JP4866208B2 - Micro reactor - Google Patents

Micro reactor Download PDF

Info

Publication number
JP4866208B2
JP4866208B2 JP2006296367A JP2006296367A JP4866208B2 JP 4866208 B2 JP4866208 B2 JP 4866208B2 JP 2006296367 A JP2006296367 A JP 2006296367A JP 2006296367 A JP2006296367 A JP 2006296367A JP 4866208 B2 JP4866208 B2 JP 4866208B2
Authority
JP
Japan
Prior art keywords
channel
sample
flow
sub
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006296367A
Other languages
Japanese (ja)
Other versions
JP2008111798A (en
Inventor
正樹 叶井
習一 庄子
健太郎 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Waseda University
Original Assignee
Shimadzu Corp
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Waseda University filed Critical Shimadzu Corp
Priority to JP2006296367A priority Critical patent/JP4866208B2/en
Publication of JP2008111798A publication Critical patent/JP2008111798A/en
Application granted granted Critical
Publication of JP4866208B2 publication Critical patent/JP4866208B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Dispersion Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、μTAS(Micro Total Analysis Systems)技術を用いた、微量な試料について多数の試験を行うためのマイクロ反応装置に関するものである。   The present invention relates to a microreactor for performing a large number of tests on a very small amount of sample using μTAS (Micro Total Analysis Systems) technology.

例えば、細胞の薬剤や毒物に対する影響を評価するための細胞を対象とした分析装置についてみると、細胞に対して多種類の薬剤の反応を測定する場合、一般に、マイクロプレートと呼ばれる24〜384個の容器を1枚のプレート上に形成したものが用いられている。また近年、微細加工技術を用いて数cm程度のプレートの上に1000個以上の容器を形成し、細胞分析を行った報告もなされているが、いずれのプレートも個々の容器は開口部が開放された凹部として形成されている。   For example, regarding an analyzer for cells for evaluating the effects of cells on drugs and toxicants, when measuring the reactions of many types of drugs on cells, there are generally 24 to 384 cells called microplates. These are formed on a single plate. In recent years, it has been reported that more than 1000 containers are formed on a plate of about several centimeters using microfabrication technology, and cell analysis is performed, but each plate has an open opening in each container. It is formed as a recessed portion.

そのような開放系の容器をもつマイクロプレート等の容器を分析容器としてそこに細胞を導入する場合、手動又はロボットによりマイクロピペット等の分注器具を用いて容器内に細胞を注入している。   When introducing a cell such as a microplate having such an open container into an analysis container, cells are injected into the container manually or by a robot using a dispensing instrument such as a micropipette.

しかしながら、このような細胞導入方法の場合、容器個数に比例して細胞導入に要する時間が増える。また1プレート上の容器個数が増えるにしたがって、1容器あたりの体積が小さくなるため、細胞培養液が蒸発して培養液濃度が変化するまでの時間が短くなる。そのため、細胞導入に要する時間を短くしなければならなくなるので、1プレート上の容器個数が増えると細胞導入時間が問題になってくる。   However, in the case of such a cell introduction method, the time required for cell introduction increases in proportion to the number of containers. Further, as the number of containers on one plate increases, the volume per container decreases, so the time until the cell culture solution evaporates and the culture solution concentration changes is shortened. Therefore, since the time required for cell introduction must be shortened, the cell introduction time becomes a problem as the number of containers on one plate increases.

そのような開放系の容器の問題を解決するために、細胞培養液の蒸発を抑えながら複数の分析容器に細胞を分注することのできるようにするために、μTAS技術を用いて、微量な試料を効率よく分析するためのマイクロ反応装置が多く報告されている。そのようなマイクロ反応装置は、基体内に形成された複数個の細胞分析容器と、試料導入口から導入された細胞試料を基体内で流しながら全ての細胞分析容器に分配する試料導入部と、全ての細胞分析容器から試料排出口につながる試料排出流路とを備えている。   In order to solve the problem of such an open-type container, in order to be able to dispense cells into a plurality of analysis containers while suppressing evaporation of the cell culture solution, a minute amount is used by using μTAS technology. Many microreactors for efficiently analyzing samples have been reported. Such a microreaction apparatus includes a plurality of cell analysis containers formed in a substrate, a sample introduction unit that distributes the cell sample introduced from the sample introduction port to all cell analysis containers while flowing in the substrate, A sample discharge channel connected to the sample discharge port from all cell analysis containers is provided.

そのようなマイクロ反応装置で、分析の効率をより向上させるには、集積する細胞分析容器数を増やすことが望ましいが、細胞分析容器数数を増加させると各細胞分析容器に分析細胞を均等に分配することが困難になってしまう。   In order to further improve the efficiency of analysis in such a microreaction apparatus, it is desirable to increase the number of cell analysis containers to be accumulated. However, if the number of cell analysis containers is increased, the analysis cells are evenly distributed in each cell analysis container. It becomes difficult to distribute.

基体内に形成された複数の分析容器に試料を均等に分配することを目的として、本発明者らは受動的な試料導入法を提案している(特許文献1、非特許文献1参照。)。受動的な試料導入法とは、流路を流れる試料に相互作用する力やエネルギーを外部から与えることなく、流路を段階的に分岐させることによって流路を流れる試料を分配することを意味している。   For the purpose of evenly distributing the sample to a plurality of analysis containers formed in the substrate, the present inventors have proposed a passive sample introduction method (see Patent Document 1 and Non-Patent Document 1). . Passive sample introduction means that the sample flowing through the flow path is distributed by branching the flow path stepwise without applying external force or energy to the sample flowing through the flow path. ing.

図6(A),(B)にその提案された方法の概念図を示す。一つの試料導入口(この場合は細胞導入口)2から基体内の細胞導入部4が均等に分岐を繰り返し、基体内の分析ウエルである複数の細胞分析容器6に接続されている。試料導入口2から導入された微粒子分散流体試料中の細胞は、細胞導入部4の流路を通って均等に分配されながら複数の細胞分析容器6に導入される。その際、導入された細胞は細胞導入部4の各分岐点においてほぼ均等に分配され、1回の導入操作によって複数の分析ウエル6にほぼ均等に細胞が導入される。
この方法は、マイクロプレートと異なり各分析容器は蓋をされた状態であるため、分析容器の体積が小さくなった場合でも細胞培養液などの液の蒸発が抑えられる。
FIGS. 6A and 6B are conceptual diagrams of the proposed method. The cell introduction portion 4 in the substrate repeats equally from one sample introduction port (in this case, the cell introduction port) 2 and is connected to a plurality of cell analysis containers 6 which are analysis wells in the substrate. The cells in the fine particle dispersed fluid sample introduced from the sample introduction port 2 are introduced into the plurality of cell analysis containers 6 while being evenly distributed through the flow path of the cell introduction part 4. At that time, the introduced cells are distributed almost evenly at each branch point of the cell introduction part 4, and the cells are introduced almost uniformly into the plurality of analysis wells 6 by one introduction operation.
In this method, unlike the microplate, each analysis container is covered, and thus evaporation of a liquid such as a cell culture solution can be suppressed even when the volume of the analysis container is reduced.

提案された図6の方法を用いることにより、一度の動作で多数の分析ウエル6に同時に試料を導入することが可能であるが、流体試料が細胞分散溶液のように、固体成分と輸送用液体からなり、かつ固体成分の拡散係数が十分に大きくない場合は、各分析ウエル6に導入される量(例えば細胞の数)にばらつきが生じてしまう。これは、図7(A),(B)に示されるように、1段目の分岐後に流路断面方向での試料の濃度に差が生じ、次段以降の分岐では均等な濃度で試料が分配されないことが原因となっている。すなわち、1段目の分岐部8では試料導入口2から導入された試料が流路断面方向の中央部で濃度が高くなる対称的な濃度分布14をもっている。これは流路壁面との摩擦のために流路中央部で多く試料が流れるためである。そのため、その分岐部8では試料が流路断面方向の中央で分割されて分岐するため均等に分割されるが、分岐された後の試料の流路断面方向での濃度分布16−1,16−2は非対称的な濃度分布となる。その濃度分布16−1,16−2を維持したまま次段の分岐部10で流路断面方向の中央で分割されるので、その分岐部10での分岐後は濃度分布18−1,18−2として示されるように試料の濃度に差が生じる。さらに、次段以降の分岐部が存在する場合は、分岐後の試料濃度の不均一が強調されることになる。   By using the proposed method of FIG. 6, it is possible to simultaneously introduce samples into a large number of analysis wells 6 in one operation, but the fluid sample is a solid component and a transport liquid like a cell dispersion solution. And the diffusion coefficient of the solid component is not sufficiently large, the amount (for example, the number of cells) introduced into each analysis well 6 varies. As shown in FIGS. 7A and 7B, there is a difference in the concentration of the sample in the cross-sectional direction of the flow channel after the first branch, and the sample is distributed at an equal concentration in the subsequent branches. The cause is not being distributed. That is, the sample introduced from the sample introduction port 2 has a symmetric concentration distribution 14 in which the concentration is increased at the central portion in the flow path cross-sectional direction at the first branch portion 8. This is because a large amount of sample flows at the center of the channel due to friction with the channel wall. Therefore, in the branching portion 8, the sample is divided at the center in the cross-sectional direction of the flow path so that the sample is divided into equal parts, but the concentration distributions 16-1 and 16- in the cross-sectional direction of the sample after branching are divided. 2 is an asymmetric concentration distribution. Since the concentration distributions 16-1 and 16-2 are maintained, the next branching unit 10 is divided at the center in the cross-sectional direction of the flow path. As shown as 2, there is a difference in sample concentration. Furthermore, when there is a branch portion after the next stage, the non-uniformity of the sample concentration after branching is emphasized.

そこで、このような試料分配方法を用いたマイクロ反応装置において分岐部での分岐後の試料濃度の不均一を抑えることを目的として、本発明者らは、各分岐の後に流路を一旦分岐させ、立体交差させた後に再度合流させることで、分岐後の流路断面方向の試料濃度の偏りを補正し、最終的に各分析ウエルに導入される試料の量の偏りを改善する方法を提案している(非特許文献2参照。)。
特開2006−087336号公報 M.Kanai, et.al. “A Multi Cellular Diagnostic Device for High-throughput Analysis”,Proceeding of μTAS2004, pp.126-128, 2004 K.Kawai, et.al, “Improved Passive Cell Distributing Method for Micro Cellular Diagnostic Well Array”, Japanese Journal of Applied Physics, Vol. 45, No. 6B, 2006, pp. 5607-5613
Therefore, in the microreactor using such a sample distribution method, the present inventors once branched the flow channel after each branch for the purpose of suppressing non-uniformity of the sample concentration after branching at the branching portion. Proposed a method to correct the deviation of the sample concentration in the direction of the cross section of the flow channel after branching by crossing again after three-dimensional intersection, and finally improve the deviation of the amount of sample introduced into each analysis well (See Non-Patent Document 2).
JP 2006-087336 A M. Kanai, et.al. “A Multi Cellular Diagnostic Device for High-throughput Analysis”, Proceeding of μTAS2004, pp.126-128, 2004 K. Kawai, et.al, “Improved Passive Cell Distributing Method for Micro Cellular Diagnostic Well Array”, Japanese Journal of Applied Physics, Vol. 45, No. 6B, 2006, pp. 5607-5613

非特許文献2で提案している方法を用いることにより、分岐後の流路断面方向の試料濃度の偏りを補正し、最終的に各分析ウエルに導入される試料の量の偏りを改善することができる。   By using the method proposed in Non-Patent Document 2, the deviation of the sample concentration in the cross-sectional direction of the flow channel after branching is corrected, and the deviation of the amount of sample finally introduced into each analysis well is improved. Can do.

本発明もこのような試料分配方法を用いたマイクロ反応装置を対象としたものであり、非特許文献2で提案している方法とは別の方法によって分岐部での分岐後の試料濃度の不均一を抑えることを目的とするものである。   The present invention is also directed to a microreactor using such a sample distribution method, and the concentration of the sample after branching at the branching portion is determined by a method different from the method proposed in Non-Patent Document 2. The purpose is to suppress uniformity.

このような問題は、対象が細胞である場合に限らず、微粒子が液中に分散した微粒子分散流体試料を扱う場合の共通の問題であるので、本発明は細胞分散溶液も含めて広く微粒子分散流体試料を対象とする。   Such a problem is not limited to the case where the target is a cell, but is a common problem when handling a microparticle-dispersed fluid sample in which microparticles are dispersed in a liquid. Intended for fluid samples.

本発明は、基体内に形成された複数個の分析ウエルと、試料導入口から導入され輸送用流体中に微粒子が分散した微粒子分散流体試料を基体内で流しながら全ての分析ウエルに分配する試料導入部と、全ての分析ウエルから試料排出口につながる試料排出流路とを備えたマイクロ反応装置であって、試料導入部は、少なくとも2段階の分岐部を備えて試料導入口から全ての分析ウエルに対して段階的に、かつ均等に分岐する流路構造を有し、試料導入部における分岐部間の流路にはその流路での流路断面方向の微粒子濃度分布を調整する濃度分布調整部が設けられている。   The present invention provides a plurality of analysis wells formed in a substrate and a sample distributed from all sample analysis wells while flowing a sample-dispersed fluid sample introduced from a sample inlet and dispersed in a transport fluid. A microreaction apparatus having an introduction part and a sample discharge channel that leads from all the analysis wells to the sample discharge port, wherein the sample introduction part has at least two stages of branch parts and performs all analysis from the sample introduction port. Concentration distribution that adjusts the concentration distribution of fine particles in the direction of the cross-section of the flow path in the flow path between the branch sections in the sample introduction section. An adjustment unit is provided.

濃度分布調整部は微粒子分散流体試料が流れる主流路と、主流路の少なくとも一方の側壁側に主流路とは上流側で隔壁により分離され下流側で合流する副流路とからなり、前記隔壁には試料中の微粒子を通過させない大きさの隙間が設けられていて、主流路から副流路に輸送用流体のみが流れ込み、下流において副流路の輸送用流体が主流路の流れの側方に合流するようになっている。   The concentration distribution adjusting unit includes a main channel through which the fine particle-dispersed fluid sample flows, and at least one side wall of the main channel, and a main channel is separated by a partition on the upstream side and joined on the downstream side. Is provided with a gap that does not allow the particulates in the sample to pass through, so that only the transport fluid flows from the main channel into the sub-channel, and downstream, the transport fluid in the sub-channel flows to the side of the main channel flow. It has come to join.

濃度分布調整部の一形態では、副流路は主流路の両方の側壁側に設けられており、主流路に入る前の流体試料における流路断面方向での微粒子濃度が高くなっている側の副流路から主流路に合流する流量の方が他方の副流路から主流路に合流する流量よりも多くなるように、副流路の大きさと前記隔壁の隙間の大きさの少なくとも一方が調整されている。   In one form of the concentration distribution adjusting unit, the sub-channel is provided on both side walls of the main channel, and the fine particle concentration in the channel cross-sectional direction of the fluid sample before entering the main channel is high. At least one of the size of the sub-channel and the size of the gap between the partition walls is adjusted so that the flow rate from the sub-flow channel to the main flow channel is greater than the flow rate from the other sub-flow channel to the main flow channel Has been.

濃度分布調整部の他の形態では、副流路は主流路に入る前の流体試料における流路断面方向での微粒子濃度が高くなっている側で、主流路の一方の側壁側にのみ設けられている。
試料排出流路は試料排出口に向かって段階的に、かつ均等に合流を繰り返す流路構造をもっていることが好ましい。
In another form of the concentration distribution adjusting unit, the sub-channel is provided only on one side wall side of the main channel on the side where the fine particle concentration in the channel cross-sectional direction of the fluid sample before entering the main channel is high. ing.
The sample discharge channel preferably has a channel structure that repeats merging stepwise and evenly toward the sample discharge port.

このマイクロ反応装置の好ましい用途の1つは細胞分析装置である。その場合、試料が細胞培養液に生体細胞が分散した細胞分散溶液となり、分析ウエルが試料細胞を分析するための細胞分析容器となる。   One preferred application of this microreactor is a cell analyzer. In that case, the sample becomes a cell dispersion solution in which living cells are dispersed in the cell culture solution, and the analysis well becomes a cell analysis container for analyzing the sample cells.

本発明では、試料導入部における分岐部間の流路にその流路での流路断面方向の微粒子濃度分布を調整する濃度分布調整部が設け、濃度分布調整部を微粒子分散流体試料が流れる主流路と、主流路と下流側で合流する副流路とからなるように構成したので、主流路を流れる固体試料の流れが、副流路を流れる輸送用液体により流路の中央側に位置するよう補正され、各分岐後の流路断面方向の試料濃度の偏りが補正されて、最終的に各分析用容器に導入される試料の量の偏りを改善することができる。   In the present invention, a concentration distribution adjusting unit that adjusts the particle concentration distribution in the channel cross-sectional direction in the channel is provided in the channel between the branch portions in the sample introduction unit, and the main flow in which the particle dispersion fluid sample flows through the concentration distribution adjusting unit. Since the flow path and the secondary flow path that merges with the main flow path and the downstream flow path are configured, the flow of the solid sample that flows through the main flow path is positioned on the center side of the flow path by the transport liquid that flows through the secondary flow path. Thus, the deviation of the sample concentration in the cross-sectional direction of the flow channel after each branch is corrected, and the deviation of the amount of the sample finally introduced into each analysis container can be improved.

そして、本発明の濃度分布調整部は流れに沿って主流路の側方に副流路を配置したものとしたので、流路構造は同一平面状の流路構造により構成されるため、フォトリソグラフィー法とエッチング法を用いて作製を行う場合、流路形成に関しては1つのフォトマスクのみで作製を行うことが可能であり、立体交差等を含む構造にくらべて安価に作製することができる。また、樹脂材料を用いた射出成形法やホットエンボス法により作製することもでき、より安価に作製することができる。   In addition, since the concentration distribution adjusting unit of the present invention has the sub-flow path arranged on the side of the main flow path along the flow, the flow path structure is constituted by the same planar flow path structure, so that photolithography In the case of manufacturing using a method and an etching method, it is possible to manufacture the channel with only one photomask, and it can be manufactured at a lower cost than a structure including a three-dimensional intersection. Further, it can be produced by an injection molding method using a resin material or a hot embossing method, and can be produced at a lower cost.

本発明の実施例を図面に基づいて説明する。
本発明の実施例を、以下、図面に基づいて説明する。
図1は一実施例の試料導入側の部分を示している。全体の概略的な構造は、図6(A),(B)に示されたものと同じく、基体内に形成された複数個の分析ウエル6と、試料導入口2から導入され輸送用流体中に微粒子が分散した微粒子分散流体試料を基体内で流しながら全ての分析ウエル6に分配する試料導入部4aと、全ての分析ウエル6から試料排出口7につながる試料排出流路9とを備えている。
Embodiments of the present invention will be described with reference to the drawings.
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a portion on the sample introduction side of one embodiment. The overall schematic structure is the same as that shown in FIGS. 6 (A) and 6 (B), and a plurality of analysis wells 6 formed in the substrate and the sample introduction port 2 are introduced into the transport fluid. A sample introduction part 4a for distributing a fine particle-dispersed fluid sample in which fine particles are dispersed in the substrate to all the analysis wells 6 while flowing in the substrate, and a sample discharge channel 9 connected to the sample discharge ports 7 from all the analysis wells 6. Yes.

試料導入部は図1では符号4aとして示されている。試料導入部4aは、少なくとも2段階の分岐部8,10,12を備えて試料導入口2から全ての分析ウエル6に対して段階的に、かつ均等に分岐する流路構造を備えている。この実施例では、一例として8個の分析ウエル6が設けられているので、それら8個の分析ウエル6に試料を分配するために、3段階の分岐部8,10,12が設けられている。   The sample introduction part is shown as 4a in FIG. The sample introduction part 4a has at least two stages of branch parts 8, 10, and 12 and has a flow channel structure that branches from the sample introduction port 2 to all the analysis wells 6 in a stepwise and even manner. In this embodiment, since eight analysis wells 6 are provided as an example, three stages of branch portions 8, 10, and 12 are provided in order to distribute samples to the eight analysis wells 6. .

試料導入部4aは流れに沿った分岐部8,10間の流路20a,20b、及び分岐部10,12間の流路22a〜20dにそれぞれ濃度分布調整部24を備えている。濃度分布調整部24はそれが配置されている流路での流路断面方向の微粒子濃度分布が対称的になるように調整する機能を備えたものである。   The sample introduction part 4a includes concentration distribution adjusting parts 24 in the flow paths 20a and 20b between the branch parts 8 and 10 along the flow and the flow paths 22a to 20d between the branch parts 10 and 12, respectively. The concentration distribution adjusting unit 24 has a function of adjusting so that the fine particle concentration distribution in the channel cross-sectional direction in the channel in which it is arranged is symmetric.

濃度分布調整部24の一例を図2に示す。濃度分布調整部24は、微粒子分散流体試料が流れる主流路32aと、主流路32aの両方の側壁側に主流路32aとは上流側で隔壁30a,30bにより分離され下流側で合流する副流路32b,32cとからなる。隔壁30a,30bには試料中の微粒子を通過させない大きさの隙間34が設けられていて、主流路32aから副流路32b,32cに輸送用流体のみが流れ込み、下流において副流路32b,32cの輸送用流体が主流路32aの流れの側方に合流するようになっている。図2中に符号36として大きさが誇張されて示されている粒子は、微粒子分散流体試料の輸送用流体中に分散した細胞などの微粒子を表しており、隔壁30a,30bの隙間34が微粒子36よりも小さいことを示している。   An example of the density distribution adjusting unit 24 is shown in FIG. The concentration distribution adjusting unit 24 includes a main channel 32a through which the fine particle-dispersed fluid sample flows, and a sub channel that is separated from the main channel 32a by the partition walls 30a and 30b on the side walls of the main channel 32a on the upstream side and merges on the downstream side. 32b and 32c. The partition walls 30a and 30b are provided with a gap 34 having a size that prevents the fine particles in the sample from passing therethrough. Only the transport fluid flows from the main channel 32a into the sub channels 32b and 32c, and the sub channels 32b and 32c are downstream. These transport fluids join the side of the flow of the main flow path 32a. The particles exaggerated in size as 36 in FIG. 2 represent fine particles such as cells dispersed in the transport fluid of the fine particle dispersed fluid sample, and the gaps 34 between the partition walls 30a and 30b are fine particles. It is smaller than 36.

この実施例では、副流路32b,32cは主流路32aの両方の側壁側に設けられており、主流路32aに入る前の流体試料における流路断面方向での微粒子濃度が高くなっている側の副流路32bから主流路32aに合流する流量の方が他方の副流路32cから主流路32aに合流する流量よりも多くなるように、副流路32bの幅の方が副流路32cの幅よりも大きく設定されている。この場合、分岐部8,10は1流路を2流路に分岐するT字型分岐部であるので、その分岐部での流体導入側の流路(分岐前の流路)から見て奥側の部分で微粒子濃度が相対的に高くなるので、その側の副流路32bの幅の方が副流路32cの幅よりも大きくなっている。隔壁30a,30bに設けられた隙間34は全てで同じ大きさであり、均一に配列されている。   In this embodiment, the sub-channels 32b and 32c are provided on both side walls of the main channel 32a, and the side of the fluid sample before entering the main channel 32a has a higher particle concentration in the channel cross-sectional direction. The width of the sub-flow channel 32b is larger than the flow rate of the flow from the other sub-flow channel 32b to the main flow channel 32a than that from the other sub-flow channel 32c. It is set larger than the width of. In this case, since the branch portions 8 and 10 are T-shaped branch portions that branch one flow path into two flow paths, the rear is viewed from the flow path on the fluid introduction side (flow path before branching) in the branch section. Since the fine particle concentration is relatively high in the portion on the side, the width of the sub-channel 32b on that side is larger than the width of the sub-channel 32c. All the gaps 34 provided in the partition walls 30a and 30b have the same size and are arranged uniformly.

濃度分布調整部24では、流体試料中の固体試料は中央の流路、すなわち主流路32aのみを通過し、輸送用流体は隔壁に設けられた隙間34を通り、両側の副流路32b,32cを通過し、下流側において再び主流路32aに合流する。このとき、両側の副流路32b,32cの幅を、副流路32bの幅の方が副流路32cの幅よりも大きく設定しておくことにより、主流路32aへの合流地点での流量のバランスを調整することができる。3つの流路32a,32b,32cの合流後、固体微粒子の流れは両側の副流路32b,32cからの輸送用液体の流れに挟み込まれる。その際、輸送流体の流量バランスにより、流路断面方向の一方に偏っていた粒子の流れを流路中央に補正することができる。   In the concentration distribution adjusting unit 24, the solid sample in the fluid sample passes only through the central flow path, that is, the main flow path 32a, and the transport fluid passes through the gap 34 provided in the partition wall, and the sub flow paths 32b and 32c on both sides. , And joins the main flow path 32a again on the downstream side. At this time, by setting the widths of the sub-channels 32b and 32c on both sides so that the width of the sub-channel 32b is larger than the width of the sub-channel 32c, the flow rate at the junction point to the main channel 32a. The balance can be adjusted. After the three flow paths 32a, 32b, and 32c merge, the solid particulate flow is sandwiched between the transport liquid flows from the sub-flow paths 32b and 32c on both sides. At this time, the flow of particles that is biased to one side in the cross-sectional direction of the flow path can be corrected to the center of the flow path by the flow rate balance of the transport fluid.

濃度分布調整部24がこのような主流路と副流路の構造をもつことによって、流体試料が濃度分布調整部24を通過することで、濃度の高い領域が流路中央に導かれ、その結果として非対称であった濃度分布16が符号17で示されるように補正される。   Since the concentration distribution adjusting unit 24 has such a main channel and sub-channel structure, a fluid sample passes through the concentration distribution adjusting unit 24, whereby a high concentration region is led to the center of the channel, and as a result. Is corrected as indicated by reference numeral 17.

本発明のマイクロ反応装置を製造する方法は特に限定されるものではなく、微細加工技術を使用して実現することができる。図3に実際に作製した流路構造体の例を走査型電子顕微鏡(SEM)による観察画像として示す。図中の枠で囲った画像は隔壁30a,30bと隙間34を拡大して示した画像である。   The method for producing the microreaction apparatus of the present invention is not particularly limited, and can be realized using a microfabrication technique. FIG. 3 shows an example of a flow channel structure actually fabricated as an observation image by a scanning electron microscope (SEM). An image surrounded by a frame in the figure is an image showing the partition walls 30a and 30b and the gap 34 in an enlarged manner.

この実施例では、シリコン基板の表面にフォトリソグラフィー工程とドライエッチング工程により、図3に示されるように底をもつパターンとして分析ウエル6、試料導入部4の流路、濃度分布調整部24及び試料排出流路9を形成した。濃度分布調整部24では、断面が一辺10μmの正三角形で底面に対して垂直方向に50μmの高さに直立した棒状体が等間隔に2列に配列されたマイクロピラーとして隔壁30a,30bを形成した。各棒状体配列は断面の三角形の一辺が一直線上に5μmの間隔で配列されるように配置した。したがって、隔壁30a,30bの隙間34は5μmである。それぞれのマイクロピラーの配列である隔壁30a,30b間の距離、すなわち主流路32aの幅は50μmとした。このようにパターンを形成したシリコン基板の表面に試料導入口2と試料排出口7をあけたホウ珪酸ガラス板を陽極接合することによりこのマイクロ反応装置を形成した。   In this embodiment, the analysis well 6, the flow path of the sample introduction unit 4, the concentration distribution adjusting unit 24, and the sample are formed as a pattern having a bottom as shown in FIG. 3 by a photolithography process and a dry etching process on the surface of the silicon substrate. A discharge channel 9 was formed. In the concentration distribution adjusting unit 24, partition walls 30a and 30b are formed as micro pillars in which rod-like bodies having a cross section of 10 μm on a side and upright at a height of 50 μm in a direction perpendicular to the bottom surface are arranged in two rows at equal intervals. did. Each rod-like body arrangement was arranged so that one side of the cross-sectional triangle was arranged on a straight line at an interval of 5 μm. Therefore, the gap 34 between the partition walls 30a and 30b is 5 μm. The distance between the partition walls 30a and 30b, which is the arrangement of the respective micro pillars, that is, the width of the main flow path 32a was 50 μm. The microreactor was formed by anodically bonding a borosilicate glass plate having the sample introduction port 2 and the sample discharge port 7 to the surface of the silicon substrate thus formed.

分析ウエル6、試料導入部4、濃度分布調整部24及び試料排出流路9は基板の片面のみに形成することができるため、フォトリソグラフィー法を用いてレジスト層に流路形状を形成する工程は1つのマスクのみで作製を行うことが可能である。
またさらに安価な作製方法として樹脂材料を用いた射出成形やホットエンボス法を用いることができる。
Since the analysis well 6, the sample introduction unit 4, the concentration distribution adjusting unit 24, and the sample discharge channel 9 can be formed only on one side of the substrate, the step of forming the channel shape in the resist layer using the photolithography method is performed. Fabrication can be performed with only one mask.
Further, as an inexpensive manufacturing method, an injection molding using a resin material or a hot embossing method can be used.

図4に図3の実施例のデバイス構造において、コンピュータシミュレーションにより流体の流れを計算した結果を示す。このミュレーションにより、主流路32aの流れに対し、主流路32aの下流側で両側の副流路32b,32cから流体が合流しているのがわかる。   FIG. 4 shows the result of calculating the fluid flow by computer simulation in the device structure of the embodiment of FIG. By this simulation, it can be seen that the fluid flows from the sub-channels 32b and 32c on both sides of the main channel 32a on the downstream side of the main channel 32a.

この実施例を細胞分析装置として使用し、試料導入口2から試料として細胞培養液に生体細胞が分散した細胞分散溶液を注入すると、導入された細胞分散溶液中の細胞は試料導入部4aの流路を通り、濃度分布調整部24で濃度分布が補正されながら均等に分配されていき、細胞分析容器である分析ウエル6に導入される。このように、1回の導入操作によって複数の分析ウエル6に均等に細胞が導入される。   When this embodiment is used as a cell analyzer and a cell dispersion solution in which living cells are dispersed as a sample is injected from the sample introduction port 2 into the cell culture solution, the cells in the introduced cell dispersion solution flow in the sample introduction section 4a. Through the path, the concentration distribution is evenly distributed while being corrected by the concentration distribution adjusting unit 24 and introduced into the analysis well 6 which is a cell analysis container. In this way, cells are evenly introduced into the plurality of analysis wells 6 by a single introduction operation.

図5にはこの実施例のマイクロ反応装置を使用し、直径が20μmのポリスチレン製の蛍光ビーズを分散させた溶液を試料として実際に導入実験を10回測定行い、各分析ウエル6に導入された蛍光ビーズの量を比較した結果を示す。分析ウエル6の数は8であり、端から順に番号をつけた。(A)は濃度分布調整部24を設けなかった場合を示す比較例、(B)は実施例の濃度分布調整部24を設けた場合である。図5の結果から、8つの分析ウエル6での蛍光ビーズ導入数の平均値の変動係数は、濃度分布調整部を設けなかった場合(A)は94.9%であったのに対し、本実施例による濃度分布調整部24を設けた場合(B)は29.3%に改善された。濃度分布調整部24を設けることにより、分析ウエル6での蛍光ビーズ導入数のばらつきが小さくなっていることが明らかである。   In FIG. 5, the microreaction apparatus of this example was used, and an introduction experiment was actually performed 10 times using a solution in which polystyrene fluorescent beads having a diameter of 20 μm were dispersed as a sample, and introduced into each analysis well 6. The result of comparing the amount of fluorescent beads is shown. The number of analysis wells 6 is 8, and they are numbered sequentially from the end. (A) is a comparative example showing a case where the density distribution adjustment unit 24 is not provided, and (B) is a case where the density distribution adjustment unit 24 of the embodiment is provided. From the results of FIG. 5, the coefficient of variation of the average number of fluorescent beads introduced in the eight analysis wells 6 was 94.9% when the concentration distribution adjustment unit was not provided (A), whereas In the case where the density distribution adjusting unit 24 according to the example is provided, (B) is improved to 29.3%. It is apparent that the variation in the number of fluorescent beads introduced in the analysis well 6 is reduced by providing the concentration distribution adjusting unit 24.

本実施例では、濃度分布調整部24において副流路32b,32cが主流路32aの両方の側壁側に設けられているが、副流路は主流路32aに入る前の流体試料における流路断面方向での微粒子濃度が高くなっている側にのみ、この場合は副流路32bのみを設けていてもよい。主流路32aに入る前の流体試料における流路断面方向での微粒子濃度は副流路32b側で高くなっているので、他方の副流路32cがなくても濃度分布調整部24の下流側で副流路32bから主流路32aに輸送用流体を合流させることにより微粒子濃度が流路の中央部で高くなるように補正することができる。   In the present embodiment, the secondary flow channels 32b and 32c are provided on both side walls of the main flow channel 32a in the concentration distribution adjusting unit 24, but the sub flow channel is a flow channel cross section in the fluid sample before entering the main flow channel 32a. In this case, only the secondary flow path 32b may be provided only on the side where the fine particle concentration in the direction is high. The fine particle concentration in the cross-sectional direction of the fluid sample before entering the main channel 32a is high on the sub-channel 32b side. It is possible to correct the concentration of fine particles to be higher in the center of the flow path by joining the transport fluid from the sub flow path 32b to the main flow path 32a.

本発明のマイクロ反応装置は、微量な1つの試料について同時に多数の試験を行うための反応装置として、例えば細胞の薬剤や毒物に対する影響を評価するための細胞分析装置などとして利用することができる。   The microreaction apparatus of the present invention can be used as a reaction apparatus for conducting a large number of tests on a small amount of sample at the same time, for example, as a cell analysis apparatus for evaluating the influence of cells on drugs and poisons.

一実施例のマイクロ反応装置の主要部を概略的に示す平面図であり、分析ウエルへの試料導入側を示したものである。1 is a plan view schematically showing a main part of a microreaction apparatus of one embodiment, and shows a sample introduction side into an analysis well. FIG. 同実施例における1つの濃度分布調整部近傍を拡大して示した平面図である。It is the top view which expanded and showed one density distribution adjustment part vicinity in the Example. 同実施例の1つの分岐部近傍を示すSEM画像である。It is a SEM image which shows the one branch part vicinity of the Example. 同実施例における流体の流れを示すシミュレーション図である。It is a simulation figure which shows the flow of the fluid in the Example. 同実施例における試料導入実験の結果を示す図であり、(A)は濃度分布調整部を設けなかった比較例、(B)は濃度分布調整部を設けた実施例の場合である。It is a figure which shows the result of the sample introduction | transduction experiment in the Example, (A) is a comparative example which did not provide a concentration distribution adjustment part, (B) is a case of the Example which provided the concentration distribution adjustment part. 提案中の受動的試料導入法を採用したマイクロ反応装置を概略的に示す図であり、(A)は透視図として示す斜視図、(B)は試料の流れを示す要部斜視図である。It is a figure which shows schematically the micro reaction apparatus which employ | adopted the passive sample introduction method in proposal, (A) is a perspective view shown as a perspective view, (B) is a principal part perspective view which shows the flow of a sample. 同受動的試料導入法における濃度分布の変化を示す図であり、(A)は試料導入部を示す平面図、(B)は分岐部における濃度分布の変化を示す要部平面図である。It is a figure which shows the change of concentration distribution in the same passive sample introduction method, (A) is a top view which shows a sample introduction part, (B) is a principal part top view which shows the change of concentration distribution in a branch part.

符号の説明Explanation of symbols

2 試料導入口
4a 試料導入部
6 分析ウエル
7 試料排出口
9 試料排出流路
8,10,12 分岐部
20a,20b,22a〜20d 分岐部間の流路
24 濃度分布調整部
30a,30b 隔壁
32a 主流路
32b,32c 副流路
34 隙間
2 Sample introduction port 4a Sample introduction unit 6 Analysis well 7 Sample discharge port 9 Sample discharge channel 8, 10, 12 Branch part 20a, 20b, 22a-20d Channel between branch unit 24 Concentration distribution adjustment unit 30a, 30b Partition wall 32a Main flow path 32b, 32c Sub flow path 34 Clearance

Claims (5)

基体内に形成された複数個の分析ウエルと、試料導入口から導入され輸送用流体中に微粒子が分散した微粒子分散流体試料を基体内で流しながら全ての前記分析ウエルに分配する試料導入部と、全ての前記分析ウエルから試料排出口につながる試料排出流路とを備えたマイクロ反応装置において、
前記試料導入部は、少なくとも2段階の分岐部を備えて前記試料導入口から全ての前記分析ウエルに対して段階的に、かつ均等に分岐する流路構造を有し、
前記試料導入部における分岐部間の流路にはその流路での流路断面方向の微粒子濃度分布を調整する濃度分布調整部が設けられ、
前記濃度分布調整部は微粒子分散流体試料が流れる主流路と、主流路の少なくとも一方の側壁側に主流路とは上流側で隔壁により分離され下流側で合流する副流路とからなり、前記隔壁には試料中の微粒子を通過させない大きさの隙間が設けられていて、主流路から副流路に輸送用流体のみが流れ込み、下流において副流路の輸送用流体が主流路の流れの側方に合流するようになっていることを特徴とするマイクロ反応装置。
A plurality of analysis wells formed in the substrate, and a sample introduction unit that distributes all of the analysis wells while flowing a particle dispersion fluid sample introduced from the sample inlet and dispersed in the transport fluid in the substrate. In a microreaction apparatus having a sample discharge channel connected to a sample discharge port from all the analysis wells,
The sample introduction part has a flow path structure that has at least two stages of branch parts and branches from the sample introduction port to all the analysis wells stepwise and evenly.
The flow path between the branch parts in the sample introduction part is provided with a concentration distribution adjusting part for adjusting the fine particle concentration distribution in the flow path cross-sectional direction in the flow path,
The concentration distribution adjusting unit includes a main flow channel through which the fine particle dispersed fluid sample flows, and a sub flow channel separated from the main flow channel by a partition on the upstream side and joined on the downstream side on at least one side wall of the main flow channel. Is provided with a gap that does not allow the passage of fine particles in the sample, so that only the transport fluid flows from the main channel into the sub-channel, and the transport fluid in the sub-channel flows downstream of the main channel flow downstream. A microreactor characterized in that it merges with the above.
前記副流路は主流路の両方の側壁側に設けられており、主流路に入る前の流体試料における流路断面方向での微粒子濃度が高くなっている側の副流路から主流路に合流する流量の方が他方の副流路から主流路に合流する流量よりも多くなるように、副流路の大きさと前記隔壁の隙間の大きさの少なくとも一方が調整されている請求項1に記載のマイクロ反応装置。   The sub-channel is provided on both side walls of the main channel, and joins the main channel from the sub-channel on the side where the fine particle concentration in the cross-sectional direction of the fluid sample before entering the main channel is high 2. The at least one of the size of the sub flow channel and the size of the gap between the partition walls is adjusted so that the flow rate to be generated is larger than the flow rate of the flow from the other sub flow channel to the main flow channel. Micro reactor. 前記副流路は主流路に入る前の流体試料における流路断面方向での微粒子濃度が高くなっている側で、主流路の一方の側壁側にのみ設けられている請求項1に記載のマイクロ反応装置。   2. The micro of claim 1, wherein the sub-channel is provided only on one side wall side of the main channel on the side where the fine particle concentration in the channel cross-sectional direction of the fluid sample before entering the main channel is high. Reactor. 前記試料排出流路は前記試料排出口に向かって段階的に、かつ均等に合流を繰り返す流路構造をもっている請求項1から3のいずれか一項に記載のマイクロ反応装置。   The microreaction apparatus according to any one of claims 1 to 3, wherein the sample discharge channel has a channel structure that repeats merging stepwise and evenly toward the sample discharge port. 前記試料が細胞培養液に生体細胞が分散した細胞分散溶液であり、分析ウエルが試料細胞を分析するための細胞分析容器であって、このマイクロ反応装置が細胞分析装置を構成している請求項1から4のいずれか一項に記載のマイクロ反応装置。   The sample is a cell dispersion solution in which living cells are dispersed in a cell culture solution, the analysis well is a cell analysis container for analyzing the sample cell, and the microreaction apparatus constitutes a cell analysis apparatus. The microreaction apparatus according to any one of 1 to 4.
JP2006296367A 2006-10-31 2006-10-31 Micro reactor Expired - Fee Related JP4866208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296367A JP4866208B2 (en) 2006-10-31 2006-10-31 Micro reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296367A JP4866208B2 (en) 2006-10-31 2006-10-31 Micro reactor

Publications (2)

Publication Number Publication Date
JP2008111798A JP2008111798A (en) 2008-05-15
JP4866208B2 true JP4866208B2 (en) 2012-02-01

Family

ID=39444373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296367A Expired - Fee Related JP4866208B2 (en) 2006-10-31 2006-10-31 Micro reactor

Country Status (1)

Country Link
JP (1) JP4866208B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009145022A1 (en) * 2008-05-27 2009-12-03 コニカミノルタエムジー株式会社 Microtip having microchannel
US10018627B2 (en) 2011-03-08 2018-07-10 Japan Science And Technology Agency Method for sealing substances, method for detecting target molecule, array, kit, and target molecule detection device
US9329174B2 (en) 2011-03-08 2016-05-03 Japan Science And Technology Agency Bead trapping method and method for detecting target molecule
SG10201811714UA (en) 2014-07-08 2019-01-30 Japan Science & Tech Agency Substance sealing method and target molecule detecting method
JP6450337B2 (en) * 2016-03-17 2019-01-09 国立大学法人名古屋大学 Cell sorting device and cell sorting method
US20240034973A1 (en) 2020-12-02 2024-02-01 Ushio Denki Kabushiki Kaisha Culture vessel, and method of using culture vessel

Also Published As

Publication number Publication date
JP2008111798A (en) 2008-05-15

Similar Documents

Publication Publication Date Title
JP4866208B2 (en) Micro reactor
US10689210B2 (en) Multilayer hydrodynamic sheath flow structure
JP2007514522A5 (en)
KR101807256B1 (en) Particle separator and method for separating particle
Tottori et al. High-throughput production of satellite-free droplets through a parallelized microfluidic deterministic lateral displacement device
JP5065803B2 (en) Micro liquid weighing apparatus, microchip having the same, and liquid measuring method
JP5013424B2 (en) Microchip, master chip
US11123703B2 (en) Fine particle manufacturing device
JP4598646B2 (en) Micro reactor
KR101680712B1 (en) Device and method for cell pairing and fusion
US20120258529A1 (en) Apparatus for separating target molecules and method of separating target molecules by using the same
KR20200067304A (en) Method of extracting target from bio sample using non-newtonian fluid and microfluidic channel and microfluidic chip therefor
US20080020368A1 (en) Method and apparatus for exposing cells to different concentrations of analytes or drugs
KR101853968B1 (en) A microfluidic chip for enhanced gradient generation
US12018240B2 (en) High-throughput microfluidic chip having parallelized constrictions for perturbing cell membranes
AU2011205167B2 (en) Multilayer hydrodynamic sheath flow structure
Kawai et al. Parallel and passive distribution to arrayed microwells using self-regulating pinched flow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4866208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees