JP4868512B2 - Airborne particulate collection device - Google Patents

Airborne particulate collection device Download PDF

Info

Publication number
JP4868512B2
JP4868512B2 JP2006200068A JP2006200068A JP4868512B2 JP 4868512 B2 JP4868512 B2 JP 4868512B2 JP 2006200068 A JP2006200068 A JP 2006200068A JP 2006200068 A JP2006200068 A JP 2006200068A JP 4868512 B2 JP4868512 B2 JP 4868512B2
Authority
JP
Japan
Prior art keywords
filter
air passage
hole
suspended
porous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006200068A
Other languages
Japanese (ja)
Other versions
JP2008023469A (en
Inventor
敦嗣 野上
泰久 澤
義高 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2006200068A priority Critical patent/JP4868512B2/en
Publication of JP2008023469A publication Critical patent/JP2008023469A/en
Application granted granted Critical
Publication of JP4868512B2 publication Critical patent/JP4868512B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、大気中等に浮遊する花粉、黄砂、アスベスト等の浮遊微粒子を捕集する浮遊微粒子捕集装置に関するものである。   The present invention relates to a suspended particulate collection device that captures suspended particulates such as pollen, yellow sand, and asbestos floating in the atmosphere.

近年、炭酸ガスやNOx,SOx等の大気汚染の原因となるガス状化学物質,シックハウス症候群の原因となるホルムアルデヒド等の揮発性化学物質等を含む微量な液体の浮遊微粒子、海塩粒子,黄砂,金属系酸化物,花粉,煤塵,ディーゼル排気微粒子,アスベスト等の固体や繊維状の浮遊微粒子が、人体へ健康被害を及ぼし生態に影響を与える物質として重要視されており、大気中を浮遊する浮遊微粒子の大きさや形状、或いは含まれる化学物質を分析する技術の開発が進められている。
浮遊微粒子を対象とする分析方法として、大気等の雰囲気中の浮遊微粒子を一旦フィルタ等に捕集し、捕集された個々の微粒子を分析する方法が開発されている。
このような技術としては、例えば、本発明者らが開発した(特許文献1)に記載の技術がある。(特許文献1)には、「開口部を有する筐体内に配設された帯状の微粒子捕集体の所定領域を、浮遊微粒子を含む気体内に所定時間暴露させて浮遊微粒子を捕集し、その所定領域を撮像し、撮像画像を画像処理して浮遊微粒子の形状、大きさ、性質、又は浮遊微粒子間の相対的な位置又は距離を測定する浮遊微粒子分析方法及びそれに用いる微粒子捕集装置」が開示されている。なお、(特許文献1)には、微粒子を捕集する微粒子捕集体としては、ポリスチレン、ポリブタジエン、ポリエチレン等の合成樹脂製のフィルムや、ガラス繊維フィルタや石英繊維フィルタ、フッ素樹脂フィルタ等の繊維状フィルタを用いることが記載されている。
In recent years, trace amounts of suspended particulates, sea salt particles, yellow sand, gaseous chemicals that cause air pollution such as carbon dioxide, NOx, SOx, volatile chemicals such as formaldehyde that cause sick house syndrome, Solid or fibrous suspended particulates such as metal oxides, pollen, dust, diesel exhaust particulates, asbestos, etc. are regarded as important substances affecting human health and affecting the environment, and are suspended in the atmosphere. Development of technology for analyzing the size and shape of fine particles or chemical substances contained in the particles is underway.
As an analysis method for suspended particulates, a method has been developed in which suspended particulates in an atmosphere such as the air are once collected on a filter or the like and each collected particulate is analyzed.
As such a technique, for example, there is a technique described in Patent Document 1 developed by the present inventors. (Patent Document 1) states that “a predetermined region of a band-shaped fine particle collector disposed in a housing having an opening is exposed to a gas containing floating fine particles for a predetermined time to collect floating fine particles, There is a suspended particle analysis method for capturing a predetermined area and processing the captured image to measure the shape, size, property, or relative position or distance between the suspended particles, and a particle collecting apparatus used therefor ” It is disclosed. In (Patent Document 1), as a fine particle collector for collecting fine particles, a film made of synthetic resin such as polystyrene, polybutadiene, polyethylene or the like, or a fiber shape such as a glass fiber filter, a quartz fiber filter, or a fluororesin filter is used. The use of filters is described.

しかしながら、(特許文献1)に開示された技術では、以下のような問題があった。
(1)微粒子を捕集した際に、捕集された浮遊微粒子の種類によっては微粒子同士が反応してしまい大気中での浮遊状態とは異なる化合物になる可能性があり、正確な分析を行うことができないという問題があった。
(2)大型で高価な分析装置を用いる必要があり、このため浮遊微粒子を捕集する現場において、簡便かつ迅速に大気中の浮遊微粒子の分析を行うことが困難であり、局所的な大気中での浮遊微粒子に関わる環境データを得ることが困難であるという問題があった。
(3)ガラス繊維フィルタや石英繊維フィルタ、フッ素樹脂フィルタ等の繊維状フィルタで微粒子を捕集した場合、フィルタ繊維の隙間に微粒子が入り込むため、微粒子を捕集したままの状態で撮像して画像解析する際にフィルタ繊維と微粒子を分離して解析することが困難であり、またフィルタ繊維の狭い隙間で微粒子の凝集が促進されるため、解析時に微粒子同士の分離解析が困難になるという問題があった。
However, the technique disclosed in (Patent Document 1) has the following problems.
(1) When fine particles are collected, depending on the type of the collected floating fine particles, the fine particles may react with each other, resulting in a compound that is different from the floating state in the atmosphere. There was a problem that I could not.
(2) It is necessary to use a large and expensive analyzer. Therefore, it is difficult to analyze airborne particles in the atmosphere easily and quickly at the site where airborne particles are collected. There was a problem that it was difficult to obtain environmental data related to suspended particulates.
(3) When fine particles are collected by a fiber filter such as a glass fiber filter, a quartz fiber filter, or a fluororesin filter, the fine particles enter the gaps between the filter fibers. When analyzing, it is difficult to separate and analyze the filter fibers and fine particles, and the aggregation of the fine particles is promoted in the narrow gap between the filter fibers, so that it is difficult to separate and analyze the fine particles at the time of analysis. there were.

そこで、本発明者らは、上記の問題を解決するために(特許文献2)に記載の技術を完成させた。(特許文献2)には「孔径が20μm以下の多数の孔部を有し厚みが0.1〜20μmで開孔率が45〜75%の浮遊微粒子捕集用フィルタと、前記浮遊微粒子捕集用フィルタの所定領域が開口部から露出するように内部に前記浮遊微粒子捕集用フィルタが配設された筐体と、前記筐体内部に対向して各々回動自在に配設され前記浮遊微粒子捕集用フィルタの両端部が各々巻着される一対の支持軸を有し、前記支持軸を回動させることにより前記開口部に前記浮遊微粒子捕集用フィルタの新しい所定領域を送り出すフィルタ送り部と、を備えた浮遊微粒子捕集装置」が開示されている。
(特許文献2)に開示の技術では、屋内や屋外の現場において浮遊微粒子を簡便かつ迅速に連続して捕集することができ、また浮遊微粒子捕集用フィルタの各々の孔部で浮遊微粒子を個別に捕捉し各々分離した状態で捕集できるので、捕集された微粒子同士が反応し難く正確な分析を行うことができ、さらに浮遊微粒子を多孔膜の表面で捕集することができるので、微粒子を捕集したままの状態で撮像して画像解析を容易に行うことができ、迅速な分析を可能にすることができた。
特開2004−301768号公報 特開2005−152849号公報
Therefore, the present inventors have completed the technique described in (Patent Document 2) in order to solve the above problem. (Patent Document 2) states that “a filter for collecting floating particles having a large number of holes having a hole diameter of 20 μm or less, a thickness of 0.1 to 20 μm, and an open area ratio of 45 to 75%; A housing in which the filter for collecting suspended particulates is disposed so that a predetermined region of the filter for use is exposed from the opening, and the suspended particulates that are respectively rotatably disposed facing the interior of the housing. A filter feed section having a pair of support shafts around which both ends of the collection filter are wound, and sending out a new predetermined area of the suspended particulate collection filter to the opening by rotating the support shaft And a suspended particulate collection device comprising:
With the technology disclosed in (Patent Document 2), suspended particulates can be collected continuously easily and quickly at an indoor or outdoor site, and suspended particulates can be collected in each hole of the suspended particulate collection filter. Since it can be collected separately and collected in a separated state, the collected fine particles are difficult to react with each other and can be accurately analyzed, and furthermore, the suspended fine particles can be collected on the surface of the porous membrane, It was possible to easily perform image analysis by capturing images while collecting the fine particles, and to enable rapid analysis.
JP 2004-301768 A JP 2005-152849 A

しかしながら、(特許文献2)に記載の発明は、以下のような点に改善の余地が残されていた。
(1)(特許文献2)に開示の浮遊微粒子捕集装置は、浮遊微粒子捕集用フィルタの両端部が各々巻着される一対の支持軸を有し、支持軸を回動させることにより開口部に浮遊微粒子捕集用フィルタの新しい所定領域を送り出して測定を行うものなので、浮遊微粒子捕集用フィルタを送り出す際に多孔膜が送り出し方向に伸びて孔部が変形することがある。孔部が変形すると孔径が変化して、浮遊微粒子の分級効果が低下し、浮遊微粒子の形状や粒度の分析の正確性を欠くため、浮遊微粒子捕集用フィルタを送り出さなくても浮遊微粒子を連続的に捕集できるような装置が要求されていた。
(2)浮遊微粒子捕集用フィルタを送り出す際に多孔膜が送り出し方向に伸びて孔部が変形すると浮遊微粒子の形状や粒度の分析に正確性を欠くため、浮遊微粒子捕集用フィルタには多孔膜が伸びないような強度が要求される。このため、多孔膜を補強する等、浮遊微粒子捕集用フィルタの構成や製造工程が煩雑になり生産性が低下するため、簡易な浮遊微粒子捕集用フィルタが使用できるような装置が要求されていた。
(3)浮遊微粒子捕集用フィルタの両端部が各々巻着される一対の支持軸を有しているので、構成が複雑になるとともに装置が大型化する傾向があった。そこで、構成が単純で小型化が可能な装置が要求されていた。
(4)浮遊微粒子捕集用フィルタを送り出すことで浮遊微粒子を時系列に捕集でき、また同時に画像解析による簡易分析は可能ではあるものの、光学顕微鏡や電子顕微鏡等による精密な分析を行うためには、巻き取った浮遊微粒子捕集用フィルタを巻き戻して該当部分を切り取り加工する必要があり、捕集後の迅速な分析作業の障害となっていた。そこで、捕集後直ちに取り出してそのまま機器分析可能な装置が要求されていた。
However, the invention described in (Patent Document 2) has room for improvement in the following points.
(1) The suspended particulate collection device disclosed in (Patent Document 2) has a pair of support shafts around which both ends of the suspended particulate collection filter are wound, and is opened by rotating the support shaft. Since a new predetermined region of the suspended particulate collection filter is sent out to the part for measurement, when the suspended particulate collection filter is delivered, the porous film may extend in the delivery direction and the hole may be deformed. When the hole is deformed, the pore size changes, the effect of airborne particle classification is reduced, and the accuracy of analysis of the shape and particle size of the airborne particles is lacking. There was a need for a device that could collect them automatically.
(2) If the porous membrane extends in the delivery direction when the suspended particulate collection filter is sent out and the hole is deformed, the analysis of the shape and particle size of the suspended particulates is inaccurate. The strength is required so that the film does not stretch. For this reason, the structure and manufacturing process of the suspended particulate collection filter, such as reinforcing the porous membrane, become complicated and the productivity is lowered, so an apparatus that can use a simple suspended particulate collection filter is required. It was.
(3) Since both ends of the filter for collecting suspended particulates have a pair of support shafts wound respectively, the configuration tends to be complicated and the apparatus tends to be large. Therefore, there has been a demand for an apparatus that has a simple configuration and can be miniaturized.
(4) Sending out the filter for collecting suspended particulates can collect suspended particulates in time series, and at the same time, simple analysis by image analysis is possible, but for performing precise analysis by optical microscope, electron microscope, etc. However, it was necessary to unwind the wound particulate collection filter and cut out the corresponding part, which was an obstacle to rapid analysis work after collection. Therefore, there has been a demand for an apparatus that can be taken out immediately after collection and can be analyzed as it is.

本発明は上記要求を充たすもので、フィルタの多孔膜の孔部が変形し難いため捕集された浮遊微粒子の形状や粒度の分析を正確に行うことができ分析の正確性に優れ、またフィルタの構成や製造工程を単純化することができフィルタの生産性に優れ、またフィルタの圧力損失が小さいのに加えて目詰まりし難いため、風路の内径を小さくすることで吸引手段を小型化することができるため、装置構成を単純化して装置を小型・軽量化でき、屋内や屋外に携帯することもできる携帯性に優れ、さらに浮遊微粒子を捕集した後フィルタを直ちに取り出して迅速な機器分析が可能な浮遊微粒子捕集装置を提供することを目的とする。   The present invention satisfies the above-mentioned requirements. Since the pores of the porous membrane of the filter are not easily deformed, the shape and particle size of the collected suspended fine particles can be accurately analyzed, and the analysis accuracy is excellent. The structure and manufacturing process can be simplified, the filter productivity is excellent, the filter pressure loss is small, and it is hard to clog, so the suction means is downsized by reducing the inner diameter of the air passage Therefore, the device configuration can be simplified, the device can be reduced in size and weight, it can be carried indoors and outdoors, and it is highly portable. An object of the present invention is to provide a suspended particulate collection device capable of analysis.

上記従来の課題を解決するために本発明の浮遊微粒子捕集装置は、以下の構成を有している。
本発明の請求項1に記載の浮遊微粒子捕集装置は、多孔膜がホルダに保持されたフィルタを用いて浮遊微粒子を捕集する浮遊微粒子捕集装置であって、前記フィルタを装入するための開口部を有する筺体と、前記筐体内に貫設され一端に吸気口が形成され他端に排気口が形成された風路と、前記筐体内に配設され前記開口部から装入される1乃至複数枚の前記フィルタが着脱自在に装着され前記多孔膜が前記風路内に配置されるフィルタ装着部と、前記風路に配設された吸引手段と、を備え、前記風路が、一端に前記吸気口が形成された上流側風路と、端部に前記排気口が形成された下流側風路と、を備え、前記フィルタ装着部が、前記上流側風路と前記下流側風路との間に形成され、前記筐体に固着された第1支持部と、前記第1支持部に貫設され内周面に雌螺子部が螺刻された第1支持部貫通孔と、前記第1支持部と間隔をあけて配設された第2支持部と、前記第2支持部に貫設され前記第1支持部貫通孔と連通する第2支持部貫通孔と、を備え、前記上流側風路の外周面に前記第1支持部貫通孔の内周面の前記螺子部と螺合し、前記フィルタの前記ホルダと前記上流側風路及び前記下流側風路の端面とを密接させる押止手段としての雄螺子部が形成され、前記下流側風路が前記第2支持部貫通孔に接続された構成を有している。
この構成により、以下のような作用が得られる。
(1)多孔膜を保持したホルダを有するフィルタと、風路にフィルタを着脱可能に装着し多孔膜を風路内に配置するフィルタ装着部と、を備えているので、浮遊微粒子を捕集したフィルタをフィルタ装着部から取り外して、新しいフィルタを装着することで、フィルタの多孔膜に引張力等の外力を与えずにフィルタを交換することができるので、多孔膜の孔部が変形し難く浮遊微粒子の形状や粒度の分析を正確に行うことができる。
(2)多孔膜がホルダに保持されたフィルタを用いているので、フィルタの構成や製造工程を単純化することができフィルタの生産性に優れる。
(3)フィルタの圧力損失が小さく、また浮遊微粒子の捕集効率が高く、加えて多孔膜の孔径以下のほとんどの粒子は透過するため目詰まりし難いことにより、風路の内径を小さくすることが可能になり吸引手段を小型化することができるため、装置構成を単純化することができ装置を小型・軽量化でき、屋内や屋外に携帯することもでき携帯性に優れる。
(4)フィルタを小型にでき、フィルタを多段に重ねても簡便に脱着できるので、浮遊微粒子を捕集後直ちに取り出してそのまま分析機器の試料に用いることができ、捕集場所での迅速な分析を可能にする。
(5)孔部の孔径の異なるフィルタを複数枚重ね合わせ、風路の下流側に装着されるフィルタの多孔膜の孔径を、風路の上流側に装着されるフィルタの多孔膜の孔径よりも小さくすることによって、各々の多孔膜に粒径の異なる浮遊微粒子を捕集することができるため、多段階の分級ができ、粒度分布を測定することができるとともに、特定の大きさの浮遊微粒子を選別捕集することができる。
(6)フィルタ装着部が、フィルタのホルダと上流側風路及び下流側風路の端面とを密接させる押止手段を備えているので、吸引された気体がホルダと風路との間から漏洩するのを防止することができ、気体の流量と浮遊微粒子の捕集量との定量性が向上する。このため、単位時間あたりの気体の吸引流量及び吸引時間に基いて多孔膜を通過した気体量を算出でき、この気体量と捕集された浮遊微粒子の個数や種類から捕集場所における浮遊微粒子による汚染の程度を測定することができる。
(7)押止手段が、フィルタ装着部に装着されるフィルタの枚数に応じて、移動可能に形成されているので、フィルタ装着部に複数枚のフィルタを重ね合わせて装着することができる。
(8)押止手段としての雄螺子部によって上流側風路を前進又は後退させられるので、フィルタ装着部にフィルタを所望する枚数だけ装着することができ自在性に優れる。
In order to solve the above conventional problems, the suspended particulate collection device of the present invention has the following configuration.
The suspended particulate collection device according to claim 1 of the present invention is a suspended particulate collection device that collects suspended particulates using a filter in which a porous film is held by a holder, and is used for loading the filter. A housing having a plurality of openings, an air passage penetrating into the housing and having an air inlet at one end and an air outlet at the other end, and disposed in the housing and inserted from the opening. A filter mounting portion in which one or a plurality of the filters are detachably mounted and the porous membrane is disposed in the air path; and suction means disposed in the air path; and the air path includes : An upstream air passage in which the intake port is formed at one end and a downstream air passage in which the exhaust port is formed at an end, and the filter mounting portion includes the upstream air passage and the downstream air passage. A first support part formed between the road and fixed to the housing; and the first support part A first support portion through-hole in which a female screw portion is threaded on the inner peripheral surface, a second support portion disposed at a distance from the first support portion, and penetrating the second support portion A second support portion through hole communicating with the first support portion through hole, and screwed into the outer peripheral surface of the upstream air passage with the screw portion of the inner peripheral surface of the first support portion through hole. And a male screw portion is formed as a holding means for bringing the holder of the filter into close contact with the end surfaces of the upstream and downstream air passages, and the downstream air passage is formed in the second support portion through-hole. It has a connected configuration.
With this configuration, the following effects can be obtained.
(1) Since a filter having a holder holding a porous film and a filter mounting part for detachably mounting the filter in the air passage and disposing the porous film in the air passage are collected, suspended particulates are collected. By removing the filter from the filter mounting part and mounting a new filter, it is possible to replace the filter without applying external force such as tensile force to the porous film of the filter. The shape and particle size of the fine particles can be analyzed accurately.
(2) Since the filter in which the porous film is held by the holder is used, the configuration and manufacturing process of the filter can be simplified, and the productivity of the filter is excellent.
(3) Reduce the inner diameter of the air passage by reducing the pressure loss of the filter and the high collection efficiency of suspended particulates, and in addition, since most of the particles below the pore size of the porous membrane permeate, it is difficult to clog. Therefore, the suction means can be reduced in size, so that the configuration of the apparatus can be simplified, the apparatus can be reduced in size and weight, and can be carried indoors and outdoors, and is excellent in portability.
(4) Since the filter can be made small and can be easily desorbed even if the filters are stacked in multiple stages, suspended particulates can be taken out immediately after collection and used as it is as a sample in an analytical instrument, allowing rapid analysis at the collection site. Enable.
(5) A plurality of filters with different hole diameters are stacked, and the pore diameter of the porous membrane of the filter mounted on the downstream side of the air passage is set to be larger than the pore diameter of the porous membrane of the filter attached on the upstream side of the air passage. By reducing the size, suspended microparticles with different particle sizes can be collected in each porous membrane, so that multi-stage classification can be performed, particle size distribution can be measured, and suspended particles of a specific size can be measured. Sorted and collected.
(6) Since the filter mounting part is provided with a holding means for bringing the filter holder into close contact with the upstream air passage and the end face of the downstream air passage, the sucked gas leaks from between the holder and the air passage. This improves the quantitativeness of the gas flow rate and the amount of suspended particulates collected. For this reason, the amount of gas that has passed through the porous membrane can be calculated based on the suction flow rate and suction time of the gas per unit time, and it depends on the suspended particulates at the collection site from this amount of gas and the number and type of collected suspended particulates. The degree of contamination can be measured.
(7) Since the holding means is formed to be movable according to the number of filters attached to the filter attachment portion, a plurality of filters can be attached to the filter attachment portion in an overlapping manner.
(8) Since the upstream side air passage can be moved forward or backward by the male screw portion as the holding means, a desired number of filters can be mounted on the filter mounting portion, and the flexibility is excellent.

ここで、多孔膜としては、例えば、高分子化合物で形成されたものが用いられる。このような高分子化合物としては、ポリフッ化ビニリデン,トリフルオロエチレン等のフッ素系重合体、ポリスルホン,ポリエーテルスルホン,ポリカーボネート,ポリエーテルイミド,ポリエチレンテレフタレート,ポリメチルメタクリレート,ポリブチル(メタ)アクリレート等のポリ(メタ)アクリル酸エステル、ポリアクリルニトリル,酢酸セルロース,硝酸セルロース等のセルロースエステル類、ポリエチレン,ポリ−4−メチル−1−ペンテン,ポリブタジエン等のポリオレフィン、ポリ乳酸,ポリヒドロキシ酪酸,グリコール酸−乳酸共重合体等の生分解性高分子、ポリ酢酸ビニル、ポリスチレン、ポリ−4−ビニルピリジン、ポリビニルピロリドン、ポリ塩化ビニル、ポリ塩化ビニリデン、シリコン系ポリマー、ポリフェニレンオキサイド等の重合体、或いはこれらの共重合体を挙げることができる。
多孔膜は、湿式凝固法や、湿式凝固法と荷電粒子照射法の併用等によって製造することができる。また、特開昭63−267406号公報に記載された水蒸気凝固法によって製造することもできる。
また、特開2005−152849号公報に記載されているように、前述の高分子化合物を疎水性有機溶媒に溶解した溶液を基板上に流延し、高湿度空気を吹き付け、疎水性有機溶媒を蒸発させて製造することもできる。このような疎水性有機溶媒としては、ベンゼン,トルエン,p−キシレン等の芳香族炭化水素、モノクロロベンゼン,o−ジクロロベンゼン,トリクロロベンゼン等のハロゲン化芳香族炭化水素、クロロホルム,四塩化炭素,塩化メチレン,トリクロロエチレン,パークロロエチレン等のハロゲン化脂肪族炭化水素、ペンタン,へキサン,ヘプタン,オクタン等の脂肪族炭化水素等が挙げられる。なお、疎水性有機溶媒に、高分子化合物とともに両親媒性高分子化合物を溶解したものを用いることもできる。高分子化合物と両親媒性高分子化合物との混合比としては、重量比で5:1〜20:1が用いられる。両親媒性高分子化合物としては、両親媒性ポリアクリルアミド等が用いられる。
このようにして高分子化合物で形成された多孔膜は網目状の高分子部分が極めて細くて開口部が非常に大きい特徴を有し、かつ高分子も透明に近いものが得られるので、捕集された浮遊微粒子を光学顕微鏡で前処理を施すことなく透過光でも観察することができ簡便性に優れる。従来、白色のメンブレンフィルタに捕集された浮遊微粒子の計数分析を行う場合、浮遊微粒子がアスベスト等の透明な微粒子である場合には、アセトン等を用いてメンブレンフィルタの透明化処理を行う必要があり煩雑であった。
Here, as the porous film, for example, one formed of a polymer compound is used. Examples of such a polymer compound include fluorine-based polymers such as polyvinylidene fluoride and trifluoroethylene, polysulfone, polyethersulfone, polycarbonate, polyetherimide, polyethylene terephthalate, polymethyl methacrylate, polybutyl (meth) acrylate, and other polymers. Cellulose esters such as (meth) acrylic acid ester, polyacrylonitrile, cellulose acetate, cellulose nitrate, polyolefins such as polyethylene, poly-4-methyl-1-pentene, polybutadiene, polylactic acid, polyhydroxybutyric acid, glycolic acid-lactic acid Biodegradable polymers such as copolymers, polyvinyl acetate, polystyrene, poly-4-vinylpyridine, polyvinylpyrrolidone, polyvinyl chloride, polyvinylidene chloride, silicon-based polymers, polyphenyl Polymers such as down-oxide, or can be exemplified a copolymer thereof.
The porous film can be produced by a wet coagulation method or a combination of a wet coagulation method and a charged particle irradiation method. It can also be produced by the steam coagulation method described in JP-A-63-267406.
Further, as described in JP-A-2005-152849, a solution in which the above-described polymer compound is dissolved in a hydrophobic organic solvent is cast on a substrate, and high-humidity air is blown to the hydrophobic organic solvent. It can also be produced by evaporation. Examples of such hydrophobic organic solvents include aromatic hydrocarbons such as benzene, toluene, and p-xylene, halogenated aromatic hydrocarbons such as monochlorobenzene, o-dichlorobenzene, and trichlorobenzene, chloroform, carbon tetrachloride, and chloride. Halogenated aliphatic hydrocarbons such as methylene, trichlorethylene, and perchloroethylene, and aliphatic hydrocarbons such as pentane, hexane, heptane, and octane. In addition, what melt | dissolved the amphiphilic polymer compound with the polymer compound in the hydrophobic organic solvent can also be used. As a mixing ratio of the polymer compound and the amphiphilic polymer compound, a weight ratio of 5: 1 to 20: 1 is used. As the amphiphilic polymer compound, amphiphilic polyacrylamide or the like is used.
The porous film formed of the polymer compound in this way has the characteristics that the network-like polymer portion is extremely thin and has a very large opening, and the polymer is also nearly transparent. The suspended fine particles thus obtained can be observed with transmitted light without pretreatment with an optical microscope, which is excellent in convenience. Conventionally, when counting analysis of suspended particulates collected on a white membrane filter, if the suspended particulates are transparent particulates such as asbestos, it is necessary to perform a transparent treatment of the membrane filter using acetone or the like. It was complicated.

多孔膜の孔部の形状としては、円形,楕円形が用いられる。なかでも円形に形成された孔部が好適に用いられる。分級効果に優れるからである。
多孔膜の孔部の孔径としては、0.1〜20μm好ましくは0.1〜10μmの範囲内で適宜設定することができる。捕集対象となるのは、海塩粒子,黄砂,金属系酸化物,花粉等のアレルゲン物質、煤塵,ディーゼル排気微粒子,アスベスト,トナー等の人工物質、細菌等の固体や繊維状の浮遊微粒子であり、これらの粒径分布(繊維状の浮遊微粒子の場合は短径の分布)は7μm付近、3μm以下にピークがあるため、これらの捕集に好適に用いることができる。
多孔膜の厚さとしては、0.1〜20μmが好適である。厚さが0.1μmより薄くなるにつれ多孔膜の強度が低下し耐久性が低下し、20μmより厚くなるにつれ同一の形状かつ孔径の孔部を形成するのが困難になり多孔膜の生産性が低下するため、いずれも好ましくない。
多孔膜の開孔率としては、45〜75%が用いられる。多孔膜の開孔率が45%より小さくなるにつれ孔径より小さい粒径の浮遊微粒子が多孔膜に引っ掛かったり目詰まりが生じたりする傾向がみられ、75%より大きくなるにつれ多孔膜の強度が低下し耐久性が低下する傾向がみられるため、いずれも好ましくない。
As the shape of the hole of the porous film, a circle or an ellipse is used. Among these, a hole formed in a circular shape is preferably used. This is because the classification effect is excellent.
As a hole diameter of the hole part of a porous membrane, it can set suitably in the range of 0.1-20 micrometers, preferably 0.1-10 micrometers. The target of collection is sea salt particles, yellow sand, metal oxides, pollen and other allergen materials, dust, diesel exhaust particles, asbestos, toner and other artificial materials, bacteria and other solid and fibrous suspended particles. These particle size distributions (in the case of fibrous suspended fine particles, have a short diameter distribution) have a peak in the vicinity of 7 μm and 3 μm or less, and can be suitably used for collecting these particles.
The thickness of the porous film is preferably from 0.1 to 20 μm. As the thickness becomes thinner than 0.1 μm, the strength of the porous membrane decreases and the durability decreases. As the thickness becomes thicker than 20 μm, it becomes difficult to form a hole having the same shape and diameter, and the productivity of the porous membrane is reduced. Since it falls, neither is preferable.
As the porosity of the porous film, 45 to 75% is used. As the porosity of the porous membrane becomes smaller than 45%, suspended fine particles having a particle size smaller than the pore diameter tend to get caught or clogged. As the porous membrane becomes larger than 75%, the strength of the porous membrane decreases. However, since there is a tendency for the durability to decrease, neither is preferable.

ホルダとしては、金属製、合成樹脂製、ゴム製、ガラス製、セラミック製等で形成されたものを用いることができる。   As the holder, a holder made of metal, synthetic resin, rubber, glass, ceramic or the like can be used.

フィルタ装着部としては、多孔膜を風路内に配設することができ、さらにフィルタを着脱自在に装着できるものであれば、特に制限なく用いることができる。なお、風路の端面若しくは断面がフィルタのホルダと密接され、吸気口若しくは排気口に多孔膜が配置され、又は吸気口と排気口との間に多孔膜が介装されて配置されるものが用いられる。吸引手段で吸引された気体を漏れなく多孔膜に通過させるためである。
フィルタ装着部には、1乃至複数枚のフィルタを装着させることができる。多孔膜を備えたフィルタの下流側に、ガラス繊維フィルタや石英繊維フィルタ、メンブレンフィルタを装着することもできる。これにより、多孔膜を通過した微細な浮遊微粒子を捕集することができる。
As the filter mounting portion, any porous membrane can be used without particular limitation as long as the porous membrane can be disposed in the air passage and the filter can be detachably mounted. The end face or cross section of the air passage is in close contact with the filter holder, and a porous film is disposed at the intake or exhaust port, or a porous film is disposed between the intake and exhaust ports. Used. This is for allowing the gas sucked by the suction means to pass through the porous film without leakage.
One or a plurality of filters can be mounted on the filter mounting portion. A glass fiber filter, a quartz fiber filter, or a membrane filter can also be mounted on the downstream side of the filter provided with the porous membrane. Thereby, the fine suspended fine particles which passed the porous film can be collected.

吸引手段としては、吸引ポンプが用いられる。また、ヒータ等で対流を生じさせ、気体を吸気口から吸引させるものも用いることができる。吸引手段は、配置された多孔膜の風路の上流側又は下流側のいずれに配設してもよい。
なお、吸引手段による単位時間あたりの気体の吸引流量及び吸引時間を適宜設定することにより、吸引した気体量、即ち多孔膜を通過した気体量を算出でき、この気体量と捕集された浮遊微粒子の個数や種類から、捕集場所における浮遊微粒子による汚染の程度を測定することができる。
A suction pump is used as the suction means. Moreover, what makes a convection generate | occur | produce with a heater etc. and attracts | sucks gas from an inlet port can also be used. The suction means may be arranged on either the upstream side or the downstream side of the air passage of the arranged porous membrane.
In addition, by appropriately setting the suction flow rate and suction time of the gas per unit time by the suction means, the amount of sucked gas, that is, the amount of gas that has passed through the porous film can be calculated. It is possible to measure the degree of contamination by suspended fine particles at the collection site from the number and type of the particles.

孔部の標準偏差が0.5μm以下、又は、孔部の変動係数が0.2以下である場合、孔径分布が著しく狭いので、多孔膜での分級効果を高めることができるとともに、アスベスト等の繊維状の浮遊微粒子を捕集する場合の捕集効率を高めることができる。
また、孔径分布が著しく狭いので、粒子径の揃った微粒子の捕集、例えばスギ花粉や黄砂のみの選別捕集ができる。
Standard deviation of the hole is 0.5μm or less, or if the variation coefficient of the hole is 0.2 or less, since the considerably narrow pore size distribution, it is possible to increase the classification effects in the porous membrane, asbestos, etc. The collection efficiency in the case of collecting fibrous suspended fine particles can be increased.
Moreover, since the pore size distribution is extremely narrow, it is possible to collect fine particles having a uniform particle size, for example, to selectively collect cedar pollen and yellow sand.

ここで、孔部の標準偏差は0〜0.5μm、変動係数は0〜0.2が好適である。変動係数は、標準偏差を平均で除した数値である。標準偏差が0.5μmより大きくなるか、変動係数が0.2より大きくなるにつれ、孔部の孔径分布が広がるため分級効果が低下するとともに、アスベスト等の繊維状の浮遊微粒子の内、繊維長の短いものが孔部を通過して捕集され難くなる傾向がみられるため、いずれも好ましくない。   Here, the standard deviation of the hole is preferably 0 to 0.5 μm, and the coefficient of variation is preferably 0 to 0.2. The coefficient of variation is a numerical value obtained by dividing the standard deviation by the average. As the standard deviation is larger than 0.5 μm or the coefficient of variation is larger than 0.2, the pore size distribution is widened, so that the classification effect is lowered, and the fiber length of fibrous suspended fine particles such as asbestos is reduced. Neither of these is preferred because it tends to be difficult to be collected through the hole.

孔部の標準偏差や変動係数を小さくするための多孔膜の製造方法としては、整列させた粒径の等しいポリスチレン球を鋳型として成膜し、最後にポリスチレン球を熱分解もしくは溶媒で取り除く方法(Chem. Mater. 2005, 17(24), p5880-5883)や、半導体微細加工技術により金属、半導体もしくはセラミックの薄膜に貫通孔を形成する等の方法を用いることができる。また、高分子化合物で多孔膜を製膜する場合、温度等の製造条件を最適化することによっても孔部の標準偏差や変動係数を小さくすることができる。   As a method for producing a porous membrane for reducing the standard deviation and coefficient of variation of the pores, a method is used in which polystyrene spheres having the same particle diameter are used as a mold, and finally the polystyrene spheres are removed by pyrolysis or solvent ( Chem. Mater. 2005, 17 (24), p5880-5883) or a method of forming a through-hole in a thin film of metal, semiconductor, or ceramic by a semiconductor fine processing technique. Moreover, when forming a porous film with a polymer compound, the standard deviation and variation coefficient of the pores can be reduced by optimizing the manufacturing conditions such as temperature.

フィルタがホルダの厚さ方向に貫設された貫通孔を備え、多孔膜が貫通孔に配設されている場合、貫通孔の内径を小さくすることで、多孔膜を気体が通過する際の多孔膜の変形を小さくすることができ、孔部が変形したり広がったりするのを防止して、多孔膜での浮遊微粒子の分級効果を高めることができるとともに、アスベスト等の繊維状の浮遊微粒子を捕集する場合の捕集効率を高めることができる。
また、貫通孔に配設された多孔膜の強度を確保できるので、多孔膜が大流速の気体の通過にも耐え得るため、気体の吸引速度を高めることができ単位体積当たりの気体の吸引時間を短縮させることができる。
Filter comprising a pierced by through holes in the thickness direction of the holder, when the porous membrane is disposed in the through hole, by reducing the inner diameter of the through hole, the porous when the porous membrane is the gas passes The deformation of the membrane can be reduced, the pores can be prevented from being deformed or expanded, and the effect of classifying the suspended particles in the porous membrane can be enhanced. The collection efficiency in the case of collecting can be improved.
In addition, since the strength of the porous film disposed in the through hole can be ensured, the porous film can withstand the passage of gas at a high flow rate, so that the gas suction speed can be increased and the gas suction time per unit volume Can be shortened.

ここで、貫通孔の内径としては、5〜10mmが好適に用いられる。貫通孔の内径が5mmより小さくなるにつれ、多孔膜の捕集面積が縮小することより捕集された浮遊微粒子が重なり目詰まりが生じ易くなる傾向がみられ、10mmより大きくなるにつれ多孔膜を気体が通過したときに多孔膜の変形が大きくなり、孔部が変形したり広がったりして、多孔膜での分級効果が低下する傾向がみられ、またアスベスト等の繊維状の浮遊微粒子の内、繊維長の短いものが孔部を通過して捕集され難くなる傾向がみられ、さらに貫通孔の面積が増加し通気量が増えるため大容量の吸気手段が必要になり装置が大型化する傾向がみられるため、いずれも好ましくない。   Here, 5-10 mm is used suitably as an internal diameter of a through-hole. As the inner diameter of the through-hole becomes smaller than 5 mm, the trapped fine particles tend to be clogged due to the trapping area of the porous membrane being reduced, and the porous membrane tends to clog. The deformation of the porous membrane becomes large when passing through, and the pores are deformed or spread, and the classification effect in the porous membrane tends to decrease, and among the fibrous suspended fine particles such as asbestos, There is a tendency for fibers with short fiber lengths to be difficult to collect through the hole, and the area of the through hole increases and the air flow rate increases, so a large capacity intake means is required and the device tends to be large Since both are seen, neither is preferable.

多孔膜は、ホルダの片面に貫通孔を覆うように配設することができる。また、ホルダ間に挟着することができる。なかでも、ホルダ間に挟着して多孔膜を貫通孔に配設するものが好適に用いられる。多孔膜をホルダ内に保持して保護できるからである。   The porous film can be disposed on one side of the holder so as to cover the through hole. Moreover, it can clamp between holders. Among these, those in which the porous film is disposed in the through hole by being sandwiched between the holders are preferably used. This is because the porous film can be held and protected in the holder.

ここで、押止手段としては、バネ等の弾性体で付勢して、又は、螺子,クランプ等で圧接して、フィルタのホルダに風路の端面若しくは断面とを押止して密接させるものが用いられる。なお、押止手段は、フィルタ装着部に装着されたフィルタの枚数に応じて、伸縮可能や移動可能に形成されていると、フィルタ装着部に複数枚のフィルタを重ね合わせて装着することができ好ましい。   Here, the pressing means is biased by an elastic body such as a spring, or pressed by a screw, a clamp, or the like, so that the end face or cross section of the air path is pressed and brought into close contact with the filter holder. Is used. Note that if the holding means is formed to be extendable and movable in accordance with the number of filters attached to the filter attachment portion, a plurality of filters can be attached to the filter attachment portion in an overlapping manner. preferable.

以上のように、本発明の浮遊微粒子捕集装置によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)多孔膜を保持したホルダを有するフィルタと、風路にフィルタを着脱可能に装着し多孔膜を風路内に配置するフィルタ装着部と、を備えているので、浮遊微粒子を捕集したフィルタをフィルタ装着部から取り外して、新しいフィルタを装着することで、フィルタの多孔膜に引張力等の外力を与えずにフィルタを交換することができるので、多孔膜の孔部が変形し難く浮遊微粒子の形状や粒度の分析を正確に行うことができ分析の正確性に優れた浮遊微粒子捕集装置を提供できる。
(2)多孔膜がホルダに保持されたフィルタを用いているので、フィルタの構成や製造工程を単純化することができフィルタの生産性に優れた浮遊微粒子捕集装置を提供できる。
(3)フィルタの圧力損失が小さく、また浮遊微粒子の捕集効率が高く、加えて多孔膜の孔径以下のほとんどの粒子は透過するため目詰まりし難いことにより、風路の内径を小さくすることが可能になり吸引手段を小型化することができるため、装置構成を単純化することができ装置を小型・軽量化でき、屋内や屋外に携帯することもでき携帯性に優れた浮遊微粒子捕集装置を提供できる。
(4)フィルタを小型にでき、フィルタを多段に重ねても簡便に脱着できるので、浮遊微粒子を捕集後直ちに取り出してそのまま分析機器の試料に用いることができ、捕集場所での迅速な分析を可能にする浮遊微粒子捕集装置を提供できる。
(5)孔部の孔径の異なるフィルタを複数枚重ね合わせ、風路の下流側に装着されたフィルタの多孔膜の孔径を、風路の上流側に装着されたフィルタの多孔膜の孔径よりも小さくすることによって、各々の多孔膜に粒径の異なる浮遊微粒子を捕集することができるため、多段階の分級ができ、粒度分布を測定することができるとともに、特定の大きさの浮遊微粒子を選別捕集することができる浮遊微粒子捕集装置を提供できる。
(6)フィルタ装着部が、フィルタのホルダと上流側風路及び下流側風路の端面とを密接させる押止手段を備えているので、吸引された気体がホルダと風路との間から漏洩するのを防止することができ、気体の流量と浮遊微粒子の捕集量との定量性が高い浮遊微粒子捕集装置を提供できる。このため、単位時間あたりの気体の吸引流量及び吸引時間に基いて多孔膜を通過した気体量を算出でき、この気体量と捕集された浮遊微粒子の個数や種類から捕集場所における浮遊微粒子による汚染の程度を測定することができる。
(7)押止手段が、フィルタ装着部に装着されるフィルタの枚数に応じて、移動可能に形成されているので、フィルタ装着部に複数枚のフィルタを重ね合わせて装着することができる。
(8)押止手段としての雄螺子部によって上流側風路を前進又は後退させられるので、フィルタ装着部にフィルタを所望する枚数だけ装着することができ自在性に優れる。
As described above, according to the suspended particulate collection device of the present invention, the following advantageous effects can be obtained.
According to the invention of claim 1,
(1) Since a filter having a holder holding a porous film and a filter mounting part for detachably mounting the filter in the air passage and disposing the porous film in the air passage are collected, suspended particulates are collected. By removing the filter from the filter mounting part and mounting a new filter, it is possible to replace the filter without applying external force such as tensile force to the porous film of the filter. It is possible to provide a suspended particulate collection device that can accurately analyze the shape and particle size of the particulates and is excellent in the accuracy of the analysis.
(2) Since the filter in which the porous film is held by the holder is used, the structure and manufacturing process of the filter can be simplified, and a suspended particulate collection device having excellent filter productivity can be provided.
(3) Reduce the inner diameter of the air passage by reducing the pressure loss of the filter and the high collection efficiency of suspended particulates, and in addition, since most of the particles below the pore size of the porous membrane permeate, it is difficult to clog. This makes it possible to reduce the size of the suction means, simplifying the device configuration, reducing the size and weight of the device, and allowing it to be carried indoors and outdoors. Equipment can be provided.
(4) Since the filter can be made small and can be easily desorbed even if the filters are stacked in multiple stages, suspended particulates can be taken out immediately after collection and used as it is as a sample in an analytical instrument, allowing rapid analysis at the collection site. It is possible to provide a suspended particulate collection device that makes it possible.
(5) A plurality of filters having different hole diameters are overlapped, and the pore diameter of the porous membrane of the filter mounted on the downstream side of the air passage is set to be larger than the pore diameter of the porous membrane of the filter attached on the upstream side of the air passage. By reducing the size, suspended microparticles with different particle sizes can be collected in each porous membrane, so that multi-stage classification can be performed, particle size distribution can be measured, and suspended particles of a specific size can be measured. It is possible to provide a suspended particulate collection device that can be selectively collected.
(6) Since the filter mounting part is provided with a holding means for bringing the filter holder into close contact with the upstream air passage and the end face of the downstream air passage, the sucked gas leaks from between the holder and the air passage. Therefore, it is possible to provide a floating particulate collection device having a high quantitative property between the gas flow rate and the amount of suspended particulate collection. For this reason, the amount of gas that has passed through the porous membrane can be calculated based on the suction flow rate and suction time of the gas per unit time, and it depends on the suspended particulates at the collection site from this amount of gas and the number and type of collected suspended particulates. The degree of contamination can be measured.
(7) Since the holding means is formed to be movable according to the number of filters attached to the filter attachment portion, a plurality of filters can be attached to the filter attachment portion in an overlapping manner.
(8) Since the upstream side air passage can be moved forward or backward by the male screw portion as the holding means, a desired number of filters can be mounted on the filter mounting portion, and the flexibility is excellent.

以下、本発明を実施するための最良の形態を、図面を参照しながら説明する。
(実施の形態1)
図1は本発明の実施の形態1における浮遊微粒子捕集装置の垂直方向の要部断面図であり、図2はフィルタの分解斜視図であり、図3(a)はフィルタの多孔膜の平面図であり、(b)はフィルタの多孔膜の斜視図であり、図4はフィルタ装着部の水平方向の要部断面図である。
図1において、1は本発明の実施の形態1における浮遊微粒子捕集装置、2は直方体等の箱状に形成された浮遊微粒子捕集装置1の筐体、2aは筐体2の上面に形成され後述するフィルタ8が装入される上面開口部、3は筐体2内に貫設された風路、4は上流側の風路3としての上流側風路、4aは筐体2の側面に形成され上流側風路4が貫通された側面開口部、5は上流側風路4の一端に形成された吸気口、6は下流側の風路3としての下流側風路、7は上流側風路4と下流側風路6との間に形成され後述するフィルタ8を風路3に着脱可能に装着するフィルタ装着部、8は上面開口部2aから筐体2内に装入されフィルタ装着部7に装着されたフィルタ、9はポリオレフィン等の合成樹脂製等で板状に形成されたフィルタ8のホルダ、10はホルダ9の厚さ方向に貫設された内径5〜10mmの略円形の貫通孔、11は貫通孔10の内側に配設され高分子化合物等で厚さが0.1〜20μmに形成された多孔膜、12は下流側流路6に配設された吸引ポンプ等の吸引手段、13は下流側風路6の端部に形成された排気口である。本実施の形態においては、フィルタ装着部7にフィルタ8を2枚重ねて装着した場合を示している。
図2において、9a,9bは外形が矩形状で2枚に分割された分割ホルダであり、多孔膜11を挟着してフィルタ8のホルダ9を形成する。10a,10bは分割ホルダ9a、9bの各々に貫設された貫通孔、11aは多孔膜11に同一の形状及び0.1〜20μmの同一の孔径で形成された孔部である。
図3において、Xは海塩粒子,黄砂,金属系酸化物,花粉,煤塵,ディーゼル排気微粒子,アスベスト等の固体や繊維状の浮遊微粒子である。
図4において、7は上面開口部2aの下部の筐体2内に配設されたフィルタ装着部、20は板状等に形成され所定部が筐体2に固着されたフィルタ装着部7の第1支持部、21は第1支持部20の両側にフィルタ8の幅よりやや広い間隔をあけて対向して配設された側板、22は板状等に形成され第1支持部20と側板21,21を挟んで適当な間隔をあけて配設されたフィルタ装着部7の第2支持部、23は第1支持部20に貫設され内周面に雌螺子部が螺刻され側面開口部4aと連通した第1支持部貫通孔、24は上流側風路4の外周面に形成され第1支持部貫通孔23の内周面の雌螺子部と螺合する押止手段としての雄螺子部、25は上流側風路4の端面に円環状に形成された窪み部、26は窪み部25に装着されたOリング等のシール部、27は第2支持部22に貫設され下流側風路6が接続され第1支持部貫通孔23と連通する第2支持部貫通孔、28は下流側風路6が接続された第2支持部貫通孔27の周囲の第2支持部22に円環状に形成された窪み部、29は窪み部28に装着されたOリング等のシール部である。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a cross-sectional view of the main part in the vertical direction of the suspended particulate collection device according to Embodiment 1 of the present invention, FIG. 2 is an exploded perspective view of the filter, and FIG. 3 (a) is a plan view of the porous membrane of the filter. FIG. 4B is a perspective view of the porous film of the filter, and FIG. 4 is a cross-sectional view of the main part of the filter mounting portion in the horizontal direction.
In FIG. 1, reference numeral 1 denotes a suspended particulate collection device according to Embodiment 1 of the present invention, 2 denotes a casing of the suspended particulate collection device 1 formed in a box shape such as a rectangular parallelepiped, and 2 a is formed on the upper surface of the casing 2. The upper surface opening in which a filter 8 to be described later is inserted, 3 is an air passage penetrating the housing 2, 4 is an upstream air passage as the upstream air passage 3, and 4 a is a side surface of the housing 2. Are formed in the side opening portion 5 through which the upstream air passage 4 passes, 5 is an intake port formed at one end of the upstream air passage 4, 6 is a downstream air passage as the downstream air passage 3, and 7 is upstream. A filter mounting portion that is formed between the side air passage 4 and the downstream air passage 6 and detachably attaches a filter 8 to be described later to the air passage 3, and 8 is inserted into the housing 2 from the upper surface opening 2a. A filter 9 attached to the attachment portion 7 is a holder for the filter 8 formed in a plate shape made of synthetic resin such as polyolefin, etc. Is a substantially circular through-hole having an inner diameter of 5 to 10 mm that penetrates the holder 9 in the thickness direction, and 11 is disposed inside the through-hole 10 and is formed with a polymer compound or the like to a thickness of 0.1 to 20 μm. The porous membrane 12 is a suction means such as a suction pump disposed in the downstream flow path 6, and 13 is an exhaust port formed at the end of the downstream air path 6. In the present embodiment, a case where two filters 8 are stacked and mounted on the filter mounting portion 7 is shown.
In FIG. 2, 9 a and 9 b are divided holders having a rectangular outer shape and divided into two, and the holder 9 of the filter 8 is formed by sandwiching the porous film 11. 10a and 10b are through-holes penetrating each of the divided holders 9a and 9b, and 11a is a hole formed in the porous film 11 with the same shape and the same hole diameter of 0.1 to 20 μm.
In FIG. 3, X is solid or fibrous suspended particulates such as sea salt particles, yellow sand, metal oxides, pollen, dust, diesel exhaust particulates, asbestos and the like.
In FIG. 4, reference numeral 7 denotes a filter mounting portion disposed in the housing 2 below the upper surface opening 2 a, and 20 denotes a first filter mounting portion 7 formed in a plate shape or the like and having a predetermined portion fixed to the housing 2. Reference numerals 1 and 21 are side plates disposed on both sides of the first support portion 20 so as to face each other with a space slightly wider than the width of the filter 8, and 22 is formed in a plate shape or the like, and the first support portion 20 and the side plates 21. , 21, the second support portion 23 of the filter mounting portion 7 disposed at an appropriate interval, with the female support portion 20 penetrating into the first support portion 20, and a female screw portion being threaded on the inner peripheral surface. 1st support part through-hole communicated with 4a, 24 is a male screw as a pressing means formed on the outer peripheral surface of the upstream air passage 4 and screwed with a female screw part on the inner peripheral surface of the first support part through-hole 23 parts, 25 recess formed in an annular shape on the end surface of the upstream side air passages 4, 26 such as an O-ring mounted in the recess portion 25 of the Sea , 27 is a second support portion through hole that is provided in the second support portion 22 and is connected to the downstream air passage 6 and communicates with the first support portion through hole 23, and 28 is a second support portion that is connected to the downstream air passage 6. 2 A recess portion 29 formed in an annular shape in the second support portion 22 around the support portion through-hole 27, and 29 is a seal portion such as an O-ring attached to the recess portion 28.

以上のように構成された本発明の実施の形態1における浮遊微粒子捕集装置のフィルタについて、以下その作製方法の一例を説明する。
ベンゼン,トルエン等の疎水性有機溶媒に可溶のポリスチレン等の高分子化合物と両親媒性ポリアクリルアミド等の両親媒性高分子化合物とを所定の割合で混合した疎水性有機溶媒の溶液(ポリマー濃度としては0.1〜2wt%)を、ガラス基板やセラミック基板等の基板上に流延した後、空気や不活性ガス等の高湿度ガス(相対湿度30〜80%)を吹きつけ、疎水性有機溶媒を蒸発させる。疎水性有機溶媒は蒸発する際に流延された溶液の潜熱を奪うため、溶液表面の温度が下がり、水蒸気が凝集し微量な水の液滴が溶液表面に付着する。この水の液滴は溶液表面に細密に整列された状態で付着し、流延された溶液中に上下に貫通した空洞部を形成する。疎水性有機溶媒が全て蒸発し高分子化合物が固化した後、水の液滴を蒸発させることにより、液滴が付着していた部分に孔部11aが形成された多孔膜11が形成される。流延する溶液の濃度、流延する溶液の量、疎水性有機溶媒の種類、高湿度ガスの相対湿度や温度,流量等を調整することによって、同一の形状及び0.1〜20μmの同一の孔径で形成された孔部11aを有する厚さ0.1〜20μm、開孔率45〜75%の多孔膜11が得られる。
この多孔膜11を、分割ホルダ9a,9b間に介挿し挟着することによってフィルタ8が得られる。
An example of a method for producing the filter of the suspended particulate collection device according to Embodiment 1 of the present invention configured as described above will be described below.
Hydrophobic organic solvent solution (polymer concentration) in which a polymer compound such as polystyrene soluble in a hydrophobic organic solvent such as benzene and toluene and an amphiphilic polymer compound such as amphiphilic polyacrylamide are mixed at a predetermined ratio Is cast on a substrate such as a glass substrate or a ceramic substrate, and then a high-humidity gas (relative humidity 30 to 80%) such as air or inert gas is blown onto the substrate to make it hydrophobic. The organic solvent is evaporated. Since the hydrophobic organic solvent takes away the latent heat of the cast solution when it evaporates, the temperature of the solution surface decreases, water vapor condenses, and a small amount of water droplets adhere to the solution surface. The water droplets adhere to the solution surface in a finely aligned state, and form a hollow portion penetrating vertically in the cast solution. After all the hydrophobic organic solvent is evaporated and the polymer compound is solidified, the water droplets are evaporated to form the porous film 11 in which the holes 11a are formed in the portion where the droplets are attached. By adjusting the concentration of the solution to be cast, the amount of the solution to be cast, the type of the hydrophobic organic solvent, the relative humidity, temperature and flow rate of the high-humidity gas, the same shape and the same 0.1 to 20 μm A porous film 11 having a hole portion 11a formed with a hole diameter and having a thickness of 0.1 to 20 μm and an open area ratio of 45 to 75% is obtained.
The filter 8 is obtained by inserting and sandwiching the porous film 11 between the divided holders 9a and 9b.

次に、以上のように構成された本発明の実施の形態1における浮遊微粒子捕集装置について、以下その使用方法を説明する。
まず、上流側風路4を回転させて、第1支持部貫通孔23から上流側風路4を後退させる。次いで、上面開口部2aからフィルタ装着部7の側板21,21間にフィルタ8を1枚若しくは重ねて複数枚挿入した後、上流側風路4を回転させて雄螺子部24によって上流側風路4を前進させ、シール部26をフィルタ8のホルダ9に雄螺子部24の働きによって押止し、シール部26,29にフィルタ8のホルダ9を密接させるとともに、フィルタ8,8のホルダ9,9同士を密接させて、フィルタ8,8の多孔膜11,11を風路3内に配置する。
次に、吸引手段12を稼動させて大気等を吸気口5から吸い込み、多孔膜11を通過させて排気口13から排気する。これにより、大気等に含まれる浮遊微粒子Xは、孔部11aの孔径よりも大きなものが多孔膜11に捕集され、孔径より小さな浮遊微粒子Xは、多孔膜11の孔部11aを通貨して排気口13から排気される。
Next, a method for using the suspended particulate collection device according to Embodiment 1 of the present invention configured as described above will be described below.
First, the upstream side air passage 4 is rotated to retreat the upstream side air passage 4 from the first support portion through hole 23. Next, one or a plurality of filters 8 are inserted between the side plates 21 and 21 of the filter mounting portion 7 from the upper surface opening 2a, and then the upstream air passage 4 is rotated to rotate the upstream air passage by the male screw portion 24. 4 is advanced, the seal portion 26 is pressed against the holder 9 of the filter 8 by the action of the male screw portion 24, the holder 9 of the filter 8 is brought into close contact with the seal portions 26, 29, and the holders 9, The porous films 11 and 11 of the filters 8 and 8 are disposed in the air passage 3 with the 9 close to each other.
Next, the suction means 12 is operated to suck in air or the like from the intake port 5, pass through the porous film 11, and exhaust from the exhaust port 13. As a result, the suspended fine particles X contained in the atmosphere or the like are collected in the porous film 11 larger than the pore diameter of the hole portion 11a, and the suspended fine particles X smaller than the pore diameter are used as a currency for the pore portion 11a of the porous film 11. The air is exhausted from the exhaust port 13.

以上のように、本発明の実施の形態1における浮遊微粒子捕集装置は構成されているので、以下のような作用が得られる。
(1)同一の形状及び0.1〜20μmの同一の孔径で形成された孔部11aを有し厚さが0.1〜20μmの多孔膜11と、多孔膜11を保持したホルダ9と、を有するフィルタ8を用い、風路3にフィルタ8を着脱可能に装着し多孔膜11を風路3内に配置するフィルタ装着部7を備えているので、浮遊微粒子を捕集したフィルタ8をフィルタ装着部7から取り外して、新しいフィルタ8を装着することで、フィルタ8の多孔膜11に引張力等の外力を与えずにフィルタ8を交換することができるので、多孔膜11の孔部11aが変形し難く浮遊微粒子の形状や粒度の分析を正確に行うことができる。
(2)フィルタ8は多孔膜11がホルダ9に保持されているので、多孔膜11の強度を確保することができ、さらに面積の小さな多孔膜11が使用できるので、フィルタ8の構成や多孔膜11の製造工程を単純化することができフィルタ8の生産性に優れる。
(3)多孔膜11は同一の形状及び0.1〜20μmの同一の孔径で形成された孔部11aを有しているので、多孔膜11の孔径以下のほとんどの粒子は透過し、孔径より大きな粒子だけが多孔膜11に捕集されるため目詰まりし難いことにより、風路3の内径を小さくすることで吸引手段12を小型化することができるため、装置構成を単純化することができ装置を小型・軽量化でき、屋内や屋外に携帯することもでき携帯性に優れる。
(4)フィルタ8がホルダ9の厚さ方向に貫設された貫通孔10を備え、多孔膜11が貫通孔10に配設されているので、貫通孔10の内径を小さくすることで、多孔膜11を気体が通過する際の多孔膜11の変形を小さくすることができ、孔部11aが変形したり広がったりするのを防止して、多孔膜11での浮遊微粒子の分級効果を高めることができるとともに、アスベスト等の繊維状の浮遊微粒子を捕集する場合の捕集効率を高めることができる。
(5)フィルタ装着部7が、フィルタ8のホルダ9と上流側風路4及び下流側風路6の端面とを密接させる押止手段としての螺子部24を備えているので、ホルダ9と上流側風路4,下流側風路6との間から吸引された気体が漏洩するのを防止することができ、気体の流量と浮遊微粒子の捕集量との定量性が高くなり、吸引手段12で吸引された気体を漏れなく多孔膜11に通過させることができ、単位時間あたりの気体の吸引流量及び吸引時間に基いて多孔膜11を通過した気体量を算出でき、この気体量と捕集された浮遊微粒子の個数や種類から捕集場所における浮遊微粒子による汚染の程度を測定することができる。
(6)押止手段としての雄螺子部24によって上流側風路4を前進又は後退させられるので、フィルタ装着部7にフィルタ8を所望する枚数だけ装着することができ自在性に優れる。
(7)孔部11aの孔径の異なるフィルタ8を複数枚重ね合わせ、風路3の下流側に装着されたフィルタ8の多孔膜11の孔径を、風路3の上流側に装着されたフィルタ8の多孔膜11の孔径よりも小さくすることによって、各々の多孔膜11に粒径の異なる浮遊微粒子を捕集することができるため、多段階の分級ができ、各々を計数分析することにより粒度分布を測定することができる。
(8)多孔膜11が分割ホルダ9a,9b間に挟着されて多孔膜11が貫通孔10に配設されたフィルタ8を用いているので、フィルタ8を複数枚重ね合わせてフィルタ装着部7に装着した場合でも、多孔膜11同士が接触しないので、多孔膜11に捕集された浮遊微粒子が別の多孔膜と擦れ合って形状が崩れてしまうのを防止でき、捕集した浮遊微粒子の形状分析を正確に行うことができる。また、重ねて装着された多孔膜11,11がホルダ9厚さ分だけ離れているので、上流側の多孔膜11を通過した気流は、下流側の多孔膜11を通過する前に乱れて気流中の浮遊微粒子が分散されるため、下流側の多孔膜11にも上流側の多孔膜11と同様に分散された状態の浮遊微粒子を捕集させることができ、フィルタ8を複数枚重ねた影響を受けることなく、各々のフィルタ8(特に、下流側のフィルタ8)に浮遊微粒子を捕集させることができる。
As described above, since the suspended particulate collection device according to Embodiment 1 of the present invention is configured, the following operation is obtained.
(1) A porous membrane 11 having a hole 11a formed with the same shape and the same pore diameter of 0.1 to 20 μm and a thickness of 0.1 to 20 μm, and a holder 9 holding the porous membrane 11; The filter 8 having the filter 8 is detachably mounted on the air passage 3 and the filter mounting portion 7 for disposing the porous film 11 in the air passage 3 is provided. The filter 8 can be exchanged without applying an external force such as a tensile force to the porous film 11 of the filter 8 by removing it from the mounting part 7 and mounting a new filter 8. It is difficult to deform and can accurately analyze the shape and particle size of suspended particles.
(2) Since the porous film 11 is held by the holder 9 in the filter 8, the strength of the porous film 11 can be secured, and the porous film 11 having a smaller area can be used. The manufacturing process of 11 can be simplified and the productivity of the filter 8 is excellent.
(3) Since the porous membrane 11 has the pores 11a formed with the same shape and the same pore diameter of 0.1 to 20 μm, most of the particles smaller than the pore diameter of the porous membrane 11 permeate through the pore diameter. Since only large particles are collected in the porous film 11 and are not easily clogged, the suction means 12 can be reduced in size by reducing the inner diameter of the air passage 3, so that the apparatus configuration can be simplified. The device can be reduced in size and weight, and can be carried indoors and outdoors and is excellent in portability.
(4) Since the filter 8 includes the through hole 10 penetrating in the thickness direction of the holder 9 and the porous film 11 is disposed in the through hole 10, the inner diameter of the through hole 10 is reduced, so The deformation of the porous film 11 when the gas passes through the film 11 can be reduced, and the hole 11a is prevented from being deformed or widened, thereby enhancing the classification effect of the floating fine particles in the porous film 11. In addition, it is possible to increase the collection efficiency when collecting fibrous suspended fine particles such as asbestos.
(5) Since the filter mounting portion 7 includes the screw portion 24 as a holding means for bringing the holder 9 of the filter 8 and the end surfaces of the upstream air passage 4 and the downstream air passage 6 into close contact with each other, the holder 9 and the upstream The gas sucked from between the side air passage 4 and the downstream air passage 6 can be prevented from leaking, and the quantification of the gas flow rate and the amount of trapped particulate matter is enhanced, and the suction means 12 Gas can be passed through the porous membrane 11 without leakage, and the amount of gas passing through the porous membrane 11 can be calculated based on the suction flow rate and suction time of the gas per unit time. The degree of contamination by suspended fine particles at the collection site can be measured from the number and type of suspended suspended particulates.
(6) Since the upstream side air passage 4 can be moved forward or backward by the male screw portion 24 as a holding means, a desired number of filters 8 can be mounted on the filter mounting portion 7 and the flexibility is excellent.
(7) A plurality of filters 8 having different hole diameters in the hole portion 11 a are overlapped, and the hole diameter of the porous film 11 of the filter 8 attached on the downstream side of the air passage 3 is set to the filter 8 attached on the upstream side of the air passage 3. By making it smaller than the pore diameter of each porous film 11, it is possible to collect suspended fine particles having different particle diameters in each porous film 11, so that multistage classification is possible, and particle size distribution is obtained by counting and analyzing each. Can be measured.
(8) Since the filter 8 in which the porous film 11 is sandwiched between the divided holders 9a and 9b and the porous film 11 is disposed in the through hole 10 is used, a plurality of filters 8 are overlapped to form the filter mounting portion 7 Since the porous membranes 11 do not come into contact with each other even when mounted, the suspended fine particles collected in the porous membrane 11 can be prevented from rubbing against another porous membrane, and the shape can be prevented from collapsing. Shape analysis can be performed accurately. Further, since the stacked porous films 11 and 11 are separated by the thickness of the holder 9, the airflow that has passed through the upstream porous film 11 is disturbed before passing through the downstream porous film 11. Since the suspended fine particles therein are dispersed, the suspended fine particles 11 can also be collected in the downstream porous membrane 11 similarly to the upstream porous membrane 11, and the influence of a plurality of the filters 8 being stacked. The suspended fine particles can be collected in each filter 8 (particularly, the downstream filter 8) without being subjected to the above.

ここで、本実施の形態においては、押止手段として雄螺子部24で圧接するものについて説明したが、これに限定するものではなく、バネ等の弾性体で付勢して、又は、クランプ等でフィルタ8のホルダ9に圧接して、貫通孔10、上流側風路4、下流側風路6を連通させることができるものであればよい。この場合も、前述の作用と同様の作用が得られる。
また、フィルタ8を上流側風路4と下流側風路6の間に装着する場合について説明したが、フィルタ8を吸気口5や排気口13に装着する場合もある。この場合も、前述の作用と同様の作用が得られる。
Here, in the present embodiment, the pressing means is described as being pressed by the male screw portion 24, but is not limited to this, and is biased by an elastic body such as a spring, or a clamp or the like. Thus, any material can be used as long as it can be brought into pressure contact with the holder 9 of the filter 8 so that the through hole 10, the upstream air passage 4, and the downstream air passage 6 can communicate with each other. In this case, the same action as described above can be obtained.
Moreover, although the case where the filter 8 is mounted between the upstream side air path 4 and the downstream side air path 6 has been described, the filter 8 may be mounted on the intake port 5 or the exhaust port 13. In this case, the same action as described above can be obtained.

以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
平均分子量70000〜100000のポリ−ε−カプロラクトンと両親媒性ポリアクリルアミドを重量比で10:1の割合で混合したクロロホルム溶液(ポリマー濃度としては0.1〜2wt%)の8mLを、温度を最適化した製膜チャンバ内でガラス基板上に流延し、相対湿度30〜80%の高湿度空気を毎分1〜20Lの流量で吹きつけ、クロロホルムを蒸発させることによって、厚さ1.5〜2.0μm、孔径の平均2.63μm、標準偏差0.331μm、変動係数0.12、最大3.23μm、最小2.12μmの孔部が形成された多孔膜を得た。
この多孔膜を分割ホルダに挟着して実施例1のフィルタを得た。
実施例1のフィルタの下流側に、メンブレンフィルタ(ADVANTEC社製、Mixed Cellulose Ester, Pore size 0.8μm)を装着したフィルタを1枚重ね合わせてフィルタ装着部に装着した後、この浮遊微粒子捕集装置を、アスベストが混入したガラス系繊維状粒子を壁に吹き付け処理した室内に持ち込み、吸引手段としての吸引ポンプを稼動して3.5L/分の吸引速度で1時間、室内の大気を吸引した。
浮遊微粒子捕集装置からフィルタを取り出した後、実施例1のフィルタ及びメンブレンフィルタに捕集された浮遊微粒子を、湿式走査型電子顕微鏡(日立製)及びデジタルマイクロスコープ(キーエンス製)を用いて形状観察した。なお、メンブレンフィルタに捕集された浮遊微粒子を観察する場合には、前処理として、アセトン等を用いてメンブレンフィルタの透明化処理を行った。
観察された浮遊微粒子の内、アスペクト比が3以上のものを繊維状粒子として、個数及び長さを計測した。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
Example 1
Optimum temperature of 8 mL of chloroform solution (0.1 to 2 wt% polymer concentration) in which poly-ε-caprolactone with an average molecular weight of 70,000 to 100,000 and amphiphilic polyacrylamide are mixed at a weight ratio of 10: 1 The film is cast on a glass substrate in a formed film forming chamber, high humidity air having a relative humidity of 30 to 80% is blown at a flow rate of 1 to 20 L / min, and chloroform is evaporated to obtain a thickness of 1.5 to A porous film having 2.0 μm, an average pore size of 2.63 μm, a standard deviation of 0.331 μm, a coefficient of variation of 0.12, a maximum of 3.23 μm, and a minimum of 2.12 μm was obtained.
The porous film was sandwiched between the divided holders to obtain the filter of Example 1.
After mounting a filter with a membrane filter (Mixed Cellulose Ester, Pore size 0.8 μm, manufactured by ADVANTEC) on the downstream side of the filter of Example 1 and mounting it on the filter mounting part, this suspended particulate collection device Was brought into a room in which glass fiber particles mixed with asbestos were sprayed onto the wall, and the air in the room was sucked at a suction speed of 3.5 L / min for 1 hour by operating a suction pump as a suction means.
After removing the filter from the suspended particulate collection device, the suspended particulate collected on the filter and membrane filter of Example 1 is shaped using a wet scanning electron microscope (Hitachi) and a digital microscope (made by Keyence). Observed. In addition, when observing the suspended fine particles collected by the membrane filter, the membrane filter was subjected to a transparent treatment using acetone or the like as a pretreatment.
Of the observed suspended fine particles, those having an aspect ratio of 3 or more were regarded as fibrous particles, and the number and length were measured.

(比較例1)
平均分子量70000〜100000のポリ−ε−カプロラクトンと両親媒性ポリアクリルアミドを重量比で10:1の割合で混合したクロロホルム溶液(ポリマー濃度としては0.1〜2wt%)の8mLを、ガラス基板上に流延し、相対湿度30〜80%の高湿度空気を毎分1〜20Lの流量で吹きつけ、クロロホルムを蒸発させることによって、厚さ1.3〜2.3μm、孔径の平均3.07μm、標準偏差0.837μm、変動係数0.27、最大4.73μm、最小1.99μmの孔部が形成された多孔膜を得た。
この多孔膜を分割ホルダに挟着して比較例1のフィルタを得た。
メンブレンフィルタの上流側に、比較例1のフィルタを実施例1のフィルタに代えて装着した以外は、実施例1と同様にして、繊維状粒子の個数、長さ及び太さを計測した。
(Comparative Example 1)
On a glass substrate, 8 mL of a chloroform solution (0.1 to 2 wt% as a polymer concentration) in which poly-ε-caprolactone having an average molecular weight of 70,000 to 100,000 and amphiphilic polyacrylamide were mixed at a weight ratio of 10: 1 By blowing high-humidity air with a relative humidity of 30 to 80% at a flow rate of 1 to 20 L / min and evaporating chloroform to obtain a thickness of 1.3 to 2.3 μm and an average pore size of 3.07 μm. A porous membrane having pores with a standard deviation of 0.837 μm, a coefficient of variation of 0.27, a maximum of 4.73 μm, and a minimum of 1.99 μm was obtained.
The porous film was sandwiched between the divided holders to obtain a filter of Comparative Example 1.
The number, length, and thickness of the fibrous particles were measured in the same manner as in Example 1, except that the filter of Comparative Example 1 was mounted on the upstream side of the membrane filter instead of the filter of Example 1.

繊維状粒子の個数及び長さを計測した結果を、図5及び図6に示す。
図5は実施例1のフィルタ及びメンブレンフィルタに捕集された繊維状粒子の長さと頻度を示す図であり、図6は比較例1のフィルタ及びメンブレンフィルタに捕集された繊維状粒子の長さと頻度を示す図である。なお、図中、黒塗りの点は実施例1又は比較例1のフィルタに捕集された繊維状粒子の計測値であり、白抜きの点はメンブレンフィルタに捕集された繊維状粒子の計測値である。
図5及び図6から明らかなように、比較例1のフィルタでは、長さ5μm以下の繊維状粒子が多数孔部を通過しメンブレンフィルタに捕集されているのに対し、実施例1のフィルタでは、90%以上の高い捕集率でフィルタに捕集できることが確認された。なお、比較例1のフィルタを通過した繊維状粒子の80%は太さ2μm以下(最大4μm、平均1.71μm)、平均長さは8.41μmであった。
以上のように本実施例によれば、多孔膜は孔部の標準偏差が0.5μm以下、又は、孔部の変動係数が0.2以下であって孔径分布が著しく狭いので、アスベスト等の繊維状の浮遊微粒子を捕集する場合の捕集効率を高めることができることが明らかになった。
The results of measuring the number and length of the fibrous particles are shown in FIGS.
FIG. 5 is a diagram showing the length and frequency of the fibrous particles collected on the filter and membrane filter of Example 1, and FIG. 6 is the length of the fibrous particles collected on the filter and membrane filter of Comparative Example 1. It is a figure which shows the frequency. In the figure, the black dots are the measured values of the fibrous particles collected in the filter of Example 1 or Comparative Example 1, and the white dots are the measurements of the fibrous particles collected in the membrane filter. Value.
As apparent from FIGS. 5 and 6, in the filter of Comparative Example 1, fibrous particles having a length of 5 μm or less pass through many pores and are collected by the membrane filter, whereas the filter of Example 1 Then, it was confirmed that the filter can be collected at a high collection rate of 90% or more. In addition, 80% of the fibrous particles that passed through the filter of Comparative Example 1 had a thickness of 2 μm or less (maximum 4 μm, average 1.71 μm), and the average length was 8.41 μm.
As described above, according to this example, the porous membrane has a standard deviation of the pores of 0.5 μm or less, or the variation coefficient of the pores is 0.2 or less and the pore diameter distribution is extremely narrow. It has been clarified that the collection efficiency in collecting the fibrous suspended particulates can be increased.

本発明は、大気中等に浮遊する花粉、黄砂、アスベスト等の浮遊微粒子を捕集する浮遊微粒子捕集装置に関し、フィルタの多孔膜の孔部が変形し難いため捕集された浮遊微粒子の形状や粒度の分析を正確に行うことができ分析の正確性に優れ、またフィルタの構成や製造工程を単純化することができフィルタの生産性に優れ、またフィルタの圧力損失が小さいのに加えて目詰まりし難いため、風路の内径を小さくすることで吸引手段を小型化することができるため、装置構成を単純化して装置を小型・軽量化でき、屋内や屋外に携帯することもできる携帯性に優れ、さらに浮遊微粒子を捕集した後フィルタを直ちに取り出して迅速な機器分析が可能な浮遊微粒子捕集装置を提供することができる。   The present invention relates to a suspended particulate collection device that collects suspended particulates such as pollen, yellow sand, and asbestos that are suspended in the atmosphere, etc., and the shape of the collected suspended particulates because the pores of the porous film of the filter are difficult to deform. The particle size can be accurately analyzed, the accuracy of the analysis is excellent, the filter construction and the manufacturing process can be simplified, the filter productivity is excellent, and the filter pressure loss is small. Since it is difficult to clog, the suction means can be reduced in size by reducing the inner diameter of the air passage. Therefore, the device configuration can be simplified, the device can be reduced in size and weight, and can be carried indoors and outdoors. In addition, it is possible to provide a floating particle collecting apparatus capable of quickly taking out a filter after collecting floating particles and performing rapid instrumental analysis.

実施の形態1における浮遊微粒子捕集装置の垂直方向の要部断面図Sectional drawing of the principal part of the perpendicular direction of the suspended particulate collection apparatus in Embodiment 1. フィルタの分解斜視図Exploded perspective view of filter (a)フィルタの多孔膜の平面図 (b)フィルタの多孔膜の斜視図(A) Plan view of porous membrane of filter (b) Perspective view of porous membrane of filter フィルタ装着部の水平方向の要部断面図Cross-sectional view of the main part of the filter mounting part in the horizontal direction 実施例1のフィルタ及びメンブレンフィルタに捕集された繊維状粒子の長さと頻度Length and frequency of fibrous particles collected in the filter and membrane filter of Example 1 比較例1のフィルタ及びメンブレンフィルタに捕集された繊維状粒子の長さと頻度Length and frequency of fibrous particles collected in the filter and membrane filter of Comparative Example 1

符号の説明Explanation of symbols

1 浮遊微粒子捕集装置
2 筐体
2a 上面開口部
3 風路
4 上流側風路
4a 側面開口部
5 吸気口
6 下流側風路
7 フィルタ装着部
8 フィルタ
9 ホルダ
9a,9b 分割ホルダ
10,10a,10b 貫通孔
11 多孔膜
11a 孔部
12 吸引手段
13 排気口
20 第1支持部
21 側板
22 第2支持部
23 第1支持部貫通孔
24 雄螺子部(押止手段)
25,28 窪み部
26,29 シール部
27 第2支持部貫通孔
DESCRIPTION OF SYMBOLS 1 Airborne particle collection apparatus 2 Housing | casing 2a Upper surface opening part 3 Air path 4 Upstream air path 4a Side surface opening part 5 Inlet 6 Downstream side air path 7 Filter mounting part 8 Filter 9 Holder 9a, 9b Split holder 10, 10a, 10b Through-hole 11 Porous membrane 11a Hole 12 Suction means 13 Exhaust port 20 First support part 21 Side plate 22 Second support part 23 First support part through-hole 24 Male screw part (holding means)
25, 28 Recessed part 26, 29 Seal part 27 Second support part through hole

Claims (1)

多孔膜がホルダに保持されたフィルタを用いて浮遊微粒子を捕集する浮遊微粒子捕集装置であって、
前記フィルタを装入するための開口部を有する筺体と、前記筐体内に貫設され一端に吸気口が形成され他端に排気口が形成された風路と、前記筐体内に配設され前記開口部から装入される1乃至複数枚の前記フィルタが着脱自在に装着され前記多孔膜が前記風路内に配置されるフィルタ装着部と、前記風路に配設された吸引手段と、を備え
前記風路が、一端に前記吸気口が形成された上流側風路と、端部に前記排気口が形成された下流側風路と、を備え、
前記フィルタ装着部が、前記上流側風路と前記下流側風路との間に形成され、前記筐体に固着された第1支持部と、前記第1支持部に貫設され内周面に雌螺子部が螺刻された第1支持部貫通孔と、前記第1支持部と間隔をあけて配設された第2支持部と、前記第2支持部に貫設され前記第1支持部貫通孔と連通する第2支持部貫通孔と、を備え、
前記上流側風路の外周面に前記第1支持部貫通孔の内周面の前記螺子部と螺合し、前記フィルタの前記ホルダと前記上流側風路及び前記下流側風路の端面とを密接させる押止手段としての雄螺子部が形成され、前記下流側風路が前記第2支持部貫通孔に接続されていることを特徴とする浮遊微粒子捕集装置。
A suspended particulate collection device that captures suspended particulates using a filter in which a porous film is held by a holder,
A housing having an opening for inserting the filter, an air passage penetrating into the housing, having an air inlet at one end and an air outlet at the other, and disposed in the housing. A filter mounting portion in which one or a plurality of the filters inserted from the opening portion are detachably mounted and the porous membrane is disposed in the air passage; and suction means disposed in the air passage; Prepared ,
The air path includes an upstream air path in which the intake port is formed at one end, and a downstream air path in which the exhaust port is formed at an end,
The filter mounting portion is formed between the upstream air passage and the downstream air passage, and is fixed to the housing. The first support portion penetrates the first support portion and is formed on the inner peripheral surface. A first support part through-hole into which a female screw part is engraved; a second support part disposed at a distance from the first support part; and the first support part penetrating through the second support part. A second support part through hole communicating with the through hole,
The outer circumferential surface of the upstream air passage is screwed with the screw portion of the inner circumferential surface of the first support portion through hole, and the holder of the filter and the end surfaces of the upstream air passage and the downstream air passage are connected. An apparatus for collecting suspended particulates , wherein a male screw portion is formed as a pressing means for close contact, and the downstream air passage is connected to the second support portion through hole .
JP2006200068A 2006-07-21 2006-07-21 Airborne particulate collection device Expired - Fee Related JP4868512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006200068A JP4868512B2 (en) 2006-07-21 2006-07-21 Airborne particulate collection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006200068A JP4868512B2 (en) 2006-07-21 2006-07-21 Airborne particulate collection device

Publications (2)

Publication Number Publication Date
JP2008023469A JP2008023469A (en) 2008-02-07
JP4868512B2 true JP4868512B2 (en) 2012-02-01

Family

ID=39114660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006200068A Expired - Fee Related JP4868512B2 (en) 2006-07-21 2006-07-21 Airborne particulate collection device

Country Status (1)

Country Link
JP (1) JP4868512B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5734042B2 (en) 2010-06-16 2015-06-10 日東電工株式会社 Waterproof ventilation filter and its use
JP5739699B2 (en) * 2010-06-16 2015-06-24 日東電工株式会社 Waterproof ventilation filter and its use
CN102128775B (en) * 2010-12-29 2013-05-15 河海大学 Detachable constant head permeability coefficient tester
KR101278150B1 (en) 2011-06-27 2013-06-27 한국표준과학연구원 Collecting Apparatus which have a Multi Hole Pipe for Particulate in Air
JP6357658B2 (en) * 2014-03-25 2018-07-18 パナソニックIpマネジメント株式会社 Air purifier
JP6528118B2 (en) * 2014-03-25 2019-06-12 パナソニックIpマネジメント株式会社 Air cleaning device provided with contaminant collection and analysis member
JP6142042B1 (en) 2016-03-18 2017-06-07 株式会社村田製作所 Filtration filter for nucleated cells and filtration method using the same
JP6249124B1 (en) 2017-04-26 2017-12-20 株式会社村田製作所 Filtration filter for nucleated cells and filtration method using the same
JP2020085644A (en) * 2018-11-26 2020-06-04 株式会社セイシン企業 Powder dispersion analysis method and powder dispersion analysis device
JP2022162667A (en) * 2021-04-13 2022-10-25 株式会社光触媒研究院 Removal device and removal method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784060A (en) * 1993-09-20 1995-03-31 Fuji Electric Co Ltd Filter sheet holder, dust collector using the holder and protective cover of the holder
JP2005152849A (en) * 2003-11-27 2005-06-16 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Filter for catching floating particulate, method of catching floating particulate using the same, method of analyzing floating particulate, and catching apparatus of floating particulate

Also Published As

Publication number Publication date
JP2008023469A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4868512B2 (en) Airborne particulate collection device
US10876145B2 (en) Fiber sampler for recovery of bioaerosols and particles
EP2188612B1 (en) Particulate monitor
US8652229B2 (en) Particle filter system incorporating nanofibers
JP4921367B2 (en) System and method for removing contaminants
Kim et al. Moisture effect on particulate matter filtration performance using electro-spun nanofibers including density functional theory analysis
CN114270165A (en) Triggered sampling system and method
US6695146B2 (en) Method for surface deposition of concentrated airborne particles
US6672135B2 (en) Filter for gas analysis
US9541488B2 (en) Particle sampling and measurement in the ambient air
Cao et al. Patterned nanofiber air filters with high optical transparency, robust mechanical strength, and effective PM 2.5 capture capability
Xu et al. Preparation and properties of PTFE hollow fiber membranes for the removal of ultrafine particles in PM 2.5 with repetitive usage capability
CA2807421A1 (en) Fiber sampler for recovery of bioaerosols and particles
US10378042B2 (en) Fiber sampler for recovery of bioaerosols and particles
KR101798268B1 (en) System and method for analyzing pore sizes of substrates
JP2005152849A (en) Filter for catching floating particulate, method of catching floating particulate using the same, method of analyzing floating particulate, and catching apparatus of floating particulate
RU2188693C2 (en) Filtering material
KR20150012535A (en) Carbon particle sampling filter pack and method for measuring carbon mass using the same
US20110293151A1 (en) Method and device for quantifying surface particulate contaminants by improved analysis
JP2022527132A (en) Large particle high performance catalyst tape
JP2005069950A (en) Particulate matter draw-in apparatus
Jeong et al. Humidity-controllable, high-throughput, and portable nanofibrous filter coating system for improving air quality
TWI833984B (en) Triggered sampling systems and methods
CN1257762C (en) Preparation method of detection filter membrane used for bacteria and virus sampling in air
Guo et al. An experimental method for efficiently evaluating the size-resolved sampling efficiency of liquid-absorption aerosol samplers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees