diameter of the bypass pipe 20 is 3/7 of the inner diameter of the main pipe 10, that is, the cross-sectional area of the bypass pipe 20 is 18% of the cross-sectional area of the main pipe 10.

ここで、主配管10に対するバイパス配管20の断面積が小さすぎると、主配管10に設けた第1の流量調節弁11の開度が小さくなり、燃焼用空気の流量を第1の流量調節弁11の開度調整によって適切に制御できなくなったときに、バイパス配管20に設けた第2の流量調節弁21の開度調整による制御へ円滑に且つ連続的に移行できない。一方、主配管10に対するバイパス配管20の断面積が大きすぎると、バイパス配管20に設けた第2の流量調節弁21の開度調整によって制御可能な燃焼用空気の流量の下限が大きくなる(主配管10に設けた第1の流量調節弁11の開度調整によって制御可能な燃焼用空気の流量の下限との差が縮まる)ため、低流量域での燃焼用空気の流量を適切に制御できない。よって、バイパス配管20の断面積は、主配管10の断面積の15〜25%とするのが望ましい。   Here, if the cross-sectional area of the bypass pipe 20 with respect to the main pipe 10 is too small, the opening of the first flow control valve 11 provided in the main pipe 10 becomes small, and the flow rate of the combustion air is reduced to the first flow control valve. 11 cannot be controlled properly by adjusting the opening degree of 11, the control cannot smoothly and continuously shift to the control by adjusting the opening degree of the second flow rate adjusting valve 21 provided in the bypass pipe 20. On the other hand, if the cross-sectional area of the bypass pipe 20 with respect to the main pipe 10 is too large, the lower limit of the flow rate of combustion air that can be controlled by adjusting the opening of the second flow rate control valve 21 provided in the bypass pipe 20 becomes large (main Because the difference from the lower limit of the flow rate of combustion air that can be controlled by adjusting the opening of the first flow rate control valve 11 provided in the pipe 10 is reduced), the flow rate of combustion air in the low flow rate region cannot be controlled appropriately. . Therefore, it is desirable that the cross-sectional area of the bypass pipe 20 is 15 to 25% of the cross-sectional area of the main pipe 10.

なお、燃焼用空気は、ブロア(図示せず)より供給され、レキュペレータ4によって煙道を流れる排ガスから回収された熱で予熱された後、元配管30より分岐した主配管10(10a〜10d)に送られる。   The combustion air is supplied from a blower (not shown), preheated with heat recovered from the exhaust gas flowing through the flue by the recuperator 4, and then branched from the main pipe 10 (10a to 10d). Sent to.

そして、本発明に係る炉内雰囲気制御方法は、バーナー1に供給する燃焼用空気の流量を所定値未満に制御する場合、第1の流量調整弁11の開度を0%に設定し、第2の流量調整弁21の開度調整のみで燃焼用空気の流量を制御することを特徴としている。   In the furnace atmosphere control method according to the present invention, when the flow rate of the combustion air supplied to the burner 1 is controlled to be less than a predetermined value, the opening of the first flow rate adjustment valve 11 is set to 0%, The flow rate of the combustion air is controlled only by adjusting the opening degree of the second flow rate adjusting valve 21.

本実施形態では、下記の表1に示すように、バーナー1に供給する燃焼用空気の流量(すなわち、第1の流量調整弁11出側の流量V1と、第2の流量調整弁21出側の流量V2との和)をその最大流量(すなわち、第1の流量調整弁11及び第2の流量調整弁21の双方を全開した場合に得られる流量であり、表1において100%で示す)の10%未満とする場合に、第1の流量調整弁11の開度を0%に設定し、第2の流量調整弁21の開度調整のみで燃焼用空気の流量を制御している。なお、流量調整弁の開度は、この流量調整弁を設けた配管を流れ得る燃焼用空気の最大流量(流量調整弁を全開したときに得られる流量)に対して、実際に流そうとする燃焼用空気の流量の比率を意味する。例えば、第1の流量調整弁11の開度を100%にするとは、第1の流量調整弁11を全開した状態であり、第1の流量調整弁11出側の流量V1が最大になることを意味する。第1の流量調整弁11の開度を0%にするとは、第1の流量調整弁11を全閉した状態であり、第1の流量調整弁11出側の流量V1が0になることを意味する。第1の流量調整弁11の開度を10%にするとは、第1の流量調整弁11出側の流量V1をその最大流量に対して10%にすることを意味する。

Figure 0004873325
In the present embodiment, as shown in Table 1 below, the flow rate of combustion air supplied to the burner 1 (that is, the flow rate V1 on the outlet side of the first flow rate adjusting valve 11 and the outlet side of the second flow rate adjusting valve 21). The maximum flow rate (that is, the flow rate obtained when both the first flow rate adjustment valve 11 and the second flow rate adjustment valve 21 are fully opened, and is indicated by 100% in Table 1). Is set to 0%, the flow rate of the combustion air is controlled only by adjusting the opening degree of the second flow rate adjustment valve 21. It should be noted that the opening of the flow rate adjustment valve is intended to actually flow with respect to the maximum flow rate of combustion air that can flow through the pipe provided with this flow rate adjustment valve (the flow rate obtained when the flow rate adjustment valve is fully opened). It means the ratio of the flow rate of combustion air. For example, setting the opening degree of the first flow rate adjustment valve 11 to 100% means that the first flow rate adjustment valve 11 is fully opened, and the flow rate V1 on the outlet side of the first flow rate adjustment valve 11 is maximized. Means. Setting the opening degree of the first flow rate adjustment valve 11 to 0% means that the first flow rate adjustment valve 11 is fully closed, and that the flow rate V1 on the outlet side of the first flow rate adjustment valve 11 becomes zero. means. Setting the opening of the first flow rate adjusting valve 11 to 10% means that the flow rate V1 on the outlet side of the first flow rate adjusting valve 11 is set to 10% with respect to the maximum flow rate.
Figure 0004873325

本実施形態では、前述のように、バイパス配管20の内径を主配管10の内径の3/7とすることにより、第1の流量調整弁11出側の燃焼用空気の最大流量を16000Nm/hとし、第2の流量調整弁21出側の燃焼用空気の最大流量を2900Nm/hとしている。そして、上記の表1に示す制御方法を適用することにより、バーナー1に供給する燃焼用空気の流量をおよそ290Nm/h程度(第2の流量調整弁21近傍に設けたオリフィス流量計で確認)の低流量域まで狙い通りの流量に制御可能であることが分かった。そして、均熱帯に配置した酸素濃度計7で炉内の酸素濃度を確認したところ、バーナー1に供給する燃焼用空気の流量を低流量域とした場合に、1〜2%程度にまで酸素濃度を調整可能であることが分かった。 In the present embodiment, as described above, by setting the inner diameter of the bypass pipe 20 to 3/7 of the inner diameter of the main pipe 10, the maximum flow rate of the combustion air on the outlet side of the first flow control valve 11 is 16000 Nm 3 / h, and the maximum flow rate of the combustion air on the outlet side of the second flow rate adjusting valve 21 is 2900 Nm 3 / h. By applying the control method shown in Table 1 above, the flow rate of the combustion air supplied to the burner 1 is about 290 Nm 3 / h (confirmed with an orifice flow meter provided near the second flow rate adjustment valve 21. It was found that it was possible to control the flow rate as intended up to the low flow rate range. Then, when the oxygen concentration in the furnace was confirmed with an oxygen concentration meter 7 arranged in the soaking zone, the oxygen concentration was reduced to about 1 to 2% when the flow rate of combustion air supplied to the burner 1 was set to a low flow rate range. Was found to be adjustable.

これに対し、主配管10に設けた第1の流量調整弁11のみを用いた従来方法による調整(この際、第1の流量調整弁11出側の燃焼用空気の最大流量を16000Nm/hとした)では、およそ1600Nm/h程度(第1の流量調整弁11近傍に設けたオリフィス流量計で確認)の流量域までしか狙い通りの流量に制御できなかった。そして、均熱帯に配置した酸素濃度計7で炉内の酸素濃度を確認したところ、バーナー1に供給する燃焼用空気の流量を低流量域とした場合に、酸素濃度が4%以上に上昇することがあり、酸素濃度を安定して低く調整できないことが分かった。 On the other hand, adjustment by a conventional method using only the first flow rate adjustment valve 11 provided in the main pipe 10 (in this case, the maximum flow rate of the combustion air on the outlet side of the first flow rate adjustment valve 11 is set to 16000 Nm 3 / h. In this case, it was possible to control the flow rate as intended only in the flow range of about 1600 Nm 3 / h (confirmed with an orifice flow meter provided in the vicinity of the first flow rate adjustment valve 11). And when the oxygen concentration in the furnace was confirmed with the oxygen concentration meter 7 arranged in the soaking zone, when the flow rate of the combustion air supplied to the burner 1 was set to a low flow rate region, the oxygen concentration increased to 4% or more. In some cases, it was found that the oxygen concentration could not be adjusted stably low.

以上に説明したように、本発明に係る加熱炉の炉内雰囲気制御方法によれば、低流量域でも燃焼用空気の流量を適切に制御することができるため、速やかに炉温を低下させる場合であっても、炉内雰囲気(酸素濃度)を安定化させることができる。この結果、鋼材Mの品質を維持したり、発煙を防止することが可能である。   As described above, according to the furnace atmosphere control method for a heating furnace according to the present invention, since the flow rate of combustion air can be appropriately controlled even in a low flow rate region, the furnace temperature is quickly reduced. Even so, the furnace atmosphere (oxygen concentration) can be stabilized. As a result, it is possible to maintain the quality of the steel material M and prevent smoke generation.

図1は、本発明に係る炉内雰囲気制御方法を適用する加熱炉及びその付帯設備の概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a heating furnace and its incidental equipment to which the furnace atmosphere control method according to the present invention is applied. 図2は、図1に示す構成の一部を拡大して示す模式図である。FIG. 2 is an enlarged schematic view showing a part of the configuration shown in FIG.

符号の説明Explanation of symbols

1・・・バーナー
2・・・搬送路
3・・・煙道
4・・・レキュペレータ
5・・・ダンパー
6・・・炉圧計
7・・・酸素濃度計
10・・・主配管
11・・・第1の流量調整弁
20・・・バイパス配管
21・・・第2の流量調整弁
30・・・ブロア
100・・・加熱炉
DESCRIPTION OF SYMBOLS 1 ... Burner 2 ... Conveyance path 3 ... Flue 4 ... Recuperator 5 ... Damper 6 ... Furnace pressure gauge 7 ... Oxygen concentration meter 10 ... Main piping 11 ... 1st flow control valve 20 ... Bypass piping 21 ... 2nd flow control valve 30 ... Blower 100 ... Heating furnace

Claims (1)

予熱帯、加熱帯及び均熱帯を有する加熱炉の炉内雰囲気を制御する方法であって、
少なくとも均熱帯に設けたバーナーに対して燃焼用空気を供給するための主配管に第1の流量調整弁を設けると共に、前記主配管に連通し前記主配管よりも小径のバイパス配管に第2の流量調整弁を設け、
前記バーナーに供給する燃焼用空気の流量を所定値未満に制御する場合、前記第1の流量調整弁の開度を0%に設定し、前記第2の流量調整弁の開度調整のみで前記燃焼用空気の流量を制御することを特徴とする加熱炉の炉内雰囲気制御方法。
A method for controlling the furnace atmosphere of a heating furnace having a pre-tropical zone, a heating zone and a soaking zone,
A first flow rate adjusting valve is provided in a main pipe for supplying combustion air to a burner provided at least in the soaking zone, and a second pipe is connected to the main pipe and has a smaller diameter than the main pipe. Provide a flow control valve,
When the flow rate of combustion air supplied to the burner is controlled to be less than a predetermined value, the opening of the first flow rate adjustment valve is set to 0%, and the opening amount of the second flow rate adjustment valve is only adjusted. A furnace atmosphere control method for a heating furnace, characterized by controlling a flow rate of combustion air.
JP2007264506A 2007-10-10 2007-10-10 In-furnace atmosphere control method for heating furnace Active JP4873325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007264506A JP4873325B2 (en) 2007-10-10 2007-10-10 In-furnace atmosphere control method for heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007264506A JP4873325B2 (en) 2007-10-10 2007-10-10 In-furnace atmosphere control method for heating furnace

Publications (2)

Publication Number Publication Date
JP2009092328A JP2009092328A (en) 2009-04-30
JP4873325B2 true JP4873325B2 (en) 2012-02-08

Family

ID=40664481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007264506A Active JP4873325B2 (en) 2007-10-10 2007-10-10 In-furnace atmosphere control method for heating furnace

Country Status (1)

Country Link
JP (1) JP4873325B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101249213B1 (en) 2010-12-24 2013-04-03 주식회사 포스코 Furnace for surface treatment of stainless steel and stainless steel manufactured using the same
JP5909397B2 (en) * 2012-03-28 2016-04-26 月島機械株式会社 Control valve control device for pressurized flow furnace equipment, control valve control method for pressurized flow furnace equipment
CN113774207B (en) * 2021-08-31 2022-11-11 北京科技大学设计研究院有限公司 Method for controlling protective atmosphere in radiant tube heat treatment furnace

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2356880A1 (en) * 1976-07-02 1978-01-27 Vaillant Sa DEVICE FOR REGULATING THE AIR SUPPLY OF A CLOSED FIREPLACE
JPS5569224A (en) * 1978-11-15 1980-05-24 Hitachi Cable Ltd Annealing method for wire rod
JPS6127586A (en) * 1984-07-18 1986-02-07 株式会社リコー Cursor display
JPH0733908B2 (en) * 1986-02-28 1995-04-12 松下電器産業株式会社 Combustion air control device
JP2784629B2 (en) * 1994-04-27 1998-08-06 株式会社ナリタテクノ Proportional control device of air-fuel ratio in gas combustion device
JP3426736B2 (en) * 1994-09-24 2003-07-14 トヨタ自動車株式会社 Reflective melting and holding furnace
JP3414942B2 (en) * 1996-07-30 2003-06-09 Jfeスチール株式会社 heating furnace
JP2001272000A (en) * 2000-03-28 2001-10-05 Kawasaki Steel Corp Feeding piping structure and feeding method for supply medium
JP2002081641A (en) * 2000-09-01 2002-03-22 Nkk Corp Heating furnace and method of cooling air preheater in heating furnace
JP3800008B2 (en) * 2001-01-17 2006-07-19 Jfeスチール株式会社 Method of operating a heating furnace having a regenerative burner and a heating furnace

Also Published As

Publication number Publication date
JP2009092328A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
RU2435869C2 (en) Procedure for heat treatment of strip steel in continuous furnace with oxygen-fuel burners
JP2017529428A (en) Improved combustion profile for coke operation
WO2010007849A1 (en) Method for producing iron ore pellets
JP4873325B2 (en) In-furnace atmosphere control method for heating furnace
KR101807344B1 (en) Method for controlling a protective gas atmosphere in a protective gas chamber for the treatment of a metal strip
CN107532270A (en) Method and device for reaction controlling
KR100964904B1 (en) Heater for annealing furnace
RU2591097C2 (en) Method of producing sheet from normalised silicon steel
WO2010134214A1 (en) Continuous annealing furnace
KR101225262B1 (en) apparatus for preventing outer air inflow of heating furnace
JPWO2006082891A1 (en) Atmospheric heat treatment apparatus and operation method thereof
JP4987689B2 (en) Direct-fired type roller hearth continuous heat treatment furnace
JP7115995B2 (en) Furnace pressure control method for continuous heating furnace, furnace pressure control device, and continuous heating furnace
JP4910450B2 (en) Heating furnace atmosphere control method
JP4495011B2 (en) Control method of hot stove
CN106801139A (en) Annealing furnace optimization of air-fuel ratio method
KR20180073991A (en) An apparatus for controlling the pressure of top hopper in a blast furnace and blast furnace installation having the same
JP7408255B2 (en) Heat treatment method for heating furnace, continuous heating furnace and batch heating furnace
KR101271809B1 (en) Heating method for steel material of producing wire for reducing high temperature scale
JP2002220620A (en) Method for controlling pressure of heating furnace
JP2022514328A (en) Gaseous combustion agent injection assembly and method
US1540205A (en) Furnace for the direct reduction of metallic ores
JP4443667B2 (en) Continuous sintering furnace and operation method thereof
KR101249213B1 (en) Furnace for surface treatment of stainless steel and stainless steel manufactured using the same
JP3890538B2 (en) Continuous heating method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4873325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350