JP4868885B2 - Method for producing silicon-silicon carbide composite member - Google Patents

Method for producing silicon-silicon carbide composite member Download PDF

Info

Publication number
JP4868885B2
JP4868885B2 JP2006050984A JP2006050984A JP4868885B2 JP 4868885 B2 JP4868885 B2 JP 4868885B2 JP 2006050984 A JP2006050984 A JP 2006050984A JP 2006050984 A JP2006050984 A JP 2006050984A JP 4868885 B2 JP4868885 B2 JP 4868885B2
Authority
JP
Japan
Prior art keywords
silicon
silicon carbide
composite member
powder
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006050984A
Other languages
Japanese (ja)
Other versions
JP2007005762A (en
Inventor
和洋 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006050984A priority Critical patent/JP4868885B2/en
Publication of JP2007005762A publication Critical patent/JP2007005762A/en
Application granted granted Critical
Publication of JP4868885B2 publication Critical patent/JP4868885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、珪素−炭化珪素複合部材とその製造方法並びにこれを用いた半導体ウエハの吸着部材及び真空吸着装置に関する。   The present invention relates to a silicon-silicon carbide composite member, a manufacturing method thereof, a semiconductor wafer adsorption member and a vacuum adsorption apparatus using the same.

従来より、半導体ウエハのデバイス形成面の裏面を研削するために、吸着面を備え、その吸着面上に真空吸引することで半導体ウエハを固定する吸着部材と、半導体ウエハをグラインド加工するダイヤモンドホイールとを備えるウエハ研削装置が用いられている。真空吸引により吸着部材に固定された半導体ウエハは、ダイヤモンドホイールで研削されるが、加工された面には通常加工変質層が発生する。近年、半導体ウエハの極薄化に伴い、加工変質層の影響が相対的に大きくなり、半導体ウエハから半導体素子を形成する工程で、この加工変質層の影響を受け、半導体素子にクラックが入りやすいという問題が顕在化しつつある。   Conventionally, in order to grind the back surface of the device formation surface of a semiconductor wafer, an adsorption member is provided, and an adsorption member that fixes the semiconductor wafer by vacuum suction on the adsorption surface; a diamond wheel that grinds the semiconductor wafer; Is used. A semiconductor wafer fixed to an adsorbing member by vacuum suction is ground with a diamond wheel, but a work-affected layer usually occurs on the processed surface. In recent years, due to the ultra-thinning of semiconductor wafers, the influence of the work-affected layer has become relatively large, and in the process of forming a semiconductor element from the semiconductor wafer, the semiconductor element is likely to crack due to the influence of this work-affected layer. The problem is becoming apparent.

近年では加工変質層を除去するため、半導体ウェハのデバイス形成面の裏面を、例えば砥粒が付着した研磨布で磨くというドライポリッシュ方式による追加研磨が提案されている。当初、ドライポリッシュ方式のウエハ研磨装置の吸着部材には、ウエハ研削装置で用いられた、アルミナ質焼結体からなる吸着部材を転用していたが、アルミナ質焼結体の熱伝導率が低いために、ダイヤモンドホイールによる研削中に半導体ウエハから十分熱を逃がすことができず、デバイス形成面を保護するために用いられていた樹脂フィルムが溶けて、デバイス形成面が損傷するという問題が発生していた。   In recent years, in order to remove the work-affected layer, additional polishing by a dry polishing method in which the back surface of the device forming surface of a semiconductor wafer is polished with a polishing cloth to which abrasive grains are attached has been proposed. Initially, the adsorption member made of an alumina sintered body used in the wafer grinding apparatus was diverted to the adsorption member of the dry polishing wafer polishing apparatus, but the thermal conductivity of the alumina sintered body is low. Therefore, heat cannot be sufficiently released from the semiconductor wafer during grinding with the diamond wheel, and the resin film used to protect the device forming surface melts, resulting in a problem that the device forming surface is damaged. It was.

この問題を解決するために、炭化珪素の高い熱伝導性に注目し、以下の特許文献1〜4で提案される炭化珪素を含むセラミック部材が上記吸着部材の検討対象として挙げられる。   In order to solve this problem, attention is paid to the high thermal conductivity of silicon carbide, and ceramic members containing silicon carbide proposed in the following Patent Documents 1 to 4 are considered as objects for studying the adsorbing member.

特許文献1では、平均結晶粒径が0.3〜100μm、開気孔率が10〜60体積%の多孔質炭化珪素焼結体が提案されている。   Patent Document 1 proposes a porous silicon carbide sintered body having an average crystal grain size of 0.3 to 100 μm and an open porosity of 10 to 60% by volume.

また、特許文献2では、平均結晶粒径が5〜100μm、気孔径が1〜30μm、気孔率が20〜60%の多孔質炭化珪素焼結体が提案されている。   Patent Document 2 proposes a porous silicon carbide sintered body having an average crystal grain size of 5 to 100 μm, a pore size of 1 to 30 μm, and a porosity of 20 to 60%.

また、特許文献3では、炭化珪素結晶の平均粒径が20〜100μm、気孔率が40%以下、熱伝導率が80W/(m・k)以上の多孔質炭化珪素焼結体が提案されている。   Patent Document 3 proposes a porous silicon carbide sintered body having an average particle size of silicon carbide crystals of 20 to 100 μm, a porosity of 40% or less, and a thermal conductivity of 80 W / (m · k) or more. Yes.

また、特許文献4では、平均結晶粒径20〜100μm、気孔率10〜50%、熱伝導率160W/(m・k)以上の炭化珪素に、金属珪素を含浸した珪素−炭化珪素複合部材が提案されている。
特開昭62−100477号公報 特開2000−16872号公報 特開2001−158674号公報 特開2002−11653号公報
In Patent Document 4, a silicon-silicon carbide composite member obtained by impregnating silicon carbide with silicon carbide having an average crystal grain size of 20 to 100 μm, a porosity of 10 to 50%, and a thermal conductivity of 160 W / (m · k) or more is disclosed. Proposed.
JP-A-62-100477 JP 2000-16872 A JP 2001-158664 A JP 2002-11653 A

しかしながら、特許文献1〜3で提案された多孔質炭化珪素焼結体や特許文献4で提案された珪素−炭化珪素複合部材は、いずれも平均粒径が100μm以下の小さな炭化珪素結晶粒で構成されているため、直線性の高い貫通孔を形成することができず、その結果圧力損失が高くなり、真空吸着装置用吸着部材として用いた場合、半導体ウエハを精度良く固定することができないという問題があった。   However, the porous silicon carbide sintered body proposed in Patent Documents 1 to 3 and the silicon-silicon carbide composite member proposed in Patent Document 4 are both composed of small silicon carbide crystal grains having an average grain size of 100 μm or less. As a result, through holes with high linearity cannot be formed, resulting in high pressure loss, and when used as a suction member for a vacuum suction device, the semiconductor wafer cannot be fixed with high accuracy. was there.

加えて、特許文献1で提案された多孔質炭化珪素焼結体は、ドライ・エッチング装置用部品を対象としたものであり、腐食性ガスに対する耐食性は良好であるものの、熱応答性や放熱性が低く、ドライ・エッチング装置用部品等限定された用途にしか用いることができなかった。   In addition, the porous silicon carbide sintered body proposed in Patent Document 1 is intended for parts for dry etching apparatuses, and has good corrosion resistance against corrosive gas, but has thermal responsiveness and heat dissipation. Therefore, it could only be used for limited applications such as parts for dry etching equipment.

また、特許文献2で提案された多孔質炭化珪素焼結体は、気孔径が1〜30μmと小さく、微粒子を捕集、集塵するようなハニカムフィルタに適用すると、良好な集塵特性が示されるものの、熱応答性や放熱性を考慮したものではなかった。   The porous silicon carbide sintered body proposed in Patent Document 2 has a small pore diameter of 1 to 30 μm, and exhibits good dust collection characteristics when applied to a honeycomb filter that collects and collects fine particles. However, the thermal response and heat dissipation were not considered.

また、特許文献4で提案された珪素−炭化珪素複合部材は予め、平均粒径50〜100μmのα型炭化珪素粉末と平均粒径0.1〜1.0μmのα型炭化珪素粉末を混合した後、造粒、成形、焼成を行って、多孔質炭化珪素焼結体とした後、金属珪素を含浸させて緻密質体としたものであって、緻密質体に対しては製造条件の設定が容易であっても多孔質体に対しては製造条件の設定が難しく、特に吸着部材としての強度を確保することが難しかった。   Moreover, the silicon-silicon carbide composite member proposed in Patent Document 4 was previously mixed with α-type silicon carbide powder having an average particle size of 50 to 100 μm and α-type silicon carbide powder having an average particle size of 0.1 to 1.0 μm. Thereafter, granulation, molding, and firing are performed to obtain a porous silicon carbide sintered body, which is then impregnated with metal silicon to form a dense body, and the manufacturing conditions are set for the dense body. However, it is difficult to set the manufacturing conditions for the porous body, and it is particularly difficult to ensure the strength as the adsorbing member.

特に従来は前記珪素相の間隙および気泡を非連結部とし、該珪素−炭化珪素複合部材の特定範囲の断面を平面視したとき、該非連結部の面積比率=(非連結部の面積)/(珪素相の面積+非連結部の面積)×100(%)が4%となるのを境に、急激に非連結部の面積比率が増加しやすくなるいう問題がある。   Particularly, conventionally, when the gap and the bubbles of the silicon phase are defined as non-connected portions and a cross section of a specific range of the silicon-silicon carbide composite member is viewed in plan, the area ratio of the non-connected portions = (area of non-connected portions) / ( There is a problem that the area ratio of the non-connected portion is likely to increase abruptly when the area of the silicon phase + the area of the non-connected portion) × 100 (%) becomes 4%.

本発明は、適正な通気性、強度を兼備した状態で、圧力損失が低く、熱応答性、放熱性の良好な珪素−炭化珪素複合部材の製造方法提供することを目的とする。

The present invention, proper ventilation, while having both strength, low pressure loss, thermal response, the heat dissipation of the good silicon - and to provide a method for producing a silicon carbide composite member.

本発明に係る珪素−炭化珪素複合部材の製造方法は、平均粒径105〜350μmのα型炭化珪素粉末100重量部に対して、平均粒径1〜90μmの珪素粉末15〜30重量部を調合し、混合、造粒して顆粒を得る工程と、前記顆粒を所定形状に成形して成形体を得る工程と、前記成形体を非酸化雰囲気中1400〜1450℃で熱処理する工程と、を含むことを特徴とする。

In the method for producing a silicon-silicon carbide composite member according to the present invention, 15 to 30 parts by weight of silicon powder having an average particle diameter of 1 to 90 μm is prepared with respect to 100 parts by weight of α-type silicon carbide powder having an average particle diameter of 105 to 350 μm. Mixing and granulating to obtain granules, molding the granules into a predetermined shape to obtain a molded body, and heat-treating the molded body at 1400 to 1450 ° C. in a non-oxidizing atmosphere. It is characterized by that.

本発明に係る珪素−炭化珪素複合部材の製造方法によれば、平均粒径105〜350μmのα型炭化珪素粉末100重量部に対して、平均粒径1〜90μmの珪素粉末15〜30重量部を調合し、均一に混合、造粒して顆粒を得る工程と、顆粒を所定形状に成形して成形体を得る工程と、前記成形体を、非酸化雰囲気中、1400〜1450℃で熱処理する工程とを含むことを特徴とすることで、低圧損性、熱応答性、放熱性を兼備した珪素−炭化珪素複合部材を安価に効率よく製造することができる。

According to the method for producing a silicon-silicon carbide composite member according to the present invention, 15 to 30 parts by weight of silicon powder having an average particle diameter of 1 to 90 μm with respect to 100 parts by weight of α-type silicon carbide powder having an average particle diameter of 105 to 350 μm. , Uniformly mixing and granulating to obtain granules, forming the granules into a predetermined shape to obtain a molded body, and heat-treating the molded body at 1400 to 1450 ° C. in a non-oxidizing atmosphere by comprising the step, a low pressure loss property, thermal response, silicon and combines the heat radiation - it can be produced inexpensively and efficiently carbide composite member.

以下、本発明の実施形態を図を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の珪素―炭化珪素複合部材の内部を示す模式図である。   FIG. 1 is a schematic view showing the inside of the silicon-silicon carbide composite member of the present invention.

本発明の珪素−炭化珪素複合部材は、複数の炭化珪素の結晶粒子を3次元的に配置させるとともに、隣り合う炭化珪素の結晶粒子間を珪素相により接合した立体的な網目構造を形成したものであり、また炭化珪素の結晶粒子を珪素相で取り囲んだ場合なども含むが、図1に示すように炭化珪素の結晶粒子1が気孔2a、2b間を連続する珪素相3を介して連結されるとともに、複数の炭化珪素の結晶粒子を3次元的に配置させるとともに、隣り合う炭化珪素の結晶粒子間を珪素相により接合した立体的な網目構造を形成した珪素−炭化珪素複合部材であって、前記珪素相の間隙および気泡を非連結部とし、該珪素−炭化珪素複合部材の断面を平面視したときの2200μm×1700μmの範囲における該非連結部の面積比率=(非連結部の面積)/(珪素相の面積+非連結部の面積)×100(%)が3.5%以下であることを特徴とするものである。   The silicon-silicon carbide composite member of the present invention has a three-dimensional network structure in which a plurality of silicon carbide crystal particles are arranged three-dimensionally and adjacent silicon carbide crystal particles are joined by a silicon phase. In addition, the silicon carbide crystal particles 1 are connected through the silicon phase 3 between the pores 2a and 2b as shown in FIG. And a silicon-silicon carbide composite member in which a plurality of silicon carbide crystal particles are arranged three-dimensionally and a three-dimensional network structure is formed in which adjacent silicon carbide crystal particles are joined by a silicon phase. The area ratio of the non-connected portion in the range of 2200 μm × 1700 μm when the cross section of the silicon-silicon carbide composite member is viewed in plan, with the gap and bubbles of the silicon phase as non-connected portions = (surface of the non-connected portion) ) / (Area of silicon phase + the area of the non-connecting portion) × 100 (%) is characterized in that at most 3.5%.

なお炭化珪素の結晶粒子1間の珪素相3が空孔を有していたり、珪素相3がU字状となり一方の炭化珪素の結晶粒子とは2点で接合していても、炭化珪素の結晶粒子1と珪素相3との接合面積がトータルで同じもの同士であれば熱伝導度の差は殆ど無い。ただし珪素相3が複数に分岐してしまうと、珪素相3はその分だけ接合面積が必要になるため、できるだけ分岐していない一塊の珪素相3で接合されることが好ましい。   Even if the silicon phase 3 between the silicon carbide crystal particles 1 has pores or the silicon phase 3 is U-shaped and is bonded to one silicon carbide crystal particle at two points, If the crystal grains 1 and the silicon phase 3 have the same total bonding area, there is almost no difference in thermal conductivity. However, if the silicon phase 3 is branched into a plurality of parts, the silicon phase 3 requires a bonding area correspondingly, and therefore, it is preferable that the silicon phase 3 is bonded by a lump of silicon phase 3 that is not branched as much as possible.

炭化珪素の結晶粒子1、珪素相3とも熱応答性、放熱性は良好で、本発明の珪素−炭化珪素複合部材では珪素相3は炭化珪素の結晶粒子1を連結する。炭化珪素に対し、珪素の濡れ性は良好で、炭化珪素の結晶粒子1に容易に被着し、この被着した珪素は互いに連結して珪素相3を形成する。この形成過程で、珪素相3の内部には、図2に示されるような非連結部4、即ち珪素相3の内部に空隙4aおよび気泡4bを極力発生させないようにすることが重要である。このような非連結部4は熱応答性、放熱性を低下させるからである。   Both the silicon carbide crystal particles 1 and the silicon phase 3 have good thermal response and heat dissipation, and in the silicon-silicon carbide composite member of the present invention, the silicon phase 3 connects the silicon carbide crystal particles 1. Silicon has good wettability with respect to silicon carbide, and is easily deposited on the silicon carbide crystal particles 1, and the deposited silicon is connected to each other to form a silicon phase 3. In this formation process, it is important that the gap 4a and the bubbles 4b are not generated as much as possible in the silicon phase 3 in the non-connection portion 4 as shown in FIG. This is because such an unconnected portion 4 reduces the thermal response and heat dissipation.

非連結部4の有無は、例えば走査型電子顕微鏡を用い、倍率50〜5000倍とし、1.8mm×2.0mmの範囲で観察することができる。   The presence / absence of the unconnected portion 4 can be observed within a range of 1.8 mm × 2.0 mm using a scanning electron microscope, for example, with a magnification of 50 to 5000 times.

非連結部4の面積比率は、以下の式(1)で定義される比率であって、以下のような方法で測定、算出することができ、珪素−炭化珪素複合部材の熱応答性、放熱性は非連結部の面積比率を小さくするほうが好ましく、その上限を3.5%とすることが重要である。   The area ratio of the non-connecting portion 4 is a ratio defined by the following formula (1), and can be measured and calculated by the following method. The thermal responsiveness and heat dissipation of the silicon-silicon carbide composite member It is preferable to reduce the area ratio of the unconnected portion, and it is important that the upper limit is 3.5%.

非連結部の面積比率=(非連結部の面積)/(珪素相の面積+非連結部の面積)
×100(%) ・・・(1)
即ち、珪素−炭化珪素複合部材の一部を真空中で樹脂に埋め込んで円柱状の試料とし、
この試料の平面をダイヤモンド砥粒を用いて研磨して鏡面とした後、工業用顕微鏡(Nikon ECLIPSE LV150)を用いて、この鏡面を5〜50倍にて撮影した画像をJPEG形式にて保存する。
Area ratio of unconnected portion = (area of unconnected portion) / (area of silicon phase + area of unconnected portion)
× 100 (%) (1)
That is, a part of the silicon-silicon carbide composite member is embedded in a resin in a vacuum to obtain a cylindrical sample,
After polishing the flat surface of the sample with diamond abrasive grains to obtain a mirror surface, an image obtained by photographing the mirror surface at 5 to 50 times is stored in JPEG format using an industrial microscope (Nikon ECLIPSE LV150). .

次に、PEG形式で保存した画像ファイルをAdobe Photoshop Elements(登録商標)というソフトを用いて画像処理を施し、BMP形式にて保存する。具体的には画像上の有彩色を削除し、白黒の二階調化(白黒化)を行う。この二階調化では、工業用顕微鏡(Nikon ECLIPSE LV150)で撮影した画像と比べながら、炭化珪素の結晶粒子1と珪素相3が識別できる閾値を設定する。   Next, the image file saved in the PEG format is subjected to image processing using software called Adobe Photoshop Elements (registered trademark) and saved in the BMP format. Specifically, the chromatic color on the image is deleted and black and white gradation (black and white) is performed. In this two-gradation, a threshold value for distinguishing between silicon carbide crystal particles 1 and silicon phase 3 is set while comparing with an image taken with an industrial microscope (Nikon ECLIPSE LV150).

閾値を設定した後、この二階調化された画像を「画像から面積」というフリーソフトを用いて、珪素相3の面積をピクセル単位で読みとる。   After setting the threshold value, the area of the silicon phase 3 is read in units of pixels from the two-graded image using free software “area from image”.

非連結部4についても上述と同様の方法で読みとり、式(1)で算出する。   The unconnected portion 4 is also read by the same method as described above and calculated by the equation (1).

炭化珪素成形体に溶融した珪素を含浸させる場合、毛細管現象により成形体を構成する顆粒内部に存在する亀裂に選択的に充填し、珪素相は炭化珪素の結晶粒子を十分接合させることができず、好適な強度、熱応答性、放熱性を得ることができない。   When impregnating molten silicon into a silicon carbide molded body, it is possible to selectively fill the cracks existing inside the granules constituting the molded body by capillary action, and the silicon phase cannot sufficiently bond the silicon carbide crystal particles. , Suitable strength, thermal responsiveness and heat dissipation cannot be obtained.

また、珪素−炭化珪素複合部材を構成する炭化珪素の結晶粒子の平均粒径を105〜350μmとすることが好適である。   Moreover, it is preferable that the average particle diameter of the silicon carbide crystal particles constituting the silicon-silicon carbide composite member is 105 to 350 μm.

炭化珪素の結晶粒子の平均粒径を105μm以上としたのは、105μm未満では、
小さな気孔が形成されたり、あるいは真空吸着に寄与しない閉気孔が形成されたりすることがあり、吸着部材として用いた場合にも、十分な吸着力が得られないことがあるからである。一方、上記平均粒径を350μm以下としたのは、350μmを超えると、極端に大きな気孔が形成されることがあり、強度低下のおそれがあるからである。炭化珪素の結晶粒子の平均粒径を105〜350μmとすることで、真空吸着に寄与しない閉気孔の形成を防止できるため、十分な吸着力が得られるとともに、極端に大きな気孔も形成されないため、強度低下することのない珪素−炭化珪素複合部材とすることができる。
The average particle size of the silicon carbide crystal particles is set to 105 μm or more.
This is because small pores may be formed or closed pores that do not contribute to vacuum adsorption may be formed, and even when used as an adsorption member, sufficient adsorption force may not be obtained. On the other hand, the reason why the average particle size is set to 350 μm or less is that when it exceeds 350 μm, extremely large pores may be formed, and the strength may be lowered. Since the formation of closed pores that do not contribute to vacuum adsorption can be prevented by setting the average particle size of the silicon carbide crystal particles to 105 to 350 μm, it is possible to obtain a sufficient adsorption force, and extremely large pores are not formed. It can be set as the silicon-silicon carbide composite member in which intensity | strength does not fall.

炭化珪素の結晶粒子の平均粒径は、例えば倍率20〜800倍の走査型電子顕微鏡(以下、走査型電子顕微鏡をSEMと称す。)写真を用いたインターセプト法により測定するか、あるいはSEMで得られた倍率20〜800倍の観察画像を数値解析することで求めることができる。インターセプト法を用いる場合、具体的には、サンプル数が10以上、好ましくは20以上となるように数枚のSEM写真より一定長さの直線上にある結晶粒界の個数から粒径を測定し、その平均を算出する。   The average particle diameter of the silicon carbide crystal particles is measured, for example, by an intercept method using a scanning electron microscope (hereinafter referred to as SEM) having a magnification of 20 to 800 times, or obtained by SEM. The obtained observation image with a magnification of 20 to 800 times can be obtained by numerical analysis. When using the intercept method, specifically, the grain size is measured from the number of crystal grain boundaries on a straight line of a certain length from several SEM photographs so that the number of samples is 10 or more, preferably 20 or more. The average is calculated.

さらに、珪素−炭化珪素複合部材の気孔率を30〜40%にすることが好適である。   Furthermore, it is preferable that the porosity of the silicon-silicon carbide composite member is 30 to 40%.

上記気孔率を30%以上としたのは、30%未満にすると、圧力損失の増大を引き起こすおそれがあるからである。一方、上記気孔率を40%以下としたのは、40%を超えると、熱伝導率や強度が低下するおそれがあるからである。   The reason why the porosity is set to 30% or more is that when the porosity is less than 30%, there is a possibility of increasing pressure loss. On the other hand, the reason why the porosity is set to 40% or less is that if it exceeds 40%, the thermal conductivity and the strength may be lowered.

気孔率を30〜40%にすることで圧力損失の増大を引き起こしたり、熱伝導率や強度が低下したりすることのない珪素−炭化珪素複合部材とすることができる。   By setting the porosity to 30 to 40%, a silicon-silicon carbide composite member that does not cause an increase in pressure loss or decrease in thermal conductivity or strength can be obtained.

上記珪素−炭化珪素複合部材の気孔率はアルキメデス法により求めることができる。   The porosity of the silicon-silicon carbide composite member can be determined by the Archimedes method.

また、気孔の平均径を40〜120μmにしても好適である。   It is also preferable that the average pore diameter is 40 to 120 μm.

気孔の平均径を40μm以上としたのは、40μm未満にすると、気孔率30%未満と同様、圧力損失を引き起こすおそれがあるからである。一方、120μm以下としたのは、120μmを超えると、気孔率が40%を超えた場合と同様、強度が低下するおそれがあるからである。また、半導体ウエハを固定する吸着部材に用いた場合、真空吸引中、吸着面が部分的に凹み、半導体ウエハはその凹みに倣って固定されるため、研磨後の半導体ウエハ表面の平坦性が悪く場合もある。気孔径を40〜120μmにすることで圧力損失を引き起こしたり、強度が低下したりすることのない珪素−炭化珪素複合部材とすることができる。また、気孔の平均径が40〜120μmの珪素−炭化珪素複合部材を吸着部材に用い、半導体ウエハを真空吸引により固定、研磨しても表面の平坦性が良好な半導体ウエハとすることができる。   The reason why the average diameter of the pores is set to 40 μm or more is that, when the pore diameter is less than 40 μm, there is a possibility of causing pressure loss as in the case of the porosity of less than 30%. On the other hand, the reason why the thickness is 120 μm or less is that when the thickness exceeds 120 μm, the strength may decrease as in the case where the porosity exceeds 40%. Also, when used as a suction member for fixing a semiconductor wafer, the suction surface is partially recessed during vacuum suction, and the semiconductor wafer is fixed following the recess, so that the flatness of the polished semiconductor wafer surface is poor. In some cases. By setting the pore diameter to 40 to 120 μm, it is possible to obtain a silicon-silicon carbide composite member that does not cause pressure loss or decrease in strength. In addition, a silicon-silicon carbide composite member having an average pore diameter of 40 to 120 μm is used as an adsorbing member, and a semiconductor wafer having excellent surface flatness can be obtained even if the semiconductor wafer is fixed and polished by vacuum suction.

上記珪素−炭化珪素複合部材の気孔の平均径はJIS R 1655−2003に準拠した水銀圧入法により求めることができる。   The average pore diameter of the silicon-silicon carbide composite member can be determined by a mercury intrusion method according to JIS R 1655-2003.

さらに、上記炭化珪素の結晶粒子が多面体であって、六面体以上の個数の比率を80%以上とすることで、炭化珪素の結晶粒子同士の接触も増えるので、熱応答性、放熱性のより良好な珪素−炭化珪素複合部材とすることができる。   Furthermore, since the silicon carbide crystal particles are polyhedron and the ratio of the number of hexahedrons or more is 80% or more, the contact between the silicon carbide crystal particles is increased, so that thermal response and heat dissipation are better. A silicon-silicon carbide composite member can be obtained.

80%未満では炭化珪素の結晶粒子同士の接触が不十分な場合もあり、局部的に熱応答性、放熱性が低下するおそれもある。   If it is less than 80%, the contact between crystal grains of silicon carbide may be insufficient, and there is a possibility that the thermal responsiveness and the heat dissipation property are locally lowered.

特に、六面体以上の個数の比率を90%以上とすることがより好適である。 In particular, the ratio of the number of hexahedrons or more is more preferably 90% or more.

またさらに、図3は本発明の珪素−炭化珪素複合部材の拡大図を示すが、この拡大図に示される炭化珪素の結晶粒子1と珪素相3との接合部の幅(w)を炭化珪素の結晶粒子1を形成する多面体の最小辺の長さ(L)の0.2倍以上にすれば、炭化珪素の結晶粒子1と珪素相との接合強度は増加するので、珪素−炭化珪素複合部材としての強度も向上する。また、珪素相3の面積(S)も増えるので、熱応答性、放熱性は良好となり、特に上記幅(w)は、長さ(L)の0.5倍以上であることが好適である。   Further, FIG. 3 shows an enlarged view of the silicon-silicon carbide composite member of the present invention. The width (w) of the joint portion between the silicon carbide crystal particles 1 and the silicon phase 3 shown in this enlarged view is changed to silicon carbide. If the length (L) of the minimum side of the polyhedron forming the crystal grains 1 is 0.2 times or more, the bonding strength between the silicon carbide crystal grains 1 and the silicon phase increases, so that the silicon-silicon carbide composite The strength as a member is also improved. In addition, since the area (S) of the silicon phase 3 is increased, the thermal response and heat dissipation are improved, and in particular, the width (w) is preferably 0.5 times or more of the length (L). .

0.2倍未満では炭化珪素の結晶粒子と珪素相との接合強度が不十分な場合もあり、局部的に接合強度が低下するおそれもある。   If it is less than 0.2 times, the bonding strength between the silicon carbide crystal particles and the silicon phase may be insufficient, and the bonding strength may be locally reduced.

さらにまた、珪素相を挟み、対向する炭化珪素粒子間の距離(d)が350μm以下とすることで珪素相より機械的強度の高い炭化珪素粒子の比率を高くすることができるので、珪素−炭化珪素複合部材としての強度も向上する。   Furthermore, the ratio of silicon carbide particles having higher mechanical strength than the silicon phase can be increased by sandwiching the silicon phase and setting the distance (d) between the opposed silicon carbide particles to 350 μm or less. The strength as a silicon composite member is also improved.

350μmより大きいと珪素相より融点の高い炭化珪素粒子の比率が低く、相対的に珪素相の比率が高くなるために、高温環境下では使用しにくいという不具合が発生する。   If it is larger than 350 μm, the ratio of silicon carbide particles having a melting point higher than that of the silicon phase is low, and the ratio of the silicon phase is relatively high, which causes a problem that it is difficult to use in a high temperature environment.

接合部の幅(w)、最小辺の長さ(L)及び炭化珪素粒子間の距離(d)は倍率20〜800倍のSEM写真から求めることができ、より正確な測定を要する場合には、ポリエステル系樹脂等冷間埋込樹脂で気孔を埋め、鏡面加工した面のSEM写真を用いればよい。   The width (w) of the joint, the length (L) of the minimum side, and the distance (d) between the silicon carbide particles can be obtained from an SEM photograph with a magnification of 20 to 800 times, and when more accurate measurement is required. An SEM photograph of a surface that has been subjected to mirror filling with pores filled with cold embedding resin such as polyester resin may be used.

また、上記珪素−炭化珪素複合部材の3点曲げ強度及びヤング率をそれぞれ30MPa以上、30GPa以上であることが好適である。   The three-point bending strength and Young's modulus of the silicon-silicon carbide composite member are preferably 30 MPa or more and 30 GPa or more, respectively.

3点曲げ強度が30MPa未満あるいはヤング率が30GPa未満では、珪素−炭化珪素複合部材を半導体ウエハを真空吸引により固定する吸着部材に用いた場合、到達真空度によっては、珪素−炭化珪素複合部材に発生する微小振動を抑えられないからであり、珪素−炭化珪素複合部材の3点曲げ強度及びヤング率をそれぞれ30MPa以上、30GPa以上とすることで、到達真空度の自由度を高められ、半導体ウエハを安定的に固定することができ、加工性能も向上する。   When the three-point bending strength is less than 30 MPa or the Young's modulus is less than 30 GPa, when the silicon-silicon carbide composite member is used as an adsorption member for fixing a semiconductor wafer by vacuum suction, depending on the ultimate vacuum, the silicon-silicon carbide composite member This is because the generated micro-vibration cannot be suppressed. By setting the three-point bending strength and Young's modulus of the silicon-silicon carbide composite member to 30 MPa or more and 30 GPa or more, respectively, the degree of freedom in ultimate vacuum can be increased, and the semiconductor wafer Can be stably fixed, and the processing performance is also improved.

3点曲げ強度については、JIS R 1601−1995に準拠して測定し、ヤング率についてはJIS R 1602−1995に規定された3点曲げ試験における荷重点の変位量または試験片中央部の変位量から算出すればよい。   The three-point bending strength is measured according to JIS R 1601-1995, and the Young's modulus is the amount of displacement at the load point or the center of the test piece in the three-point bending test specified in JIS R 1602-1995. Calculate from

さらに、炭化珪素の結晶粒子を珪素で被覆することが好適である。炭化珪素の結晶粒子を珪素で被覆することで、使用中、炭化珪素が脱粒するおそれが亡くなるからである。   Furthermore, it is preferable to coat silicon carbide crystal particles with silicon. This is because the silicon carbide crystal particles are covered with silicon, so that the risk of silicon carbide shed during use is lost.

次いで、本発明の珪素−炭化珪素複合部材の製造方法について説明する。
本発明の珪素−炭化珪素複合部材を得るには、先ず平均粒径105〜350μmのα型炭化珪素粉末100重量部に対して、平均粒径1〜90μmの珪素粉末15〜30重量部を調合し、成形助剤として後の脱脂処理後の残炭率が30%以上となるような熱硬化性樹脂、例えば、フェノール樹脂、エポキシ樹脂、フラン樹脂、フェノキシ樹脂、メラミン樹脂、尿素樹脂、アニリン樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、メタクリル樹脂の少なくともいずれか1種を添加し、ボールミル、振動ミル、コロイドミル、アトライター、高速ミキサー等で均一に混合する。特に、上記成形助剤として、熱硬化後の低収縮性の点からレゾール型またはノボラック型のフェノール樹脂が好適である。
Subsequently, the manufacturing method of the silicon-silicon carbide composite member of this invention is demonstrated.
In order to obtain the silicon-silicon carbide composite member of the present invention, first, 15 to 30 parts by weight of silicon powder having an average particle diameter of 1 to 90 μm is prepared with respect to 100 parts by weight of α-type silicon carbide powder having an average particle diameter of 105 to 350 μm. As a molding aid, a thermosetting resin such as a phenol resin, an epoxy resin, a furan resin, a phenoxy resin, a melamine resin, a urea resin, an aniline resin such that the residual carbon ratio after the subsequent degreasing treatment is 30% or more. Then, at least one of unsaturated polyester resin, urethane resin, and methacrylic resin is added and mixed uniformly with a ball mill, vibration mill, colloid mill, attritor, high-speed mixer, or the like. In particular, a resol-type or novolac-type phenol resin is suitable as the molding aid from the viewpoint of low shrinkage after thermosetting.

成形助剤の添加量は、成形体の生密度を左右するため、珪素−炭化珪素複合部材の気孔率にも強く影響する。珪素−炭化珪素複合部材の気孔率を30〜40%とするには、α型炭化珪素粉末100重量部に対し、成形助剤の添加量を1〜2重量部とすればよい。   Since the amount of the molding aid added affects the green density of the molded body, it also strongly affects the porosity of the silicon-silicon carbide composite member. In order to set the porosity of the silicon-silicon carbide composite member to 30 to 40%, the additive amount of the molding aid may be 1 to 2 parts by weight with respect to 100 parts by weight of the α-type silicon carbide powder.

ところで、炭化珪素にはα型とβ型が存在し、一般的にα型はβ型より耐酸化性が高く、粒子内部には残留炭素や残留珪素を殆ど含まない。このような理由から出発原料にはα型炭化珪素を用いる。また、このα型炭化珪素粉末の平均粒径を105〜350μmとすることが重要で、平均粒径が105μm以下では、径の小さな粉末が閉気孔を形成したり、気孔自体を小さくしたりすることで圧力損失が高くなり、一方、350μmを超えると、珪素−炭化珪素複合部材の密度が低下することで、強度が低下するからである。α型炭化珪素粉末の平均粒径を105〜350μmとすることで、圧力損失が低く、強度低下を招くことのない珪素−炭化珪素複合部材とすることができる。また、珪素粉末は、後の熱処理で珪素層となって、炭化珪素の結晶粒子を連結する。珪素粉末は、平均粒径1〜90μmの粉末を用い、α型炭化珪素粉末100重量部に対し、その比率を15〜30重量部とすることが重要である。珪素粉末の平均粒径が1μm未満では、珪素粉末の分散性が悪く、局部的にしか炭化珪素の結晶粒子を連結することができないからである。一方、90μmを超えると、後の熱処理で珪素粉末は溶融して炭化珪素粉末を被覆するように移動するので、珪素粉末が部分的に凝集して占有していた空間は大きな気孔として残り、強度低下を招くからである。   By the way, α type and β type exist in silicon carbide, and generally α type has higher oxidation resistance than β type, and hardly contains residual carbon and residual silicon inside the particle. For this reason, α-type silicon carbide is used as a starting material. In addition, it is important that the average particle diameter of the α-type silicon carbide powder is 105 to 350 μm. When the average particle diameter is 105 μm or less, the powder having a small diameter forms closed pores or the pores themselves are reduced. This is because the pressure loss is increased, and when it exceeds 350 μm, the density of the silicon-silicon carbide composite member is decreased, so that the strength is decreased. By setting the average particle size of the α-type silicon carbide powder to 105 to 350 μm, a silicon-silicon carbide composite member having low pressure loss and no strength reduction can be obtained. Further, the silicon powder becomes a silicon layer in a later heat treatment, and connects the silicon carbide crystal particles. As the silicon powder, it is important to use a powder having an average particle diameter of 1 to 90 μm and a ratio of 15 to 30 parts by weight with respect to 100 parts by weight of the α-type silicon carbide powder. This is because if the average particle size of the silicon powder is less than 1 μm, the dispersibility of the silicon powder is poor and the silicon carbide crystal particles can be connected only locally. On the other hand, if it exceeds 90 μm, the silicon powder will melt and move so as to cover the silicon carbide powder in the subsequent heat treatment, so that the space where the silicon powder is partially aggregated and occupied remains as large pores, This is because it causes a decrease.

また、α型炭化珪素粉末100重量部に対し、珪素粉末の比率を15〜30重量部としたのは、珪素粉末の比率が15重量部未満では、炭化珪素の結晶粒子に対する比率が低く、前記結晶粒子を十分連結させられないからである。一方、比率が30重量部を超えると、珪素が偏析しやすく、相対的に機械的特性の良好な炭化珪素の比率が下がり、十分な機械的特性を得られないからである。珪素粉末の比率を15〜30重量部とすることで、十分な機械的特性を備えた均質な組織を有する珪素−炭化珪素複合部材とすることができる。   Moreover, the ratio of silicon powder to 15 to 30 parts by weight with respect to 100 parts by weight of α-type silicon carbide powder is that when the ratio of silicon powder is less than 15 parts by weight, the ratio of silicon carbide to crystal particles is low, This is because crystal grains cannot be sufficiently connected. On the other hand, when the ratio exceeds 30 parts by weight, silicon is easily segregated, the ratio of silicon carbide having relatively good mechanical characteristics is lowered, and sufficient mechanical characteristics cannot be obtained. By setting the ratio of the silicon powder to 15 to 30 parts by weight, a silicon-silicon carbide composite member having a homogeneous structure with sufficient mechanical characteristics can be obtained.

上述の通り、炭化珪素の結晶粒子と珪素相との接合部の幅は、珪素粉末の比率によって左右され、炭化珪素の結晶粒子と珪素相との接合部の幅が、炭化珪素の結晶粒子を形成する多面体の最小辺の長さの0.2倍以上とするには、その比率を20〜30重量部とすればよい。   As described above, the width of the bonded portion between the silicon carbide crystal particles and the silicon phase depends on the ratio of the silicon powder, and the width of the bonded portion between the silicon carbide crystal particles and the silicon phase corresponds to the silicon carbide crystal particles. In order to make it 0.2 times or more the minimum side length of the polyhedron to be formed, the ratio may be 20 to 30 parts by weight.

なお、珪素粉末の純度は高いほうが望ましく、95%以上の純度のものが好適で、99%以上の高純度珪素の使用が特に好ましい。なお、使用する珪素粉末の形状は特に限定されず、球形又はそれに近い形状のみならず、不規則形状であっても好適に用いることができる。   Note that the purity of the silicon powder is desirably high, that having a purity of 95% or more is preferable, and the use of high-purity silicon having a purity of 99% or more is particularly preferable. In addition, the shape of the silicon powder to be used is not particularly limited, and not only a spherical shape or a shape close thereto, but also an irregular shape can be suitably used.

上記炭化珪素粉末、珪素粉末の各平均粒径は液相沈降法、光投下法、レーザー散乱回折法等により測定することができる。   Each average particle diameter of the silicon carbide powder and the silicon powder can be measured by a liquid phase precipitation method, a light dropping method, a laser scattering diffraction method, or the like.

次に、混合した原料を転動造粒機、スプレードライヤー、圧縮造粒機、押し出し造粒機等各種造粒機を用いて顆粒にする。特に、粒径の大きな顆粒、例えば粒径0.4〜1.6μmの顆粒を得るには、転動造粒機の使用が好適である。   Next, the mixed raw material is granulated using various granulators such as a rolling granulator, a spray dryer, a compression granulator, an extrusion granulator. In particular, in order to obtain granules having a large particle size, for example, granules having a particle size of 0.4 to 1.6 μm, it is preferable to use a rolling granulator.

珪素−炭化珪素複合部材を形成する炭化珪素の結晶粒子は、造粒時間によってその形状が支配され、造粒時間を長くすれば、楕円球体に近くなり、短くすれば、多面体となる。   The shape of the silicon carbide crystal particles forming the silicon-silicon carbide composite member is governed by the granulation time. If the granulation time is lengthened, the shape becomes closer to an elliptical sphere, and if the granulation time is shortened, it becomes a polyhedron.

炭化珪素の結晶粒子が多面体であって、六面体以上の個数の比率を80%以上とするには、造粒時間を40分以下にし、成形体の潰れ性を考慮すると30分以上にすることが好適である。   In order that the crystal grains of silicon carbide are polyhedral and the ratio of the number of hexahedrons or more is 80% or more, the granulation time should be 40 minutes or less, and 30 minutes or more in consideration of the crushability of the compact. Is preferred.

また、この造粒で得られる顆粒の粒径は、0.4〜1.6mmとすることが好適で、0.4mm未満あるいは1.6mmを超えても成形体の潰れ性が悪くなったり、ハンドリングが難しくなったりするが、顆粒の粒径を0.4〜1.6mmとすることで成形体の潰れ性もハンドリングも向上する。特に、上記顆粒の粒径は0.5〜1.5mmとすることが好適である。   In addition, the particle size of the granules obtained by this granulation is preferably 0.4 to 1.6 mm, and even if the particle size is less than 0.4 mm or exceeds 1.6 mm, the crushability of the molded product is deteriorated, Although handling becomes difficult, the collapsibility of a molded object and handling improve by making the particle size of a granule into 0.4-1.6 mm. In particular, the particle size of the granules is preferably 0.5 to 1.5 mm.

次に、顆粒を乾式加圧成形、冷間等方静水圧成形等の成形手段で所望の形状に成形して成形体とし、必要に応じて、アルゴン、ヘリウム、ネオン、窒素、真空等の非酸化雰囲気中、400〜600℃で脱脂処理を行った後、脱脂処理と同様、非酸化雰囲気中、1400〜1450℃で熱処理することで珪素−炭化珪素複合部材とすることができる。   Next, the granules are formed into a desired shape by a molding means such as dry pressure molding or cold isostatic pressing, and if necessary, non-condensed such as argon, helium, neon, nitrogen, vacuum, etc. After performing a degreasing treatment at 400 to 600 ° C. in an oxidizing atmosphere, a silicon-silicon carbide composite member can be obtained by heat treatment at 1400 to 1450 ° C. in a non-oxidizing atmosphere as in the degreasing treatment.

なお、熱処理の温度を下げるには、珪素の純度を99.5〜99.8質量%とすることが好適である。   In order to lower the temperature of the heat treatment, the purity of silicon is preferably 99.5 to 99.8% by mass.

珪素−炭化珪素複合部材を形成する炭化珪素の結晶粒子の平均粒径、気孔の平均径、珪素相を挟んで対向する炭化珪素粒子間の距離、3点曲げ強度及びヤング率は、成形圧によって左右される。成形圧を高くすれば、炭化珪素の結晶粒子、気孔の平均径及び炭化珪素粒子間の距離は短くなり、成形圧を低くすれば、長くなる。また、3点曲げ強度、ヤング率とも成形圧とは正の相関関係を有する。このような関係に基づき、炭化珪素の結晶粒子の平均粒径を105〜350μmにするには、160MPa以下にすればよい。また、気孔の平均径を40〜120μmとするには、成形圧を80〜140MPaにすればよく、炭化珪素粒子間の距離を350μm以下にするには、成形圧を100MPa以上にすればよい。さらに、3点曲げ強度を30MPa以上、ヤング率を30GPa以上にするには、ともに成形圧を120MPa以上にすればよい。   The average particle diameter of silicon carbide crystal particles forming the silicon-silicon carbide composite member, the average diameter of the pores, the distance between the silicon carbide particles facing each other across the silicon phase, the three-point bending strength, and the Young's modulus depend on the molding pressure. It depends. If the molding pressure is increased, the silicon carbide crystal particles, the average diameter of the pores, and the distance between the silicon carbide particles are shortened, and if the molding pressure is lowered, the distance is increased. Further, the three-point bending strength and Young's modulus have a positive correlation with the molding pressure. Based on such a relationship, in order to make the average particle diameter of the silicon carbide crystal particles 105 to 350 μm, it may be 160 MPa or less. Further, in order to set the average pore diameter to 40 to 120 μm, the molding pressure may be set to 80 to 140 MPa, and in order to reduce the distance between the silicon carbide particles to 350 μm or less, the molding pressure may be set to 100 MPa or more. Further, in order to make the three-point bending strength 30 MPa or more and the Young's modulus 30 GPa or more, the molding pressure may be 120 MPa or more.

熱処理では、その温度を1400〜1450℃とすることが重要で、1400℃未満では、珪素粉末が十分溶融しないため、炭化珪素の結晶粒子を珪素相として連結することができないからであり、1450℃を超えると、珪素が蒸発することで強度低下を招きやすいとともに、製造コストが高くなるからである。熱処理温度を1400〜1450℃とすることで、珪素粉末は蒸発することなく適度に溶融するため、隣り合う炭化珪素の結晶粒子間に空洞部が介在して2箇所以上の接合部を発生することなく、炭化珪素の結晶粒子を珪素相として連結することができ、適切な強度及び熱伝導率が得られ、製造コストも削減することができる。特に、熱処理温度を1420〜1450℃にすることが好適で、この温度範囲で熱処理することで3点曲げ強度が30MPa以上、ヤング率が30GPa以上の珪素−炭化珪素複合部材を得ることができる。また炭化珪素の結晶粒子を珪素で被覆するには、珪素粉末を十分溶融させた上で、珪素が蒸発したり、雰囲気内で浮遊する炭素と一部反応して炭化珪素に変化したりすることのないようにしなければならない。このような観点から炭化珪素の結晶粒子を珪素で被覆するには、1420〜1440℃にすればよい。   In the heat treatment, it is important to set the temperature to 1400 to 1450 ° C. If the temperature is lower than 1400 ° C, the silicon powder is not sufficiently melted, so that silicon carbide crystal particles cannot be connected as a silicon phase. This is because the silicon tends to cause a decrease in strength due to the evaporation of silicon, and the manufacturing cost increases. By setting the heat treatment temperature to 1400 to 1450 ° C., the silicon powder is appropriately melted without evaporating, so that a cavity is interposed between adjacent silicon carbide crystal particles, and two or more joints are generated. In addition, the silicon carbide crystal particles can be connected as a silicon phase, appropriate strength and thermal conductivity can be obtained, and the manufacturing cost can be reduced. In particular, the heat treatment temperature is preferably 1420 to 1450 ° C. By performing heat treatment in this temperature range, a silicon-silicon carbide composite member having a three-point bending strength of 30 MPa or more and a Young's modulus of 30 GPa or more can be obtained. Also, in order to coat silicon carbide crystal particles with silicon, the silicon powder must be sufficiently melted, and then the silicon will evaporate or react with the carbon floating in the atmosphere and change to silicon carbide. There must be no. In order to coat silicon carbide crystal particles with silicon from such a viewpoint, the temperature may be set to 1420 to 1440 ° C.

このような製造方法で得られた珪素−炭化珪素複合部材は、必要に応じて研削、研磨等の機械加工を施し、所望の製品にすることができる。   The silicon-silicon carbide composite member obtained by such a manufacturing method can be machined, such as grinding and polishing, as required, to obtain a desired product.

特に上記珪素−炭化珪素複合部材は、研削、研磨によって吸着面を作製し、この吸着面上に真空吸引することで半導体ウエハを固定する吸着部材として利用することが好適である。   In particular, the silicon-silicon carbide composite member is preferably used as an adsorbing member for fixing a semiconductor wafer by producing an adsorbing surface by grinding and polishing and vacuum-suctioning the adsorbing surface.

なお、吸着面はその面状態が加工後の半導体ウエハの精度に影響を与えることから極力平坦化する必要があり、少なくとも平坦度1μm以下、好ましくは平坦度0.3μm以下とすることが望まれる。   The suction surface needs to be flattened as much as possible because the surface state affects the accuracy of the processed semiconductor wafer, and it is desired that the flatness be at least 1 μm or less, preferably 0.3 μm or less. .

また、上記吸着部材を接合層を介して支持部材に固定されてなる真空吸着装置において、接合層がガラスまたは珪素を主成分とするとともに、支持部材を炭化珪素を主成分とする焼結体とすることが好適である。   Further, in the vacuum suction device in which the adsorption member is fixed to the support member via the bonding layer, the bonding layer is mainly composed of glass or silicon, and the support member is a sintered body mainly composed of silicon carbide. It is preferable to do.

接合層がガラスを主成分とする場合、熱膨張係数が比較的炭化珪素や珪素の熱膨張係数に近似していることが好ましく、例えば熱膨張係数が3.0〜5.5×10−6/℃であることが好適である。 When the bonding layer is mainly composed of glass, the thermal expansion coefficient is preferably relatively close to that of silicon carbide or silicon. For example, the thermal expansion coefficient is 3.0 to 5.5 × 10 −6. / ° C is preferred.

また、上記ガラスの軟化点は、炭化珪素や珪素の融点より低ければよく、軟化点が例えば900〜920℃のものを用いればよく、具体的にはホウケイ酸ガラス、ケイ酸系ガラスが好適である。   Moreover, the softening point of the said glass should just be lower than melting | fusing point of silicon carbide or silicon, what is necessary is just to use a softening point of 900-920 degreeC, for example, specifically, borosilicate glass and silicate glass are suitable. is there.

本発明の珪素−炭化珪素複合部材を用いた吸着部材と、炭化珪素を主成分とする焼結体よりなる支持部材とを、ガラスまたは珪素を主成分とする接合層を介して固定することで、接合界面におけるクラックや剥がれの発生を防止することができる。従って、ヒートサイクルを受けても破壊しにくく、長期信頼性に優れた真空吸着装置とすることができる。特に、接合層が珪素を主成分とする場合、一般的な樹脂系の接着剤で接合層を形成した場合に比べ、熱伝導率が高く、良好である。   By fixing the adsorbing member using the silicon-silicon carbide composite member of the present invention and the supporting member made of a sintered body containing silicon carbide as a main component through a bonding layer containing glass or silicon as a main component. The occurrence of cracks and peeling at the joint interface can be prevented. Therefore, even if it receives a heat cycle, it cannot be destroyed easily and it can be set as the vacuum suction apparatus excellent in long-term reliability. In particular, when the bonding layer contains silicon as a main component, the thermal conductivity is high and good as compared with the case where the bonding layer is formed with a general resin adhesive.

以下本発明の実施例を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.

(実施例1)
先ず、α型炭化珪素粉末、珪素粉末及び成形助剤となるフェノール樹脂を均一に混合し、調合原料を作製した。この調合原料を転動造粒機に投入し、顆粒とした後、乾式加圧成形にて成形体を得た。次にこの成形体を窒素雰囲気中、500℃で脱脂処理した後、温度を上げ同じく窒素雰囲気中で熱処理した。
Example 1
First, α-type silicon carbide powder, silicon powder, and a phenol resin as a molding aid were uniformly mixed to prepare a blended raw material. This blended raw material was put into a tumbling granulator to form granules, and a molded body was obtained by dry pressure molding. Next, this molded body was degreased at 500 ° C. in a nitrogen atmosphere, and then the temperature was raised and heat treatment was performed in the same nitrogen atmosphere.

なお、上述の方法で用いたα型炭化珪素粉末、珪素粉末の各平均粒径、α型炭化珪素粉末に対する珪素粉末及びフェノール樹脂の比率、造粒時間、乾式加圧成形における成形圧及び熱処理の温度は、表1に示す通りである。   The α-type silicon carbide powder used in the above method, the average particle diameter of the silicon powder, the ratio of the silicon powder and the phenol resin to the α-type silicon carbide powder, the granulation time, the molding pressure and heat treatment in dry press molding The temperature is as shown in Table 1.

得られた試料については、走査型電子顕微鏡を用い、試料の各評価項目に応じて、倍率20〜800倍あるいは300〜5000倍の中から最適な倍率を選択して、気孔間を連通する珪素相の有無、非連結部の有無、炭化珪素の結晶粒子の六面体以上の個数の比率、炭化珪素の結晶粒子と珪素相との接合部の幅、珪素相を挟み、対向する炭化珪素粒子間の距離及び珪素による炭化珪素結晶粒子の被覆状態を評価した。表1では、気孔間を連通する珪素相が観察されたものを○、観察されなかったものを×とした。また、非連結部の面積比率については、以下の方法、数式で算出し、その値を表1に示した。   About the obtained sample, silicon | silicone which connects between pores by selecting an optimal magnification from 20-800 times or 300-5000 times according to each evaluation item of a sample using a scanning electron microscope. Presence / absence of phase, presence / absence of unconnected portion, ratio of number of hexahedral or more silicon carbide crystal particles, width of silicon carbide crystal particle / silicon phase junction, sandwiching silicon phase, and facing silicon carbide particles The distance and the coating state of silicon carbide crystal particles with silicon were evaluated. In Table 1, the case where the silicon phase communicating between the pores was observed was indicated as ◯, and the case where the silicon phase was not observed was indicated as ×. Further, the area ratio of the unconnected portion was calculated by the following method and mathematical formula, and the values are shown in Table 1.

非連結部の面積比率=(非連結部の面積)/(珪素相の面積+非連結部の面積)
×100(%)・・・(1)
即ち、珪素−炭化珪素複合部材の一部を真空中で樹脂に埋め込んで円柱状の試料とし、
この試料の平面をダイヤモンド砥粒を用いて研磨して鏡面とした後、工業用顕微鏡(Nikon ECLIPSE LV150)を用いて、この鏡面を5倍にて撮影した画像をJPEG形式にて保存した。次に、PEG形式で保存した画像ファイルをAdobe Photoshop Elements(登録商標)というソフトを用いて画像処理を施し、BMP形式にて保存した。具体的には画像上の有彩色を削除し、白黒の二階調化(白黒化)を行った。この二階調化では、工業用顕微鏡(Nikon ECLIPSE LV150)で撮影した画像と比べながら、炭化珪素の結晶粒子1と珪素相3が識別できる閾値を設定した。閾値を設定した後、この二階調化された画像を「画像から面積」というフリーソフトを用いて、珪素相3の面積をピクセル単位で読みとった。
Area ratio of unconnected portion = (area of unconnected portion) / (area of silicon phase + area of unconnected portion)
× 100 (%) (1)
That is, a part of the silicon-silicon carbide composite member is embedded in a resin in a vacuum to obtain a cylindrical sample,
After polishing the flat surface of the sample with diamond abrasive grains to obtain a mirror surface, an image obtained by photographing the mirror surface at a magnification of 5 using an industrial microscope (Nikon ECLIPSE LV150) was stored in JPEG format. Next, the image file saved in the PEG format was subjected to image processing using software called Adobe Photoshop Elements (registered trademark) and saved in the BMP format. Specifically, the chromatic color on the image was deleted, and black and white gradation (black and white) was performed. In this two-gradation, a threshold value for distinguishing the silicon carbide crystal particles 1 and the silicon phase 3 was set while comparing with an image taken with an industrial microscope (Nikon ECLIPSE LV150). After setting the threshold value, the area of the silicon phase 3 was read in pixel units from the two-graded image using free software “area from image”.

非連結部4についても上述と同様の方法で読みとり、式(1)で算出した。   The unconnected portion 4 was also read in the same manner as described above and calculated by the equation (1).

また、珪素が炭化珪素結晶粒子を完全に被覆しているものを○、一部被覆されていないものを△で示した。 The case where silicon completely covered silicon carbide crystal particles was indicated by ◯, and the case where silicon was not partially covered was indicated by Δ.

上記試料の気孔率、気孔の平均径、3点曲げ強度、ヤング率、熱伝導率についてはそれぞれアルキメデス法、JIS R 1655−2003、JIS R 1601−1995、JIS R 1602−1995に規定されたレーザーフラッシュ法に準拠して測定した。   Lasers defined in Archimedes method, JIS R 1655-2003, JIS R 1601-1995, and JIS R 1602-1995 for the porosity, average pore diameter, three-point bending strength, Young's modulus, and thermal conductivity of the above samples. Measured according to the flash method.

また、圧力損失については、直径60mm、高さ10mmの円柱体に形成され、この円柱体の一方の端面より空気を導入し、予め反対側の端面のみから空気が排出されるように側面を覆った試料を準備し、流量9L/分の空気導入前後に発生する圧力差を圧力ゲージにより圧力損失として検出した。

Figure 0004868885
In addition, the pressure loss is formed in a cylindrical body having a diameter of 60 mm and a height of 10 mm. Air is introduced from one end face of this cylindrical body, and the side surface is covered in advance so that air is discharged only from the opposite end face. The pressure difference generated before and after the introduction of air at a flow rate of 9 L / min was detected as a pressure loss by a pressure gauge.
Figure 0004868885

表1に示す通り、試料No.1は、α型炭化珪素粉末の平均粒径が105μm未満であるため、気孔の平均径が48μmと小さく、その結果、圧力損失も1.05kPaと高かった。また、試料No.32は、α型炭化珪素粉末の平均粒径が350μmより大きいため、3点曲げ強度が12MPaと低かった。   As shown in Table 1, Sample No. No. 1 has an average particle diameter of α-type silicon carbide powder of less than 105 μm, so the average diameter of the pores was as small as 48 μm, and as a result, the pressure loss was as high as 1.05 kPa. Sample No. No. 32 had a three-point bending strength as low as 12 MPa because the average particle size of the α-type silicon carbide powder was larger than 350 μm.

試料No.3は、珪素粉末の平均粒径が1μm未満であるため、非連結部の面積比率が3.7%と大きく、3点曲げ強度、熱伝導率ともそれぞれ13MPa、58W/(m・k)と低かった。また、試料No.30は、珪素粉末の平均粒径が90μmより大きいため、気孔の平均径が140μmと大きく、3点曲げ強度が13MPaと低かった。   Sample No. No. 3 has an average particle size of silicon powder of less than 1 μm, so the area ratio of the unconnected portion is as large as 3.7%, and the three-point bending strength and thermal conductivity are 13 MPa and 58 W / (m · k), respectively. It was low. Sample No. In No. 30, since the average particle size of the silicon powder was larger than 90 μm, the average diameter of the pores was as large as 140 μm and the three-point bending strength was as low as 13 MPa.

試料No.5は、α型炭化珪素粉末100重量部に対し、珪素粉末の比率が15重量部未満であるため、非連結部の面積比率が3.7%と大きく、3点曲げ強度、熱伝導率ともそれぞれ13MPa、60W/(m・k)と低かった。また、試料No.28は、α型炭化珪素粉末100重量部に対し、珪素粉末の比率が30重量部を超えているため、珪素の偏析が観察され、3点曲げ強度も14MPaと低かった。
Sample No. No. 5 has a silicon powder ratio of less than 15 parts by weight with respect to 100 parts by weight of α-type silicon carbide powder, so the area ratio of the unconnected part is as large as 3.7%, and the three-point bending strength and thermal conductivity are both high. They were as low as 13 MPa and 60 W / (m · k), respectively. Sample No. 28, with respect to α-type silicon carbide powder 100 parts by weight, since the ratio of the silicon powder is greater than 3 0 parts by weight, the segregation of silicon was observed, three-point bending strength was as low as 14 MPa.

試料No.7は、熱処理温度が1400℃未満であるため、珪素粉末を十分溶融させることができなかったため、珪素−炭化珪素複合部材を形成することができなかった。また、試料No.26は、熱処理温度が1450℃を超えているため、珪素が蒸発し、強度低下を招き、3点曲げ強度は10MPaと低かった。   Sample No. In No. 7, since the heat treatment temperature was less than 1400 ° C., the silicon powder could not be sufficiently melted, so that a silicon-silicon carbide composite member could not be formed. Sample No. In No. 26, since the heat treatment temperature exceeded 1450 ° C., silicon evaporated and the strength was lowered, and the three-point bending strength was as low as 10 MPa.

一方、本発明の範囲内の試料No.2,4,6,8〜25,27,29,31,33は、3点曲げ強度22MPa以上、ヤング率22GPa以上、熱伝導率70W/(m・k)以上といずれも高い上、圧力損失は0.85kPa以下と低く、良好であることがわかる。   On the other hand, sample no. 2,4,6,8-25,27,29,31,33 are high in three-point bending strength of 22 MPa or more, Young's modulus of 22 GPa or more, thermal conductivity of 70 W / (m · k) or more, and pressure loss. Is as low as 0.85 kPa or less, and is found to be favorable.

特に、気孔率が30〜40%である試料No.2,4,6,8〜12,14〜20,22〜25,27,29,31,33は3点曲げ強度23MPa以上、ヤング率24GPa以上、熱伝導率70W/(m・k)以上といずれも高い上、圧力損失は0.85kPa以下と低く好適であることがわかる。   In particular, sample Nos. 2, 4, 6, 8-12, 14-20, 22-25, 27, 29, 31, 33 with a porosity of 30-40% have a three-point bending strength of 23 MPa or more and a Young's modulus of 24 GPa. As described above, it can be seen that both the thermal conductivity is 70 W / (m · k) or higher and the pressure loss is 0.85 kPa or less, which is preferable.

さらに、気孔率が30〜40%であって、気孔の平均径が40〜120μmである試料No.2,4,6,8,9,12,14〜19,22〜25,27,29,33は3点曲げ強度25MPa以上、ヤング率26GPa以上、熱伝導率71W/(m・k)以上といずれも高い上、圧力損失は0.43kPa以下と低く、さらに好適であることがわかる。   Furthermore, the sample No. having a porosity of 30 to 40% and an average pore diameter of 40 to 120 μm. 2, 4, 6, 8, 9, 12, 14-19, 22-25, 27, 29, 33 have a three-point bending strength of 25 MPa or more, Young's modulus of 26 GPa or more, and thermal conductivity of 71 W / (m · k) or more. Both are high and the pressure loss is as low as 0.43 kPa or less.

ところで、試料No.9,22,23は造粒時間のみを変更することにより、多面体を形成する炭化珪素結晶粒子のうち、六面体以上の結晶粒子の個数の比率変化を調べた試料であり、造粒時間が長くなれば、その比率が減少し、炭化珪素の結晶粒子同士の接触も減り、熱伝導率も減少することがわかる。   By the way, sample no. Nos. 9, 22 and 23 are samples in which the change in the ratio of the number of crystal grains of hexahedrons among the silicon carbide crystal grains forming the polyhedron is examined by changing only the granulation time, and the granulation time can be increased. For example, the ratio decreases, the contact between the silicon carbide crystal particles decreases, and the thermal conductivity also decreases.

また、気孔率が30〜40%、気孔の平均径が40〜120μmであって、炭化珪素の結晶粒子と珪素相との接合部の幅が、炭化珪素の結晶粒子を形成する多面体の最小辺の長さの0.2倍以上の試料No.2,4,8,9,12,14〜19,22〜25,27,29,33は、3点曲げ強度25MPa以上、ヤング率26GPa以上、熱伝導率73W/(m・k)以上といずれも高い上、圧力損失は0.85kPa以下と低く良好である。   The porosity is 30 to 40%, the average pore diameter is 40 to 120 μm, and the width of the junction between the silicon carbide crystal particles and the silicon phase is the minimum side of the polyhedron forming the silicon carbide crystal particles Sample no. 2, 4, 8, 9, 12, 14-19, 22-25, 27, 29, 33 are three-point bending strength of 25 MPa or more, Young's modulus of 26 GPa or more, thermal conductivity of 73 W / (m · k) or more. In addition, the pressure loss is low and good at 0.85 kPa or less.

なお、今回の実施例では、珪素相を挟み、対向する炭化珪素粒子間の距離が350μm以下の試料は、炭化珪素の結晶粒子と珪素相との接合部の幅が、炭化珪素の結晶粒子を形成する多面体の最小辺の長さの0.2倍以上の試料No.2,4,8,9,12,14〜19,22〜25,27,29,33と一致した。   In this example, a sample having a silicon phase sandwiched between the silicon carbide particles facing each other and having a distance of 350 μm or less has a width of the junction between the silicon carbide crystal particles and the silicon phase. Sample No. 0.2 or more times the minimum side length of the polyhedron to be formed. 2, 4, 8, 9, 12, 14-19, 22-25, 27, 29, 33.

本発明の珪素−炭化珪素複合部材内部を示す模式図である。It is a schematic diagram which shows the silicon-silicon carbide composite member inside of this invention. 非連結部を示す模式図である。It is a schematic diagram which shows a non-connecting part. 本発明の珪素−炭化珪素複合部材内部の拡大図であり、炭化珪素の結晶粒子と珪素相との接合部の幅(w)、炭化珪素粒子間の距離(d)を示す模式図である。It is an enlarged view inside the silicon-silicon carbide composite member of this invention, and is a schematic diagram which shows the distance (d) between the width | variety (w) of a junction part of the crystal grain of a silicon carbide and a silicon phase, and a silicon carbide particle.

符号の説明Explanation of symbols

1:炭化珪素結晶粒子
2:気孔
3:珪素相
4:非連結部
1: Silicon carbide crystal particles 2: Pore 3: Silicon phase 4: Unconnected portion

Claims (1)

平均粒径105〜350μmのα型炭化珪素粉末100重量部に対して、平均粒径1〜90μmの珪素粉末15〜30重量部を調合し、混合、造粒して顆粒を得る工程と、
前記顆粒を所定形状に成形して成形体を得る工程と、
前記成形体を非酸化雰囲気中1400〜1450℃で熱処理する工程と、
を含むことを特徴とする珪素−炭化珪素複合部材の製造方法。
A step of preparing 15 to 30 parts by weight of silicon powder having an average particle size of 1 to 90 μm, mixing and granulating to 100 parts by weight of α-type silicon carbide powder having an average particle size of 105 to 350 μm,
Forming the granules into a predetermined shape to obtain a molded body;
Heat treating the molded body at 1400 to 1450 ° C. in a non-oxidizing atmosphere;
A method for producing a silicon-silicon carbide composite member, comprising:
JP2006050984A 2005-05-24 2006-02-27 Method for producing silicon-silicon carbide composite member Active JP4868885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006050984A JP4868885B2 (en) 2005-05-24 2006-02-27 Method for producing silicon-silicon carbide composite member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005150675 2005-05-24
JP2005150675 2005-05-24
JP2006050984A JP4868885B2 (en) 2005-05-24 2006-02-27 Method for producing silicon-silicon carbide composite member

Publications (2)

Publication Number Publication Date
JP2007005762A JP2007005762A (en) 2007-01-11
JP4868885B2 true JP4868885B2 (en) 2012-02-01

Family

ID=37691024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006050984A Active JP4868885B2 (en) 2005-05-24 2006-02-27 Method for producing silicon-silicon carbide composite member

Country Status (1)

Country Link
JP (1) JP4868885B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107427753A (en) * 2015-03-16 2017-12-01 三井金属矿业株式会社 Porous plastid, Porous conjugant, molten metal filter, burn till manufacture method with assembly fixture and porous plastid

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678458B2 (en) * 2007-01-24 2010-03-16 Asml Holding N.V. Bonding silicon silicon carbide to glass ceramics
JP5046859B2 (en) * 2007-10-30 2012-10-10 京セラ株式会社 Bonded body, adsorbing member, adsorbing apparatus and processing apparatus
JP5231064B2 (en) * 2008-03-28 2013-07-10 太平洋セメント株式会社 Vacuum adsorption apparatus and method for manufacturing the same
JP5143607B2 (en) * 2008-03-28 2013-02-13 太平洋セメント株式会社 Vacuum adsorption device
JP5349910B2 (en) * 2008-11-05 2013-11-20 株式会社ディスコ Adsorption plate and production method of adsorption plate
JP5568792B2 (en) * 2012-03-26 2014-08-13 日本ファインセラミックス株式会社 Method for producing porous body
WO2020203680A1 (en) * 2019-03-29 2020-10-08 京セラ株式会社 Gas plug, member for electrostatic suction and plasma processing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325441B2 (en) * 1995-11-30 2002-09-17 京セラ株式会社 Vacuum suction device
JP2001158674A (en) * 1999-11-30 2001-06-12 Ibiden Co Ltd Sintered compact of porous silicon carbide, method for producing the same, member for wafer-polishing device and table for wafer-polishing device
JP2001278675A (en) * 2000-03-31 2001-10-10 Toshiba Ceramics Co Ltd SINTERED SiC CONJUGATE AND METHOD FOR MANUFACTURING PARTS FOR SEMICONDUCTOR USING IT

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107427753A (en) * 2015-03-16 2017-12-01 三井金属矿业株式会社 Porous plastid, Porous conjugant, molten metal filter, burn till manufacture method with assembly fixture and porous plastid

Also Published As

Publication number Publication date
JP2007005762A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP4868885B2 (en) Method for producing silicon-silicon carbide composite member
JP4441768B2 (en) Metal-graphite composite material having high thermal conductivity and method for producing the same
Johnson et al. Effect of liquid content on distortion and rearrangement densification of liquid-phase-sintered W-Cu
JP6945483B2 (en) Rare Earth Metal Doped Quartz Glass Components Manufacturing Method
KR20080048947A (en) Cmp conditioner
CN107270755A (en) Thermal storage member
JP2002012470A (en) High purity alumina sintered body, high purity alumina ball, jig for semiconductor, insulator, ball bearing, check valve and method of manufacturing high purity alumina sintered compact
Gregorová et al. Starch as a pore‐forming and body‐forming agent in ceramic technology
JP6512401B2 (en) Reaction sintered silicon carbide member
JPWO2003033434A1 (en) Method for producing silicon carbide sintered body and silicon carbide sintered body obtained by the method
JP4948920B2 (en) Vacuum chuck and vacuum suction device using the same
JP5046859B2 (en) Bonded body, adsorbing member, adsorbing apparatus and processing apparatus
JP3588320B2 (en) Method for producing high volume fraction SiC preform
JP3818102B2 (en) Heat dissipation substrate, method for manufacturing the same, and semiconductor device
JPH101376A (en) Silica formed body and its production
JP2001146479A (en) Silicon nitride ceramic ball and ceramic ball bearing using the same
JP7022817B2 (en) Ceramic structure
JP4913468B2 (en) Silicon carbide polishing plate and method for polishing semiconductor wafer
US5637123A (en) Porous metal bond grinder and method of manufacturing the same
WO2019194137A1 (en) SiC-Si COMPOSITE MEMBER PRODUCTION METHOD AND SiC-Si COMPOSITE MEMBER
JP3655207B2 (en) Heat dissipation member for electronic device and method for manufacturing the same
KR20120123991A (en) The High permeability Porous ceramics for vacuum chuck and method for manufacturing the same
WO2020203680A1 (en) Gas plug, member for electrostatic suction and plasma processing apparatus
JPS5895648A (en) Manufacture of one-direction reinforced silicon carbide ceramic body
JP4731368B2 (en) Vacuum chuck and vacuum suction device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

R150 Certificate of patent or registration of utility model

Ref document number: 4868885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3