JP4866997B2 - Ceramic porous membrane material with controlled porosity and film thickness - Google Patents

Ceramic porous membrane material with controlled porosity and film thickness Download PDF

Info

Publication number
JP4866997B2
JP4866997B2 JP2003361319A JP2003361319A JP4866997B2 JP 4866997 B2 JP4866997 B2 JP 4866997B2 JP 2003361319 A JP2003361319 A JP 2003361319A JP 2003361319 A JP2003361319 A JP 2003361319A JP 4866997 B2 JP4866997 B2 JP 4866997B2
Authority
JP
Japan
Prior art keywords
film
surface area
ceramic
trehalose
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003361319A
Other languages
Japanese (ja)
Other versions
JP2005126256A (en
Inventor
健 三木
一実 加藤
かおり 西澤
一行 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003361319A priority Critical patent/JP4866997B2/en
Publication of JP2005126256A publication Critical patent/JP2005126256A/en
Application granted granted Critical
Publication of JP4866997B2 publication Critical patent/JP4866997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

本発明は、透明、かつ表面積の高い多孔性のセラミックス膜材料に関するものであり、更に詳しくは、酸化チタンや酸化アルミニウム等のセラミックスを基板上に多孔質に、かつ膜厚を厚く成膜することで、膜の表面積(基板への膜の塗布面積に対する膜内部の実表面積)を著しく高くすることができ、かつ気孔率を制御できる新規セラミックス多孔質膜の膜厚及び気孔率の制御方法、及びセラミックス多孔質膜材料の用途に関するものである。
本発明は、酸化チタン膜等のセラミックス膜材料の技術分野において、例えば、一般的な酸化チタン膜の比表面積と比較して、比表面積が略163m2 /g程度という、きわめて大きい比表面積を有する酸化チタン多孔質膜等の新規セラミックス多孔質膜材料の生産技術及びその応用技術を提供するものとして有用である。
The present invention relates to a porous ceramic film material that is transparent and has a high surface area. More specifically, a ceramic such as titanium oxide or aluminum oxide is formed on a substrate in a porous and thick film. And a method for controlling the film thickness and porosity of a novel ceramic porous film capable of significantly increasing the surface area of the film (actual surface area inside the film relative to the coating area of the film on the substrate) and controlling the porosity, and The present invention relates to the use of a ceramic porous membrane material.
In the technical field of ceramic film materials such as a titanium oxide film, the present invention has a very large specific surface area, for example, a specific surface area of about 163 m 2 / g as compared with a specific surface area of a general titanium oxide film. The present invention is useful as a technique for producing a novel ceramic porous membrane material such as a titanium oxide porous membrane and its application technology.

ゾル・ゲル法でセラミックスの薄膜を作製する場合、一般的には、ディップコーティング法が利用される。ゾル・ゲル法に基づくディップコーティング法では、金属アルコキシド等を含むコーティング溶液を用いて大面積の基板全体にわたって均一なコーティングを比較的容易に行うことができる。また、ディップコーティング法は、コーティングされたセラミックスの種類を変えることにより、基板に、機械的ないし化学的保護、光学的特性、電磁気的特性、及び触媒特性のような新しい機能特性を与えることができる有用な方法である。   When a ceramic thin film is produced by a sol-gel method, a dip coating method is generally used. In the dip coating method based on the sol-gel method, uniform coating can be performed relatively easily over a large substrate using a coating solution containing a metal alkoxide or the like. The dip coating method can also give the substrate new functional properties such as mechanical or chemical protection, optical properties, electromagnetic properties, and catalytic properties by changing the type of coated ceramics. This is a useful method.

従来の方法において開発されたセラミックス多孔質膜は、表面に孔径の揃った細孔を有することが特徴であった(例えば、特許文献1、2及び3参照)。しかし、これらの方法は、膜厚が薄い薄膜の作製には適していたが、μmオーダーの膜を作製するには、コーティング操作を10数回以上繰り返す必要があり、厚い膜を作製することは事実上困難であった。したがって、従来の方法により作製した多孔質膜は、膜自身は多孔質であるが、膜厚が薄いことにより膜の実表面積が低いと言うことになる。また、一般的なディップコーティング法についても、薄膜の作製には適しているが、厚膜の作製には適していないという問題がある。
特開平8−196903号公報 特開平8−245278号公報 特開平10−259074号公報
The porous ceramic membrane developed in the conventional method was characterized by having pores with uniform pore diameters on the surface (see, for example, Patent Documents 1, 2, and 3). However, these methods were suitable for the production of a thin film having a thin film thickness. However, in order to produce a film on the order of μm, it is necessary to repeat the coating operation more than 10 times. It was practically difficult. Therefore, the porous film produced by the conventional method is porous, but the thin film thickness means that the actual surface area of the film is low. The general dip coating method is also suitable for the production of a thin film, but has a problem that it is not suitable for the production of a thick film.
JP-A-8-196903 JP-A-8-245278 Japanese Patent Laid-Open No. 10-259074

このような状況の中で、本発明者らは、上記従来技術に鑑みて、セラミックスを基板上に多孔質に、かつ膜厚を厚く成膜することができる新しい成膜方法を開発することを目標として鋭意研究を積み重ねた結果、溶媒やトレハロースの添加方法を工夫した特定のセラミックスのゾル溶液を基板にコーティングした後、加熱焼成することによって、膜内部に多数の細孔を有し、かつ表面積の高いセラミックス多孔質膜が製造でき、しかも、添加するトレハロース等のオリゴ糖の添加量を変化させることにより気孔率及び膜厚を制御できることを見いだし、更に研究を重ねて、本発明を完成するに至った。
すなわち、本発明は、上記に鑑み、膜内部に多数の細孔を有し、更に、膜厚が厚いことの相乗効果により高い表面積を有し、例えば、触媒や触媒担体、吸着材料、脱臭・消臭材料、徐放性材料、及びセンサーなどとして優れた特性を有する新規セラミックス多孔質膜材料の生産技術及び該セラミックス多孔質膜材料の用途を提供することを目的とするものである。
Under such circumstances, the present inventors have developed a new film forming method capable of forming a ceramic on a substrate in a porous and thick film in view of the above-described conventional technology. As a result of intensive research as a goal, after coating a substrate with a specific ceramic sol solution that devised a method of adding solvent and trehalose, it is heated and fired to have a large number of pores inside the film and surface area. In order to complete the present invention, it was found that a porous ceramic membrane having a high thickness could be produced, and that the porosity and film thickness could be controlled by changing the amount of oligosaccharide such as trehalose added. It came.
That is, in view of the above, the present invention has a large surface area due to a synergistic effect of having a large number of pores inside the membrane and further having a large film thickness, for example, a catalyst, a catalyst carrier, an adsorbing material, a deodorizing / It is an object of the present invention to provide a production technology for a novel ceramic porous membrane material having excellent characteristics as a deodorant material, a sustained release material, a sensor, and the like, and a use of the ceramic porous membrane material.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)ゾル・ゲル法により、セラミックスの均一なゾル溶液を基板上にコーティングし、乾燥し、加熱処理して、気孔率が38〜56%のセラミックス多孔質膜を製造する方法において、該セラミックス多孔質膜の表面積を制御する方法であって、
均一なセラミックスのゾル溶液を調製するプロセスでゾルが生成する前に該溶液にトレハロースを添加してゾルの分散性と溶液の均一性を高くすることにより、基板上に作製されるセラミックス多孔質膜の膜内に分布するメソ細孔を含む表面積がBET比表面積で163m /g程度の高表面積になるように制御することを特徴とするセラミックス多孔質膜の表面積の制御方法。
(2)金属アルコキシドをトレハロースを含む溶媒に滴下するか、金属アルコキシドを溶媒に滴下し、沈殿が得られた後にトレハロースを添加する、前記(1)記載の方法。
)膜の細孔直径が略7nmである、前記(1)又は(2)記載の方法。
)1回のコーティング操作による膜厚が、0.23〜0.74μmである、前記(1)又は(2)記載の方法。
)コーティング−加熱処理の操作を繰り返して膜厚を増加させる、前記(1)又は(2)記載の方法。
)前記(1)から()のいずれかに記載された方法を使用して表面積を制御したセラミックス多孔質膜材料であって、内部に多数のメソ細孔が分布し、1回のコーティング操作による膜厚が0.23〜0.74μmで、気孔率が38〜56%で、膜内に分布するメソ細孔を含む表面積がBET比表面積で略163m/gの高表面積を有するセラミックス多孔質膜から構成されることを特徴とするセラミックス多孔質膜材料。
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for producing a ceramic porous film having a porosity of 38 to 56% by coating a uniform sol solution of a ceramic on a substrate by a sol-gel method, drying, and heat treatment. A method for controlling the surface area of a porous membrane,
Porous ceramic film produced on a substrate by adding trehalose to the solution before the sol is formed in the process of preparing a uniform ceramic sol solution to increase the dispersibility of the sol and the uniformity of the solution. A method for controlling the surface area of a porous ceramic film, wherein the surface area including mesopores distributed in the film is controlled so as to have a high BET specific surface area of about 163 m 2 / g .
(2) The method according to (1) above, wherein the metal alkoxide is dropped into a solvent containing trehalose , or the metal alkoxide is dropped into the solvent, and trehalose is added after a precipitate is obtained.
( 3 ) The method according to (1) or (2) above, wherein the pore diameter of the membrane is about 7 nm.
( 4 ) The method according to (1) or (2) above, wherein the film thickness by one coating operation is 0.23 to 0.74 μm.
( 5 ) The method according to (1) or (2), wherein the film thickness is increased by repeating the coating-heat treatment operation.
(6) the a ceramic porous membrane material with a controlled surface area using the method described in any one of (1) to (5), and a number of mesopores distributed inside, once thickness by the coating operation in 0.23~0.74Myuemu, with porosity of 38-56%, the surface area including the mesopore distributed within the membrane has a high surface area of approximately 163m 2 / g in BET specific surface area A ceramic porous membrane material comprising a ceramic porous membrane.

次に、本発明について更に詳細に説明する。
本発明に用いられるセラミックスのゾル溶液は、金属アルコキシドを溶媒(蒸留水)に滴下し、加水分解して得られる沈殿を酸又はアルカリを添加して加熱することにより、沈殿を解膠させて得られる。本発明では、金属アルコキシドを滴下させる溶媒(蒸留水)に予めオリゴ糖類を溶解させておくか、あるいは金属アルコキシドを溶媒(蒸留水)に滴下し、沈殿が得られた後にオリゴ糖類を溶解させることにより、その後の同様な操作によって均一なセラミックスのゾル溶液を得ることができる。以下、オリゴ糖として、トレハロースを用いた場合を例として本発明を説明する。
Next, the present invention will be described in more detail.
The sol solution of ceramics used in the present invention is obtained by dropping a metal alkoxide into a solvent (distilled water) and heating the precipitate obtained by hydrolysis by adding an acid or alkali to peptize the precipitate. It is done. In the present invention, the oligosaccharide is dissolved in a solvent (distilled water) in which the metal alkoxide is dropped in advance, or the oligosaccharide is dissolved after the metal alkoxide is dropped in the solvent (distilled water) and a precipitate is obtained. Thus, a uniform ceramic sol solution can be obtained by the same operation thereafter. Hereinafter, the present invention will be described with reference to an example in which trehalose is used as the oligosaccharide.

上記均一なセラミックスのゾル溶液を得るプロセスにおいて、一度ゾルが生成した後にトレハロースを添加した場合、ゾルが生成する前にトレハロースを添加した場合に較べて、ゾルの光散乱の度合いが高く、透明性が低い。したがって、ゾルが生成する前にトレハロースを添加することにより、ゾルの分散性が高くなり、溶液の均一性が高くなる。本発明では、ゾルが生成する前にトレハロースを添加すること、均一なゾル溶液を用いること、が重要である。上記方法で得られた均一なゾル溶液を用いることによって、直径約15〜25nmのセラミックス微粒子から構成され、内部に多数の細孔を多数有し、膜厚が0.23〜0.74μm(1回のディップコーティング操作による)、かつ気孔率が38〜56%の高表面積を有する耐久性に優れたセラミックス多孔質膜を製造することができる。   In the above-mentioned process for obtaining a uniform ceramic sol solution, when trehalose is added after the sol has been formed, the degree of light scattering of the sol is higher and the transparency is higher than when trehalose is added before the sol is formed. Is low. Therefore, by adding trehalose before the sol is formed, the dispersibility of the sol increases and the uniformity of the solution increases. In the present invention, it is important to add trehalose before the sol is formed and to use a uniform sol solution. By using the uniform sol solution obtained by the above method, it is composed of ceramic fine particles having a diameter of about 15 to 25 nm, has a large number of pores inside, and has a film thickness of 0.23 to 0.74 μm (1 It is possible to produce a ceramic porous membrane with excellent durability having a high surface area with a porosity of 38 to 56%.

本発明において、セラミックスのゾル溶液を調製するための金属アルコキシドとしては、全ての金属アルコキシドが用いられ、例えば、Al、B、Ba、Ca、Cd、Ce、Co、Cr、Cu、Fe、Ge、Hf、In、Li、Mg、Mn、Mo、Nb、Ni、P、Pb、Ru、Si、Sn、Sr、Ta、Ti、V、W、Y、Zrのアルコキシドが例示され、特に、Ti、Al等のアルコキシドが好適なものとして例示されるが、ゾルを形成するものであれば適宜使用でき、これらに制限されるものではない。
本発明では、添加する有機化合物としてはオリゴ糖類が用いられ、例えば、水溶性のトレハロースが好適なものとして例示されるが、これに限らず、同効のものであれば同様に使用することができる。
In the present invention, all metal alkoxides are used as the metal alkoxide for preparing the ceramic sol solution. For example, Al, B, Ba, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ge, Examples include alkoxides of Hf, In, Li, Mg, Mn, Mo, Nb, Ni, P, Pb, Ru, Si, Sn, Sr, Ta, Ti, V, W, Y, and Zr, particularly Ti, Al Although alkoxides such as these are exemplified as suitable, they can be appropriately used as long as they form a sol, and are not limited thereto.
In the present invention, an oligosaccharide is used as the organic compound to be added, and for example, water-soluble trehalose is exemplified as a suitable one. it can.

オリゴ糖類の添加量は、5〜15g/dLが好適である。これを下回る添加量の場合、気孔率が低くなり、また、これを上回る添加量の場合、膜内に気泡あるいは亀裂が生じて均質な膜ができない可能性がある。添加する酸又はアルカリとしては、例えば、硝酸、塩酸、アンモニア水が好適なものとして例示されるが、これらに制限されない。
均一なゾル溶液を基板上にコーティングする方法としては、例えば、ディップコーティング法、スピンコーティング法、スクリーンプリンティング法、スプレー法などが好適なものとして例示されるが、トレハロースを含むゾル溶液を基板上に均一にコーティングできる方法であれば適宜使用でき、これらに制限されるものではない。
The addition amount of the oligosaccharide is preferably 5 to 15 g / dL. When the addition amount is less than this, the porosity is lowered, and when the addition amount is more than this, there is a possibility that bubbles or cracks are generated in the film and a homogeneous film cannot be formed. Examples of the acid or alkali to be added include nitric acid, hydrochloric acid, and aqueous ammonia, but are not limited thereto.
As a method for coating a uniform sol solution on a substrate, for example, a dip coating method, a spin coating method, a screen printing method, a spray method, and the like are preferable examples, but a sol solution containing trehalose is coated on a substrate. Any method that allows uniform coating can be used as appropriate, and the method is not limited thereto.

加熱の条件は、トレハロースが焼失する400℃以上であれば問題は無いが、加熱処理温度の上昇とともに焼結が進行するために膜の表面積が小さくなるので、400℃以上で基板と膜との付着性が低くならない限り低い温度、好適には400〜500℃が望ましい。
基板としては、例えば、ガラス、ネサガラス、セラミックス、コンクリート、金属などが例示されるが、これらに限らず、加熱処理温度に耐えられるものであれば、どのような材質であっても良い。また、その形状も、例えば、板状、円筒状、角柱状、円錐状、球状、ファイバー状など、どのような形であっても良い。
There is no problem if the heating conditions are 400 ° C. or higher at which trehalose is burned off, but since the surface area of the film decreases because the sintering progresses as the heat treatment temperature rises, the substrate and the film are heated at 400 ° C. or higher. A low temperature, preferably 400 to 500 ° C., is desirable as long as adhesion does not decrease.
Examples of the substrate include glass, nesa glass, ceramics, concrete, and metal. However, the substrate is not limited thereto, and any material may be used as long as it can withstand the heat treatment temperature. Further, the shape may be any shape such as a plate shape, a cylindrical shape, a prism shape, a conical shape, a spherical shape, and a fiber shape.

本発明では、上記方法で得られた均一なゾル溶液を、例えば、ディップコーティング法、スピンコーティング法、スクリーンプリンティング法、スプレー法などにより、基板上にコーティングし、液膜をコーティングした基板を乾燥した後、400℃以上の温度で加熱処理して成膜する。本発明では、上記コーティング及び加熱処理の操作を繰り返し、膜厚を増加させることができる。
本発明では、トレハロースの添加量を、例えば、ゾル溶液100mlあたり5〜15g/dLに調整することにより、1回のディップコーティング操作において膜厚を0.23〜0.74μmに制御でき、また、気孔率を38〜56%の範囲に制御できる。
In the present invention, the uniform sol solution obtained by the above method is coated on the substrate by, for example, dip coating method, spin coating method, screen printing method, spray method, etc., and the substrate coated with the liquid film is dried. Thereafter, heat treatment is performed at a temperature of 400 ° C. or higher to form a film. In the present invention, the above coating and heat treatment operations can be repeated to increase the film thickness.
In the present invention, by adjusting the amount of trehalose added to, for example, 5 to 15 g / dL per 100 ml of the sol solution, the film thickness can be controlled to 0.23 to 0.74 μm in one dip coating operation. The porosity can be controlled in the range of 38 to 56%.

本発明により作製されるセラミックス多孔質膜材料は、特に、1)内部に多数の細孔(例えば、細孔直径が略7nm程度)を有する、2)膜厚は、1回のディップコーティング操作で0.23〜0.74μmである、3)気孔率が38〜56%である、4)高表面積(例えば、比表面積が略163m2 /g程度)である、5)基板との付着性が高い、6)膜の透明性が高い、7)膜の均一性が高い、及び、8)セラミックスの種類を変えることにより、所定の機能特性を付与することができる等の特性を有する。 The ceramic porous membrane material produced by the present invention is particularly 1) having a large number of pores inside (for example, pore diameter of about 7 nm), and 2) the film thickness can be obtained by a single dip coating operation. 3) Porosity is 38 to 56%, 4) High surface area (for example, specific surface area is about 163 m 2 / g), and 5) Adhesion with substrate. High, 6) high transparency of the film, 7) high uniformity of the film, and 8) by changing the kind of ceramics, it can have predetermined functional characteristics.

一般的に、ゾル・ゲル法による酸化物薄膜の作製において、焼結が起こりにくい比較的低い加熱処理温度では、乾燥過程での溶媒の蒸発痕等の影響により多孔質な膜が得られやすい。本発明では、原料溶液にトレハロースを添加することにより、トレハロースが乾燥過程で溶媒(水)の蒸発後もゲル膜中に留まり、加熱処理過程で残存するトレハロースが焼失することでより多くの細孔が形成される。また、トレハロース二水和物の融点は97℃であり、約130℃で結晶水を失って無水物となり、更に、無水物の融点は203℃である。   In general, in the production of an oxide thin film by a sol-gel method, a porous film is easily obtained at a relatively low heat treatment temperature at which sintering hardly occurs due to the influence of solvent evaporation marks during the drying process. In the present invention, by adding trehalose to the raw material solution, trehalose remains in the gel film even after evaporation of the solvent (water) in the drying process, and the trehalose remaining in the heat treatment process burns away, so that more pores are obtained. Is formed. Trehalose dihydrate has a melting point of 97 ° C., loses water of crystallization at about 130 ° C. to become an anhydride, and the anhydride has a melting point of 203 ° C.

これらのことから、ゲル膜中のトレハロースについては、加熱処理過程における200℃付近までの昇温時に、コーティングされた液膜中に残存するトレハロースが溶融・液化し、膜に可塑性を付与することにより、膜収縮に起因する応力を緩和し、基板からの剥離及び亀裂の発生を防ぐことが可能になる、と考えられる。それ以上の加熱温度では、トレハロースが酸化チタン膜の収縮、すなわち、ゾル粒子間の接近を防ぐことにより厚い酸化チタン多孔質膜の作製が可能となる。更に、トレハロースが燃焼焼失することにより細孔が形成されるが、コーティング溶液中のトレハロースの添加量を変えることにより、ゲル膜中に留まるトレハロースの体積が変化することになり、それによって、気孔率も変化する。   From these facts, trehalose in the gel film is melted and liquefied when trehalose remaining in the coated liquid film is melted and liquefied when the temperature is raised to about 200 ° C. It is considered that the stress caused by the film shrinkage can be relaxed, and peeling and cracking from the substrate can be prevented. At higher heating temperatures, trehalose prevents the titanium oxide film from shrinking, that is, prevents the sol particles from approaching each other, making it possible to produce a thick titanium oxide porous film. Furthermore, although trehalose burns and burns, pores are formed, but by changing the amount of trehalose added in the coating solution, the volume of trehalose remaining in the gel film changes, thereby increasing the porosity. Also changes.

本発明によれば、(1)透明、かつ多孔質で気孔率が制御された酸化チタン膜等のセラミックス膜材料を作製することができる、(2)トレハロースの含有量を調整することにより、酸化チタン膜等のセラミックス膜の膜厚を1回のディップコーティング操作で、膜厚を0.23〜0.74μm、かつ気孔率を38〜56%の範囲に制御できる、(3)更に、例えば、直径略7nmの細孔を内部に有し、略163m2 /gの比表面積を有する高表面積な酸化チタン膜を作製できる、(4)本発明で開発した酸化チタン膜等のセラミックス膜材料は、セラミックスの種類を変えることにより、触媒、吸着、脱臭、消臭、徐放性、センサー特性等の所定の機能特性を付与することが可能であり、それにより、例えば、光触媒、吸着剤、脱臭・消臭剤、色素増感太陽電池、センサー材料等の様々な材料に適用できる、という効果が奏される。 According to the present invention, (1) it is possible to produce a ceramic film material such as a titanium oxide film that is transparent, porous, and controlled in porosity, and (2) is oxidized by adjusting the trehalose content. The film thickness of a ceramic film such as a titanium film can be controlled within a range of 0.23 to 0.74 μm and the porosity within a range of 38 to 56% by one dip coating operation. (3) Further, for example, A high surface area titanium oxide film having pores of about 7 nm in diameter and a specific surface area of about 163 m 2 / g can be produced. (4) Ceramic film materials such as a titanium oxide film developed in the present invention are: By changing the type of ceramic, it is possible to give predetermined functional characteristics such as catalyst, adsorption, deodorization, deodorization, sustained release, sensor characteristics, etc., thereby, for example, photocatalyst, adsorbent, deodorization deodorize Can be applied a dye-sensitized solar cell, a variety of materials, such as sensor materials, the effect is exhibited that.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

(1)セラミックスのゾル溶液の調製
本実施例では、酸化チタン多孔質膜を作製した。
酸化チタン多孔質膜を作製するためのディップコーティング溶液となるトレハロースを含有する酸化チタンゾル溶液の作製は、以下のように行った。300mlの蒸留水に所定量のトレハロース二水和物を溶解した。このトレハロース水溶液にチタン酸テトライソプロピル(56.6ml)/イソプロパノール(50ml)溶液を徐々に滴下し、チタンのアルコキシドの加水分解を行った。生成した白色の懸濁液に濃硝酸(2.5ml)を加え、約80℃に加熱してイソプロパノールの除去とともに解膠を行った。引き続き、同じ温度で加熱を続け、ゾル溶液を100mlの体積まで濃縮した。同様にトレハロースの含有量を変えた溶液を数種類調製した。
(1) Preparation of ceramic sol solution In this example, a titanium oxide porous film was prepared.
A titanium oxide sol solution containing trehalose, which is a dip coating solution for producing a titanium oxide porous film, was produced as follows. A predetermined amount of trehalose dihydrate was dissolved in 300 ml of distilled water. A tetraisopropyl titanate (56.6 ml) / isopropanol (50 ml) solution was gradually added dropwise to the aqueous trehalose solution to hydrolyze the titanium alkoxide. Concentrated nitric acid (2.5 ml) was added to the resulting white suspension and heated to about 80 ° C. to remove the isopropanol and peptize. Subsequently, heating was continued at the same temperature, and the sol solution was concentrated to a volume of 100 ml. Similarly, several types of solutions with different trehalose contents were prepared.

(2)多孔質膜の作製
作製したコーティング溶液をディップコーティング装置を用いて、0.10〜0.50mm/secの速度でガラス基板上にコーティングし、乾燥後、500℃の電気炉で大気中30min加熱処理して酸化チタン膜を作製した。
(2) Production of porous membrane The produced coating solution was coated on a glass substrate at a rate of 0.10 to 0.50 mm / sec using a dip coating apparatus, dried, and then in the atmosphere in an electric furnace at 500 ° C. A titanium oxide film was prepared by heat treatment for 30 minutes.

(3)測定方法
作製した酸化チタン多孔質膜の微構造を調べるために、走査型電子顕微鏡(SEM)を用いて、膜の表面観察を行った。また、膜厚を測定するために、同様に膜の断面観察を行った。
作製した酸化チタン膜の気孔率を評価するために、コーティングされた酸化チタン膜の面積を測定し、断面観察より得られた膜厚を用いて膜の見かけの体積を算出した。更に、コーティング前後のガラス基板の重量を秤量し、コーティングされた酸化チタン膜のみの重量を算出し、この値と酸化チタンの密度(3.90g/cm3 )から気孔率0%(細孔が一切無い)とした場合の酸化チタン膜の理論体積を計算した。これら膜の理論体積と見かけの体積の比率から酸化チタン膜の気孔率を算出した。
作製した酸化チタン多孔質膜のBET比表面積及び細孔径を算出するために、ガラス基板(5×24×0.15mm)上に酸化チタン多孔質膜を成膜した試料30枚をガス吸着装置の試料管に挿入し、200℃で減圧脱気の後、液体窒素温度(77K)で窒素ガスの吸着・脱着等温線を測定した。
(3) Measuring method In order to investigate the microstructure of the produced porous titanium oxide membrane, the surface of the membrane was observed using a scanning electron microscope (SEM). Further, in order to measure the film thickness, the cross section of the film was similarly observed.
In order to evaluate the porosity of the produced titanium oxide film, the area of the coated titanium oxide film was measured, and the apparent volume of the film was calculated using the film thickness obtained from cross-sectional observation. Further, the weight of the glass substrate before and after coating was weighed, and the weight of only the coated titanium oxide film was calculated. From this value and the density of titanium oxide (3.90 g / cm 3 ), the porosity was 0% (the pores were reduced). The theoretical volume of the titanium oxide film was calculated. The porosity of the titanium oxide film was calculated from the ratio between the theoretical volume and the apparent volume of these films.
In order to calculate the BET specific surface area and pore diameter of the produced titanium oxide porous membrane, 30 samples each having a titanium oxide porous membrane formed on a glass substrate (5 × 24 × 0.15 mm) were used as a gas adsorption device. After inserting into a sample tube and degassing under reduced pressure at 200 ° C., adsorption / desorption isotherm of nitrogen gas was measured at liquid nitrogen temperature (77K).

(4)結果
酸化チタンゾル(15g/dL)溶液は、トレハロースを5,10,15g/dL溶液の濃度で添加した3種類を調製した。これらの溶液をそれぞれ用いてディップコーティング法で1回コーティングと500℃での加熱処理を行って酸化チタン膜を作製した。作製した酸化チタン多孔質膜は、いずれの膜も透明で均質な膜であった。また、図1に示すように、SEMによる膜表面の観察の結果から、作製した酸化チタン膜は、直径約20nmのセラミックス微粒子から構成され、かつ内部に多数の細孔を有する微構造を持つことが分かった。
(4) Results Three types of titanium oxide sol (15 g / dL) solutions were prepared by adding trehalose at a concentration of 5, 10, 15 g / dL solution. Each of these solutions was coated once by a dip coating method and heat-treated at 500 ° C. to prepare a titanium oxide film. The produced titanium oxide porous films were transparent and homogeneous. Further, as shown in FIG. 1, from the result of observation of the film surface by SEM, the produced titanium oxide film is composed of ceramic fine particles having a diameter of about 20 nm and has a fine structure having many pores inside. I understood.

それぞれの酸化チタン多孔質膜について、SEMの断面観察を行い、膜厚を測定し、基板引き上げ速度と膜厚との関係を調べた。その結果を図2に示す。この図から明らかなように、基板引き上げ速度の増加にともない、酸化チタン膜の膜厚が増加することが確認できた。1回のコーティング操作で最大約0.74μmの膜厚が得られた。また、トレハロースの添加効果を分かりやすくするため、基板引き上げ速度が0.40mm/secの場合におけるディップコーティング溶液中のトレハロースの添加量と酸化チタン膜の膜厚の関係を図3に示した。この図から、トレハロース添加量の増加とともに酸化チタン膜の膜厚が増加することが明らかとなった。一般的なディップコーティングにおいて、コーティング速度を速めるなどしてコーティング溶液の液厚を増加させた場合には、熱処理後の膜にクラックや剥離などが生じることが多々ある。しかし、トレハロースを添加したゾル溶液では、液膜及び膜厚が厚いにもかかわらず、均質な膜を作製することができた。   About each titanium oxide porous film, the cross-sectional observation of SEM was performed, the film thickness was measured, and the relationship between a board | substrate pulling-up speed and a film thickness was investigated. The result is shown in FIG. As is clear from this figure, it was confirmed that the film thickness of the titanium oxide film increased as the substrate pulling rate increased. A maximum film thickness of about 0.74 μm was obtained in one coating operation. In order to facilitate understanding of the effect of adding trehalose, FIG. 3 shows the relationship between the added amount of trehalose in the dip coating solution and the thickness of the titanium oxide film when the substrate pulling rate is 0.40 mm / sec. From this figure, it became clear that the film thickness of the titanium oxide film increased as the amount of trehalose added increased. In general dip coating, when the coating thickness is increased by increasing the coating speed or the like, the film after heat treatment often has cracks or peeling. However, with the sol solution to which trehalose was added, a homogeneous film could be produced despite the thick liquid film and film thickness.

作製した酸化チタン膜の気孔率を算出した。図4に、トレハロースの添加量と気孔率の関係を示した。この図から分かるように、トレハロースの添加量とともに気孔率が増加した。気孔率がトレハロースの添加量とともに増加していることから、トレハロースの添加は単に膜厚を増加させるだけではなく、酸化チタン膜の膜構造を多孔化させる効果があると結論される。これは、トレハロースの添加量を制御することにより、酸化チタン膜の気孔率あるいは表面積を制御できることを意味するものである。
作製した酸化チタン膜のBET比表面積及び細孔径を算出した。トレハロース濃度15g/dLの溶液を用いて、ガラス基板上に引き上げ速度0.50mm/secでコーティングし、500℃で加熱処理した膜の吸着・脱着等温線(N2 ,77K)を図5に示した。この図から、吸着と脱着等温線との間にヒステリシスがあることから、膜内にメソ細孔が分布することが分かった。BET比表面積を算出したところ、略163m2 /gと非常に高い表面積を有することが分かった。脱着等温線を解析して、図6に示す細孔径分布を求めた。この図から、主ピークが半径3.5nmにあり、膜内に直径略7nmの細孔が多数分布していることが分かった。
The porosity of the produced titanium oxide film was calculated. FIG. 4 shows the relationship between the added amount of trehalose and the porosity. As can be seen from this figure, the porosity increased with the amount of trehalose added. Since the porosity increases with the amount of trehalose added, it can be concluded that the addition of trehalose not only increases the film thickness, but also has the effect of making the titanium oxide film porous. This means that the porosity or surface area of the titanium oxide film can be controlled by controlling the amount of trehalose added.
The BET specific surface area and pore diameter of the produced titanium oxide film were calculated. Fig. 5 shows adsorption / desorption isotherms (N 2 , 77K) of a film coated with a trehalose concentration of 15 g / dL on a glass substrate at a pulling rate of 0.50 mm / sec and heat-treated at 500 ° C. It was. From this figure, it was found that mesopores are distributed in the membrane because there is hysteresis between the adsorption and desorption isotherms. When the BET specific surface area was calculated, it was found to have a very high surface area of approximately 163 m 2 / g. The desorption isotherm was analyzed to determine the pore size distribution shown in FIG. From this figure, it was found that the main peak was at a radius of 3.5 nm, and many pores having a diameter of about 7 nm were distributed in the film.

以上詳述したように、本発明は、ゾル・ゲル法により調製したディップコーティング溶液に予めトレハロース等のオリゴ糖類を添加することにより、透明、かつ多孔質で気孔率が制御された酸化チタン膜等のセラミックス多孔質膜を作製することを可能とするものであり、本発明によれば、トレハロースの含有量を調整することにより、酸化チタン膜等のセラミックス膜の膜厚を1回のディップコーティング操作で、膜厚を0.23〜0.74μm、かつ気孔率を38〜56%の範囲に制御できる。更に、例えば、直径略7nmの細孔を内部に有し、略163m2 /gの比表面積を有する高表面積な酸化チタン膜を作製できる。本発明で開発した酸化チタン膜等のセラミックス多孔質膜材料は、例えば、光触媒、色素増感太陽電池、センサー材料等の様々な材料に適用できる。 As described above in detail, the present invention provides a transparent, porous, and controlled porosity oxide oxide film by adding an oligosaccharide such as trehalose to a dip coating solution prepared by a sol-gel method. According to the present invention, by adjusting the content of trehalose, the thickness of the ceramic film such as a titanium oxide film can be reduced by one dip coating operation. Thus, the film thickness can be controlled within the range of 0.23 to 0.74 μm and the porosity within the range of 38 to 56%. Further, for example, a high surface area titanium oxide film having pores with a diameter of about 7 nm inside and a specific surface area of about 163 m 2 / g can be produced. The ceramic porous film material such as a titanium oxide film developed in the present invention can be applied to various materials such as a photocatalyst, a dye-sensitized solar cell, and a sensor material.

酸化チタン膜の表面SEM写真を示す。The surface SEM photograph of a titanium oxide film is shown. 基板引き上げ速度と酸化チタン膜の膜厚との関係を示す。The relationship between a board | substrate pulling-up speed | rate and the film thickness of a titanium oxide film is shown. トレハロース添加量と酸化チタン膜の膜厚との関係を示す。The relationship between the amount of trehalose added and the thickness of the titanium oxide film is shown. トレハロース添加量と酸化チタン膜の気孔率との関係を示す。The relationship between the amount of trehalose added and the porosity of the titanium oxide film is shown. 酸化チタン膜の77Kでの窒素ガスの吸着・脱着等温線を示す。3 shows adsorption / desorption isotherms of nitrogen gas at 77K of a titanium oxide film. 酸化チタン膜の細孔径分布を示す。The pore diameter distribution of a titanium oxide film is shown.

Claims (6)

ゾル・ゲル法により、セラミックスの均一なゾル溶液を基板上にコーティングし、乾燥し、加熱処理して、気孔率が38〜56%のセラミックス多孔質膜を製造する方法において、該セラミックス多孔質膜の表面積を制御する方法であって、
均一なセラミックスのゾル溶液を調製するプロセスでゾルが生成する前に該溶液にトレハロースを添加してゾルの分散性と溶液の均一性を高くすることにより、基板上に作製されるセラミックス多孔質膜の膜内に分布するメソ細孔を含む表面積がBET比表面積で163m /g程度の高表面積になるように制御することを特徴とするセラミックス多孔質膜の表面積の制御方法。
In a method for producing a ceramic porous film having a porosity of 38 to 56% by coating a substrate with a uniform sol solution of ceramic by a sol-gel method, drying, and heat-treating the ceramic porous film, A method for controlling the surface area of
Porous ceramic film produced on a substrate by adding trehalose to the solution before the sol is formed in the process of preparing a uniform ceramic sol solution to increase the dispersibility of the sol and the uniformity of the solution. A method for controlling the surface area of a porous ceramic film, wherein the surface area including mesopores distributed in the film is controlled so as to have a high BET specific surface area of about 163 m 2 / g .
金属アルコキシドをトレハロースを含む溶媒に滴下するか、金属アルコキシドを溶媒に滴下し、沈殿が得られた後にトレハロースを添加する、請求項1記載の方法。 The method according to claim 1, wherein the metal alkoxide is dropped into a solvent containing trehalose or the metal alkoxide is dropped into the solvent, and trehalose is added after a precipitate is obtained. 膜の細孔直径が略7nmである、請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the pore diameter of the membrane is approximately 7 nm. 1回のコーティング操作による膜厚が、0.23〜0.74μmである、請求項1又は2記載の方法。   The method of Claim 1 or 2 whose film thickness by one coating operation is 0.23-0.74 micrometer. コーティング−加熱処理の操作を繰り返して膜厚を増加させる、請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the coating-heat treatment operation is repeated to increase the film thickness. 請求項1からのいずれかに記載された方法を使用して表面積を制御したセラミックス多孔質膜材料であって、内部に多数のメソ細孔が分布し、1回のコーティング操作による膜厚が0.23〜0.74μmで、気孔率が38〜56%で、膜内に分布するメソ細孔を含む表面積がBET比表面積で略163m/gの高表面積を有するセラミックス多孔質膜から構成されることを特徴とするセラミックス多孔質膜材料。 A ceramic porous membrane material with a controlled surface area using the method described in any one of claims 1 to 5, and a number of mesopores distribution therein, the film thickness by a single coating operation A ceramic porous membrane having a high surface area of 0.23 to 0.74 μm, a porosity of 38 to 56%, and a surface area including mesopores distributed in the membrane having a BET specific surface area of approximately 163 m 2 / g. A porous ceramic membrane material characterized by the above.
JP2003361319A 2003-10-21 2003-10-21 Ceramic porous membrane material with controlled porosity and film thickness Expired - Lifetime JP4866997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003361319A JP4866997B2 (en) 2003-10-21 2003-10-21 Ceramic porous membrane material with controlled porosity and film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003361319A JP4866997B2 (en) 2003-10-21 2003-10-21 Ceramic porous membrane material with controlled porosity and film thickness

Publications (2)

Publication Number Publication Date
JP2005126256A JP2005126256A (en) 2005-05-19
JP4866997B2 true JP4866997B2 (en) 2012-02-01

Family

ID=34641300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003361319A Expired - Lifetime JP4866997B2 (en) 2003-10-21 2003-10-21 Ceramic porous membrane material with controlled porosity and film thickness

Country Status (1)

Country Link
JP (1) JP4866997B2 (en)

Also Published As

Publication number Publication date
JP2005126256A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
US5006248A (en) Metal oxide porous ceramic membranes with small pore sizes
JP2873293B2 (en) Composite membrane and method for producing the same
Breulmann et al. Polymer–Gel Templating of Porous Inorganic Macro‐Structures Using Nanoparticle Building Blocks
US5104539A (en) Metal oxide porous ceramic membranes with small pore sizes
JP2011502936A (en) Photoelectrode
JPH05192545A (en) Supported porous ceramic membrane
Liu et al. Synthesis, characterization, photoluminescence and ferroelectric properties of PbTiO3 nanotube arrays
Ben‐Arfa et al. A hundred times faster: Novel, rapid sol‐gel synthesis of bio‐glass nanopowders (Si‐Na‐Ca‐P system, Ca: P= 1.67) without aging
Miki et al. Preparation of nanoporous TiO2 film with large surface area using aqueous sol with trehalose
EP0425252B1 (en) Metal oxide porous ceramic membranes with small pore sizes
Li et al. Sol-gel derived zirconia membrane on silicon carbide substrate
JP4051432B2 (en) Porous ceramic membrane in which porosity and film thickness are controlled simultaneously and method for producing the same
US5169576A (en) Method of making metal oxide ceramic membranes with small pore sizes
JP4866997B2 (en) Ceramic porous membrane material with controlled porosity and film thickness
JP4427545B2 (en) Titania composite membrane for water / alcohol separation and method for producing the same
JPH05193943A (en) Method for preparing reduced titanium oxide
Saal et al. Micro-and nanoscale structures by sol-gel processing
JP4724858B2 (en) Porous composite and method for producing the same
JP4117371B2 (en) Silica-titania composite membrane, production method thereof and composite structure
JP4482679B2 (en) Method for producing silica thin film on substrate surface having arbitrary surface characteristics and surface shape, and composite structure
Ryu et al. Fabrication of Ag nanoparticles-coated macroporous SiO2 structure by using polystyrene spheres
JP3579713B2 (en) Method for producing ceramic porous membrane having high surface area
CN108568218B (en) Preparation method of porous graphene membrane and application of porous graphene membrane in aspect of carbon dioxide capture
JP4963223B2 (en) Method for producing metal oxide thin film with controlled surface microstructure and metal oxide thin film
JP2010030806A (en) Method for producing glass ceramic self-supported film, and film by it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081016

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081202

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4866997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term