JP4863862B2 - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP4863862B2
JP4863862B2 JP2006342156A JP2006342156A JP4863862B2 JP 4863862 B2 JP4863862 B2 JP 4863862B2 JP 2006342156 A JP2006342156 A JP 2006342156A JP 2006342156 A JP2006342156 A JP 2006342156A JP 4863862 B2 JP4863862 B2 JP 4863862B2
Authority
JP
Japan
Prior art keywords
heating coil
small
diameter
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006342156A
Other languages
Japanese (ja)
Other versions
JP2008153143A (en
Inventor
智 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP2006342156A priority Critical patent/JP4863862B2/en
Publication of JP2008153143A publication Critical patent/JP2008153143A/en
Application granted granted Critical
Publication of JP4863862B2 publication Critical patent/JP4863862B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • General Induction Heating (AREA)
  • Induction Heating Cooking Devices (AREA)

Description

本発明は、複数の加熱コイルを有する誘導加熱調理器に関するものである。   The present invention relates to an induction heating cooker having a plurality of heating coils.

従来の誘導加熱調理器は、内外に複数に分割した加熱コイルと、分割単位ごとに加熱コイルの通電状態を制御する加熱コイル通電制御手段と、鍋の大きさを検知する小鍋検知手段を有し、小鍋検知手段で小鍋を検出した場合には外加熱コイルへの通電を停止し、内加熱コイルのみに通電することによって、磁束の漏れを低減するものがあった(例えば、特許文献1参照)。   The conventional induction heating cooker has a heating coil divided into a plurality of inside and outside, a heating coil energization control means for controlling the energization state of the heating coil for each division unit, and a small pan detection means for detecting the size of the pan. When the small pan is detected by the small pan detecting means, there is one that reduces the leakage of magnetic flux by stopping the energization to the outer heating coil and energizing only the inner heating coil (for example, see Patent Document 1). .

特開平11−214138号公報(第1頁、図1)Japanese Patent Laid-Open No. 11-214138 (first page, FIG. 1)

上記特許文献1に記載の従来の誘導加熱調理器では、小鍋検知手段で小鍋を検出した場合には、外加熱コイルへの通電を停止して内加熱コイルのみに通電することによって漏洩磁束を減らすようにしたものであるが、複数の加熱コイルへの通電状態を切り替えることにより、加熱コイル電流により生ずる磁界が変化するため、鍋温度を検出する感熱素子配設部分への誘導加熱の影響状態が変わるので、正確な温度検出が行えないという問題点があった。
本発明は、上述のような課題を解決するためになされたもので、内外に複数の加熱コイルを有し、加熱コイルの通電状態を切り替えた場合にも、小径鍋においても漏洩磁束が少なく、正確な温度検出が可能な誘導加熱調理器を得ることを目的とする。
In the conventional induction heating cooker described in Patent Document 1, when the small pan is detected by the small pan detection means, the leakage magnetic flux is reduced by stopping the energization of the outer heating coil and energizing only the inner heating coil. However, since the magnetic field generated by the heating coil current changes by switching the energization state to the plurality of heating coils, the state of influence of induction heating on the heat-sensitive element arrangement portion that detects the pan temperature is Since it changes, there is a problem that accurate temperature detection cannot be performed.
The present invention was made to solve the above-described problems, and has a plurality of heating coils inside and outside, and even when the energized state of the heating coils is switched, there is little leakage magnetic flux even in a small-diameter pan, An object of the present invention is to obtain an induction heating cooker capable of accurate temperature detection.

本発明に係る誘導加熱調理器は、外径が小さく中間部に空隙を有する小径加熱コイルと、該小径加熱コイルの外周に配設され、該小径加熱コイルと同じ巻き方向の外加熱コイルと、小径加熱コイルの空隙部に配設された少なくとも1つの感熱素子を用いた第1の温度検出手段と、小径加熱コイルと外加熱コイルとの間に配設された少なくとも1つの第2の感熱素子を用いた第2の温度検出手段と、小径加熱コイル及び外加熱コイルに高周波電流を流すインバータ回路と、該インバータ回路を駆動制御する加熱制御手段を備え、加熱制御手段は小径加熱コイルのみ通電制御する動作モードと小径加熱コイルと外加熱コイルの両方に通電制御する動作モードとを有し、小径加熱コイルのみ通電制御する動作モードでは第1の温度検出手段のみの検出値に基づいて加熱制御を行い、小径加熱コイル及び外加熱コイルの両方に通電制御する動作モードでは第2の温度検出手段のみの検出値に基づいて加熱制御を行い、小径加熱コイルのみを通電制御する動作モードに比べて、小径加熱コイルと外加熱コイルの両方に通電制御する動作モードの方が、第1の温度検出手段及び第2の温度検出手段の検出値に対する変換温度が低く設定された温度特性を用いるものである。 An induction heating cooker according to the present invention includes a small-diameter heating coil having a small outer diameter and a gap in the middle, an outer heating coil disposed on the outer periphery of the small-diameter heating coil, and having the same winding direction as the small-diameter heating coil, First temperature detecting means using at least one heat sensitive element disposed in the gap of the small diameter heating coil, and at least one second heat sensitive element disposed between the small diameter heating coil and the external heating coil. Second temperature detection means using an inverter, an inverter circuit for supplying a high-frequency current to the small diameter heating coil and the external heating coil, and a heating control means for driving and controlling the inverter circuit, and the heating control means energizes only the small diameter heating coil. and a operation mode to energize control both the operation mode and the small-diameter heating coil and an outer heating coil for controlling, only the operation mode in the first temperature detecting means is energized only small heating coil Performs heating control based on the detection value, the operation mode for power control on both the small-diameter heating coil and an outer heating coil performs heating control based on the detected value of only the second temperature detection means, energized only small heating coil Compared with the operation mode to be controlled, in the operation mode in which the energization control is performed for both the small-diameter heating coil and the external heating coil, the conversion temperature for the detection values of the first temperature detection means and the second temperature detection means is set lower. Temperature characteristics are used .

本発明の誘導加熱調理器において、外径が小さく中間部に空隙を有する小径加熱コイルと、該小径加熱コイルの外周に配設され、該小径加熱コイルと同じ巻き方向の外加熱コイルと、小径加熱コイルの空隙部に配設された少なくとも1つの感熱素子を用いた第1の温度検出手段と、小径加熱コイルと外加熱コイルとの間に配設された少なくとも1つの第2の感熱素子を用いた第2の温度検出手段と、小径加熱コイル及び外加熱コイルに高周波電流を流すインバータ回路と、該インバータ回路を駆動制御する加熱制御手段を備え、加熱制御手段は小径加熱コイルのみ通電制御する動作モードと小径加熱コイルと外加熱コイルの両方に通電制御する動作モードとを有し、小径加熱コイルのみ通電制御する動作モードでは第1の温度検出手段のみの検出値に基づいて加熱制御を行い、小径加熱コイル及び外加熱コイルの両方に通電制御する動作モードでは第2の温度検出手段のみの検出値に基づいて加熱制御を行い、小径加熱コイルのみを通電制御する動作モードに比べて、小径加熱コイルと外加熱コイルの両方に通電制御する動作モードの方が、第1の温度検出手段及び第2の温度検出手段の検出値に対する変換温度が低く設定された温度特性を用いるので、小径加熱コイルのみを通電して加熱動作を行う場合には、小径加熱コイルの空隙部の内側の巻線に流れる電流により生ずる磁界と空隙部の外側の巻線に流れる電流により生ずる磁界が、感熱素子を配設した空隙部において打ち消し合って強い磁界が生じないため、第1の温度検出手段の感熱素子が誘導加熱されにくく、正確な温度検出が可能となる。
また、小径加熱コイルと外加熱コイルの両方に通電して加熱動作を行う場合にも、感熱素子に近い小径加熱コイルに流れる電流による磁界は、感熱素子の内側の巻線に流れる電流により生ずる磁界と、感熱素子の外側の巻線に流れる電流により生ずる磁界は打ち消し合って強くならず、外加熱コイルに流れる電流による磁界も外加熱コイルが感熱素子からある程度離れた位置にあることから、感熱素子の配設位置においては強くならないために、感熱素子があまり誘導加熱されず、正確な温度検出が可能となるという効果を有する。
In the induction heating cooker of the present invention, a small-diameter heating coil having a small outer diameter and a gap in the middle, an outer heating coil disposed on the outer periphery of the small-diameter heating coil, and having the same winding direction as the small-diameter heating coil, and a small-diameter First temperature detecting means using at least one heat sensitive element disposed in a gap of the heating coil, and at least one second heat sensitive element disposed between the small diameter heating coil and the outer heating coil. A second temperature detecting means used; an inverter circuit for supplying a high-frequency current to the small-diameter heating coil and the external heating coil; and a heating control means for driving and controlling the inverter circuit. The heating control means controls energization only for the small-diameter heating coil. operating mode and has an operation mode for energization control both of the small-diameter heating coil and the outer heating coil, only the operation mode in the first temperature detecting means is energized only small heating coil Performs heating control based on the detected value, the operation mode for power control on both the small-diameter heating coil and an outer heating coil performs heating control based on the detected value of only the second temperature detection means, energized only small heating coil Compared with the operation mode to be controlled, in the operation mode in which the energization control is performed for both the small-diameter heating coil and the external heating coil, the conversion temperature for the detection values of the first temperature detection means and the second temperature detection means is set lower. When the heating operation is performed by energizing only the small diameter heating coil, the magnetic field generated by the current flowing in the winding inside the gap portion of the small diameter heating coil and the winding outside the gap portion are used. Since the magnetic field generated by the current cancels out in the gap where the thermal element is disposed and no strong magnetic field is generated, the thermal element of the first temperature detecting means is difficult to be induction-heated and accurate. It is possible to degree detection.
In addition, when a heating operation is performed by energizing both the small diameter heating coil and the external heating coil, the magnetic field generated by the current flowing in the small diameter heating coil close to the thermal element is a magnetic field generated by the current flowing in the winding inside the thermal element. The magnetic field generated by the current flowing in the outer winding of the thermal element cancels each other and does not become strong, and the magnetic field due to the current flowing in the outer heating coil is also located at a certain distance from the thermal element. Since the heat sensitive element is not strong at the position where the heat sensitive element is disposed, there is an effect that the heat sensitive element is not so much induction-heated and accurate temperature detection is possible.

実施の形態1.
図1は本発明の実施の形態1に係る誘導加熱調理器の回路構成図、図2は同誘導加熱調理器の加熱コイルユニットを示す平面図、図3は同誘導加熱調理器の鍋温度検出回路の構成図、図4は同鍋温度検出回路の温度変換特性の一例を示すグラフ、図5は同誘導加熱調理器の感熱素子の配設位置で、加熱コイル各部に流れる電流により生ずる磁界の向きの関係を示す説明図である。
図1において、本発明の実施の形態1に係る誘導加熱調理器は交流電源1に接続されており、交流電源1から供給される電力は直流電源回路2で直流電力に変換される。この直流電源回路2は、交流電力を整流する整流ダイオードブリッジ3とリアクトル4および平滑コンデンサ5から構成されている。
そして、直流電源回路2へ入力される入力電力は、入力電流検出手段6および入力電圧検出手段7によって検出される。直流電源回路2で直流電力に変換された電力はインバータ回路8に供給される。
Embodiment 1 FIG.
1 is a circuit configuration diagram of an induction heating cooker according to Embodiment 1 of the present invention, FIG. 2 is a plan view showing a heating coil unit of the induction heating cooker, and FIG. 3 is a pan temperature detection of the induction heating cooker. FIG. 4 is a graph showing an example of temperature conversion characteristics of the pan temperature detection circuit, and FIG. 5 is a position of the heat-sensitive element of the induction heating cooker, showing the magnetic field generated by the current flowing through each part of the heating coil. It is explanatory drawing which shows the relationship of direction.
In FIG. 1, the induction heating cooker according to the first embodiment of the present invention is connected to an AC power source 1, and power supplied from the AC power source 1 is converted into DC power by a DC power source circuit 2. The DC power supply circuit 2 includes a rectifier diode bridge 3 that rectifies AC power, a reactor 4, and a smoothing capacitor 5.
The input power input to the DC power supply circuit 2 is detected by the input current detection means 6 and the input voltage detection means 7. The power converted into DC power by the DC power supply circuit 2 is supplied to the inverter circuit 8.

インバータ回路8は、直流電源回路2の正負母線間に直列に接続された2つのスイッチング素子(以下、正母線側スイッチング素子を上スイッチ9、負母線側スイッチング素子を下スイッチ10と呼ぶ。)と、そのスイッチング素子とそれぞれ逆並列に接続されたダイオード(正母線側逆並列ダイオードを上ダイオード11、負母線側逆並列ダイオードを下ダイオード12と呼ぶ。)から形成されている。
上スイッチ9と下スイッチ10は、インバータ駆動回路13からの信号により交互に駆動され、インバータ回路8の出力点である上スイッチ9と下スイッチ10の接続点に高周波電圧が発生する。
また、インバータ出力点には、スイッチング損失を低減するためのスナバコンデンサ14と、加熱コイル15が接続されている。
The inverter circuit 8 is two switching elements connected in series between the positive and negative buses of the DC power supply circuit 2 (hereinafter, the positive bus side switching element is referred to as an upper switch 9 and the negative bus side switching element is referred to as a lower switch 10). The diodes are connected to the switching elements in antiparallel (the positive bus side antiparallel diode is referred to as the upper diode 11 and the negative bus side antiparallel diode is referred to as the lower diode 12).
The upper switch 9 and the lower switch 10 are alternately driven by a signal from the inverter drive circuit 13, and a high frequency voltage is generated at a connection point between the upper switch 9 and the lower switch 10 that is an output point of the inverter circuit 8.
A snubber capacitor 14 and a heating coil 15 for reducing switching loss are connected to the inverter output point.

加熱コイル15は、図2に示すように、小径加熱コイル16とその外周に間隙をおいて配設された外加熱コイル17から構成される。
その小径加熱コイル16は、内側の小径内加熱コイル部16aと外側の小径外加熱コイル部16bからなり、これら小径内加熱コイル部16aと小径外加熱コイル部16bとの間の空隙部に鍋底の温度を検出するための例えばサーミスタの感熱素子18が2つ配置させられている。これら2つの感熱素子18は鍋等の被加熱物を載置する天板(図示せず)の裏面に密着されている。外加熱コイル17は、小径加熱コイル16の外周に間隙をおいて配設されている。
As shown in FIG. 2, the heating coil 15 includes a small-diameter heating coil 16 and an outer heating coil 17 disposed with a gap around the outer periphery thereof.
The small-diameter heating coil 16 includes an inner small-diameter inner heating coil portion 16a and an outer small-diameter outer heating coil portion 16b. A gap between the small-diameter inner heating coil portion 16a and the small-diameter outer heating coil portion 16b is provided at the bottom of the pan. Two thermosensitive elements 18 such as thermistors for detecting the temperature are arranged. These two thermosensitive elements 18 are in close contact with the back surface of a top plate (not shown) on which a heated object such as a pan is placed. The outer heating coil 17 is disposed on the outer periphery of the small diameter heating coil 16 with a gap.

大径鍋を加熱する場合には、小径加熱コイル16と外加熱コイル17の両加熱コイルに通電し、小径鍋を加熱する場合には小径加熱コイル16のみに通電する。大径鍋の加熱と小径鍋加熱との切り替えはリレー19をリレー駆動手段20で制御することにより行う。
即ち、インバータ回路8の出力は小径加熱コイル16の一端に接続され、小径加熱コイルのみに通電する場合には小径加熱コイル16の他端をリレー19で小径コイル共振コンデンサ21に接続する。
小径加熱コイル16と外加熱コイル17の両加熱コイルに通電する場合には、小径加熱コイル16の他端をリレー19で外加熱コイル17に接続し、小径加熱コイル16および外加熱コイル17の両コイルと共振回路を構成する両コイル共振コンデンサ22を経由して負側母線に接続される。
When heating the large-diameter pan, current is supplied to both the small-diameter heating coil 16 and the external heating coil 17, and when heating the small-diameter pan, only the small-diameter heating coil 16 is energized. Switching between the heating of the large-diameter pan and the heating of the small-diameter pan is performed by controlling the relay 19 with the relay driving means 20.
That is, the output of the inverter circuit 8 is connected to one end of the small diameter heating coil 16, and when only the small diameter heating coil is energized, the other end of the small diameter heating coil 16 is connected to the small diameter coil resonance capacitor 21 by the relay 19.
When energizing both the small-diameter heating coil 16 and the external heating coil 17, the other end of the small-diameter heating coil 16 is connected to the external heating coil 17 by a relay 19, and both the small-diameter heating coil 16 and the external heating coil 17 are connected. The coil is connected to the negative bus via a coil resonance capacitor 22 constituting a resonance circuit.

加熱コイル15に流れる電流は出力電流検出手段23により検出し、加熱する鍋底の温度は鍋温度検出手段24により感熱素子18を使用して検出する。
制御部25は、誘導加熱調理器全体を制御するもので、操作入力手段26からの入力指示により、入力電流検出手段6や入力電圧検出手段7、出力電流検出手段23及び鍋温度検出手段24の検出値を取り込みながら、インバータ駆動回路13の制御をして加熱出力を調整する。
鍋温度検出手段24により検出した温度データは、揚げ物調理等の温度制御や、被加熱物の過熱防止の制御に使用する。なお、制御部25がインバータ駆動回路13に出力するインバータ駆動信号は、小径加熱コイル16と小径コイル共振コンデンサ21からなる小径加熱コイル共振回路27及び小径加熱コイル16と外加熱コイル16とからなる加熱コイル15と両コイル共振コンデンサ22からなる両加熱コイル共振回路28の共振周波数より高い駆動周波数として、共振回路に流れる電流は共振回路に印加される電圧より遅れ位相で流れるように制御する。
The current flowing through the heating coil 15 is detected by the output current detection means 23, and the temperature of the pan bottom to be heated is detected by the pan temperature detection means 24 using the thermal element 18.
The control unit 25 controls the entire induction heating cooker, and in response to an input instruction from the operation input unit 26, the input current detection unit 6, the input voltage detection unit 7, the output current detection unit 23, and the pan temperature detection unit 24. While taking the detection value, the inverter drive circuit 13 is controlled to adjust the heating output.
The temperature data detected by the pan temperature detecting means 24 is used for temperature control such as deep-fried food cooking and control for preventing overheating of the object to be heated. Note that the inverter drive signal output from the control unit 25 to the inverter drive circuit 13 is a heating composed of the small-diameter heating coil resonance circuit 27 including the small-diameter heating coil 16 and the small-diameter coil resonance capacitor 21 and the small-diameter heating coil 16 and the external heating coil 16. As a drive frequency higher than the resonance frequency of both heating coil resonance circuits 28 comprising the coil 15 and both coil resonance capacitors 22, the current flowing in the resonance circuit is controlled to flow in a phase lagging from the voltage applied to the resonance circuit.

図2は本実施の形態1に係る誘導加熱調理器の加熱コイルユニットの平面図であり、小径加熱コイル16および外加熱コイル17と、感熱素子18の位置関係を示している。
図2に示すように、加熱コイル15を構成する小径加熱コイル16と外加熱コイル17は略同心円状に間隔をおいてコイルベース29上に配置されている。コイルベース29の裏面には、小径加熱コイル16および外加熱コイル17の下面を磁気シールドするように、板状のフェライト30が放射状に6個配設されている。
その小径加熱コイル16は、内側の小径内加熱コイル部16aと外側の小径外加熱コイル部16bからなり、これらコイル部16a、16b間の空隙部で、且つ板状のフェライト30の間に、鍋底の温度を検出する感熱素子18が2個設けられている。
なお、加熱コイル15に流れる電流により生ずる磁束は各フェライト30の部分に集中するため、感熱素子18の位置するフェライト間は磁束密度が低くなり、フェライト30の上と比べて感熱素子18は誘導加熱されにくい構成となっている。
FIG. 2 is a plan view of the heating coil unit of the induction heating cooker according to the first embodiment, and shows the positional relationship between the small-diameter heating coil 16 and the external heating coil 17 and the thermal element 18.
As shown in FIG. 2, the small-diameter heating coil 16 and the external heating coil 17 constituting the heating coil 15 are arranged on a coil base 29 with a substantially concentric interval. On the back surface of the coil base 29, six plate-like ferrites 30 are arranged radially so as to magnetically shield the lower surfaces of the small diameter heating coil 16 and the outer heating coil 17.
The small-diameter heating coil 16 includes an inner small-diameter inner heating coil portion 16a and an outer small-diameter outer heating coil portion 16b, and is a gap between the coil portions 16a and 16b and between the plate-like ferrite 30. Two thermosensitive elements 18 for detecting the temperature of are provided.
Since the magnetic flux generated by the current flowing through the heating coil 15 is concentrated on each ferrite 30 portion, the magnetic flux density is lower between the ferrites where the thermal elements 18 are located. It is difficult to be configured.

図3は感熱素子18を利用した鍋温度検出手段24の回路の構成図であり、図4はこの鍋温度検出手段24の回路で検出した電圧値と温度の関係を示す温度変換特性グラフである。
図3に示すように、鍋温度検出手段24は制御用直流電源正側に接続された感熱素子18と直列に接続された分圧抵抗31と、分圧抵抗31と並列に接続されたノイズ除去用のコンデンサ32と、分圧抵抗31の制御用直流電源の分圧電圧を取り込むA/D変換器33とを有して構成されている。
鍋温度検出手段24は図4の温度変換特性グラフを使用して検出温度を得るものである。感熱素子18は温度が上昇すると抵抗値が小さくなる特性を有しているので、図4のグラフに示すように検出電圧が高くなるほど高い温度となる。
FIG. 3 is a block diagram of the circuit of the pan temperature detecting means 24 using the thermosensitive element 18, and FIG. 4 is a temperature conversion characteristic graph showing the relationship between the voltage value and temperature detected by the circuit of the pan temperature detecting means 24. .
As shown in FIG. 3, the pan temperature detecting means 24 includes a voltage dividing resistor 31 connected in series with the thermal element 18 connected to the positive side of the control DC power supply, and a noise removing device connected in parallel with the voltage dividing resistor 31. Capacitor 32 and an A / D converter 33 for taking in the divided voltage of the DC power supply for controlling the voltage dividing resistor 31.
The pan temperature detecting means 24 obtains the detected temperature using the temperature conversion characteristic graph of FIG. Since the thermal element 18 has a characteristic that the resistance value decreases as the temperature rises, the higher the detection voltage, the higher the temperature as shown in the graph of FIG.

図5は加熱コイル15に流れる電流により生ずる磁界の方向を示した図で、特に感熱素子18が配設された位置において、どのような磁界状態になるかを線と矢印の太さで示している。
図5の(a)は小径加熱コイル16のみに高周波電流を流した場合を示すもので、小径内加熱コイル部16aに流れる電流により生ずる磁界を破線34で示し、小径外加熱コイル部16bに流れる電流により生ずる磁界を破線35で示している。
加熱コイル15の中心部(A)や、小径加熱コイル16と外加熱コイル17の間のコイル間部(B)では、小径内加熱コイル部16aに流れる電流により生ずる磁界と、小径外加熱コイル部16bに流れる電流により生ずる磁界は同一方向に重なり強め合うので、この位置に感熱素子18を配すると誘導加熱され易いのに対し、小径内加熱コイル部16aと小径外加熱コイル部16bの間の空隙部(C)においては逆方向となって打ち消し合って弱まるため、サーミスタ18は誘導加熱され難い。
また、小径加熱コイル16と外加熱コイル17を有する誘導加熱調理器において、小径加熱コイル16のみに通電する場合は、一般には加熱する鍋が小さい場合に行われるので、小径加熱コイル16と外加熱コイル17のコイル間部(B)は、鍋底から外れた位置となって鍋底温度を検出できない場合も多い。
そこで、感熱素子18に対する誘導加熱が生じ難く、鍋底位置から外れ難い小径内加熱コイル部16aと小径外加熱コイル部16bの間の空隙部(C)に感熱素子18を配置することによって正確な鍋温度検出が可能となる。
FIG. 5 is a diagram showing the direction of the magnetic field generated by the current flowing in the heating coil 15, and shows the magnetic field state at the position where the thermal element 18 is disposed, by the thickness of the line and the arrow. Yes.
FIG. 5A shows a case where a high-frequency current is applied only to the small-diameter heating coil 16, and the magnetic field generated by the current flowing in the small-diameter inner heating coil portion 16a is indicated by a broken line 34 and flows to the small-diameter outer heating coil portion 16b. A magnetic field generated by the current is indicated by a broken line 35.
In the central portion (A) of the heating coil 15 and the inter-coil portion (B) between the small diameter heating coil 16 and the outer heating coil 17, a magnetic field generated by the current flowing in the small diameter inner heating coil portion 16a, and the small diameter outer heating coil portion. Since the magnetic field generated by the current flowing through 16b overlaps and strengthens in the same direction, if the thermal element 18 is disposed at this position, induction heating is likely to occur, whereas the gap between the small-diameter inner heating coil portion 16a and the small-diameter outer heating coil portion 16b. In the part (C), the thermistors 18 are less likely to be induction-heated because they reverse in the opposite directions and weaken.
In addition, in an induction heating cooker having a small diameter heating coil 16 and an external heating coil 17, when energizing only the small diameter heating coil 16 is generally performed when the heating pan is small, the small diameter heating coil 16 and the external heating coil are heated. There are many cases where the inter-coil portion (B) of the coil 17 is located away from the pan bottom and the pan bottom temperature cannot be detected.
Therefore, an accurate pan is provided by arranging the thermal element 18 in the space (C) between the small-diameter inner heating coil portion 16a and the small-diameter outer heating coil portion 16b, which does not easily cause induction heating to the thermal element 18 and is difficult to be removed from the pan bottom position. Temperature detection is possible.

図5の(b)は小径加熱コイル16と外加熱コイル17の両方に高周波電流を流した場合の磁界の状態を示すもので、小径内加熱コイル部16aに流れる電流により生ずる磁界34(破線で表示)や小径外加熱コイル部16bに流れる電流により生ずる磁界35(破線で表示)に加えて、外加熱コイル17に流れる電流により生ずる磁界36を点線で表示している。
この場合、感熱素子18の位置に近い小径加熱コイル16に流れる電流による磁界は、感熱素子18より内側の小径内加熱コイル部16aに流れる電流による磁界と外側の小径外加熱コイル部16bに流れる電流による磁界が打ち消し合うとともに、外加熱コイル17に流れる電流により生ずる磁界36が重畳するが、外加熱コイル17から感熱素子18までの間隔があるため、感熱素子18が強く誘導加熱されることはない。
FIG. 5 (b) shows the state of the magnetic field when a high-frequency current is passed through both the small diameter heating coil 16 and the external heating coil 17, and a magnetic field 34 (indicated by a broken line) generated by the current flowing through the small diameter inner heating coil portion 16a. In addition to the magnetic field 35 (indicated by a broken line) generated by the current flowing in the small-diameter outer heating coil portion 16b, the magnetic field 36 generated by the current flowing in the outer heating coil 17 is indicated by a dotted line.
In this case, the magnetic field due to the current flowing through the small-diameter heating coil 16 close to the position of the thermal element 18 includes the magnetic field due to the current flowing through the small-diameter inner heating coil portion 16a inside the thermal element 18 and the current flowing through the outer small-diameter outer heating coil portion 16b. The magnetic fields generated by the currents cancel each other and the magnetic field 36 generated by the current flowing through the external heating coil 17 is superimposed. However, since there is a space from the external heating coil 17 to the thermal element 18, the thermal element 18 is not strongly induction-heated. .

以上のように、この実施の形態1の誘導加熱調理器によれば、小径加熱コイル16のみに通電する場合も、小径加熱コイル16と外加熱コイル17の両加熱コイルに通電する場合も、鍋温度を検出するための感熱素子18を誘導加熱され難い位置である小径内加熱コイル部16aと小径外加熱コイル部16bの間の空隙部(C)に感熱素子18を配置し、かつ加熱コイル15の中心部に近い位置であるので、加熱コイル15上に載置した被加熱物である鍋底から外れ難く、加熱コイル15の通電状態によらず鍋の温度を正確に検出することができる。   As described above, according to the induction heating cooker of the first embodiment, both the small-diameter heating coil 16 and the small-diameter heating coil 16 and the external heating coil 17 are both energized. The thermal element 18 is arranged in the space (C) between the small-diameter inner heating coil part 16a and the small-diameter outer heating coil part 16b, which is a position where the thermal element 18 for detecting temperature is difficult to be induction-heated, and the heating coil 15 Since the position is close to the center of the pot, it is difficult to come off from the bottom of the pan, which is an object to be heated, placed on the heating coil 15, and the temperature of the pan can be accurately detected regardless of the energized state of the heating coil 15.

また、加熱コイル15上に載置された被加熱物である鍋には、加熱コイル15に流れる高周波電流により生ずる磁界の変化を打ち消すように、加熱コイル15に対向する鍋底に誘導渦電流が流れて加熱されるので、加熱コイル15全体を通電する場合は小径内加熱コイル部16a及び小径外加熱コイル部16bと外加熱コイル17に対向する鍋底が加熱されるため、鍋底の発熱部分が複数の箇所に分割されて広く分布するため、加熱ムラが抑制される。
また、小径加熱コイル16のみを通電した場合においても、小径内加熱コイル部16aと小径外加熱コイル部16bに対向する鍋底部分が発熱するため、発熱部分が分割されて広がるため、加熱むらを低減することができる。
In addition, an induced eddy current flows in the pan bottom facing the heating coil 15 in the pan that is an object to be heated placed on the heating coil 15 so as to cancel the change in the magnetic field caused by the high-frequency current flowing in the heating coil 15. When the entire heating coil 15 is energized, the pan bottom facing the small-diameter inner heating coil portion 16a and the small-diameter outer heating coil portion 16b and the outer heating coil 17 is heated. Since it is divided into portions and widely distributed, uneven heating is suppressed.
Even when only the small-diameter heating coil 16 is energized, the pot bottom portion facing the small-diameter inner heating coil portion 16a and the small-diameter outer heating coil portion 16b generates heat, so the heating portion is divided and spreads, thereby reducing uneven heating. can do.

実施の形態2.
図6は本発明の実施の形態2に係る誘導加熱調理器の鍋温度検出回路の温度変換特性の一例を示すグラフである。
上記実施の形態1で述べたように、小径加熱コイル16のみに通電する場合と、小径加熱コイル16および外加熱コイル17の両コイルに通電する場合とでは、感熱素子18の配設位置における磁界の状態が多少異なるため、図6に示すように鍋温度検出回路24の感熱素子18は温度が一定の場合にそれぞれ検出電圧が異なる2つの温度変換特性を持つこととなる。
そこで、小径加熱コイル16のみに通電して磁界が弱い状態の場合には図6に示す第1温度変換特性37を用い、小径加熱コイル16と外加熱コイル17の両コイルに通電して磁界が強い状態の場合には図6に示す第2温度変換特性38を用いることとした。
Embodiment 2. FIG.
FIG. 6 is a graph showing an example of temperature conversion characteristics of the pan temperature detection circuit of the induction heating cooker according to Embodiment 2 of the present invention.
As described in the first embodiment, the magnetic field at the position where the thermal element 18 is disposed is when only the small diameter heating coil 16 is energized and when both the small diameter heating coil 16 and the external heating coil 17 are energized. Therefore, as shown in FIG. 6, the thermal element 18 of the pan temperature detection circuit 24 has two temperature conversion characteristics with different detection voltages when the temperature is constant.
Therefore, when only the small-diameter heating coil 16 is energized and the magnetic field is weak, the first temperature conversion characteristic 37 shown in FIG. 6 is used, and both the small-diameter heating coil 16 and the external heating coil 17 are energized to generate the magnetic field. In the case of a strong state, the second temperature conversion characteristic 38 shown in FIG. 6 is used.

この実施の形態2では、小径加熱コイル16のみに通電して磁界が弱い状態の場合には、温度を一定としたときに検出電圧が低い第1温度変換特性37を用い、小径加熱コイル16と外加熱コイル17の両コイルに通電して磁界が強い状態の場合には温度を一定としたときに検出電圧が第1温度変換特性37より高い第2温度変換特性38を用いることで、加熱コイルの通電状態により感熱素子18を配置した位置における磁界の重畳状態が変わることにより、加熱コイルの通電状態に応じた温度変換特性を用い、誘導加熱の違いを補償し、より正確に鍋温度の検出を行うようにしたものである。   In the second embodiment, when only the small diameter heating coil 16 is energized and the magnetic field is weak, the first temperature conversion characteristic 37 having a low detection voltage when the temperature is constant is used, and the small diameter heating coil 16 and When a current is strong and both the coils of the outer heating coil 17 are in a strong magnetic field, the heating coil is obtained by using the second temperature conversion characteristic 38 whose detected voltage is higher than the first temperature conversion characteristic 37 when the temperature is constant. By changing the superposition state of the magnetic field at the position where the thermal element 18 is arranged depending on the energization state of the heating coil, the temperature conversion characteristic according to the energization state of the heating coil is used to compensate for the difference in induction heating and more accurately detect the pan temperature. Is to do.

実施の形態3.
図7は本発明の実施の形態3に係る誘導加熱調理器の回路構成図、図8は同誘導加熱調理器の加熱コイルユニットを示す平面図である。
図7において、この発明の実施の形態3において、実施の形態1の図1と同一あるいは相当部分には同一符号を付して重複した構成の説明を省略する。
図7において、交流電源1から供給される電力は直流電源回路2で直流電力に変換され、インバータ回路8に供給される。インバータ回路8は、直流電源回路2の正負母線間に直列に接続された2つのスイッチング素子と、そのスイッチング素子とそれぞれ逆並列に接続されたダイオードによって形成される3組のアーム(以下、3組のアームを共通アーム39、小径加熱コイル用アーム40、外加熱コイル用アーム41と呼ぶ。)から形成されている。
Embodiment 3 FIG.
FIG. 7 is a circuit configuration diagram of an induction heating cooker according to Embodiment 3 of the present invention, and FIG. 8 is a plan view showing a heating coil unit of the induction heating cooker.
7, in the third embodiment of the present invention, the same or corresponding parts as those in FIG. 1 of the first embodiment are denoted by the same reference numerals, and the description of the overlapping configuration is omitted.
In FIG. 7, the power supplied from the AC power supply 1 is converted into DC power by the DC power supply circuit 2 and supplied to the inverter circuit 8. The inverter circuit 8 has three sets of arms (hereinafter, three sets) formed by two switching elements connected in series between the positive and negative buses of the DC power supply circuit 2 and diodes connected in reverse parallel to the switching elements. These arms are referred to as a common arm 39, a small-diameter heating coil arm 40, and an external heating coil arm 41).

共通アーム39は、上スイッチ42と、下スイッチ43と、上スイッチ42と逆並列に接続された上ダイオード44と、下スイッチ43と逆並列に接続された下ダイオード45とから構成されている。
小径加熱コイル用アーム40は、上スイッチ46と、下スイッチ47と、上スイッチ46と逆並列に接続された上ダイオード48と、下スイッチ47と逆並列に接続された下ダイオード49とから構成されている。
外加熱コイル用アーム41は、上スイッチ50と、下スイッチ51と、上スイッチ50と逆並列に接続された上ダイオード52と、下スイッチ51と逆並列に接続された下ダイオード53とから構成されている。
The common arm 39 includes an upper switch 42, a lower switch 43, an upper diode 44 connected in antiparallel with the upper switch 42, and a lower diode 45 connected in antiparallel with the lower switch 43.
The small-diameter heating coil arm 40 includes an upper switch 46, a lower switch 47, an upper diode 48 connected in antiparallel with the upper switch 46, and a lower diode 49 connected in antiparallel with the lower switch 47. ing.
The outer heating coil arm 41 includes an upper switch 50, a lower switch 51, an upper diode 52 connected in antiparallel with the upper switch 50, and a lower diode 53 connected in antiparallel with the lower switch 51. ing.

共通アーム39の出力点と小径加熱コイル用アーム40の出力点間には、小径加熱コイル16と小径コイル共振コンデンサ21の直列回路からなる小径コイル負荷回路27が接続され、共通アーム39の出力点と外加熱コイル用アーム41の出力点間には、外加熱コイル17と外コイル共振コンデンサ54の直列回路からなる外加熱コイル負荷回路55が接続される。
また、共通アーム39の出力点、小径加熱コイル用アーム40の出力点及び外加熱コイル用アーム41の出力点に、スナバコンデンサ56、57、58がそれぞれ接続される。
Between the output point of the common arm 39 and the output point of the small diameter heating coil arm 40, a small diameter coil load circuit 27 comprising a series circuit of the small diameter heating coil 16 and the small diameter coil resonance capacitor 21 is connected. The external heating coil load circuit 55 comprising a series circuit of the external heating coil 17 and the external coil resonance capacitor 54 is connected between the output points of the arm 41 for the external heating coil.
Snubber capacitors 56, 57, and 58 are connected to the output point of the common arm 39, the output point of the small-diameter heating coil arm 40, and the output point of the external heating coil arm 41, respectively.

共通アーム39を構成する上スイッチ42と下スイッチ43は、共通アーム駆動回路59から出力される駆動信号によりオンオフ駆動され、小径加熱コイル用アーム40を構成する上スイッチ46と下スイッチ47は小径コイル用アーム駆動回路60から出力される駆動信号によりオンオフ駆動され、外加熱コイル用アーム41を構成する上スイッチ50と下スイッチ51は外コイル用アーム駆動回路61から出力される駆動信号によりオンオフ駆動される。   The upper switch 42 and the lower switch 43 constituting the common arm 39 are ON / OFF driven by a drive signal output from the common arm drive circuit 59, and the upper switch 46 and the lower switch 47 constituting the small diameter heating coil arm 40 are small diameter coils. ON / OFF drive is performed by a drive signal output from the arm drive circuit 60, and the upper switch 50 and the lower switch 51 constituting the outer heating coil arm 41 are ON / OFF driven by a drive signal output from the outer coil arm drive circuit 61. The

共通アーム駆動回路59は共通アーム39の上スイッチ42をオンさせている間は下スイッチ43をオフに、下スイッチ43をオンさせている間は上スイッチ42をオフするというように、交互にオンオフする駆動信号を出力するものである。
また、小径コイル用アーム駆動回路60も同様に、小径加熱コイル用アーム40の上スイッチ46と下スイッチ47を交互にオンオフする駆動信号を出力するものである。
さらに、外用アーム駆動回路61も同様に、外加熱コイル用アーム41の上スイッチ50と下スイッチ51を交互にオンオフする駆動信号を出力するものである。
なお、スナバコンデンサ56、57、58はそれぞれ、共通アーム39、小径加熱コイル用アーム40、外加熱コイル用アーム41におけるスイッチング素子ターンオフ時の出力電圧変動を遅延させてスイッチング素子のターンオフ損失を低減させるためのものである。
The common arm drive circuit 59 turns on / off alternately such that the lower switch 43 is turned off while the upper switch 42 of the common arm 39 is turned on, and the upper switch 42 is turned off while the lower switch 43 is turned on. The drive signal which outputs is output.
Similarly, the small-diameter coil arm drive circuit 60 outputs a drive signal for alternately turning on and off the upper switch 46 and the lower switch 47 of the small-diameter heating coil arm 40.
Further, the external arm drive circuit 61 similarly outputs a drive signal for alternately turning on and off the upper switch 50 and the lower switch 51 of the arm 41 for the external heating coil.
Note that the snubber capacitors 56, 57, and 58 respectively delay the output voltage fluctuation when the switching element is turned off in the common arm 39, the small-diameter heating coil arm 40, and the outer heating coil arm 41 to reduce the turn-off loss of the switching element. Is for.

この実施の形態3の加熱コイル15は、小径加熱コイル16とその外周に間隙をおいて配設された外加熱コイル17から構成される。
その小径加熱コイル16は、図8に示すように、その中心部に巻回された小径内加熱コイル部16aと、その外周部に空隙をおいて巻回した小径外加熱コイル部16bとから構成され、その間の空隙部に2つの第1の感熱素子18aが配置されている。
また、小径加熱コイル16の外周には、間隔をおいて外加熱コイル17が配されており、小径加熱コイル16と外加熱コイル17の間に2つの第2の感熱素子18bが配置されている。そして、これら第1及び第2の感熱素子18a、18bは一直線上に配置されている。
The heating coil 15 according to the third embodiment includes a small-diameter heating coil 16 and an outer heating coil 17 disposed with a gap on the outer periphery thereof.
As shown in FIG. 8, the small-diameter heating coil 16 is composed of a small-diameter inner heating coil portion 16a wound around the center portion and a small-diameter outer heating coil portion 16b wound around the outer peripheral portion with a gap. In addition, two first thermal elements 18a are arranged in the gap between them.
In addition, an outer heating coil 17 is disposed on the outer periphery of the small diameter heating coil 16 at an interval, and two second thermal elements 18 b are disposed between the small diameter heating coil 16 and the outer heating coil 17. . And these 1st and 2nd thermal elements 18a and 18b are arrange | positioned on the straight line.

また、小径加熱コイル16、外加熱コイル17に流れる電流を検出する小径加熱コイル電流検出手段62及び外加熱コイル電流検出手段63がそれぞれ設けられており、電流の大きさや位相を検出できるものとする。
制御部25は、誘導加熱調理器全体を制御するもので、操作入力手段26からの入力指示により、入力電流検出手段6や入力電圧検出手段7、小径加熱コイル電流検出手段62や外加熱コイル電流検出手段63の検出値を取り込みながら、各アーム駆動回路59、60、61を制御して加熱出力を制御する。
Further, a small diameter heating coil current detection means 62 and an external heating coil current detection means 63 for detecting a current flowing through the small diameter heating coil 16 and the external heating coil 17 are provided, respectively, so that the magnitude and phase of the current can be detected. .
The control unit 25 controls the entire induction heating cooker, and in response to an input instruction from the operation input unit 26, the input current detection unit 6, the input voltage detection unit 7, the small diameter heating coil current detection unit 62, and the external heating coil current. While taking in the detection value of the detection means 63, the arm drive circuits 59, 60, 61 are controlled to control the heating output.

なお、小径加熱コイル16と外加熱コイル17は、共通アーム39から見て、同一周回方向に巻回されているように接続されているものとし、小径加熱コイル16と外加熱コイル17に同時に高周波電流を流す場合には、各アームの駆動信号を同一方向に電流を流すように制御する。
また、各アームの駆動信号は、小径加熱コイル負荷回路27及び外加熱コイル負荷回路55の共振周波数より高い駆動周波数として、負荷回路に流れる電流は負荷回路に印加される電圧と比較して遅れ位相で流れるように制御する。
The small-diameter heating coil 16 and the external heating coil 17 are connected so as to be wound in the same circumferential direction when viewed from the common arm 39, and the small-diameter heating coil 16 and the external heating coil 17 are simultaneously connected to the high-frequency coil. In the case of passing a current, the drive signal of each arm is controlled to flow in the same direction.
Further, the drive signal of each arm has a drive frequency higher than the resonance frequency of the small-diameter heating coil load circuit 27 and the external heating coil load circuit 55, and the current flowing through the load circuit is delayed in phase with respect to the voltage applied to the load circuit. Control to flow at.

図8は実施の形態3に係る誘導加熱調理器の加熱コイルユニットを示し、小径加熱コイル16、外加熱コイル17及び第1、第2の感熱素子18a、18bとの位置関係を示している。
図8に示すように、小径加熱コイル16と外加熱コイル17は略同心円状に間隔をおいてコイルベース29上に配置されている。小径加熱コイル16は、その中心部に巻回された小径内加熱コイル部16aと、その外周に空隙部をおいて巻回した小径外加熱コイル部16bとからなる。加熱コイル15の下方に、加熱コイル15の中心部から外側に向けて放射状に略長方形板状のフェライト30が6つ配設され、加熱コイル下方を磁気シールドしている。
FIG. 8 shows the heating coil unit of the induction heating cooker according to the third embodiment, and shows the positional relationship between the small-diameter heating coil 16, the outer heating coil 17, and the first and second thermal elements 18a and 18b.
As shown in FIG. 8, the small-diameter heating coil 16 and the outer heating coil 17 are disposed on the coil base 29 at a substantially concentric interval. The small-diameter heating coil 16 includes a small-diameter inner heating coil portion 16a wound around the central portion thereof, and a small-diameter outer heating coil portion 16b wound around the outer periphery thereof with a gap. Below the heating coil 15, six substantially rectangular plate-like ferrites 30 are arranged radially from the center to the outside of the heating coil 15, and the lower part of the heating coil is magnetically shielded.

小径加熱コイル16の空隙部には2つの第1の感熱素子18aが配設され、小径加熱コイル16と外加熱コイル17との間には第2の感熱素子18bが配設されている。
第1の感熱素子18aと第2の感熱素子18bは、加熱コイル15の中心部からみて同一方向でフェライト30と重ならない中間位置に配置される。
加熱コイル15に流れる電流により生じる磁束は、加熱コイル下方においては磁気抵抗の低いフェライト30に集中するため、第1及び第2の感熱素子18a,18bの配置位置を通過する磁束は少なくなり、第1及び第2の感熱素子18a、18bが受ける誘導加熱の影響は小さくなる。
Two first heat sensitive elements 18 a are disposed in the space of the small diameter heating coil 16, and a second heat sensitive element 18 b is disposed between the small diameter heating coil 16 and the outer heating coil 17.
The first thermosensitive element 18 a and the second thermosensitive element 18 b are disposed at an intermediate position where the first thermosensitive element 18 a and the second thermosensitive element 18 b do not overlap with the ferrite 30 in the same direction as viewed from the center of the heating coil 15.
Since the magnetic flux generated by the current flowing through the heating coil 15 is concentrated on the ferrite 30 having a low magnetic resistance below the heating coil, the magnetic flux passing through the arrangement positions of the first and second thermal elements 18a and 18b is reduced. The influence of induction heating on the first and second thermal elements 18a and 18b is reduced.

次に、本発明の実施の形態3に係る誘導加熱調理器の制御部25による誘導加熱の制御処理について図9〜図12に基づき説明をする。
なお、図9は同誘導加熱調理器の加熱制御処理を示すフローチャート、図10は同誘導加熱調理器の小径加熱コイル及び外加熱コイルに通電する駆動信号の波形図、図11は同誘導加熱調理器において小径加熱コイルのみに通電する駆動信号の波形図、図12は同誘導加熱調理器の感熱素子の配設位置で、加熱コイル各部に流れる電流により生ずる磁界の向きの関係を示す説明図である。
Next, the induction heating control process performed by the control unit 25 of the induction heating cooker according to the third embodiment of the present invention will be described with reference to FIGS.
9 is a flowchart showing the heating control process of the induction heating cooker, FIG. 10 is a waveform diagram of drive signals for energizing the small diameter heating coil and the external heating coil of the induction heating cooker, and FIG. 11 is the induction heating cooking. FIG. 12 is an explanatory diagram showing the relationship of the direction of the magnetic field generated by the current flowing in each part of the heating coil at the position of the heat sensitive element of the induction heating cooker. is there.

図9のフローチャートに示すように、まず、制御部25は操作入力手段26からの加熱開始指示入力の有無を判断し(ステップ1)、加熱開始指示入力が有った場合には通電する加熱コイル15を小径加熱コイル16及び外加熱コイル17として、図10に示すような駆動信号を共通アーム駆動回路59、小径加熱コイル用アーム駆動回路60、外加熱コイル用アーム駆動回路61を制御して出力させ、内外コイルモードに設定して加熱を開始する(ステップ2)。
小径加熱コイル負荷回路27或いは外加熱コイル負荷回路55に印加される交流電圧は、共通アーム39の出力端子電圧と、小径加熱コイル用アーム40の出力端子電圧或いは外加熱コイル用アーム41の出力端子電圧との差であり、共通アーム39の上下スイッチ42、43への駆動信号と、小径加熱コイル用アーム40の上下スイッチ46、47への駆動信号或いは外加熱コイル用アーム41の上下スイッチ50、51への駆動信号の位相差を調整することにより、加熱出力を制御することができる。
As shown in the flowchart of FIG. 9, first, the control unit 25 determines whether or not a heating start instruction is input from the operation input means 26 (step 1). 10 is controlled by the common arm drive circuit 59, the small diameter heating coil arm drive circuit 60, and the external heating coil arm drive circuit 61, with the small diameter heating coil 16 and the external heating coil 17 being output. The heating is started by setting the inner / outer coil mode (step 2).
The AC voltage applied to the small diameter heating coil load circuit 27 or the external heating coil load circuit 55 includes the output terminal voltage of the common arm 39, the output terminal voltage of the small diameter heating coil arm 40, or the output terminal of the external heating coil arm 41. Drive signal to the upper and lower switches 42 and 43 of the common arm 39, the drive signal to the upper and lower switches 46 and 47 of the small diameter heating coil arm 40, or the upper and lower switches 50 of the arm 41 for the external heating coil. The heating output can be controlled by adjusting the phase difference of the drive signal to 51.

次に、小径加熱コイル16と外加熱コイル17の間に配設されている第2感熱素子18bによる温度検出を行い(ステップ3)、鍋底が過熱しているか否かを判断する(ステップ4)。
過熱していなければ操作入力手段26から設定された設定火力の電力と、入力電圧検出手段7および入力電流検出手段6の検出値を用いて得た入力電力を比較し(ステップ5)、入力電力の方が小さければ共通アーム駆動信号と小径加熱コイル用アーム駆動信号および外加熱コイル用アーム駆動信号との位相差を大きくする(ステップ6)。
ステップ4で鍋底が過熱していた場合や、ステップ5で入力電力が設定電力を超えていた場合には、共通アーム駆動信号と小径加熱コイル用アーム駆動信号及び外加熱コイル用アーム駆動信号との位相差を小さくする(ステップ7)。
Next, temperature detection is performed by the second thermal element 18b disposed between the small diameter heating coil 16 and the outer heating coil 17 (step 3), and it is determined whether the pan bottom is overheated (step 4). .
If it is not overheated, the power of the set thermal power set from the operation input means 26 is compared with the input power obtained using the detected values of the input voltage detection means 7 and the input current detection means 6 (step 5), and the input power is compared. If it is smaller, the phase difference between the common arm driving signal, the small-diameter heating coil arm driving signal, and the outer heating coil arm driving signal is increased (step 6).
If the pan bottom is overheated in Step 4 or if the input power exceeds the set power in Step 5, the common arm drive signal, the arm drive signal for the small diameter heating coil, and the arm drive signal for the external heating coil The phase difference is reduced (step 7).

次いで、通電する加熱コイルを切り替える要求があるか否か判断する(ステップ8)。通電加熱コイルの切り替え要求は、例えば操作入力手段26から使用者の切り替え要求の指示入力がある場合や、両コイル通電モードにおいて小径加熱コイル電流検出手段62と外加熱コイル電流検出手段63のアンバランスが大きい場合に要求があるものとする。
要求があれば外加熱コイル用アームへの駆動信号を停止し(両コイル通電モードから小径加熱コイル通電モードに切り替え。図11に示すような駆動信号波形にする)、或いは再開して(小径加熱コイル通電モードから両コイル通電モードに切り替え、図10に示すような駆動信号波形とする)、通電コイルモードを切り替える(ステップ9)。
Next, it is determined whether or not there is a request to switch the heating coil to be energized (step 8). The switching request of the energization heating coil is, for example, when there is an instruction input of a user switching request from the operation input unit 26, or in an imbalance between the small diameter heating coil current detection unit 62 and the external heating coil current detection unit 63 in both coil energization modes. It is assumed that there is a request when is large.
If requested, the drive signal to the arm for the outer heating coil is stopped (switched from the two-coil energization mode to the small-diameter heating coil energization mode. The drive signal waveform as shown in FIG. 11 is used) or restarted (small-diameter heating). The coil energization mode is switched to the both-coil energization mode to obtain a drive signal waveform as shown in FIG. 10), and the energization coil mode is switched (step 9).

次に、操作入力手段26からの加熱停止の指示入力の有無を判断し(ステップ10)、その入力が無い場合には通電コイルモードを判断して(ステップ11)、両コイル通電モードではステップ3の第2感熱素子18bによる温度検出処理に戻り、小径加熱コイル通電モードでは第1感熱素子18aによる温度検出処理(ステップ12)を行って、ステップ4の鍋底過熱の判断処理に移行する。
ステップ10で加熱停止の指示入力が有ったと判断した場合には、各アームの上下スイッチへの駆動信号を停止して加熱動作を停止し(ステップ13)、ステップ1の加熱開始の指示入力待ちに戻る。
Next, it is determined whether or not a heating stop instruction is input from the operation input means 26 (step 10). If there is no input, the energized coil mode is determined (step 11). Returning to the temperature detection process by the second thermal element 18b, in the small diameter heating coil energization mode, the temperature detection process (step 12) by the first thermal element 18a is performed, and the process proceeds to the pan bottom overheating determination process of step 4.
If it is determined in step 10 that there has been an instruction to stop heating, the drive signal to the up / down switch of each arm is stopped to stop the heating operation (step 13), and the input of the instruction to start heating in step 1 is awaited. Return to.

この実施の形態3では、小径加熱コイル16のみに通電する場合には、図12(a)に示すように小径内加熱コイル部16aに流れる電流による磁界34と、小径外加熱コイル部16bに流れる電流による磁界35が小径加熱コイル16の空隙部において略逆向きとなって打ち消し合い、第1感熱素子18aは殆んど誘導加熱されないが、小径加熱コイル16の外側である第2感熱素子18bの配設位置では、小径内加熱コイル部16aに流れる電流による磁界34bと、小径外加熱コイル部16bに流れる電流により生ずる磁界35は、略同方向となって重畳され、第2感熱素子18bは誘導加熱の影響を受ける。
そこで、小径加熱コイル16のみに通電している場合には、図9に示すステップ12で第1の感熱素子18aによる温度を検出し、感熱素子への誘導加熱の影響を抑えて鍋温度を検出することができる。
In the third embodiment, when only the small-diameter heating coil 16 is energized, as shown in FIG. 12A, the magnetic field 34 caused by the current flowing in the small-diameter inner heating coil portion 16a and the small-diameter outer heating coil portion 16b flow. The magnetic field 35 caused by the electric current cancels out in a substantially opposite direction in the gap of the small diameter heating coil 16, and the first thermal element 18a is hardly induction-heated, but the second thermal element 18b, which is outside the small diameter heating coil 16, has In the arrangement position, the magnetic field 34b caused by the current flowing through the small-diameter inner heating coil portion 16a and the magnetic field 35 generated by the current flowing through the small-diameter outer heating coil portion 16b are superimposed in substantially the same direction, and the second thermal element 18b is inducted. Influenced by heating.
Therefore, when only the small-diameter heating coil 16 is energized, the temperature by the first thermal element 18a is detected in step 12 shown in FIG. 9, and the effect of induction heating on the thermal element is suppressed to detect the pan temperature. can do.

また、小径加熱コイル16と外加熱コイル17の両加熱コイルに通電する場合は、図12(b)に示すように、小径加熱コイル16に流れる電流により生ずる磁界と、外加熱コイル17に流れる電流により生ずる磁界が、小径加熱コイル16と外加熱コイル17の間隙部では略逆向きとなって打ち消し合い、第2感熱素子18bは殆んど誘導加熱されることなく鍋温度(天板温度)を正確に検出することができる。
そこで、両加熱コイルに通電する場合には、図9に示すステップ3で第2感熱素子18bによる温度検出をし、感熱素子であるサーミスタへの誘導加熱の影響を抑え、加熱コイル15の通電状態の影響を抑制した鍋温度検出を行うことができる。
When both the heating coils of the small diameter heating coil 16 and the external heating coil 17 are energized, as shown in FIG. 12B, the magnetic field generated by the current flowing through the small diameter heating coil 16 and the current flowing through the external heating coil 17 In the gap between the small-diameter heating coil 16 and the outer heating coil 17 and cancel each other out, and the second heat sensitive element 18b raises the pan temperature (top temperature) almost without induction heating. It can be detected accurately.
Therefore, when both the heating coils are energized, the temperature is detected by the second thermal element 18b in step 3 shown in FIG. 9 to suppress the influence of induction heating on the thermistor which is the thermal element, and the energization state of the heating coil 15 It is possible to detect the pot temperature while suppressing the influence of.

なお、上記実施の形態3では、小径加熱コイル16および外加熱コイル17の両加熱コイルに通電する場合に、小径加熱コイル16に流れる電流により生ずる磁界34b、35と、外加熱コイル17に流れる電流により生ずる磁界36bとが略逆向きとなり、誘導加熱の影響を受け難い小径加熱コイル16と外加熱コイル17の間隙部に配設した第2の感熱素子18bのみを用いて温度検出処理を行うこととしたが、第1の感熱素子18aを用いた温度検出を並行して行うこととしてもよい。   In the third embodiment, when current is supplied to both the small-diameter heating coil 16 and the external heating coil 17, the magnetic fields 34b and 35 generated by the current flowing through the small-diameter heating coil 16 and the current flowing through the external heating coil 17 are used. The temperature detection process is performed using only the second thermal element 18b disposed in the gap between the small-diameter heating coil 16 and the external heating coil 17 that is substantially opposite to the magnetic field 36b generated by However, temperature detection using the first thermal element 18a may be performed in parallel.

実施の形態4.
図13は本発明の実施の形態4に係る誘導加熱調理器の鍋温度検出回路の温度変換特性の一例を示すグラフ、図14は同誘導加熱調理器の加熱制御処理を示すフローチャートである。
図13における第1温度変換特性62は、小径加熱コイル16のみに通電した場合における第1の感熱素子18aの鍋温度検出回路24aの検出値から温度を求める場合と、小径加熱コイル16と外加熱コイル17の両加熱コイルに通電した場合における第2の感熱素子18bの鍋温度検出回路24bの検出値から温度を求める場合に使用する温度変換特性である。
また、第2温度変換特性63は小径加熱コイル16と外加熱コイル17の両加熱コイルに通電した場合における第1の感熱素子18aの鍋温度検出回路24aの検出値から温度を求める場合に使用する温度変換特性である。
第2温度変換特性63は第1温度変換特性62と比較して第1感熱素子18aに加熱コイルに流れる電流により生ずる磁界の影響が生じやすい状態で使用する(互いに打ち消しあう方向に発生する小径内コイル部16aと小径外コイル部16bの電流による磁界に加えて、外加熱コイル17に流れる電流により生じる磁界も重畳される)ため、同じ検出値に対する変換温度が低く設定されている。
Embodiment 4 FIG.
FIG. 13 is a graph showing an example of temperature conversion characteristics of the pan temperature detection circuit of the induction heating cooker according to Embodiment 4 of the present invention, and FIG. 14 is a flowchart showing the heating control process of the induction heating cooker.
The first temperature conversion characteristic 62 in FIG. 13 is obtained when the temperature is obtained from the detected value of the pan temperature detection circuit 24a of the first thermal element 18a when only the small-diameter heating coil 16 is energized, and when the small-diameter heating coil 16 and the external heating are obtained. It is a temperature conversion characteristic used when calculating | requiring temperature from the detected value of the pan temperature detection circuit 24b of the 2nd thermal element 18b when supplying with electricity to both the heating coils of the coil 17. FIG.
The second temperature conversion characteristic 63 is used when the temperature is obtained from the detection value of the pan temperature detection circuit 24a of the first thermal element 18a when both the small-diameter heating coil 16 and the external heating coil 17 are energized. It is a temperature conversion characteristic.
The second temperature conversion characteristic 63 is used in a state where the influence of the magnetic field generated by the current flowing in the heating coil is more likely to occur in the first thermosensitive element 18a than the first temperature conversion characteristic 62 (within a small diameter generated in the direction of canceling each other). In addition to the magnetic field due to the current of the coil portion 16a and the small-diameter outer coil portion 16b, the magnetic field generated by the current flowing through the external heating coil 17 is also superimposed), so that the conversion temperature for the same detection value is set low.

図14において、実施の形態3の図9のフローチャートと同一処理または対応する処理については同一符号を付して説明を省略する。
小径加熱コイル16と外加熱コイル17の両加熱コイルを通電する場合には、第1感熱素子18aを用いた検出値から図13の小径加熱コイルと外加熱コイルの両加熱コイル通電時の第2温度変換特性63を用い(ステップ3−1)、第2感熱素子18bを用いた検出値からは図13の第1温度検出特性62を用いて温度を検出し(ステップ3−2)、いずれかの検出温度が所定温度を超えた場合には過熱状態と判断する(ステップ4)。
In FIG. 14, the same or corresponding processes as those in the flowchart of FIG.
When both the heating coils of the small diameter heating coil 16 and the external heating coil 17 are energized, the second value at the time of energization of both the small diameter heating coil and the external heating coil in FIG. 13 is detected from the detected value using the first thermal element 18a. The temperature conversion characteristic 63 is used (step 3-1), and the temperature is detected using the first temperature detection characteristic 62 of FIG. 13 from the detection value using the second thermal element 18b (step 3-2). If the detected temperature exceeds a predetermined temperature, it is determined that the temperature is overheated (step 4).

この実施の形態4では、第1感熱素子18aを用いた温度検出を小径加熱コイル16および外加熱コイル17の両加熱コイルに通電する場合にも行うことにより、第2の感熱素子18bのみを用いて温度検出を行うよりも被加熱物である鍋底との熱結合のよい感熱素子での温度検出が行われる可能性を高くすることができると共に、第1の感熱素子18aを用いた検出値から検出温度を求めるに際して、小径加熱コイル16のみに通電する場合の第1温度変換特性62と異なり、外加熱コイル17に流れる電流により生ずる磁界の影響も考慮した第2温度変換特性63を用いて鍋温度を求めることにより、誘導加熱の違いを補償し、より正確な温度検出が可能となる。   In the fourth embodiment, only the second thermal element 18b is used by performing temperature detection using the first thermal element 18a even when both the small-diameter heating coil 16 and the outer heating coil 17 are energized. Therefore, it is possible to increase the possibility that temperature detection is performed with a thermal element that has a good thermal coupling with the bottom of the pan, which is the object to be heated, and from the detection value using the first thermal element 18a. Unlike the first temperature conversion characteristic 62 when only the small-diameter heating coil 16 is energized when obtaining the detected temperature, the pan is formed using the second temperature conversion characteristic 63 that also considers the influence of the magnetic field generated by the current flowing through the outer heating coil 17. By obtaining the temperature, it is possible to compensate for the difference in induction heating and to detect the temperature more accurately.

なお、上記実施の形態2および4では、小径加熱コイル16のみに通電する場合と、小径加熱コイル16と外加熱コイル17の両加熱コイルに通電する場合で、異なる温度変換特性を用いて鍋底の温度(天板温度)を求めているが、所定のコイル通電状態における温度変換特性により検出温度を求め、所定以外のコイル通電状態ではその検出温度を補正(例えば、検出温度をX℃とすると、aX+bのような一次関数の値をその検出値とする)することとしてもよい。   In Embodiments 2 and 4 described above, the temperature of the bottom of the pan is changed using different temperature conversion characteristics when energizing only the small diameter heating coil 16 and when energizing both the small diameter heating coil 16 and the external heating coil 17. Although the temperature (top plate temperature) is obtained, the detected temperature is obtained by the temperature conversion characteristic in a predetermined coil energized state, and the detected temperature is corrected in the coil energized state other than the predetermined (for example, when the detected temperature is X ° C, The value of a linear function such as aX + b may be used as the detected value).

実施の形態5.
なお、上記実施の形態3では第1の感熱素子18a及び第2の感熱素子18bを一直線上に配置した例を示したが、図15に示すように、第1の感熱素子18aと第2の感熱素子18bを異なる方向に配置することにより、加熱コイル上に載置される鍋の位置が上下左右いずれの方向にずれた場合においても、いずれかの感熱素子が鍋底の下に位置する可能性が高くなり、安定した温度検出が可能となる。
Embodiment 5 FIG.
In the third embodiment, the first thermal element 18a and the second thermal element 18b are arranged in a straight line. However, as shown in FIG. 15, the first thermal element 18a and the second thermal element 18b are arranged. By arranging the thermal element 18b in a different direction, even if the position of the pan placed on the heating coil is shifted in any direction, up, down, left, or right, any one of the thermal elements may be located below the pan bottom. Becomes high, and stable temperature detection becomes possible.

実施の形態6.
また、上記実施の形態3および5では、小径加熱コイル16の空隙部に設けた第1の感熱素子18aあるいは小径加熱コイル16と外加熱コイル17の間に設けた第2の感熱素子18bをそれぞれ複数設けた例を示したが、図16に示すように、それぞれ一つずつ感熱素子を配置することとして、コストの低減を図った構成としてもよい。
Embodiment 6 FIG.
In the third and fifth embodiments, the first heat sensitive element 18a provided in the gap of the small diameter heating coil 16 or the second heat sensitive element 18b provided between the small diameter heating coil 16 and the outer heating coil 17 is provided. Although the example provided with two or more was shown, as shown in FIG. 16, it is good also as a structure which aimed at the reduction of cost by arrange | positioning a thermal element one each.

本発明の実施の形態1に係る誘導加熱調理器の回路構成図。The circuit block diagram of the induction heating cooking appliance which concerns on Embodiment 1 of this invention. 同誘導加熱調理器の加熱コイルユニットを示す平面図。The top view which shows the heating coil unit of the induction heating cooking appliance. 同誘導加熱調理器の鍋温度検出回路の構成図。The block diagram of the pan temperature detection circuit of the induction heating cooking appliance. 同鍋温度検出回路の温度変換特性の一例を示すグラフ。The graph which shows an example of the temperature conversion characteristic of the same pan temperature detection circuit. 同誘導加熱調理器の感熱素子の配設位置で、加熱コイル各部に流れる電流により生ずる磁界の向きの関係を示す説明図。Explanatory drawing which shows the relationship of the direction of the magnetic field produced by the electric current which flows into each part of a heating coil in the arrangement position of the thermal element of the induction heating cooking appliance. 本発明の実施の形態2に係る誘導加熱調理器の鍋温度検出回路の温度変換特性の一例を示すグラフ。The graph which shows an example of the temperature conversion characteristic of the pan temperature detection circuit of the induction heating cooking appliance which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る誘導加熱調理器の回路構成図。The circuit block diagram of the induction heating cooking appliance which concerns on Embodiment 3 of this invention. 同誘導加熱調理器の加熱コイルユニットを示す平面図。The top view which shows the heating coil unit of the induction heating cooking appliance. 同誘導加熱調理器の加熱制御処理を示すフローチャート。The flowchart which shows the heating control process of the induction heating cooking appliance. 同誘導加熱調理器の小径加熱コイル及び外加熱コイルに通電する駆動信号の波形図。The wave form diagram of the drive signal which supplies with electricity to the small diameter heating coil and external heating coil of the induction heating cooking appliance. 同誘導加熱調理器において小径加熱コイルのみに通電する駆動信号の波形図。The wave form diagram of the drive signal which supplies electricity only to a small diameter heating coil in the induction heating cooking appliance. 同誘導加熱調理器の感熱素子の配設位置で、加熱コイル各部に流れる電流により生ずる磁界の向きの関係を示す説明図。Explanatory drawing which shows the relationship of the direction of the magnetic field produced by the electric current which flows into each part of a heating coil in the arrangement position of the thermal element of the induction heating cooking appliance. 本発明の実施の形態4に係る誘導加熱調理器の鍋温度検出回路の温度変換特性の一例を示すグラフ。The graph which shows an example of the temperature conversion characteristic of the pan temperature detection circuit of the induction heating cooking appliance which concerns on Embodiment 4 of this invention. 同誘導加熱調理器の加熱制御処理を示すフローチャート。The flowchart which shows the heating control process of the induction heating cooking appliance. 本発明の実施の形態5に係る誘導加熱調理器の加熱コイルユニットを示す平面図。The top view which shows the heating coil unit of the induction heating cooking appliance which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る誘導加熱調理器の加熱コイルユニットを示す平面図。The top view which shows the heating coil unit of the induction heating cooking appliance which concerns on Embodiment 6 of this invention.

符号の説明Explanation of symbols

1 交流電源、2 直流電源回路、8 インバータ回路、13 インバータ駆動回路、15 加熱コイル、16 小径加熱コイル、17 外加熱コイル、18 感熱素子、19 リレー、20 リレー駆動手段、24 鍋温度検出手段、25 制御部、26 操作入力手段。   1 AC power supply, 2 DC power supply circuit, 8 inverter circuit, 13 inverter drive circuit, 15 heating coil, 16 small diameter heating coil, 17 outer heating coil, 18 thermal element, 19 relay, 20 relay drive means, 24 pan temperature detection means, 25 control part, 26 operation input means.

Claims (2)

外径が小さく中間部に空隙を有する小径加熱コイルと、
該小径加熱コイルの外周に配設され、該小径加熱コイルと同じ巻き方向の外加熱コイルと、
前記小径加熱コイルの空隙部に配設された少なくとも1つの感熱素子を用いた第1の温度検出手段と、
前記小径加熱コイルと外加熱コイルとの間に配設された少なくとも1つの第2の感熱素子を用いた第2の温度検出手段と、
前記小径加熱コイル及び外加熱コイルに高周波電流を流すインバータ回路と、
該インバータ回路を駆動制御する加熱制御手段を備え、
前記加熱制御手段は
前記小径加熱コイルのみ通電制御する動作モードと小径加熱コイルと外加熱コイルの両方に通電制御する動作モードとを有し、
前記小径加熱コイルのみ通電制御する動作モードでは第1の温度検出手段のみの検出値に基づいて加熱制御を行い、前記小径加熱コイル及び外加熱コイルの両方に通電制御する動作モードでは前記第2の温度検出手段のみの検出値に基づいて加熱制御を行い、
前記小径加熱コイルのみを通電制御する動作モードに比べて、前記小径加熱コイルと外加熱コイルの両方に通電制御する動作モードの方が、前記第1の温度検出手段及び前記第2の温度検出手段の検出値に対する変換温度が低く設定された温度特性を用いる
ことを特徴とする誘導加熱調理器。
A small diameter heating coil having a small outer diameter and a gap in the middle,
An outer heating coil disposed on the outer periphery of the small diameter heating coil and having the same winding direction as the small diameter heating coil;
First temperature detection means using at least one thermal element disposed in the gap of the small diameter heating coil;
Second temperature detection means using at least one second thermal element disposed between the small-diameter heating coil and the outer heating coil;
An inverter circuit for supplying a high-frequency current to the small-diameter heating coil and the external heating coil;
Heating control means for driving and controlling the inverter circuit;
It said heating control means,
An operation mode for controlling energization of only the small diameter heating coil, and an operation mode for controlling energization of both the small diameter heating coil and the external heating coil,
In the operation mode in which energization control is performed only for the small diameter heating coil, heating control is performed based on the detection value of only the first temperature detection means , and in the operation mode in which energization control is performed for both the small diameter heating coil and the outer heating coil, the second Perform heating control based on the detected value of only the temperature detection means,
Compared to the operation mode in which only the small diameter heating coil is energized, the first temperature detection unit and the second temperature detection unit are in the operation mode in which the energization control is performed on both the small diameter heating coil and the external heating coil. An induction heating cooker using a temperature characteristic in which the conversion temperature for the detected value is set low .
前記小径加熱コイルと外加熱コイルとの下方に、コイル中心に対して放射状に板状のフェライトが配置され、これらフェライトの間に前記温度検出手段の感熱素子が配置されていることを特徴とする請求項に記載の誘導加熱調理器。 A plate-like ferrite is arranged radially with respect to the center of the coil below the small-diameter heating coil and the external heating coil, and a thermal element of the temperature detecting means is arranged between the ferrites. The induction heating cooker according to claim 1 .
JP2006342156A 2006-12-20 2006-12-20 Induction heating cooker Expired - Fee Related JP4863862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006342156A JP4863862B2 (en) 2006-12-20 2006-12-20 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006342156A JP4863862B2 (en) 2006-12-20 2006-12-20 Induction heating cooker

Publications (2)

Publication Number Publication Date
JP2008153143A JP2008153143A (en) 2008-07-03
JP4863862B2 true JP4863862B2 (en) 2012-01-25

Family

ID=39655094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006342156A Expired - Fee Related JP4863862B2 (en) 2006-12-20 2006-12-20 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP4863862B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5654667B2 (en) * 2011-03-29 2015-01-14 三菱電機株式会社 Induction heating cooker
JP5919462B2 (en) * 2011-12-26 2016-05-18 パナソニックIpマネジメント株式会社 Induction heating coil manufacturing method
JP5741468B2 (en) * 2012-02-10 2015-07-01 三菱電機株式会社 Induction heating cooker
JP5976484B2 (en) * 2012-09-28 2016-08-23 三井造船株式会社 Induction heating method and induction heating apparatus
DE102015202032A1 (en) * 2015-02-05 2016-08-11 Würth Elektronik eiSos Gmbh & Co. KG Inductor, in particular for magnetically coupled energy transmission, and method for operating such an inductor
JP2016207544A (en) * 2015-04-24 2016-12-08 三菱電機株式会社 Induction heating cooker
CN108954413B (en) * 2017-05-25 2021-01-26 佛山市顺德区美的电热电器制造有限公司 Electromagnetic heating cooking utensil and heating control method thereof
JP7300591B2 (en) * 2018-05-31 2023-06-30 パナソニックIpマネジメント株式会社 Heating coil unit and heating cooker
JP2019212360A (en) * 2018-05-31 2019-12-12 パナソニックIpマネジメント株式会社 Heating coil unit and heating cooker
JP7336642B2 (en) * 2018-05-31 2023-09-01 パナソニックIpマネジメント株式会社 heating cooker

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2822555B2 (en) * 1990-03-19 1998-11-11 松下電器産業株式会社 Induction heating cooker
JP3279193B2 (en) * 1996-09-05 2002-04-30 松下電器産業株式会社 Induction heating cooker
JP3967446B2 (en) * 1998-02-04 2007-08-29 株式会社東芝 Induction heating cooker
JP2003077629A (en) * 2001-09-06 2003-03-14 Matsushita Electric Ind Co Ltd Induction heating cooker
JP2003100435A (en) * 2001-09-20 2003-04-04 Mitsubishi Electric Corp Induction-heating cooker
JP2003249339A (en) * 2002-02-22 2003-09-05 Mitsubishi Electric Corp Induction heating cooker
JP2003347027A (en) * 2002-05-30 2003-12-05 Matsushita Electric Ind Co Ltd Cooking device
JP2004022304A (en) * 2002-06-14 2004-01-22 Tiger Vacuum Bottle Co Ltd Induction heating cooking device
JP4167926B2 (en) * 2003-04-17 2008-10-22 日立アプライアンス株式会社 Electromagnetic induction heating device
JP4200307B2 (en) * 2003-11-05 2008-12-24 パナソニック株式会社 Induction heating cooker
JP4301063B2 (en) * 2004-04-13 2009-07-22 パナソニック株式会社 Multi-neck heating cooker
JP2005353533A (en) * 2004-06-14 2005-12-22 Toshiba Corp Induction heating cooking device
JP2006079916A (en) * 2004-09-09 2006-03-23 Mitsubishi Electric Corp Induction heating cooker

Also Published As

Publication number Publication date
JP2008153143A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP4863862B2 (en) Induction heating cooker
JP5599479B2 (en) Induction heating cooker
EP2237641B1 (en) Electromagnetic induction heating device
JP4874163B2 (en) Induction heating cooker and control method of induction heating cooker
JP5649714B2 (en) Induction heating cooker
JP5844017B1 (en) Induction heating cooker and control method thereof
WO2015063942A1 (en) Induction heating cooker
JP4781295B2 (en) Induction heating cooker
JP4450808B2 (en) Induction heating cooker
WO2013137287A1 (en) Induction heat cooker
JP4384085B2 (en) Induction heating cooker
JP4193143B2 (en) Induction heating cooker
JP5137675B2 (en) Induction heating cooker
JP5073019B2 (en) Induction heating cooker
JP2007012490A (en) Induction heating cooker
JP2003077629A (en) Induction heating cooker
JP4450813B2 (en) Induction heating cooker
JP2016207544A (en) Induction heating cooker
JP5836743B2 (en) Induction heating cooker
JP5025563B2 (en) Induction heating cooker
JP4431346B2 (en) Induction heating cooker
JP6076040B2 (en) Induction heating cooker
JP5258593B2 (en) Induction heating cooker
JP5921707B2 (en) Induction heating cooker
JP2020187854A (en) Electromagnetic induction heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4863862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees