JP4865198B2 - Flow rate control method for ground injection - Google Patents

Flow rate control method for ground injection Download PDF

Info

Publication number
JP4865198B2
JP4865198B2 JP2004205419A JP2004205419A JP4865198B2 JP 4865198 B2 JP4865198 B2 JP 4865198B2 JP 2004205419 A JP2004205419 A JP 2004205419A JP 2004205419 A JP2004205419 A JP 2004205419A JP 4865198 B2 JP4865198 B2 JP 4865198B2
Authority
JP
Japan
Prior art keywords
liquid
flow rate
injection
control
grout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004205419A
Other languages
Japanese (ja)
Other versions
JP2006028768A (en
Inventor
節男 伊藤
義宏 阿部
一祥 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Nittoc Constructions Co Ltd
Original Assignee
Maeda Corp
Nittoc Constructions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp, Nittoc Constructions Co Ltd filed Critical Maeda Corp
Priority to JP2004205419A priority Critical patent/JP4865198B2/en
Publication of JP2006028768A publication Critical patent/JP2006028768A/en
Application granted granted Critical
Publication of JP4865198B2 publication Critical patent/JP4865198B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

本発明は、ダム、トンネル、都市土木等の薬液またはセメント注入の地盤注入工法で、多液を混合して注入する場合の流量比率制御方法に関するものである。   The present invention relates to a flow rate ratio control method in the case of mixing and injecting multiple liquids in a ground injection method for chemical injection or cement injection for dams, tunnels, urban civil engineering, and the like.

地盤注入工法としての薬液注入工法は、地盤の中に固化材(薬液)を注入して固結土を造成し、地盤の透水性を低下させるとともに、地盤を強化する工法である。   The chemical injection method as the ground injection method is a method of injecting a solidified material (chemical solution) into the ground to create a consolidated soil, thereby reducing the water permeability of the ground and strengthening the ground.

薬液注入工法での多液注入、例えば、注入液として、セメントミルク等の懸濁型注入液(A液)と水ガラス系等の溶液型注入液(B液)などの二液混合グラウチングでは、グラウトミキサで作成する注入液Aと注入液Bをポンプで地盤に挿入する注入管に送り、これら注入液Aと注入液Bを配管経路の途中または注入管の先端で混合して地盤に吐出する。   In multi-liquid injection in the chemical liquid injection method, for example, two-liquid mixed grouting such as suspension type injection liquid (A liquid) such as cement milk and solution type injection liquid (B liquid) such as water glass type as the injection liquid, The injection liquid A and the injection liquid B prepared by the grout mixer are sent to the injection pipe inserted into the ground by a pump, and the injection liquid A and the injection liquid B are mixed in the middle of the piping path or at the tip of the injection pipe and discharged to the ground. .

図13において、図中1、2は注入液Aと注入液Bのグラウトミキサであるが、これらグラウトミキサ1、2の注入液Aと注入液Bは薬液注入ポンプ3からそれぞれの配管経路で注入管4の注入孔4aに送られる。   In FIG. 13, 1 and 2 are grout mixers of the infusion solution A and the infusion solution B, but the infusion solution A and the infusion solution B of these grout mixers 1 and 2 are infused from the chemical solution infusion pump 3 through respective piping paths. It is sent to the injection hole 4 a of the tube 4.

このような二液混合グラウチングで注入液の圧力、流量を管理する方法としては、従来、薬液注入ポンプ3による。薬液注入ポンプ3からの各配管経路に薬液流量圧力測定装置5で計測して本薬液注入ポンプ3を制御する。   As a method for managing the pressure and flow rate of the injection liquid by such two-liquid mixing grouting, a chemical liquid injection pump 3 is conventionally used. The chemical solution injection pump 3 is controlled by measuring the chemical flow rate pressure measuring device 5 in each piping path from the chemical solution injection pump 3.

前記薬液注入ポンプ3に使用されるポンプはピストン式またはプランジャ式のポンプで、吐出量(流量)を制御する機能を有し、二種類の注入液(注入液Aと注入液B)を等量で吐出できる。なお、1台の薬液注入ポンプ3とせずに2台のポンプとしてもよい。   The pump used for the chemical liquid injection pump 3 is a piston type or plunger type pump, which has a function of controlling the discharge amount (flow rate), and is equivalent to two types of injection liquids (infusion liquid A and injection liquid B). Can be discharged. In addition, it is good also as two pumps instead of one chemical | medical solution injection pump 3. FIG.

このように圧力制御については、作業員が薬液流量圧力測定装置5の圧力表示を目で見て確認しながら、薬液注入ポンプ3の吐出量を調整することで、間接的に調整を行う。注入配管は単管×2系列である。   In this way, the pressure control is indirectly adjusted by adjusting the discharge amount of the chemical injection pump 3 while the operator visually confirms the pressure display of the chemical flow rate measuring device 5. The injection pipe is a single pipe × 2 series.

なお、下記特許文献1には、グラウトA液系統とグラウトB液系統との少なくとも2系統を有し、各系統に挿入されたポンプから吐出された液体を混合して所定の比率のグラウトを得るようにしたグラウトの比率制御装置として、前記各系統のポンプをそれぞれ駆動するポンプモータに、速度制御するためのモータインバータをそれぞれ結合し、これらモータインバータに、流量設定信号出力手段をそれぞれ結合し、それぞれの流量設定信号出力手段を互いに逆動作するように連動せしめてなることを特徴とするグラウトの比率制御装置が提案されている。
特開平11−13053号公報(グラウトの比率制御装置)
In addition, the following Patent Document 1 has at least two systems of a grout A liquid system and a grout B liquid system, and a liquid discharged from a pump inserted into each system is mixed to obtain a grout of a predetermined ratio. As a grout ratio control apparatus, a pump motor for driving the pumps of each system is coupled to a motor inverter for speed control, and a flow rate setting signal output means is coupled to each of the motor inverters. A grout ratio control device has been proposed in which the respective flow rate setting signal output means are interlocked so as to operate in reverse to each other.
JP-A-11-13053 (grout ratio control device)

前記図13の薬液注入ポンプによる制御方式では制御に人手を介在しなければならないものである。   The control method using the chemical solution injection pump shown in FIG. 13 requires manual intervention.

また、扱う注入液は2種類のものに限られ、しかも、混合比率は1:1に固定されている。しかも、注入液Aと注入液Bの二種類の注入液を配管経路の途中または注入管4の先端で合流させると、注入液が互いに干渉し合い、圧力、流量が不規則に変化するので、このような二種類の注入液の混合割合を1:1に保つには、迅速かつ微妙な制御を連続的に行う必要がある。そのためには前記のごとく制御に人手を介在させるものでは、圧力、流量の変化に追随できない場合が多い。   Moreover, the injection liquid to handle is limited to two types, and the mixing ratio is fixed to 1: 1. Moreover, when two types of injection solutions, injection solution A and injection solution B, are merged in the middle of the piping path or at the tip of the injection tube 4, the injection solutions interfere with each other, and the pressure and flow rate change irregularly. In order to keep the mixing ratio of these two types of injection solutions at 1: 1, it is necessary to perform quick and delicate control continuously. For this purpose, as described above, it is often impossible to follow changes in pressure and flow rate with manual intervention.

また、前記特許文献1は、グラウトA液と、グラウトB液が保有されている状態で、グラウトA液ポンプとグラウトB液ポンプとを同時に運転して両液をバッファータンクに送り込んで撹拌するものであり、バッチ単位で注入液を混合する。その結果、注入中に注入液の配合を随時、任意に変更することはできない。   In addition, in Patent Document 1, the grout A liquid and the grout B liquid are held, and the grout A liquid pump and the grout B liquid pump are simultaneously operated to feed both liquids into the buffer tank and stir them. The injection solution is mixed in batch units. As a result, the composition of the injection solution cannot be arbitrarily changed at any time during the injection.

さらに、特許文献1は、比率制御装置が一方的に制御信号を送るだけで、その結果(流量)を測定しない。また、混合後の流量、圧力の制御を別なシステムで行うものである。   Further, in Patent Document 1, the ratio control device only sends a control signal unilaterally and does not measure the result (flow rate). Further, the flow rate and pressure after mixing are controlled by another system.

これに対して発明者は先に特願2003−356108号として、図7〜図9に示すように、複数の注入液をグラウトミキサに接続する注入ポンプから地盤に挿入する注入管に同時に送る際に、圧力検出器、流量検出器、制御弁等を備え、液路を流れてくる注入液の圧力、流量をそれぞれ圧力検出器、流量検出器で検出するとともに、これら検出値に基いて、制御弁の開閉を制御することにより注入液を所望の圧力、流量で液路に送り出すグラウト流量制御装置8を、少なくともA液(第1注入液)のグラウトポンプ6から注入管4への液路に配設し、また、各注入液相互を所望の割合で供給するように前記グラウト流量制御装置8を制御するグラウト流量比率設定装置9を設けた多液同時注入システムを提案した。   On the other hand, as shown in FIGS. 7 to 9, the inventor previously sent a plurality of injection solutions simultaneously from an injection pump connected to a grout mixer to an injection tube inserted into the ground as Japanese Patent Application No. 2003-356108. Equipped with a pressure detector, flow rate detector, control valve, etc., and the pressure and flow rate of the injected liquid flowing through the liquid path are detected by the pressure detector and flow rate detector, respectively, and control is performed based on these detected values. The grout flow rate control device 8 for sending the injected liquid to the liquid path at a desired pressure and flow rate by controlling the opening and closing of the valve is provided at least in the liquid path from the grout pump 6 for the A liquid (first injected liquid) to the injection pipe 4. A multi-liquid simultaneous injection system provided with a grout flow rate setting device 9 for controlling the grout flow control device 8 so as to be arranged and to supply each injection solution at a desired ratio has been proposed.

このグラウト流量比率設定装置9にはパソコン等が利用でき、前記グラウト流量制御装置8の圧力検出器24、流量検出器(電磁流量計)25の測定出力を受け、制御信号をグラウト流量制御装置8を介して、制御弁20を制御する。また、グラウト流量比率設定装置9は、可変吐出型注入ポンプであるグラウトポンプ7と信号線で接続され、本グラウトポンプ7の運転を制御できるものである。   A personal computer or the like can be used for the grouting flow rate setting device 9 and receives the measurement output of the pressure detector 24 and the flow detector (electromagnetic flow meter) 25 of the grouting flow control device 8 and sends control signals to the grouting flow control device 8. The control valve 20 is controlled via The grout flow ratio setting device 9 is connected to the grout pump 7 which is a variable discharge type infusion pump through a signal line, and can control the operation of the grout pump 7.

また、グラウト流量比率設定装置9は流量・圧力センサ10からの出力を受け、これに基づいてグラウトポンプ7等の制御も可能である。   Further, the grout flow rate setting device 9 receives an output from the flow rate / pressure sensor 10, and can control the grout pump 7 and the like based on the output.

図12は、グラウト流量比率設定装置9のブロック回路図で、電気信号を物理量(流量・圧力)に変換するスケーリング回路9a、混合比率をもとに二液の流量の大小を判定する主/従制御判別回路9b、流量の大きな側の信号(例えばA液の流量>B液の流量の場合、A液側の信号)を主制御回路へ渡す主/従制御振り分け回路9c、主側について、流量または圧力のどちらか一方の制御を割出し、設定値と入力値の差を求める主制御用流量・圧力偏差量算出回路9d、主側について、設定値と入力値の差に応じた電動弁の開閉信号を出力する主制御用電動弁駆動開閉判別回路9f、従側について、主側の注入液の流量と混合比率をもとに算出した流量の設定値と入力値の差を求める従制御用流量・圧力偏差量算出回路9e、従側について、設定値と入力値の差に応じた電動弁の開閉信号を出力する従制御用電動弁駆動開閉判別回路9g、主/従判別回路からの信号(9f、9gからの信号)に応じて主制御出力と従制御出力を切り替える主/従制御切替回路9hとからなる。   FIG. 12 is a block circuit diagram of the grout flow ratio setting device 9, a scaling circuit 9 a that converts an electrical signal into a physical quantity (flow rate / pressure), and a main / subordinate that determines the magnitude of the flow rate of two liquids based on the mixing ratio. Control discriminating circuit 9b, main / slave control distribution circuit 9c that passes a signal on the larger flow rate side (for example, if the flow rate of A liquid> the flow rate of B liquid to the A liquid side) to the main control circuit, Alternatively, the main control flow rate / pressure deviation amount calculation circuit 9d that calculates the control of either one of the pressure and obtains the difference between the set value and the input value, and the main side of the motor-operated valve according to the difference between the set value and the input value. A motor control valve drive opening / closing discriminating circuit 9f for output of an open / close signal for the slave control, for the slave control, for determining the difference between the set value and the input value of the flow rate calculated based on the flow rate and mixing ratio of the injection liquid on the master side Flow rate / pressure deviation calculation circuit 9e, slave side Sub-control motorized valve drive opening / closing discriminating circuit 9g for outputting an electric valve opening / closing signal according to the difference between the set value and the input value, and main control according to signals from the main / sub-discriminating circuits (signals from 9f, 9g) It comprises a main / subordinate control switching circuit 9h that switches between output and subordinate control output.

前記グラウト流量比率設定装置9によってそれぞれ所望の割合で供給するように流量を制御でき、数種類の注入液を液路の途中またはその先端で任意の混合比率で調合することが可能となり、混合液の性質(浸透性、粘性、凝結、硬化時間、強度等)の調整範囲が大きく広がり、その結果、薬液またはセメント注入工事における止水効果・補強効果の向上、それらにともなう経済性の改善を期待することができる。   The flow rate can be controlled so as to be supplied at a desired rate by the grout flow rate setting device 9, and several kinds of infusion can be prepared at an arbitrary mixing ratio in the middle of the liquid channel or at the tip thereof. The range of adjustment of properties (penetration, viscosity, setting, setting time, strength, etc.) is greatly expanded, and as a result, improvement of water-stopping effect and reinforcement effect in chemical solution or cement injection work, and improvement of economics associated with them are expected. be able to.

この特願2003−356108号のような、A液(第1注入液)とB液(第2注入液)の注入液を混合して注入管により地盤に注入する地盤注入工法において、A液、B液のうち流量比率の大きい方を「主液」小さい方を「従液」として、仕様で定められた混合液の流量設定値と各注入液の混合割合を基に主液の流量設定値を算出し、それに基づいて主液の流量制御を行い、また、主液の流量の測定値と従液の混合比率を基に従液の流量設定値を算出し、それに基づいて従液の流量制御を行う場合に、混合後の注入液の流量もしくは圧力を一定に保ちながら、各注入液の流量比率(混合割合、配合)を変更する場合、その制御を安定的に行うには、下記の問題がある。   In the ground injection method in which the injection liquid of the liquid A (first injection liquid) and the liquid B (second injection liquid) are mixed and injected into the ground through the injection pipe as in Japanese Patent Application No. 2003-356108, Of the B liquids, the one with the larger flow rate ratio is the “main solution” and the one with the smaller flow rate is the “secondary solution”. The flow rate of the main liquid is controlled based on the measured flow rate of the main liquid and the mixing ratio of the subordinate liquid. When performing control, when changing the flow rate ratio (mixing ratio, blending) of each injection solution while keeping the flow rate or pressure of the injection solution after mixing constant, There's a problem.

注入の途中で流量比率を変更し、A液(第1注入液)とB液(第2注入液)の流量の大小関係が入れ替わる場合の制御では、A液(第1注入液)の流量の微妙な変動が拡大され、B液(第2注入液)の流量が大きく変動することにより、配合の制御が不安定になる。In the control when the flow rate ratio is changed in the middle of injection and the magnitude relationship between the flow rates of A liquid (first injection liquid) and B liquid (second injection liquid) is switched, the flow rate of A liquid (first injection liquid) is changed. Subtle fluctuations are magnified, and the flow rate of the B liquid (second injection liquid) fluctuates greatly, resulting in unstable blending control.

本発明の目的は前記従来例の不都合を解消し、注入の途中で流量比率を変更する場合にも配合の制御が不安定になることを防止できる地盤注入における流量比率制御方法を提供することにある。 To provide a purpose the eliminate the disadvantages of the prior art, the flow rate ratio control method for soil injection can be prevented from becoming unstable control formulation even when changing the flow ratio in the middle of the injection of the present invention is there.

請求項1記載の本発明は、A液(第1注入液)とB液(第2注入液)の注入液を混合して注入管により地盤に注入する地盤注入工法において、注入の途中で流量比率を変更し、A液(第1注入液)とB液(第2注入液)の流量の大小関係が入れ替わる場合、常に流量比率の大きい方を新たに「主液」小さい方を新たに「従液」に変更して、仕様で定められた混合液の流量設定値と各注入液の混合割合を基に主液の流量設定値を算出し、それに基づいて主液の流量制御を行い、また、主液の流量の測定値と従液の混合比率を基に従液の流量設定値を算出し、それに基づいて従液の流量制御を行うことを要旨とするものである。 The present invention according to claim 1 is a ground injection method in which injection liquids of liquid A (first injection liquid) and liquid B (second injection liquid) are mixed and injected into the ground through an injection pipe. When the ratio is changed and the magnitude relationship between the flow rates of A liquid (first injection liquid) and B liquid (second injection liquid) is switched, the larger main flow ratio is always newly added to the smaller “main liquid”. Change to `` subsidiary liquid '', calculate the flow rate setting value of the main liquid based on the flow rate setting value of the liquid mixture specified in the specification and the mixing ratio of each infusion, and perform the flow control of the main liquid based on that, Further, the gist is to calculate the flow rate setting value of the follower liquid based on the measured value of the flow rate of the main liquid and the mixing ratio of the follower liquid, and to control the flow rate of the follower liquid based thereon.

請求項記載の本発明によれば、注入の途中で流量比率を変更し、A液(第1注入液)とB液(第2注入液)の流量の大小関係が入れ替わる場合、そのまま制御を続行すると、少ない量(流量比率の小さい)の液の流量の微妙な変動が拡大され、多い量の流量(流量比率の大きい)の液が大きく変動することにより配合の制御が不安定になるおそれがあるが、これを常に流量比率の大きい方を「主液」小さい方を「従液」として、常に配合の制御の安定性を確保することができる。 According to the first aspect of the present invention, when the flow rate ratio is changed during the injection, and the magnitude relationship between the flow rates of the liquid A (first injection liquid) and the liquid B (second injection liquid) is switched, the control is performed as it is. If you continue, the subtle fluctuations in the flow rate of liquid with a small amount (small flow rate ratio) will be magnified, and the control of the formulation may become unstable due to large fluctuations in the liquid with a large amount of flow rate (high flow rate ratio) However, it is possible to always ensure the stability of blending control by setting the larger main flow rate as the “main liquid” and the smaller flow rate as the “subordinate liquid”.

以上述べたように本発明の地盤注入における流量比率制御方法によれば、注入の途中で流量比率を変更する場合にも配合の制御が不安定になることを防止できるものである。 As described above, according to the flow rate ratio control method in the ground injection of the present invention, it is possible to prevent the blending control from becoming unstable even when the flow rate ratio is changed during the injection .

以下、図面について本発明の実施の形態を説明する。先に、本発明の地盤注入における流量比率制御方法を行う場合の基本的な制御について説明する。図1はそのフロー図、図7〜図9はA液(第1注入液)とB液(第2注入液)との二液同時注入の場合の設備説明図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, basic control in the case of performing the flow rate ratio control method in the ground injection of the present invention will be described. FIG. 1 is a flow chart thereof, and FIGS. 7 to 9 are explanatory diagrams of equipment in the case of two-liquid simultaneous injection of A liquid (first injection liquid) and B liquid (second injection liquid).

図7〜図9において、A液(第1注入液)とB液(第2注入液)との二液同時注入の場合で、注入液の種類は、注入液A(第1注入液):セメントミルク(懸濁型注入液)、注入液B(第2注入液):水ガラス(溶液型注入液)であり、注入液の用途としては、通常はセメントミルクの注入を行い、地表への漏出防止、湧水の逆流防止等の理由で、注入液をゲル化(≒凝結)させる必要が生じた場合、セメントミルクに水ガラスを混合するものである。   7-9, in the case of two-liquid simultaneous injection of A liquid (first injection liquid) and B liquid (second injection liquid), the type of injection liquid is injection liquid A (first injection liquid): Cement milk (suspension type injection solution), injection solution B (second injection solution): Water glass (solution type injection solution). As an application of the injection solution, usually cement milk is injected and applied to the ground surface. When it is necessary to gelate the injection liquid (≈condensation) for reasons such as prevention of leakage and backflow of spring water, water glass is mixed with cement milk.

図8は、懸濁型注入液に循環路式注入配管、溶液型注入液に単路式注入配管を用いる例である。注入液Aと注入液Bのグラウトミキサ1、2にはそれぞれ注入ポンプとしてのグラウトポンプ6、7が接続され、注入液Aと注入液Bは本グラウトポンプ6、7から途中の合流管11で合流して注入管4の注入孔4aに送られる。   FIG. 8 shows an example in which a circulation type injection pipe is used for the suspension type injection liquid and a single path type injection pipe is used for the solution type injection liquid. Grout pumps 6 and 7 as injection pumps are connected to the grout mixers 1 and 2 of the injection liquid A and the injection liquid B, respectively. The injection liquid A and the injection liquid B are connected to the grouting pumps 6 and 7 through a junction pipe 11 in the middle. It merges and is sent to the injection hole 4 a of the injection tube 4.

図10に注入管4の詳細を示すと、注入ロッド(ボーリングロッド)30の上端部には注入ヘッドとしての注入孔4aがあり、先端部にはエアーパッカー32を配設したパッカーヘッド31を設けている。図示の例はチューブ式であり、エアーパッカー32の膨張用の窒素を供給するエアーチューブ33を注入ロッド30の外周に取り付けたが、エアー通路を注入ロッド30の中に形成することも可能である。図中34はチッソボンベ、ロッドホルダー35である。   FIG. 10 shows the details of the injection tube 4. The injection rod (boring rod) 30 has an injection hole 4 a as an injection head at the upper end, and a packer head 31 provided with an air packer 32 at the tip. ing. The illustrated example is a tube type, and an air tube 33 that supplies nitrogen for expansion of the air packer 32 is attached to the outer periphery of the injection rod 30, but an air passage may be formed in the injection rod 30. . In the figure, reference numeral 34 denotes a nitrogen cylinder and rod holder 35.

注入液Aと注入液Bは合流管11で合流して注入孔4aを介して注入管4に入り、先端で突出されるが、合流管11と注入孔4aとの間には、静止型混合器12を配設する。本静止型混合器12は各注入液を混合するものであり、スタティックミキサと称されている。なお、注入管4を2ショット方式(二液が注入管の先端で合流する)のものでは、前記静止型混合器12は不要となる。   The injection solution A and the injection solution B merge at the junction tube 11 and enter the injection tube 4 through the injection hole 4a and protrude at the tip, but between the junction tube 11 and the injection hole 4a, static mixing is performed. A vessel 12 is provided. The static mixer 12 mixes each injection solution and is called a static mixer. If the injection tube 4 is of a two-shot type (two liquids merge at the tip of the injection tube), the static mixer 12 is not necessary.

グラウトポンプ6から注入管4への液路配管で、前記合流管11の手前に、図11に示すような、圧力検出器24、流量検出器(電磁流量計)25、制御弁20等を備え、液路を流れてくる注入液の圧力、流量をそれぞれ圧力検出器24、流量検出器25で検出するとともに、これら測定値に基づいて、バルブ制御部としての制御弁20の開閉を制御することにより注入液を所望の圧力、流量で液路に送り出すグラウト流量制御装置8を設ける。   A liquid line from the grout pump 6 to the injection pipe 4 is provided with a pressure detector 24, a flow rate detector (electromagnetic flow meter) 25, a control valve 20 and the like as shown in FIG. The pressure detector 24 and the flow detector 25 detect the pressure and flow rate of the injected liquid flowing through the liquid passage, respectively, and control the opening and closing of the control valve 20 as a valve control unit based on these measured values. Thus, a grout flow rate control device 8 for sending the injected liquid to the liquid path at a desired pressure and flow rate is provided.

グラウト流量制御装置8は、岩盤や構造物に危険な影響を与えないために注入圧力が設計上の計測値を超えないようにグラウトポンプ6側に吐出流量をリターンさせる機能を有するが、前記制御弁20に対応して入口21、出口22、リターン口23を設けた。図中26はキャスタである。   The grout flow rate control device 8 has a function of returning the discharge flow rate to the grout pump 6 side so that the injection pressure does not exceed the design measurement value so as not to have a dangerous influence on the bedrock or the structure. Corresponding to the valve 20, an inlet 21, an outlet 22, and a return port 23 were provided. In the figure, 26 is a caster.

前記グラウト流量制御装置8を設けるに際して、グラウトミキサ1に、余剰の注入液を戻す戻し路18をリターン口23に接続する。   When the grout flow control device 8 is provided, a return path 18 for returning surplus injection liquid is connected to the grout mixer 1 to the return port 23.

一方、注入液Bのグラウトミキサ2に接続される注入ポンプとしてのグラウトポンプ7は、これを可変吐出型注入ポンプとし、また、グラウトポンプ7から注入管4への液路配管に流量・圧力センサ10を配設した。   On the other hand, a grouting pump 7 as an infusion pump connected to the grouting mixer 2 for the infusion solution B is a variable discharge type infusion pump, and a flow rate / pressure sensor is connected to a liquid line pipe from the grouting pump 7 to the infusion tube 4. 10 was disposed.

各注入液相互を所望の割合で供給するように前記グラウト流量制御装置8を制御するものとして、仕様で定められた混合液の流量設定値と各注入液の混合割合を基にA液の流量設定値を算出し、それに基づいてA液の流量制御を行い、また、A液の流量の測定値とB液(第2注入液)の混合比率を基にB液の流量設定値を算出し、それに基づいてB液の流量制御を行うグラウト流量比率設定装置9を設けた。   As the control of the grout flow rate control device 8 so as to supply each injection solution at a desired ratio, the flow rate of the liquid A based on the flow rate setting value of the mixture solution specified in the specification and the mixture ratio of each injection solution Calculates the set value, controls the flow rate of the A liquid based on the set value, and calculates the flow set value of the B liquid based on the measured ratio of the flow rate of the A liquid and the mixing ratio of the B liquid (second injection liquid). A grout flow rate ratio setting device 9 for controlling the flow rate of the B liquid is provided.

グラウト流量比率設定装置9にはパソコン等が利用でき、前記グラウト流量制御装置8の圧力検出器24、流量検出器(電磁流量計)25の測定出力を受け、制御信号をグラウト流量制御装置8を介して、制御弁20を制御する。また、グラウト流量比率設定装置9は、可変吐出型注入ポンプであるグラウトポンプ7と信号線で接続され、本グラウトポンプ7の運転を制御できるものである。   A personal computer or the like can be used for the grout flow rate setting device 9. The grout flow control device 8 receives the measurement output of the pressure detector 24 and the flow detector (electromagnetic flow meter) 25 of the grout flow control device 8, and sends the control signal to the grout flow control device 8. The control valve 20 is controlled. The grout flow ratio setting device 9 is connected to the grout pump 7 which is a variable discharge type infusion pump through a signal line, and can control the operation of the grout pump 7.

また、グラウト流量比率設定装置9は流量・圧力センサ10からの出力を受け、これに基づいてグラウトポンプ7等の制御も可能である。   Further, the grout flow rate setting device 9 receives an output from the flow rate / pressure sensor 10, and can control the grout pump 7 and the like based on the output.

図12に示すように、グラウト流量比率設定装置9は、電気信号を物理量(流量・圧力)に変換するスケーリング回路9a、混合比率をもとに二液の流量の大小を判定する主/従制御判別回路9b、流量の大きな側の信号(例えばA液の流量>B液の流量の場合、A液側の信号)を主制御回路へ渡す主/従制御振り分け回路9c、主側について、流量または圧力のどちらか一方の制御を割出し、設定値と入力値の差を求める主制御用流量・圧力偏差量算出回路9d、主側について、設定値と入力値の差に応じた電動弁の開閉信号を出力する主制御用電動弁駆動開閉判別回路9f、従側について、主側の注入液の流量と混合比率をもとに算出した流量の設定値と入力値の差を求める従制御用流量・圧力偏差量算出回路9e、従側について、設定値と入力値の差に応じた電動弁の開閉信号を出力する従制御用電動弁駆動開閉判別回路9g、主/従判別回路からの信号(9f、9gからの信号)に応じて主制御出力と従制御出力を切り替える主/従制御切替回路9hとからなる。   As shown in FIG. 12, the grout flow rate ratio setting device 9 includes a scaling circuit 9a that converts an electrical signal into a physical quantity (flow rate / pressure), and main / slave control that determines the flow rate of two liquids based on the mixing ratio. Discriminating circuit 9b, main / slave control distribution circuit 9c for passing a signal on the higher flow side (for example, the flow on the A liquid side to the A liquid side if the flow rate of the B liquid is higher) on the main control circuit. Flow control / pressure deviation calculation circuit 9d for determining the difference between the set value and the input value by calculating one of the pressure controls, and opening / closing the motorized valve according to the difference between the set value and the input value for the main side Sub-control flow rate for determining the difference between the set value of the flow rate calculated based on the flow rate and the mixing ratio of the injection solution on the main side and the input value for the main control motor-driven valve drive opening / closing discrimination circuit 9f that outputs a signal・ Setting for pressure deviation calculation circuit 9e and slave side A motor control valve drive opening / closing discriminating circuit 9g for outputting a motor valve according to the difference between the input value and the main control output according to a signal from the main / sub discriminator circuit (signal from 9f, 9g) It comprises a main / subordinate control switching circuit 9h that switches subordinate control outputs.

図8は二種類の懸濁型注入液にそれぞれ循環路式注入配管を用いる例であり、前記図7の流量・圧力センサ10の代わりにA液側のグラウト流量制御装置8と同様なグラウト流量制御装置8をB液のグラウトポンプ7から注入管4への液路に配設し、本グラウト流量制御装置8にグラウト流量比率設定装置9から制御信号を送ることで行うものとした。   FIG. 8 shows an example in which a circulation type injection pipe is used for each of the two types of suspension-type injection solutions, and a grout flow rate similar to that of the A solution side grout flow control device 8 instead of the flow rate / pressure sensor 10 of FIG. The control device 8 is disposed in the liquid path from the B liquid grout pump 7 to the injection pipe 4 and a control signal is sent from the grout flow rate ratio setting device 9 to the grout flow control device 8.

B液側にも前記グラウト流量制御装置8を設けるに際して、グラウトミキサ1に、余剰の注入液を戻す戻し路18を設けた。また、注入液Bのグラウトミキサ2に接続される注入ポンプとしてのグラウトポンプ7は、これを可変吐出型注入ポンプとせずに、A液側のグラウトポンプ6と同等なものとする。その他の構成は図7の場合と同一である。   When the grout flow control device 8 is also provided on the B liquid side, a return path 18 for returning the surplus injection liquid is provided in the grout mixer 1. The grout pump 7 as an infusion pump connected to the grout mixer 2 for the infusion solution B is not a variable discharge type infusion pump, but is equivalent to the grout pump 6 on the A solution side. Other configurations are the same as those in FIG.

図9は前記図8の場合の応用として、一方の注入液(混合前)の流量・圧力と、混合後の注入液の流量・圧力をもとに制御を行う場合である。   FIG. 9 shows a case where control is performed based on the flow rate / pressure of one injection liquid (before mixing) and the flow rate / pressure of the injection liquid after mixing as an application of the case of FIG.

注入液Bのグラウトミキサ2に接続される注入ポンプとしてのグラウトポンプ7と合流管11の間の液路に前記第2実施形態のグラウト流量制御装置8の代わりにリターンバルブ13を設け、また、合流管11または静止型混合器12と注入孔4aとの間にグラウト流量圧力検出器14を設ける。   A return valve 13 is provided instead of the grout flow control device 8 of the second embodiment in the liquid path between the grout pump 7 as an infusion pump connected to the grout mixer 2 of the infusion liquid B and the junction pipe 11, A grout flow pressure detector 14 is provided between the junction tube 11 or the static mixer 12 and the injection hole 4a.

これらリターンバルブ13やグラウト流量圧力検出器14はグラウト流量比率設定装置9と信号線で接続され、A液側のグラウト流量制御装置8の流量・圧力測定値とグラウト流量圧力検出器14の混合後の注入液の流量・圧力をもとに、グラウト流量制御装置8の制御弁20やリターンバルブ13を開閉制御する。   The return valve 13 and the grout flow rate pressure detector 14 are connected to the grout flow rate setting device 9 by a signal line, and after mixing the flow rate / pressure measurement value of the A liquid side grout flow control device 8 and the grout flow rate pressure detector 14. The control valve 20 and the return valve 13 of the grout flow control device 8 are controlled to open and close based on the flow rate and pressure of the injected liquid.

準備として、A液側のグラウトミキサ1〜グラウトポンプ6〜グラウト流量制御装置8の間でセメントミルク(A液)を循環する。図8、図9の場合は、A液側、B液側のグラウトミキサ1、2〜グラウトポンプ6、7〜グラウト流量制御装置8、8の間でセメントミルク、急硬ミルクを循環する。   As preparation, cement milk (A liquid) is circulated between the A liquid side grout mixer 1 to the grout pump 6 to the grout flow control device 8. In the case of FIG. 8 and FIG. 9, cement milk and quick-hardened milk are circulated between the grout mixers 1 and 2 to the grout pumps 6 and 7 to the grout flow control devices 8 and 8 on the liquid A side and the liquid B side.

グラウト流量比率設定装置9が、セメントミルク(A液)の流量・圧力の設定にしたがって、制御信号(制御弁20の開度を調整する信号)をA液側のグラウト流量制御装置8に送り、A液側のグラウト流量制御装置8が制御弁20を調整し、セメントミルクの流れが注入孔4aへ向かう。   The grout flow rate setting device 9 sends a control signal (a signal for adjusting the opening degree of the control valve 20) to the grout flow control device 8 on the A liquid side in accordance with the setting of the flow rate and pressure of cement milk (A liquid). The grout flow rate control device 8 on the A liquid side adjusts the control valve 20, and the flow of cement milk goes to the injection hole 4a.

グラウト流量比率設定装置9は、セメントミルク(A液)について流量・圧力の測定値(A液側のグラウト流量制御装置8が測定)と設定値を照合し、その差異に応じて、A液側のグラウト流量制御装置8に制御信号を送り、図1のステップ(ア)のように、主液(A液)の流量を増やす。   The grout flow rate ratio setting device 9 compares the measured value of the flow rate and pressure (measured by the grout flow control device 8 on the A liquid side) with the set value for cement milk (A liquid), and according to the difference, A control signal is sent to the grout flow rate control device 8 to increase the flow rate of the main liquid (liquid A) as shown in step (a) of FIG.

そして、二液注入が指示されると、図1のステップ(イ)のように、従液(B液)の流量を主液(A液)流量と従液(B液)の流量比率から算出した目標値に向けて調整する。   When the two-liquid injection is instructed, the flow rate of the secondary liquid (liquid B) is calculated from the flow ratio of the primary liquid (liquid A) and the secondary liquid (liquid B) as shown in step (a) of FIG. Adjust toward the target value.

具体的には、グラウト流量比率設定装置9は、A液であるセメントミルクの流量(測定値)と二液の混合割合をもとに、B液である水ガラスの流量(設定値)を計算し、その制御信号(吐出量を調整する信号)をB液側のグラウトポンプ7(可変吐出量型)に送る。   Specifically, the grout flow rate ratio setting device 9 calculates the flow rate (setting value) of the water glass as the B liquid based on the flow rate (measured value) of the cement milk as the A liquid and the mixing ratio of the two liquids. Then, the control signal (signal for adjusting the discharge amount) is sent to the B liquid grout pump 7 (variable discharge amount type).

これを受けて、B液側のグラウトポンプ7(可変吐出量型)はグラウトポンプを運転し、水ガラスを注入孔4a側へ送り出す。   In response to this, the B liquid side grout pump 7 (variable discharge amount type) operates the grout pump to feed water glass to the injection hole 4a side.

次いで、注入完了基準を満足しているかを判定し[ステップ(ウ)]、満足している場合には注入完了[ステップ(ケ)]となる。   Next, it is determined whether or not the injection completion standard is satisfied [step (c)], and if satisfied, the injection completion is completed [step (g)].

満足していない場合には、流量比率を変更するか否かを判定し[ステップ(エ)]、変更しない場合には注入圧力がPmax(ポンプ最大圧)を超えたか否かを判定し[ステップ(オ)]、Pmaxを超えた場合は、図2における[ステップ(ト)]の主液の流量を減らす、さらに、[ステップ(ト)]の従液(B液)の流量を主液(A液)流量と従液(B液)の流量比率から算出した目標値に向けて調整するものとし、次いで、前記[ステップ(ウ)]に移行する。   If not satisfied, it is determined whether or not to change the flow rate ratio [step (D)], and if not changed, it is determined whether or not the injection pressure has exceeded Pmax (maximum pump pressure) [step (E)] When Pmax is exceeded, the flow rate of the main liquid in [Step (G)] in FIG. It is assumed that the adjustment is made toward the target value calculated from the flow rate ratio between the A liquid) flow rate and the subordinate liquid (B liquid), and then the process proceeds to [Step (c)].

また、Pmaxで安定している場合には主液、従液の流量を維持する[ステップ(コ)]。さらに、前記[ステップ(ウ)]に移行する。   Further, when Pmax is stable, the flow rates of the main liquid and the subordinate liquid are maintained [Step (G)]. Further, the process proceeds to [Step (c)].

Pmaxに到達していない(Pmax)未満である場合、主液の流量がQ3[主液の最大流量(2液の混合流量の最大値と主液の流量比率をもとに算出)]に到達したか否かを判定し[ステップ(カ)]、Q3を超えた場合、図2における[ステップ(ト)]の主液の流量を減らす、さらに、[ステップ(ト)]の従液(B液)の流量を主液(A液)流量と従液(B液)の流量比率から算出した目標値に向けて調整するものとする。   When Pmax is not reached (Pmax), the flow rate of the main liquid reaches Q3 [maximum flow rate of the main liquid (calculated based on the maximum value of the mixed flow rate of the two liquids and the flow rate ratio of the main liquid)]. [Step (f)] and if Q3 is exceeded, the flow rate of the main liquid in [Step (g)] in FIG. The flow rate of the liquid) is adjusted toward the target value calculated from the flow rate ratio of the main liquid (A liquid) flow rate and the secondary liquid (B liquid).

また、Q3に到達した(Q3で安定している)場合は、従液の流量を維持する[ステップ(コ)]。さらに、前記[ステップ(ウ)]に移行する。   Further, when Q3 is reached (stable at Q3), the flow rate of the subordinate liquid is maintained [Step (G)]. Further, the process proceeds to [Step (c)].

Q3に到達していない(Q3未満である)場合は、主液の流量を増やし[ステップ(キ)]、さらに、従液(B液)の流量を主液(A液)流量と従液(B液)の流量比率から算出した目標値に向けて調整し[ステップ(ク)]、前記[ステップ(ウ)]に移行する。   If Q3 has not been reached (is less than Q3), the flow rate of the main liquid is increased [step (g)], and the flow rate of the sub-liquid (B liquid) is set to the main liquid (A liquid) flow rate and the sub-liquid ( Adjustment is made toward the target value calculated from the flow rate ratio of the B liquid) [Step (C)], and the process proceeds to [Step (C)].

本発明は、このような制御を行うのに先立ち、下記の制御を行うものとする。
前記制御では、注入開始直後は、まず、A液(第1注入液)の流量が増え、やや時間を置いて、それにしたがいながらB液(第2注入液)の流量が増え始めるので、そのため所望の流量比率(混合割合、配合)に到達し、配合の制御が安定するまで長い時間を要するのを解消するためである。図2に示すように、A液、B液のうち流量比率の大きい方を「主液」小さい方を「従液」として[ステップ(サ)]、注入を開始し[ステップ(シ)]、注入開始後、まず、[主液A液(第1注入液)]の流量を増やす[ステップ(ス)]。
In the present invention, prior to performing such control, the following control is performed.
In the above control, immediately after the start of injection, the flow rate of the liquid A (first injection solution) first increases, and after a while, the flow rate of the liquid B (second injection solution) starts to increase accordingly. This is to eliminate the need for a long time until the flow rate ratio (mixing ratio, blending) is reached and the blending control is stabilized. As shown in FIG. 2, the larger one of the flow ratios of the liquid A and liquid B is set as the “main liquid” and the smaller one as the “subordinate liquid” [step (sa)], and injection is started [step (si)] After the start of injection, first, the flow rate of [main solution A solution (first injection solution)] is increased [step (step)].

注入圧力がPmaxを超えたか否かを判定し[ステップ(セ)]、Pmaxを超えた場合は、主液の流量を減らす[ステップ(ト)]、さらに、従液(B液)の流量を主液(A液)流量と従液(B液)の流量比率から算出した目標値に向けて調整するものとし[ステップ(ナ)]、前記[ステップ(ウ)]に移行する。   It is determined whether or not the injection pressure has exceeded Pmax [Step (C)]. If Pmax is exceeded, the flow rate of the main liquid is reduced [Step (G)], and the flow rate of the subordinate liquid (B liquid) is further reduced. It is assumed that the adjustment is made toward the target value calculated from the flow rate ratio between the main liquid (A liquid) flow and the sub liquid (B liquid), and the process proceeds to [Step (c)].

Pmaxを超えていない(Pmax以下である)場合、主液の流量がQ1(主液の流量の初期目標値)に到達したか否かを判定し[ステップ(ソ)]、Q1に達していない(Q1未満である)場合には、前記[ステップ(ス)]に戻る。   If Pmax is not exceeded (below Pmax), it is determined whether or not the flow rate of the main liquid has reached Q1 (the initial target value of the flow rate of the main liquid) [Step (So)], and has not reached Q1. If it is less than Q1, the process returns to [Step (S)].

Q1に達した、またはQ1を超えた(Q1以上である)場合には、従液の流量を増やす[ステップ(タ)]、もしくは、主液の流量を維持する[ステップ(チ)]、注入圧力がPmaxを超えたか否かを判定し[ステップ(ツ)]、Pmaxを超えた場合は主液の流量を減らす[ステップ(ト)、さらに、従液(B液)の流量を主液(A液)流量と従液(B液)の流量比率から算出した目標値に向けて調整するものとし[ステップ(ナ)]、前記[ステップ(ウ)]に移行する。   When Q1 is reached or exceeds Q1 (Q1 or higher), the flow rate of the subordinate liquid is increased [Step (T)], or the flow rate of the main liquid is maintained [Step (H)]. It is determined whether or not the pressure exceeds Pmax [Step (T)], and when Pmax is exceeded, the flow rate of the main liquid is reduced [Step (G), and the flow rate of the subordinate liquid (B liquid) is further reduced to the main liquid ( It is assumed that the adjustment is made toward the target value calculated from the flow rate ratio between the A liquid) flow rate and the subordinate liquid (B liquid), and the process proceeds to [Step (c)].

Pmaxを超えていない(Pmax以下である)場合、従液流量がQ2(従液の流量の初期目標値)に到達したか否かを判定し[ステップ(テ)]、Q2に達していない(Q2未満である)場合には、前記[ステップ(タ)(チ)]に戻る。   If Pmax is not exceeded (is less than or equal to Pmax), it is determined whether or not the secondary fluid flow rate has reached Q2 (the initial target value of the secondary fluid flow rate) [step (te)], and has not reached Q2 ( If it is less than Q2, the process returns to [Step (T) (H)].

Q2に達した、またはQ2を超えた(Q2以上である)場合には、前記[ステップ(ア)]に移行する。   When Q2 is reached or exceeds Q2 (Q2 or more), the process proceeds to [Step (A)].

前記制御を要約すると、下記の通りであり、図4に示す制御値設定画面(制御パラメータ設定)と参照する。   The above control is summarized as follows, and is referred to as a control value setting screen (control parameter setting) shown in FIG.

(1)注入開始→(2)A液の流量を増やす→(3)A液の流量入力値(測定値)が基準値に達した→(4)B液の流量を増やす→(5)圧力入力値(測定値)が基準値に達しない→(6)B液の流量入力値(測定値)が基準値に達した。   (1) Start of injection → (2) Increase the flow rate of A liquid → (3) The flow rate input value (measured value) of A liquid has reached the reference value → (4) Increase the flow rate of B liquid → (5) Pressure The input value (measured value) does not reach the reference value. → (6) The flow rate input value (measured value) of the liquid B has reached the reference value.

前記(3)A液の流量入力値(測定値)が基準値に達したか否かは、図4の(a)に該当する部分であり、これが否の場合には、圧力入力値(測定値)が基準値に達したかを見て[図4の(c)に該当する部分]、達していない場合には、(2)のA液の流量を増やすに戻り、達した場合は前記図1に制御となる。   Whether or not (3) the flow rate input value (measured value) of the liquid A has reached the reference value is a part corresponding to (a) in FIG. 4. If this is not the case, the pressure input value (measured value) When the value reaches the reference value [the part corresponding to (c) in FIG. 4], if not, the process returns to increasing the flow rate of the liquid A in (2). The control is shown in FIG.

前記(5)圧力入力値(測定値)が基準値に達しないか否かも図4の(c)に該当する部分を見て判断し、(6)のB液の流量入力値(測定値)が基準値に達したか否かは図4の(b)に該当する部分を見て判断する。   Whether or not (5) the pressure input value (measured value) does not reach the reference value is also determined by looking at the portion corresponding to (c) in FIG. 4, and the flow rate input value (measured value) of the B liquid in (6) Whether or not has reached the reference value is determined by looking at the portion corresponding to (b) of FIG.

次に、図1のステップ(エ)で流量比率を変更するか否かを判定して変更する場合で2液の流量の大小関係が入れ替わる場合の制御は図5に示すように流量設定値の小さな側が、流量設置値の大きな側に合わせて制御を行うものとする。   Next, in the case of determining whether or not to change the flow rate ratio in step (d) of FIG. 1 and changing the flow rate, the control when the magnitude relationship between the flow rates of the two liquids is switched is as shown in FIG. It is assumed that the small side performs control according to the side with the larger flow rate setting value.

これは、図3に示すように、A液、B液のうち流量比率の大きい方を「主液」小さい方を「従液」とし[ステップ(ニ)]、主液の流量を2液の混合液量と変更後の主液の流量比率から算出した目標値に向けて調整する[ステップ(ヌ)]。   As shown in FIG. 3, the larger of the flow ratios of liquid A and liquid B is “main liquid” and the smaller flow liquid is “subordinate liquid” [step (d)], and the flow volume of the main liquid is 2 liquids. Adjustment is made toward the target value calculated from the mixed liquid amount and the flow rate ratio of the changed main liquid [step (nu)].

そして、従液の流量を主液の流量と変更後の従液の流量比率から産出した目標値に向けて調整する[ステップ(ネ)]。   Then, the flow rate of the sub liquid is adjusted toward the target value produced from the flow rate ratio of the main liquid and the sub liquid flow after the change [Step (N)].

一例として、図5において、混合流量=10L/minの場合、
A液=7.0L/min→A液=4.3L/min
B液3.0L/min→B液5.7L/minとなる。
As an example, in FIG. 5, when the mixed flow rate is 10 L / min,
Liquid A = 7.0 L / min → Liquid A = 4.3 L / min
B liquid 3.0L / min → B liquid 5.7L / min.

次いで、従液の流量比率の目標値はゼロか否かを判定し[ステップ(ノ)]、ゼロでない場合は前記[ステップ(ウ)]に移行する。   Next, it is determined whether or not the target value of the flow rate ratio of the subordinate liquid is zero [Step (No)], and if not, the process proceeds to [Step (C)].

ゼロである場合、すなわち、注入の途中で流量比率を変更し、どちらか一方の注入液だけで注入を行う場合は、図6に示すように、ゼロとなるべきB液(第2注入液)の流量入力値(測定値)が基準値以下になると、A液(第1注入液)の流量入力値(測定値)から独立して、強制的にゼロを目指すこととした。   In the case of zero, that is, when the flow rate ratio is changed during the injection and the injection is performed with only one of the injection solutions, as shown in FIG. 6, the solution B that should be zero (second injection solution) When the flow rate input value (measured value) of the liquid becomes equal to or less than the reference value, the flow rate input value (measured value) of the liquid A (first injection solution) is forcibly aimed at zero.

すなわち、図3に示すように、ゼロである場合、従液の流量がQ4(流量の目標値を強制的にゼロに切り替える値)まで低下したか否かを判定し[ステップ(ハ)]、Q4まで低下していない場合は、前記[ステップ(ネ)]に移行する。   That is, as shown in FIG. 3, when it is zero, it is determined whether or not the flow rate of the subordinate liquid has decreased to Q4 (a value for forcibly switching the flow rate target value to zero) [step (c)] If it has not decreased to Q4, the process proceeds to [Step (ne)].

Q4まで低下した(Q4以下である)場合、従液の流量を主液の流量と無関係にゼロに向けて調整し[ステップ(ヒ)]、次いで、前記[ステップ(ウ)]に移行する。   When the flow rate drops to Q4 (below Q4), the flow rate of the subordinate liquid is adjusted to zero regardless of the flow rate of the main liquid [Step (H)], and then the process proceeds to [Step (C)].

一例として、図6において、混合流量=10L/minの場合、
A液=4.3L/min→A液=10.0L/min
B液=5.7L/min→B液0.0L/minとなる。
As an example, in FIG. 6, when the mixed flow rate is 10 L / min,
Liquid A = 4.3 L / min → Liquid A = 10.0 L / min
B liquid = 5.7 L / min → B liquid 0.0 L / min.

本発明の地盤注入における流量比率制御方法の1実施形態を示す通常制御部分のフローチャートである。It is a flowchart of the normal control part which shows one Embodiment of the flow rate ratio control method in the ground injection of this invention. 本発明の地盤注入における流量比率制御方法の1実施形態を示す注入開始直後の制御のフローチャートである。It is a flowchart of control immediately after the start of injection showing one embodiment of a flow rate control method in ground injection of the present invention. 本発明の地盤注入における流量比率制御方法の1実施形態を示す2液の流量の大小関係が入れ替わる場合、および、主液による一液注入の制御のフローチャートである。It is a flowchart of the control of the one liquid injection | pouring by the main liquid when the magnitude relationship of the flow volume of the 2 liquids which shows one Embodiment of the flow rate ratio control method in the ground injection | pouring of this invention switches. 制御値設定画面を示す正面図である。It is a front view which shows a control value setting screen. 2液の流量の大小関係が入れ替わる場合のグラフである。It is a graph in case the magnitude relationship of the flow volume of 2 liquids interchanges. 主液による一液注入のグラフである。It is a graph of one liquid injection by the main liquid. 2液同時注入システムの設備の第1例を示す説明図である。It is explanatory drawing which shows the 1st example of the installation of a 2 liquid simultaneous injection | pouring system. 2液同時注入システムの設備の第2例を示す説明図である。It is explanatory drawing which shows the 2nd example of the installation of a 2 liquid simultaneous injection | pouring system. 2液同時注入システムの設備の第3例を示す説明図である。It is explanatory drawing which shows the 3rd example of the installation of a 2 liquid simultaneous injection | pouring system. 注入管の正面図である。It is a front view of an injection tube. グラウト流量制御装置の正面図である。It is a front view of a grout flow control device. グラウト流量比率設定装置のブロック図である。It is a block diagram of a grout flow rate ratio setting device. 従来例を示す説明図である。It is explanatory drawing which shows a prior art example.

1、2…グラウトミキサ 3…薬液注入ポンプ
4…注入管 4a…注入孔
5…薬液流量圧力測定装置 6、7…グラウトポンプ
8…グラウト流量制御装置 9…グラウト流量比率設定装置
9a…スケーリング回路 9b…主/従制御判別回路
9c…主/従制御振り分け回路
9d…主制御用流量・圧力偏差量算出回路
9e…従制御用流量・圧力偏差量算出回路
9f…主制御用電動弁駆動開閉判別回路
9g…従制御用電動弁駆動開閉判別回路
9h…主/従制御切替回路 10…流量・圧力センサ
11…合流管 11a…急縮管
11b…貫入型T字管 11c…逆止弁
12…静止型混合器 13…リターンバルブ
14…グラウト流量圧力検出器 15…合流管
16…グラウトポンプ 17…流量センサ
18…戻し路 19…グラウトミキサ
20…制御弁
21…入口 22…出口
23…リターン口 24…圧力検出器
25…電磁流量計 26…キャスタ
27…管 28…エレメント
30…注入ロッド
31…パッカーヘッド 32…エアーパッカー
33…エアーチューブ 34…チッソボンベ
35…ロッドホルダー
DESCRIPTION OF SYMBOLS 1, 2 ... Grout mixer 3 ... Chemical solution injection pump 4 ... Injection pipe 4a ... Injection hole 5 ... Chemical solution flow rate pressure measuring device 6, 7 ... Grout pump 8 ... Grout flow control device 9 ... Grout flow rate ratio setting device 9a ... Scaling circuit 9b ... Main / subordinate control discrimination circuit 9c ... Main / subordinate control distribution circuit 9d ... Main control flow rate / pressure deviation amount calculation circuit 9e ... Sub control flow rate / pressure deviation amount calculation circuit 9f ... Main control electric valve drive opening / closing discrimination circuit 9g: Subordinate control electric valve drive opening / closing discrimination circuit 9h: Main / subordinate control switching circuit 10 ... Flow rate / pressure sensor 11 ... Junction pipe 11a ... Rapid contraction pipe 11b ... Penetration type T-shaped pipe 11c ... Check valve 12 ... Stationary type Mixer 13 ... Return valve 14 ... Grout flow rate pressure detector 15 ... Confluence pipe 16 ... Grout pump 17 ... Flow rate sensor 18 ... Return path 19 ... Grout mixer 20 ... Control valve DESCRIPTION OF SYMBOLS 1 ... Inlet 22 ... Outlet 23 ... Return port 24 ... Pressure detector 25 ... Electromagnetic flow meter 26 ... Caster 27 ... Pipe 28 ... Element 30 ... Injection rod 31 ... Packer head 32 ... Air packer 33 ... Air tube 34 ... Chisso cylinder 35 ... Rod holder

Claims (1)

A液(第1注入液)とB液(第2注入液)の注入液を混合して注入管により地盤に注入する地盤注入工法において、
注入の途中で流量比率を変更し、A液(第1注入液)とB液(第2注入液)の流量の大小関係が入れ替わる場合、
常に流量比率の大きい方を新たに「主液」小さい方を新たに「従液」に変更して、
仕様で定められた混合液の流量設定値と各注入液の混合割合を基に主液の流量設定値を算出し、
それに基づいて主液の流量制御を行い、
また、主液の流量の測定値と従液の混合比率を基に従液の流量設定値を算出し、
それに基づいて従液の流量制御を行う
ことを特徴とする地盤注入における流量比率制御方法。
In the ground injection method of mixing A liquid (first injection liquid) and B liquid (second injection liquid) injection liquid and injecting it into the ground through an injection tube,
When the flow rate ratio is changed in the middle of injection and the magnitude relationship between the flow rates of A liquid (first injection liquid) and B liquid (second injection liquid) is switched,
Always change the one with the larger flow rate ratio to the “main liquid” and the smaller one to the “secondary liquid”.
Calculate the flow rate setting value of the main liquid based on the flow rate setting value of the liquid mixture specified in the specification and the mixing ratio of each injection solution,
Based on this, the flow rate of the main liquid is controlled,
In addition, the flow rate setting value of the follower liquid is calculated based on the measured value of the main liquid flow rate and the mixing ratio of the follower liquid,
A flow rate control method in ground injection, wherein the flow rate control of the subordinate liquid is performed based on the control.
JP2004205419A 2004-07-13 2004-07-13 Flow rate control method for ground injection Expired - Lifetime JP4865198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004205419A JP4865198B2 (en) 2004-07-13 2004-07-13 Flow rate control method for ground injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004205419A JP4865198B2 (en) 2004-07-13 2004-07-13 Flow rate control method for ground injection

Publications (2)

Publication Number Publication Date
JP2006028768A JP2006028768A (en) 2006-02-02
JP4865198B2 true JP4865198B2 (en) 2012-02-01

Family

ID=35895462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004205419A Expired - Lifetime JP4865198B2 (en) 2004-07-13 2004-07-13 Flow rate control method for ground injection

Country Status (1)

Country Link
JP (1) JP4865198B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7260873B2 (en) * 2018-12-27 2023-04-19 Soeiホールディングス株式会社 Double chemical injection pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106213A (en) * 1990-08-24 1992-04-08 Furonto Eng Kk Control on mixing ratio of chemical grout
JP2689063B2 (en) * 1993-03-03 1997-12-10 東日本旅客鉄道株式会社 Two-liquid curable material feeding method and apparatus

Also Published As

Publication number Publication date
JP2006028768A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US7284898B2 (en) System and method for mixing water and non-aqueous materials using measured water concentration to control addition of ingredients
EP0390437A1 (en) Automatic mixture control apparatus and method
US5503473A (en) Automatic cementing system for precisely obtaining a desired cement density
US20030072208A1 (en) Automated cement mixing system
US4474204A (en) Delivery and metering device control system
JP4865198B2 (en) Flow rate control method for ground injection
JP2005120673A (en) Multi-liquid simultaneous pouring system
KR101719456B1 (en) Grouting apparatus having flowage adjusting distributor for controlling concentration of chemical fluid
KR20070066470A (en) Grouting system
JP2014129675A (en) Ground reinforcement method and injection system
JP4101146B2 (en) Grout injection control method and apparatus
JP4101150B2 (en) Grout injection controller
CN109079976A (en) A kind of cement simultaneous implantation system of deep mixer
JP4819584B2 (en) Grout injection system and grout
JP2006002457A (en) Grout injection control device
KR100737833B1 (en) Automatic controller for grout injection, the injection system and the control method
JPH03100222A (en) Control of pouring-in of grout and pouring controller and pouring control circuit
JP2004251043A (en) Automatic control system for flow-rate pressure in two-pack mixed grouting
JP3719824B2 (en) Grout ratio control device
KR20220090133A (en) Multi-stage valve group and grouting apparatus using the same
US11774438B2 (en) Measurement set-up for a return cement suspension, construction site arrangement having a measurement set-up as well as method and use
JP2014185469A (en) Grouting method
JP3934008B2 (en) Grout injection equipment
JPS62156475A (en) Apparatus for confirming pressure feed condition of concretepump
JP4783066B2 (en) Injection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4865198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term