JP4866334B2 - 頻度補正装置とその方法、それらを用いた情報抽出装置と情報抽出方法、それらのプログラム - Google Patents

頻度補正装置とその方法、それらを用いた情報抽出装置と情報抽出方法、それらのプログラム Download PDF

Info

Publication number
JP4866334B2
JP4866334B2 JP2007306101A JP2007306101A JP4866334B2 JP 4866334 B2 JP4866334 B2 JP 4866334B2 JP 2007306101 A JP2007306101 A JP 2007306101A JP 2007306101 A JP2007306101 A JP 2007306101A JP 4866334 B2 JP4866334 B2 JP 4866334B2
Authority
JP
Japan
Prior art keywords
frequency
information
word
correction
statistical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007306101A
Other languages
English (en)
Other versions
JP2009128797A (ja
Inventor
哲郎 甘粕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007306101A priority Critical patent/JP4866334B2/ja
Publication of JP2009128797A publication Critical patent/JP2009128797A/ja
Application granted granted Critical
Publication of JP4866334B2 publication Critical patent/JP4866334B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、例えば音声認識した結果の文書の中に含まれる単語の出現頻度の情報を補正する方法とその装置と、その装置と方法を用いた情報抽出装置と情報抽出方法と、それらのプログラムに関する。
テキストからなる文書が大量にある場合に、その中から重要な情報を抽出するために、従来から、テキスト中に含まれる単語の出現頻度を用いた指標が用いられる。しかし、テキストとして音声認識技術を用いて音声から自動的に書き起こされたものを用いる場合、音声認識結果には、入力音声の発声が曖昧であったり、音声に雑音が重畳すること等が原因で誤認識が付きまとう。その結果、出現頻度に誤差が生じる。この誤認識を推定する方法の一例が特許文献1に開示されている。特許文献1の方法は、単語の出現頻度を数える際に、その単語の出現ケースに対する認識信頼度を、認識時の他の対立候補単語を用いて計算するものである。その認識信頼度の大小からその出現ケースを頻度数に加えるか否かを判定することができる。
また、情報検索の基本的な考えとして頻度を用いることは、例えば非特許文献1にTF・IDF重み付け(Term Frequency・Inverse Document Frequency weighting)として示されている。
特開2005−148342号公報 言語と計算5 情報検索と言語処理、徳永健伸著、財団法人 東京大学出版会発行、pp26−32
TF・IDF重み付けは、情報検索の考え方であり、検索対象に誤認識情報が含まれることを前提としていない。よって、誤認識情報が含まれる例えば音声認識にそのまま適用すると、誤った重み付けの原因になる。また、特許文献1による認識信頼度は、同じ音声を音声認識した結果同士の認識スコアを比較した値を元に求めているため、原理的に、ある音声認識結果の正誤を直接反映する指標になっていない。このため、各単語の認識結果についてこの認識信頼度を用いて正誤判定しながら出現頻度を求めると、得られた結果が大きく間違っている恐れがある。
この発明は、このような点に鑑みてなされたものであり、出現頻度情報の正確性を高める頻度補正装置とその方法、その装置と方法を用いた情報抽出装置と情報抽出方法と、それらのプログラムを提供することを目的とする。
この発明による頻度補正装置は、データベースと、認識精度統計処理部と、認識精度統計情報記憶部と、頻度修正部を具備する。データベースは、認識した文書を蓄積する。認識精度統計処理部は、認識した文書の正しい文書を入力として、認識した文書を蓄積したデータベースから、認識した文書を構成する各単語の確からしさを表わす統計数値情報を生成する。認識精度統計情報記憶部は、上記各単語と統計数値情報とを記憶する。頻度修正部は、上記各単語の出現頻度を表わす頻度情報に、統計数値情報を乗じた修正頻度情報を出力する。そして、上記統計数値情報は、上記各単語が正しく認識された結果の回数を、上記各単語が認識結果に出現した回数で除した適合率である。
また、この発明による情報抽出装置は、上記した頻度補正装置と、関連単語抽出部と、頻度計数部と、頻度情報記憶部と、修正頻度情報記憶部と、情報抽出処理部を具備する。関連単語抽出部は、分析対象単語情報を入力として、認識した結果の文書を蓄積したデータベースから上記分析対象単語情報と関連する関連単語を抽出する。頻度計数部は、関連単語の出現頻度を数えて、関連単語と出現頻度を頻度情報記憶部に保存する。頻度情報記憶部は、保存した頻度情報を頻度補正装置に入力する。修正頻度情報記憶部は、頻度修正装置が出力する修正頻度情報を記憶する。情報抽出処理部は、上記修正頻度情報の中の各単語を頻度順に検索し、頻度の高い単語を抽出情報として出力する。
この発明の頻度補正装置は、認識した文書に対応する正しい文書を用いて、認識した文書を構成する各単語の確からしさを表わす統計数値情報を生成する。そして、その統計数値情報を用いて頻度情報を修正する。したがって、頻度情報の正確性を高めることが出来る。また、この方式によれば、頻度情報を修正するには予め求めた統計数値情報を乗ずる計算のみなので、従来あった、頻度情報を求める際、各単語の出現ケースごとに認識信頼度を求めて頻度に加えるか否かを判定する手続きの必要はなく、認識性能を勘案した頻度情報をより高速に求めることが出来る。また、この発明の情報抽出装置は、この発明の頻度補正装置を用いて情報抽出を行うので、正確性の高められた頻度情報に基づく情報抽出が出来る。その結果、抽出情報の正確性を高めることが出来る。
以下、この発明の実施の形態を図面を参照して説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。
図1にこの発明の頻度補正装置の実施例1の機能構成例を示す。頻度補正装置100は、データベース2と、認識精度統計処理部4と、認識精度統計情報記憶部6と、頻度修正部8とを具備する。その動作フローを図2に示す。この例の頻度補正装置100は、例えばROM、RAM、CPU等で構成されるコンピュータに所定のプログラムが読み込まれて、CPUがそのプログラムを実行することで実現されるものである。
データベース2(以降、DBと略す)は、例えばコールセンターにおける通話音声を音声認識した結果の文書を、大量に記憶している。認識精度統計処理部4は、正しい文書、例えば、音声認識した音声の一部を人手で正確に書き起こした文書を入力とする。そして、正しい文書とDB2内の正しい文書に対応する認識結果の文書とを用いて、認識結果の文書を構成する各単語の確からしさを表わす統計数値情報を生成する(ステップS4、図2)。認識精度統計処理部4で生成された各単語の統計数値情報は、認識精度統計情報記憶部6に記憶される(ステップS6)。頻度修正部8は、各単語の出現頻度を表わす頻度情報を入力として、各単語の統計数値情報を認識精度統計情報記憶部6から検索し、頻度情報に統計数値情報を乗じた修正頻度情報を出力する(ステップS8)。
統計数値情報の一例を図3に示す。図3は認識精度統計情報記憶部6に記憶された各単語と統計数値情報とを概念的に示す図である。各単語に対応してその単語の適合率が記憶されている。適合率は、式(1)で表わせる。
Figure 0004866334
実際に発声されている回数とは、各単語が正しく認識された回数とも言い換えられる。分母の認識結果に出現した全回数とは、認識された文書に誤りがある文も含めた各単語の全認識回数である。例えば、次のような正しい文書、「光サービスの料金を知りたい。」に対して、DB2に記憶された認識された文書には、発話者の声が不明瞭であったり雑音が混入することによって複数の文書が記憶される。正解の「光サービスの料金を知りたい。」の他に、例えば「光サービスの料理を知りたい。」や「光サービスの両人を知りたい」等である。そこで、例えば「料金」という単語に着目した場合、「光サービスの料金を知りたい。」と正しく認識された回数を分子に、認識文書中に出現する「料金」の全出現数を分母とすることで、式(1)の適合率を求めることが出来る。適合率は、認識結果に得られた単語が全て正しければ1である。10%の誤りを含むのであれば0.9となる(図3参照)。この適合率を、入力される頻度情報に乗算することで、正確性を高めた修正頻度情報とすることが出来る。例えば、ある単語が認識結果の文書中によく誤って挿入されて出現する(以降、“湧き出し”と呼ぶ)場合にも、その単語が正確に認識される割合が適合率として推定されていれば、その湧き出しの影響を削減した修正頻度情報を求めることが出来る。
認識精度統計処理部4が、適合率を求める動作フローを図4に示す。最初に各変数を初期化する(ステップS40)。式(1)の実際に発声されている回数をAi、認識結果に出現した全回数をBiとする。認識精度統計処理部4は、入力される正しい入力文書の形態素解析処理を行い単語に区切る(ステップS41)。正しい入力文書が、予め単語毎に分かち書きされていればこの処理は不要である。そして、正しい入力文書の元となった音声に対応する認識文書をDB2より取り出す(ステップS42)。音声を認識する際に、音声データにファイル名などのラベルを付けておき、それを認識文書のキーとすることでDB2からの取り出しが可能である。
次に、正しい入力文書中の全ての単語列と、認識文書中の全ての単語列の単語同士の対応関係をとる(ステップS43)。対応関係は、例えばDP(Dynamic Programing)マッチングを用いて取ることができる。DPマッチングによって、正しい入力文書と一致している箇所、認識結果から単語が脱落した箇所、認識結果に単語が挿入されてしまった箇所、認識結果では別の単語として認識されてしまった箇所(置換誤り)、が推定できる。その例を図5に示す。例(1)では、「どういうふうにしたらいいのかお聞きしたいんですが」の正しい入力文書に対して、認識結果には助詞の「たら」が助動詞の「た」に誤認識されたり、接頭語の「お」に脱落誤りなどが発生している。例(2)では、文頭に「あっ」が挿入誤りとして認識され、「また新た」が「問題など」と誤って置換されている。DPマッチングにより正しい入力文書中の全ての単語列と、認識文書中の全ての単語列の単語同士の対応関係をとることで、このような誤認識を推定することができる。
認識精度統計処理部4は、適合率を求める対象の単語を特定して、その単語が正しく認識されたかを検証し、各単語の適合率を計算する(ステップS44〜S53)。適合率を求める対象の単語は、例えば、図示していない認識辞書に含まれる全ての単語としても良いし、その一部の名詞、動詞、形容詞など、抽出したい情報によって決定すれば良い。ここでは、i番目の適合率を求める対象単語をWiと表現することとする。単語Wiが認識文書内にある箇所数をK個とすると、認識結果に出現した全回数Bi=Kである(ステップS46)。K個ある単語Wiのそれぞれが、正しい文書(正解文書)中のステップS43で対応付けされた位置にあるか否かを検証する(ステップS48)。正解文書中に単語Wiがあれば、実際に発声されている回数Aiに1を加算する(ステップS49)。つまりAiは、単語Wiが正しく認識された回数となる。その単語Wiが正しく認識された回数Aiを、認識結果に出現した全回数Biで除することで適合率が求められる。単語Wiと適合率Ai/Biは、認識精度統計情報記憶部6に保存される(ステップS51)。そして、次の他の単語Wiの適合率を求め、対象の単語の全ての適合率を求めるまで上記した動作を繰り返す(ステップS44〜S53)。このように、認識した文書に対応する正しい文書を用いて、認識した文書を記憶したDB2から、認識した各単語の確からしさを表わす統計数値情報が生成され、認識精度統計情報記憶部6に記憶される。
頻度修正部8は、入力される頻度情報に対応する統計数値情報を、認識精度統計情報記憶部6から検索し、頻度情報に乗じて修正頻度情報を出力する。このように統計数値情報を用いて頻度情報を修正するので、頻度情報の正確性を高めることが出来る。また、この方法によれば、頻度情報を求める際に、各単語の出現ケースごとに認識信頼度を求めて頻度に加えるか否かを判定する手続きの必要がないので、認識性能を勘案した頻度情報をより高速に求めることができる。
なお、人手を用いて用意しなければならない正解文書は、現実的には認識文書に比べると極少量しか準備できないので、正解文書には頻度情報を求めようとする単語が含まれない場合がある。よって、上記したステップS48で、単語Wiが正解文書中に全くない場合の適合率は例えば100%、つまり1にしておく。そうすれば、正しい文書に無かった単語Wiが入力されても、頻度補正装置100としてはその単語Wiに影響を与えない。またはその場合、一律に任意の適合率にみなすようにしても良い。任意の適合率としては、例えば得られた統計数値情報の平均値を用いることが考えられる。平均値を用いることで、認識精度統計処理部4に入力する正しい文書の数が少なくても修正頻度情報を適当な値にすることができる。
以上、統計数値情報として適合率を説明したが、更に適合率を補正する考えもある。次に実施例2として適合率に各単語の再現率の逆数を乗算する方法を説明する。
実施例2の機能構成は図1と同じである。実施例2では、統計数値情報として実施例1の適合率に追加して再現率も求めるので、認識精度統計処理部4’と頻度修正部8’の動作が異なる。
実施例2の頻度修正部8’は、式(2)に示す再現率の逆数を適合率に乗算する。
Figure 0004866334
再現率は、認識した結果の正解の回数を、認識して欲しい回数で除算したものである。認識して欲しい回数とは、正しい文書を構成する単語の数である。例えば、「料金」という単語に着目した場合、正しい文書中に含まれる「料金」の数である。したがって、再現率の逆数を、適合率に乗算することは、修正頻度情報を出現して欲しい数に近づけることを意味する。この再現率は、正しい文書の数が多ければ多いほど効果的である。
図6に認識精度統計処理部4’の再現率を求める動作フローを示す。ステップS40〜S43までの動作は上記した図4と同じである。適合率を求めた後に再現率を求めるようにすれば、ステップS40〜S43は省略が可能である。ステップS54〜S63の動作フローも、上記した図4とフローそのものは全く同じである。ただ、ステップS55において正しい入力文書内にある単語Wiの数を求めている点と、ステップS58において認識文書中に単語Wiが対応した位置にあるか否かを検証している点とが大きく異なる。ステップS55では認識して欲しい回数Ciが求められる。ステップS58では、ステップS43で正しい文書と対応が取られた認識文書中の単語Wiの数を数えるので、正しく認識した回数Diが求められる。
正しく認識した回数Diを、認識して欲しい回数Ciで除することで、単語Wiの再現率を求めることができる(ステップS61)。この動作を対象の単語の全ての再現率を求めるまで繰り返す(ステップS54〜S63)。再現率は認識精度統計情報記憶部6に記憶される。図3に破線で、認識精度統計情報記憶部6に記憶された再現率を概念的に示す。
このようにして求めた単語Wiの再現率を例えば0.6だとする。そして頻度修正部8’に入力される頻度情報を4、適合率を0.9と仮定する。このときの修正頻度情報は4×0.9/0.6=6になる。このように頻度情報に適合率を乗算した値に、さらに再現率の逆数を乗算することで、修正頻度情報を出現して欲しい数に近づけることができる。つまり、頻度補正装置100をより高精度化することができる。
以上説明した頻度補正装置は、例えば情報抽出装置に応用することが可能である。次にこの発明の応用例として情報抽出装置を説明する。
〔情報抽出装置〕
情報抽出装置は、データベースから情報を抽出する目的で用いられる。その機能構成例を図7に、その動作フローを図8に示す。また、情報抽出装置200の全体動作における各情報の一例を図9に示してその動作を説明する。情報抽出装置200は、上記した頻度補正装置100に、関連単語抽出部70と、頻度計数部72と、頻度情報記憶部74と、修正頻度情報記憶部76と、情報抽出処理部78とを追加して備える。なお、頻度補正装置100は、実施例1又は2の何れを用いても良い。
頻度修正装置100内のDB2には、例えばコールセンターにおける顧客との会話を音声認識した結果が記憶されている。その例を図9に示す。例えば、「光サービスの料金を知りたい…」、「光サービスの料理はいくら…」等の下線を付した誤認識を含む文書が記憶されている。関連単語抽出部70には、分析対象単語情報が入力される(ステップS70)。分析対象単語情報として、例えば「光サービス」が関連単語抽出部70に入力される。関連単語抽出部70は、「光サービス」に関連する単語を頻度補正装置100のDB2内の全認識結果の文書から抽出する(ステップS71)。関連する単語の抽出には、例えば係り受け解析法が用いられる。分析対象単語が含まれる文節と係り受け関係にある文節中の単語が取り出される。この係り受け解析法による単語抽出は、従来技術であり、詳しい説明は省略する。この例の場合、関連単語としては、「料金」、「変」、「新しい」、「知りたい」、「料理」等が抽出される。
取り出された各単語の頻度情報は、頻度計数部72で単語毎に数えられる(ステップS72)。例えば、料金:4、料理:3、知りたい:1、変:1と数えられ、これが頻度情報になる。各単語と頻度情報は頻度情報記憶部74に記憶される(ステップS74)。新たに記憶された頻度情報は、頻度補正装置100の頻度修正部8’に入力される。頻度修正部8’は、認識精度統計情報記憶部6に記憶された統計数値情報を、頻度情報に乗算して修正頻度情報を生成する(ステップS75)。例えば、上記したように「料金」の頻度情報を4から、修正頻度情報を6に修正することができる。修正頻度情報は修正頻度情報記憶部76に保存される(ステップS76)。
情報抽出処理部78は、修正頻度情報記憶部76に新たに保存された修正頻度情報の頻度の高い単語から順に抽出情報として出力する(ステップS78)。例えば、料金:6、新しい:1、変:1の順で抽出情報を出力する。このとき、抽出情報は別途利用者が指定する数または指定した頻度以上の単語を抽出情報として出力するようにしても良い。
このようにこの発明の頻度補正装置100と情報抽出装置200は、事前に正しい文書によって、認識対象音声での抽出対象とする単語の認識性能に関する知識を求め、その知識を用いて認識文書内の各単語の頻度を修正するので、従来の装置に対して事前知識を持った頻度補正装置、及び情報抽出装置と言うこともできる。なお、同義語辞書78aを備えて同義語同士の単語の頻度は合わせて一つの頻度として集約しても良い。また、禁止語辞書78bを備え、禁止単語については抽出情報に含めないようにすることも考えられる。また、分析対象単語情報は分析対象単語入力部80に入力するようにしても良い。分析対象単語入力部80は、入力された分析対象単語情報の単語の頻度情報を頻度情報記憶部74から検索して頻度修正部8’に入力する。この場合、頻度補正装置100は分析対象単語入力部80から入力された頻度情報の修正頻度情報を出力する。
また、この発明の装置及び方法は上述の実施形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲で適宜変更が可能である。例えば、情報抽出装置200のデータベースを頻度補正装置100内のDB2を用いる例で説明したが、必ずしもデータベースを共用する必要はない。情報抽出装置200のデータベースは別に設けてもよい。また、上記した実施例では音声認識を例に説明を行ったが、文字認識や画像認識等にもこの発明の技術思想が適用でき、同様の効果を奏することができる。また、上記装置及び方法において説明した処理は、記載の順に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されるとしてもよい。
また、上記装置における処理手段をコンピュータによって実現する場合、各装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、各装置における処理手段がコンピュータ上で実現される。
この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。具体的には、例えば、磁気記録装置として、ハードディスク装置、フレキシブルディスク、磁気テープ等を、光ディスクとして、DVD(Digital Versatile Disc)、DVD−RAM(Random Access Memory)、CD−ROM(Compact Disc Read Only Memory)、CD−R(Recordable)/RW(ReWritable)等を、光磁気記録媒体として、MO(Magneto Optical disc)等を、半導体メモリとしてEEP−ROM(Electronically Erasable and Programmable-Read Only Memory)等を用いることができる。
また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD−ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記録装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。
また、各手段は、コンピュータ上で所定のプログラムを実行させることにより構成することにしてもよいし、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。
この発明の頻度補正装置100の機能構成例を示す図。 頻度補正装置100の動作フローを示す図。 認識精度統計情報記憶部6に記憶された各単語と統計数値情報とを概念的に示す図。 認識精度統計処理部4の動作フローを示す図。 DPマッチングによる単語の対応取りの例を示す図。 実施例2の認識精度統計処理部4’の動作フローを示す図。 この発明の頻度補正装置100を用いた情報抽出装置200の機能構成例を示す図。 情報抽出装置200の動作フローを示す図。 情報抽出装置200の全体動作における各情報の一例を示す図。

Claims (8)

  1. 認識した文書を蓄積したデータベースと、
    上記認識した文書の正しい文書を用いて、上記認識した文書を構成する各単語の確からしさを表わす統計数値情報を生成する認識精度統計処理部と、
    上記各単語と上記統計数値情報とを記憶する認識精度統計情報記憶部と、
    上記各単語の出現頻度を表わす頻度情報に上記統計数値情報を乗じた修正頻度情報を出力する頻度修正部と、
    を具備し、
    上記統計数値情報は、上記各単語が正しく認識された結果の回数を、上記各単語が認識結果に出現した回数で除した適合率であることを特徴とする頻度補正装置。
  2. 認識した文書を蓄積したデータベースと、
    上記認識した文書の正しい文書を用いて、上記認識した文書を構成する各単語の確からしさを表わす統計数値情報を生成する認識精度統計処理部と、
    上記各単語と上記統計数値情報とを記憶する認識精度統計情報記憶部と、
    上記各単語の出現頻度を表わす頻度情報に上記統計数値情報を乗じた修正頻度情報を出力する頻度修正部と、
    を具備し、
    上記統計数値情報は、上記各単語が正しく認識された結果の回数を上記各単語が認識結果に出現した回数で除した適合率に、上記各単語が正しく認識された回数を上記各単語が正しく出現する回数で除した再現率の逆数を、乗算した値であることを特徴とする頻度補正装置。
  3. 請求項1又は2に記載した頻度補正装置と、
    分析対象単語情報を入力として、認識した結果の文書を蓄積したデータベースから上記分析対象単語情報と関連する関連単語を抽出する関連単語抽出部と、
    上記関連単語の出現頻度を数えて、上記関連単語の頻度情報を生成する頻度計数部と、
    上記頻度計数部が生成する上記関連単語と上記頻度情報とを保存すると共に上記頻度補正装置に入力する頻度情報記憶部と、
    上記頻度補正装置が出力する修正頻度情報を記憶する修正頻度情報記憶部と、
    上記修正頻度情報の中の各単語を頻度順に検索し、頻度の高い単語を抽出情報として出力する情報抽出処理部と、
    を具備する情報抽出装置。
  4. 認識精度統計処理部が、認識した文書の正しい文書を用いて、データベースに記憶された認識された文書を構成する各単語の確からしさを表わす統計数値情報を生成する認識精度統計処理過程と、
    認識精度統計情報記憶部が、上記各単語と上記統計数値情報とを記憶する認識精度統計情報記憶過程と、
    頻度修正部が、入力される上記各単語の出現頻度を表わす頻度情報に上記統計数値情報を乗じた修正頻度情報を出力する頻度修正過程と、
    を含み、
    上記統計数値情報は、上記単語が正しく認識された結果の回数を、上記単語が認識結果に出現した回数で除した適合率であることを特徴とする頻度補正方法。
  5. 認識精度統計処理部が、認識した文書の正しい文書を用いて、データベースに記憶された認識された文書を構成する各単語の確からしさを表わす統計数値情報を生成する認識精度統計処理過程と、
    認識精度統計情報記憶部が、上記各単語と上記統計数値情報とを記憶する認識精度統計情報記憶過程と、
    頻度修正部が、入力される上記各単語の出現頻度を表わす頻度情報に上記統計数値情報を乗じた修正頻度情報を出力する頻度修正過程と、
    を含み、
    上記統計数値情報は、上記単語が正しく認識された結果の回数を上記単語が認識結果に出現した回数で除した適合率に、上記単語が正しく認識された回数を上記単語が正しく出現する回数で除した再現率の逆数を、乗算した値であることを特徴とする頻度補正方法。
  6. 請求項4又は5に記載した頻度補正方法による頻度修正過程を含み、
    関連単語抽出部が、分析対象単語情報を入力として認識した結果の文書を蓄積したデータベースから上記分析対象単語情報と関連する関連単語を抽出する関連単語抽出過程と、
    頻度計数部が、上記関連単語の出現頻度を数えて、上記関連単語と頻度情報を生成する頻度計数過程と、
    頻度情報記憶部が、頻度計数部が生成する上記関連単語と上記頻度情報とを保存すると共に上記頻度修正部に入力する頻度情報記憶過程と、
    修正頻度情報記憶部が、上記頻度修正過程が出力する修正頻度情報を記憶する修正頻度情報記憶過程と、
    情報抽出処理部が、上記修正頻度情報の中の各単語を頻度順に検索し、頻度の高い単語の情報を出力する情報抽出処理過程と、
    を含む情報抽出方法。
  7. 請求項1又は2の何れかに記載された頻度補正装置としてコンピュータを機能させるためのプログラム。
  8. 請求項3に記載された情報抽出装置としてコンピュータを機能させるためのプログラム。
JP2007306101A 2007-11-27 2007-11-27 頻度補正装置とその方法、それらを用いた情報抽出装置と情報抽出方法、それらのプログラム Expired - Fee Related JP4866334B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007306101A JP4866334B2 (ja) 2007-11-27 2007-11-27 頻度補正装置とその方法、それらを用いた情報抽出装置と情報抽出方法、それらのプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007306101A JP4866334B2 (ja) 2007-11-27 2007-11-27 頻度補正装置とその方法、それらを用いた情報抽出装置と情報抽出方法、それらのプログラム

Publications (2)

Publication Number Publication Date
JP2009128797A JP2009128797A (ja) 2009-06-11
JP4866334B2 true JP4866334B2 (ja) 2012-02-01

Family

ID=40819747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007306101A Expired - Fee Related JP4866334B2 (ja) 2007-11-27 2007-11-27 頻度補正装置とその方法、それらを用いた情報抽出装置と情報抽出方法、それらのプログラム

Country Status (1)

Country Link
JP (1) JP4866334B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08263587A (ja) * 1995-03-20 1996-10-11 Matsushita Electric Ind Co Ltd 文書入力方法および文書入力装置
JP4340024B2 (ja) * 2001-06-07 2009-10-07 日本放送協会 統計的言語モデル生成装置および統計的言語モデル生成プログラム
JP4006239B2 (ja) * 2002-02-21 2007-11-14 株式会社日立製作所 文書の検索方法および検索システム
JP2004348552A (ja) * 2003-05-23 2004-12-09 Nippon Telegr & Teleph Corp <Ntt> 音声文書検索装置および方法およびプログラム
WO2005122016A1 (ja) * 2004-06-10 2005-12-22 Matsushita Electric Industrial Co., Ltd. 入力補助装置、情報検索装置、入力補助方法、及びプログラム
JP2006172379A (ja) * 2004-12-20 2006-06-29 Canon Marketing Japan Inc 文字認識処理装置および文字認識処理方法およびプログラムおよび記録媒体
JP2006331354A (ja) * 2005-05-30 2006-12-07 Sharp Corp 文字認識装置、文字認識方法、並びに、そのプログラムおよび記録媒体

Also Published As

Publication number Publication date
JP2009128797A (ja) 2009-06-11

Similar Documents

Publication Publication Date Title
He et al. Discriminative learning for speech recognition: theory and practice
US8793130B2 (en) Confidence measure generation for speech related searching
US8504367B2 (en) Speech retrieval apparatus and speech retrieval method
US9984677B2 (en) Bettering scores of spoken phrase spotting
US7590626B2 (en) Distributional similarity-based models for query correction
US7739111B2 (en) Pattern matching method and apparatus and speech information retrieval system
US8892437B1 (en) Method and apparatus of providing semi-automated classifier adaptation for natural language processing
CN107229627B (zh) 一种文本处理方法、装置及计算设备
US20080270344A1 (en) Rich media content search engine
JP5824829B2 (ja) 音声認識装置、音声認識方法及び音声認識プログラム
US7401019B2 (en) Phonetic fragment search in speech data
CN112232055B (zh) 一种基于拼音相似度与语言模型的文本检测与纠正方法
CN114154487A (zh) 文本自动纠错方法、装置、电子设备及存储介质
JP2019139010A (ja) 音声認識精度劣化要因推定装置、音声認識精度劣化要因推定方法、プログラム
Ram et al. Multilingual bottleneck features for query by example spoken term detection
JP5713963B2 (ja) 音声認識単語追加装置とその方法とプログラム
Tobin et al. Assessing asr model quality on disordered speech using bertscore
JP4866334B2 (ja) 頻度補正装置とその方法、それらを用いた情報抽出装置と情報抽出方法、それらのプログラム
Besacier et al. Word confidence estimation for speech translation
JP2011248107A (ja) 音声認識結果検索方法とその装置とプログラム
CN114661862A (zh) 基于语音数据的搜索方法、装置、计算机设备及存储介质
JP6486789B2 (ja) 音声認識装置、音声認識方法、プログラム
CN114254628A (zh) 一种语音转写中结合用户文本的快速热词提取方法、装置、电子设备及存储介质
US20090099847A1 (en) Template constrained posterior probability
JP2010197411A (ja) 音声認識装置用言語モデル更新装置および音声認識装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4866334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees