JP4863488B2 - Method for identifying permeation pores - Google Patents

Method for identifying permeation pores Download PDF

Info

Publication number
JP4863488B2
JP4863488B2 JP2006348675A JP2006348675A JP4863488B2 JP 4863488 B2 JP4863488 B2 JP 4863488B2 JP 2006348675 A JP2006348675 A JP 2006348675A JP 2006348675 A JP2006348675 A JP 2006348675A JP 4863488 B2 JP4863488 B2 JP 4863488B2
Authority
JP
Japan
Prior art keywords
pores
permeation
pore size
porous material
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006348675A
Other languages
Japanese (ja)
Other versions
JP2008157826A (en
Inventor
泰久 長谷川
嘉道 清住
多加子 長瀬
富士夫 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006348675A priority Critical patent/JP4863488B2/en
Publication of JP2008157826A publication Critical patent/JP2008157826A/en
Application granted granted Critical
Publication of JP4863488B2 publication Critical patent/JP4863488B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、透過細孔を識別する方法に関するものであり、更に詳しくは、多孔質材料薄膜の材料の骨格構造に由来した細孔と粒子間にできた空隙とから構成される透過細孔の種類を識別することが可能な多孔質材料薄膜の透過細孔の識別方法に関するものである。   The present invention relates to a method for identifying permeation pores, and more specifically, permeation pores composed of pores derived from the skeletal structure of the material of the porous material thin film and voids formed between the particles. The present invention relates to a method for identifying a permeation pore of a porous material thin film capable of identifying the type.

従来、多孔質材料の細孔及び孔径分布の測定方法として、幾つかの手法が開発されている。まず、多孔質材料の細孔サイズとその分布状況を測定する手法としては、「吸着法」が広く用いられている。しかしながら、吸着法では、破砕した粉末試料としなければならず、透過に寄与しない細孔(例えば、貫通していない細孔)まで測定してしまう。また、空隙と比べて、細孔は圧倒的に大きな容積を持っているので、吸着法では、細孔に関する情報しか得ることができず、透過に寄与する空隙に関する情報は得られない。   Conventionally, several methods have been developed as methods for measuring pores and pore size distribution of porous materials. First, the “adsorption method” is widely used as a method for measuring the pore size of porous materials and their distribution. However, in the adsorption method, a crushed powder sample must be used, and even pores that do not contribute to permeation (for example, pores that do not penetrate) are measured. In addition, since the pores have an overwhelmingly large volume compared to the voids, the adsorption method can only obtain information on the pores, and cannot obtain information on the voids that contribute to permeation.

次に、「パームポロシメトリー法」が用いられているが、これは、凝縮成分と非凝縮成分を用いて薄膜の孔径分布を測定する手法であり、本発明でもこの測定手法に準じた手法を用いている。1nm未満の孔径分布を測定するためには、凝縮成分の蒸気圧を精度よく詳細に変化させることが必要であるが、従来のパームポロシメトリー法では、凝縮成分として標準状態で液体である物質を用いるので、蒸気圧の制御が困難であった。また、孔のサイズは、凝縮成分が孔内で毛管凝縮することを利用したケルビン式を用いているので、細孔と空隙を区別することはできない。   Next, the “palm porosimetry method” is used. This is a method for measuring the pore size distribution of a thin film using a condensed component and a non-condensed component. In the present invention, a method according to this measuring method is used. Used. In order to measure the pore size distribution of less than 1 nm, it is necessary to change the vapor pressure of the condensing component in detail with high accuracy. Since it was used, it was difficult to control the vapor pressure. In addition, since the pore size uses the Kelvin method utilizing the fact that the condensed component is capillary condensed in the pore, the pore and the void cannot be distinguished.

先行技術として、例えば、文献(特許文献1)には、細孔径分布測定装置に関する発明が提案されており、膜状試料の細孔径分布を測定することが可能である。この装置は、膜状試料の両表面に独立したチャンバーを備え、一方のチャンバーに不活性ガス(N)と凝縮性蒸気(水)とを供給し、他方のチャンバーから排出される不活性ガスの流量を測定することにより、薄膜試料の細孔径分布を測定する。この手法では、凝縮成分が細孔内で凝縮し、細孔を閉塞することで、不活性ガスの透過を阻害することを利用している。細孔サイズは、ケルビン式を利用している。 As a prior art, for example, a document (Patent Document 1) proposes an invention related to a pore size distribution measuring apparatus, and can measure the pore size distribution of a membrane sample. This apparatus is provided with independent chambers on both surfaces of a film-like sample, supplies inert gas (N 2 ) and condensable vapor (water) to one chamber, and is discharged from the other chamber. By measuring the flow rate, the pore size distribution of the thin film sample is measured. In this method, the condensed component is condensed in the pores, and the permeation of the inert gas is inhibited by closing the pores. The pore size uses the Kelvin method.

また、他の文献(非特許文献1)には、上記の細孔径分布測定装置(特許文献1)を用いた測定の結果が示されている。そこでは、10nm以下の細孔サイズ分布を測定している。0.5nm未満の円筒形細孔及び球形細孔を検出するための相対蒸気圧は、それぞれ0.003及び0.000003としなければならない。しかしながら、文献に示されている結果から、0.01未満の相対蒸気圧を制御する(上記圧力〜0.01の範囲で数点以上の実験データを取得する)ことは困難であると思われる。   Moreover, the result of the measurement using said pore diameter distribution measuring apparatus (patent document 1) is shown by other literature (nonpatent literature 1). There, a pore size distribution of 10 nm or less is measured. The relative vapor pressure for detecting cylindrical and spherical pores less than 0.5 nm should be 0.003 and 0.000003, respectively. However, from the results shown in the literature, it seems difficult to control the relative vapor pressure of less than 0.01 (acquiring experimental data of several points or more in the range of the above pressure to 0.01). .

また、他の文献(非特許文献2)には、上記の細孔径分布測定装置(特許文献1)を用いた測定の結果が示されている。そこでは、10nm以下の細孔サイズ分布を測定している。また、ゼオライト膜の細孔分布に関する結果が記載してある(文献の図7)。また、異なる分離性能を示すゼオライト膜(文献の表1)であっても、ほとんど細孔径に差異は認められないが、これは極低濃度で凝縮成分(蒸気)の濃度を詳細に制御することが困難なために、測定点数が不足しているためであると考える。   Moreover, the result of the measurement using said pore diameter distribution measuring apparatus (patent document 1) is shown by other literature (nonpatent literature 2). There, a pore size distribution of 10 nm or less is measured. Moreover, the result regarding the pore distribution of a zeolite membrane is described (FIG. 7 of literature). Moreover, even in the case of zeolite membranes (Table 1 in the literature) showing different separation performances, there is almost no difference in pore diameter, but this means that the concentration of condensed components (vapor) is controlled in detail at an extremely low concentration. This is because the number of measurement points is insufficient.

更に、他の文献(特許文献2)には、上記細孔径分布測定装置を用いて測定した結果と、膜の分離性能と関連付けた発明が提案されている。LTA型、FAU型及びT型ゼオライトの多結晶薄膜について、細孔径分布を測定している。平均の細孔サイズがA[nm]のとき、高い性能を示す分離膜では、細孔サイズ4A[nm]以内の範囲に全体の99%以上の数の細孔が存在しているのに対して、低性能の膜では、4A[nm]の範囲内に99%未満の数の細孔しか存在していない。   Further, another document (Patent Document 2) proposes an invention in which the measurement result using the pore size distribution measuring device is associated with the separation performance of the membrane. The pore diameter distribution is measured for polycrystalline thin films of LTA type, FAU type and T type zeolite. When the average pore size is A [nm], the separation membrane showing high performance has 99% or more of the total number of pores within the pore size within 4A [nm]. In a low-performance film, there are only less than 99% of the number of pores in the range of 4 A [nm].

特開2001−235417号公報JP 2001-235417 A 特開2005−74382号公報JP 2005-74382 A Journal of Membrane Science186 (2001) 257-265Journal of Membrane Science186 (2001) 257-265 Separation and PurificationTechnology 32 (2003) 23-27Separation and PurificationTechnology 32 (2003) 23-27

このような状況の中で、本発明者らは、上記従来技術に鑑みて、従来の手法では測定できなかった、多孔質材料薄膜における骨格構造に由来した細孔と粒子間にできた空隙からなる透過細孔を識別できる新しい識別法方を開発することを目標として鋭意研究を積み重ねた結果、凝縮性成分として標準状態で気体である物質を用い、凝縮性成分を吸着もしくは凝縮する圧力が、細孔の形状によって異なることを利用した新しい識別方法を開発することに成功し、本発明を完成するに至った。本発明は、多孔質材料薄膜における骨格構造に由来した細孔と粒子間にできた空隙からなる透過細孔を識別できる多孔質材料膜の透過細孔の識別方法を提供することを目的とするものである。   In such a situation, in view of the above-described conventional technology, the inventors of the present invention from the voids formed between the pores and the particles derived from the skeletal structure in the porous material thin film that could not be measured by the conventional method. As a result of intensive research with the goal of developing a new identification method that can identify permeated pores, the pressure to adsorb or condense condensable components using substances that are gases in the standard state as condensable components, The present inventors have succeeded in developing a new identification method using the difference depending on the shape of the pores, and completed the present invention. An object of the present invention is to provide a method for identifying the permeation pores of a porous material film capable of discriminating permeation pores composed of pores derived from the skeleton structure in the porous material thin film and voids formed between the particles. Is.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)凝縮性成分と非凝縮性成分との混合ガスを用いて、多孔質材料膜における材料の骨格構造に由来した細孔と粒子間にできた空隙からなる透過細孔の細孔径分布を測定する方法であって、上記凝縮性成分として標準状態で気体である分子(ただし、臨界温度が50℃以上)を用い、また、上記非凝縮性成分として、測定温度で多孔質材料に吸着しない分子を用いて、算出した透過細孔内に吸着もしくは凝集した分子の平均ポテンシャルエネルギーに基づいて凝縮性成分を吸着もしくは凝集する蒸気圧が細孔の形状によって異なることを利用して透過細孔の細孔径分布を測定する、ことを特徴とする透過細孔の細孔径分布の測定方法。
(2)上記凝縮性成分のプロパン、プロピレン、ブタン、イソブタン、又はブタジエン、と非凝縮性成分のヘリウム、アルゴン、窒素、又は水素との混合ガスを用いる、前記(1)記載の測定方法。
(3)透過細孔の細孔径分布を測定する際に、細孔の形状が、円筒形状、球形、又はスリット形の細孔内に吸着した分子の平均ポテンシャルエネルギーを、Horvath−Kawazoe(HK)式を用いて、それぞれ、式(1)、式(2)、又は式(3)、により算出する、前記(1)記載の測定方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) Using a mixed gas of a condensable component and a non-condensable component, the pore size distribution of the permeation pores composed of pores derived from the skeletal structure of the material in the porous material film and voids formed between the particles measurements to a method, molecules (provided that the critical temperature of 50 ° C. or higher) is a gas at standard conditions as described above condensable components used, and as the non-condensable components, not adsorbed to the porous material at the measurement temperature using molecular, calculated vapor pressure for adsorbing or aggregating the compressible component coagulation on the basis of the average potential energy of adsorption or aggregated molecules transmissive pores by using the difference depending on the shape of pores permeable pores A method for measuring the pore size distribution of permeating pores, characterized by measuring the pore size distribution of the permeation pores.
(2) propane of the condensable components, propylene, butane, isobutane, or butadiene, and helium noncondensable components employs argon, nitrogen, or a mixed gas of hydrogen, (1) measuring method according.
(3) When measuring the pore size distribution of the permeation pores, the average potential energy of the molecules adsorbed in the pores having a cylindrical shape, a spherical shape, or a slit shape is calculated as Horvath-Kawazoe (HK). The measuring method according to the above (1), which is calculated by the formula (1), the formula (2), or the formula (3), respectively, using the formula.

(4)細孔内の平均ポテンシャルエネルギーを、細孔内と吸着平衡状態にある気相のポテンシャルエネルギーから算出する、前記(1)記載の測定方法。
(5)気相のポテンシャルエネルギーを、式(4)により求める、前記(4)記載の測定方法。
(4) The measurement method according to (1), wherein the average potential energy in the pores is calculated from the potential energy of the gas phase in an adsorption equilibrium state with the pores.
(5) The measuring method according to the above (4), wherein the potential energy of the gas phase is obtained by the equation (4).

(6)高圧で吸着量が飽和に達するLangmuir式に従う場合、式(5)に補正した吸着ポテンシャルエネルギーを用いる、前記(5)記載の測定方法。 (6) The measuring method according to (5), wherein the adsorption potential energy corrected to the equation (5) is used when the Langmuir equation where the adsorption amount reaches saturation at high pressure is used.

(7)多孔質材料膜における材料の骨格構造に由来した細孔と粒子間にできた空隙からなる透過細孔の細孔と空隙とを識別する方法であって、請求項1から6のいずれかに記載の測定方法を使用して、算出した透過細孔内に吸着もしくは凝集した分子の平均ポテンシャルエネルギーに基づいて凝縮性成分を吸着もしくは凝縮する蒸気圧が細孔の形状によって異なることを利用して、細孔と空隙とを識別することを特徴とする透過細孔の識別方法。
(8)前記(1)から(7)のいずれかに記載の方法を用いて、多孔質材料膜の材料の骨格構造に由来した細孔と粒子間にできた空隙からなる透過細孔の細孔径分布、及び/又は細孔と空隙との識別について評価することを特徴とする多孔質材料の透過細孔の評価方法。
(7) A method for discriminating pores and voids of permeation pores composed of pores derived from the skeletal structure of the material in the porous material film and voids formed between the particles. using a measuring method of crab described, using the fact that the vapor pressure of adsorbing or condensing an average potential energy condensable components based on adsorption or aggregated molecules is different depending on the shape of the pores on the calculated transmission pores And identifying a permeation pore, wherein the pore and the void are discriminated.
(8) Using the method described in any one of (1) to (7) above , fine pores formed from pores derived from the skeleton structure of the material of the porous material film and voids formed between the particles are used. A method for evaluating permeation pores of a porous material, characterized by evaluating pore size distribution and / or discrimination between pores and voids .

次に、本発明について更に詳細に説明する。
本発明は、多孔質材料膜における材料の骨格構造に由来した細孔と粒子間にできた空隙からなる透過細孔の細孔径分布を測定する方法であって、凝縮性成分と非凝縮性成分との混合ガスを用い、凝縮性成分として標準状態で気体である物質を用い、また、非凝縮性成分として、測定温度で多孔質材料に吸着しない物質を用いて、凝縮性成分の蒸気圧が細孔の形状によって異なることを利用して透過細孔の細孔径分布を測定すること、を特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a method for measuring the pore size distribution of permeation pores composed of pores derived from the skeletal structure of the material in the porous material film and voids between the particles, and comprising a condensable component and a non-condensable component The gas pressure in the standard state is used as the condensable component, and the non-condensable component is a substance that does not adsorb to the porous material at the measurement temperature. It is characterized by measuring the pore size distribution of the permeating pores by utilizing the difference depending on the shape of the pores.

また、本発明は、上記測定方法を使用して、凝縮性成分を吸着もしくは凝縮する蒸気圧が、細孔の形状によって異なることを利用して、細孔と空隙とを識別すること、を特徴とするものである。更に、本発明は、上記方法を用いて、多孔質材料膜の材料の骨格構造に由来した細孔と粒子間にできた空隙からなる透過細孔を評価することを特徴とするものである。   Further, the present invention is characterized by using the above measurement method to distinguish between pores and voids by utilizing the fact that the vapor pressure for adsorbing or condensing condensable components varies depending on the shape of the pores. It is what. Furthermore, the present invention is characterized in that the above method is used to evaluate the permeation pores composed of the pores derived from the skeleton structure of the material of the porous material film and the voids formed between the particles.

本発明の方法では、多孔質材料薄膜の透過細孔が測定対象とされる。多孔質材料薄膜には、図1に示すように、多孔質材料の骨格構造に由来した細孔と粒子間にできた空隙とが存在する。本発明の手法を用いれば、従来の手法では不可能であった細孔と空隙との判別が可能となり、個々の細孔径分布を測定することができる。測定には、凝縮性成分と非凝縮性成分との混合ガスを用い、凝縮性成分を吸着(もしくは凝縮)する圧力が、細孔の形状によって異なることを利用し、細孔と空隙とを識別する。   In the method of the present invention, the permeation pores of the porous material thin film are measured. As shown in FIG. 1, the porous material thin film has pores derived from the skeleton structure of the porous material and voids formed between the particles. If the method of the present invention is used, it is possible to discriminate between pores and voids, which is impossible with the conventional method, and it is possible to measure individual pore size distributions. The measurement uses a gas mixture of condensable components and non-condensable components, and uses the fact that the pressure to adsorb (or condense) the condensable components varies depending on the shape of the pores, and distinguishes pores from voids. To do.

本発明では、多孔質材料の個別的な種類に特に制限されるものではなく、任意の多孔質材料の膜ないし薄膜が対象とされるが、具体例を示すとすれば、代表的なものとして、例えば、ゼオライト膜、シリカ膜、炭素膜が例示される。この場合、膜の厚さは問わない。また、本発明では、凝縮性成分としては、標準状態で気体である物質であれば適宜の物質(ただし、臨界温度が50℃以上)を用いることができる。具体的には、例えば、プロパン、プロピレン、ブタン、イソブタン、ブタジエンが例示される。また、非凝縮性成分としては、測定温度で多孔質材料には吸着しない物質であれば適宜の物質を用いることができる。具体的には、例えば、ヘリウム、アルゴン、窒素、水素が例示される。ここで、多孔質材料には吸着しない物質とは、多孔質材料にほとんど吸着しないものであれば問題ない。   The present invention is not particularly limited to individual types of porous material, and is intended to be a film or thin film of an arbitrary porous material. Examples include zeolite membranes, silica membranes, and carbon membranes. In this case, the thickness of the film does not matter. In the present invention, as the condensable component, an appropriate substance (however, the critical temperature is 50 ° C. or higher) can be used as long as it is a substance that is a gas in a standard state. Specific examples include propane, propylene, butane, isobutane, and butadiene. As the non-condensable component, any appropriate substance can be used as long as it is a substance that is not adsorbed to the porous material at the measurement temperature. Specific examples include helium, argon, nitrogen, and hydrogen. Here, the substance that does not adsorb to the porous material is not a problem as long as it is hardly adsorbed to the porous material.

本発明の特徴的部分を以下に示す。
(1)多孔質材料薄膜の孔径分布を測定するためにパームポロシメトリー法を用いる。
(2)1nm未満の孔径分布を詳細に測定するため、凝縮性成分として、標準状態で気体である物質(ただし、臨界温度が50℃以上)を用い、非凝縮性成分としては、測定温度で多孔質材料にほとんど吸着しない物質を用いる。
(3)解析には、Horvath−Kawazoe(HK)モデルを用いる。しかし、細孔形状によって孔内に存在する分子の安定性(細孔内の平均ポテンシャル)が異なる細孔サイズの算出方法であれば、特に、HKには拘らない。
The characteristic parts of the present invention are shown below.
(1) A palm porosimetry method is used to measure the pore size distribution of the porous material thin film.
(2) In order to measure the pore size distribution of less than 1 nm in detail, a substance that is a gas in the standard state (however, the critical temperature is 50 ° C. or higher) is used as the condensable component, and the non-condensable component is measured at the measurement temperature. A substance that hardly adsorbs to the porous material is used.
(3) For the analysis, the Horvath-Kawazoe (HK) model is used. However, HK is not particularly concerned with HK as long as it is a method for calculating a pore size in which the stability (average potential in the pore) of the molecules present in the pore varies depending on the pore shape.

次に、解析式を示す。Horvath−Kawazoe式によると、細孔内の平均ポテンシャルは細孔内に吸着した分子のポテンシャルエネルギーの総和として算出することができる。円筒形(C)、球形(S)及びスリット形(SL)細孔の平均ポテンシャルエネルギーは、それぞれ式(1)〜(3)により算出される。   Next, an analytical expression is shown. According to the Horvath-Kawazoe equation, the average potential in the pores can be calculated as the sum of the potential energies of the molecules adsorbed in the pores. The average potential energies of the cylindrical (C), spherical (S), and slit (SL) pores are calculated by equations (1) to (3), respectively.

細孔内の平均ポテンシャルエネルギーは、細孔内と吸着平衡状態にある気相のポテンシャルエネルギーと等価である。気相のポテンシャルエネルギーは、次式(4)により求められる。   The average potential energy in the pores is equivalent to the potential energy of the gas phase in the adsorption equilibrium state with the pores. The potential energy of the gas phase is obtained by the following equation (4).

ただし、高圧で吸着量が飽和に達するLangmuir式に従う場合には、次式のように補正した吸着ポテンシャルを用いる。
However, when following the Langmuir equation where the adsorption amount reaches saturation at high pressure, the adsorption potential corrected as shown in the following equation is used.

本発明により、次のような効果が奏される。
(1)従来法では、多孔質材料薄膜の細孔と空隙を判別することはできなかったが、本発明により、細孔と空隙から構成される透過細孔の種類を識別することが可能である。
(2)多孔質材料薄膜の透過細孔を識別できる識別方法を提供することができる。
(3)上記透過細孔の細孔径分布を測定することができる。
(4)多孔質材料薄膜の細孔及び空隙に関する情報を得ることができる。
(5)多孔質材料薄膜の透過細孔を評価するための評価方法を提供することができる。
(6)本発明の透過細孔の識別方法を利用することにより、所望の透過細孔を有する多孔質材料膜を設計し、作製することが可能となる。
The present invention has the following effects.
(1) In the conventional method, the pores and voids of the porous material thin film could not be discriminated. However, according to the present invention, it is possible to identify the type of permeation pores composed of the pores and the voids. is there.
(2) It is possible to provide an identification method capable of identifying the transmission pores of the porous material thin film.
(3) The pore size distribution of the permeation pores can be measured.
(4) Information on pores and voids of the porous material thin film can be obtained.
(5) An evaluation method for evaluating the permeation pores of the porous material thin film can be provided.
(6) By using the permeation pore identification method of the present invention, a porous material film having desired permeation pores can be designed and manufactured.

次に、実施例に基づいて、本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   Next, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.

(1)方法
本実施例では、多孔質材料薄膜として、MFI型ゼオライト膜を用いた。図2に、本実施例で用いたパームポロシメトリーの実験装置図を示す。2つのチャンバー1a、1bを備えたセルにMFI型ゼオライト膜を固定し、流量制御装置(4a〜4c)を用いてプロパンとヘリウムの混合気体を所望の混合割合でャンバー1aに供給した。チャンバー1aから流出する混合気体の流量を圧力・流量調節バルブを用いて調節することで、チャンバー1a内の全圧を0.1〜0.5MPaの所定の圧力に調整した。チャンバー1bには、スイープガスとして流量調節したアルゴンを供給した。チャンバー1aから流出したガスに含まれるヘリウム濃度をガスクロマトグラフィーにより分析した。
(1) Method In this example, an MFI type zeolite membrane was used as the porous material thin film. In FIG. 2, the experimental apparatus figure of the palm porosimetry used in the present Example is shown. An MFI type zeolite membrane was fixed to a cell having two chambers 1a and 1b, and a mixed gas of propane and helium was supplied to the chamber 1a at a desired mixing ratio using a flow rate control device (4a to 4c). The total pressure in the chamber 1a was adjusted to a predetermined pressure of 0.1 to 0.5 MPa by adjusting the flow rate of the mixed gas flowing out of the chamber 1a using a pressure / flow rate adjusting valve. Argon whose flow rate was adjusted as a sweep gas was supplied to the chamber 1b. The helium concentration contained in the gas flowing out of the chamber 1a was analyzed by gas chromatography.

(2)結果
1)モデル計算の結果
図3に、細孔サイズと圧力の関係を示す。E=EHKCY、E=EHKCY及びESL=EHKとした計算結果である。細孔サイズが同じであっても、孔の形状が異なれば、細孔サイズに対応する圧力は異なる。
(2) Results 1) Model calculation results FIG. 3 shows the relationship between pore size and pressure. This is a calculation result with E C = E HKCY , E S = E HKCY and E SL = E HK . Even if the pore size is the same, the pressure corresponding to the pore size is different if the pore shape is different.

2)モデルの妥当性
図4に、MFI型ゼオライトの細孔径分布を示す。細孔径分布は350KにおけるMFI型ゼオライトへのプロパンの吸着等温線から求めた。解析結果は結晶構造から決定されるMFI型ゼオライトの細孔直径0.5〜0.6nmとよく一致しており、温度350K、吸着物質プロパンに対してもモデルは妥当であることが確認できた。
2) Validity of model Fig. 4 shows the pore size distribution of MFI-type zeolite. The pore size distribution was determined from the adsorption isotherm of propane on MFI zeolite at 350K. The analysis results are in good agreement with the MFI-type zeolite pore diameter of 0.5 to 0.6 nm determined from the crystal structure, and it was confirmed that the model was valid for the temperature of 350 K and the adsorbent propane. .

図5に、チャンバー1a中のプロパン分圧とヘリウムの無次元透過速度の関係を示す。無次元透過速度とは、チャンバー1aに純ヘリウムを供給したときの透過速度で規格化したヘリウムの透過速度である。チャンバー1aに供給するプロパンの分圧が大きくなると、プロパンが、ゼオライト膜の細孔及び空隙に吸着(もしくは凝縮)して孔を塞ぐので、ヘリウムは、ゼオライト膜を通過しにくくなる。   FIG. 5 shows the relationship between the propane partial pressure in the chamber 1a and the dimensionless permeation rate of helium. The dimensionless transmission speed is the transmission speed of helium normalized by the transmission speed when pure helium is supplied to the chamber 1a. When the partial pressure of propane supplied to the chamber 1a increases, propane adsorbs (or condenses) in the pores and voids of the zeolite membrane and closes the pores, so that helium becomes difficult to pass through the zeolite membrane.

そのため、プロパン分圧の増加とともにヘリウムの透過速度は減少する。しかしながら、膜A(○)、B(△)及びC(□)では、無次元透過速度が減少するプロパンの圧力範囲は異なっており、それぞれの膜でヘリウムの透過経路が異なることが分かる。従来のパームポロシメトリー法(液体蒸気使用)では、このような僅かな違いを議論することはできない。   Therefore, the permeation rate of helium decreases as the propane partial pressure increases. However, it can be seen that the membranes A (◯), B (Δ), and C (□) have different propane pressure ranges in which the dimensionless permeation rate decreases, and the permeation path of helium is different in each membrane. In the conventional palm porosimetry method (using liquid vapor), such a slight difference cannot be discussed.

プロパンが優先的にゼオライト細孔及び結晶間空隙内に吸着ことで、ヘリウムの透過経路が閉塞され、ヘリウムの無次元透過速度は減少する。また、図3で述べたように、ゼオライト細孔と粒子間空隙では、それぞれに対応するプロパンの圧力範囲が異なるので、ゼオライト細孔及び結晶粒界を透過するヘリウムの透過速度の和として全ヘリウム透過速度を求めることができる。   Propane preferentially adsorbs in the zeolite pores and intercrystalline voids, thereby blocking the helium permeation path and reducing the dimensionless permeation rate of helium. In addition, as described in FIG. 3, since the pressure range of propane corresponding to each of the zeolite pores and the interparticle voids is different, the total helium as the sum of the permeation speeds of helium passing through the zeolite pores and the grain boundaries. The transmission speed can be determined.

図6に、膜A〜Cの解析結果を示す。破線(・・・・・・・・・・・・・・・・・・・・・・・・・)は、ゼオライト細孔を通過したヘリウムの透過度、破線(・・・‐・・・‐・・・‐・・・‐・・・‐)は、粒子間空隙を通過したヘリウム、実線は、解析結果から推測される全ヘリウム透過度である。全ヘリウムの無次元透過速度とこの解析結果から、膜Bを透過する全ヘリウムの約20%がゼオライト細孔を、残りの約80%が粒子間空隙を通過していることが分かる。一方、膜Cでは、99.9%以上のヘリウム分子が結晶粒界を透過している。   In FIG. 6, the analysis result of film | membrane AC is shown. The broken line (・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・) shows the permeability of helium that has passed through the zeolite pores. -...-...-...-) is the helium that has passed through the interparticle voids, and the solid line is the total helium permeability estimated from the analysis results. From the dimensionless permeation rate of total helium and this analysis result, it can be seen that about 20% of the total helium permeating the membrane B passes through the zeolite pores and the remaining about 80% passes through the interparticle voids. On the other hand, in the film C, 99.9% or more of helium molecules permeate the crystal grain boundary.

図7に、膜A、B、Cの細孔サイズ分布及び粒子間空隙サイズの分布を示す。図6に示すように、膜A、B、Cでは、結晶粒界を透過するヘリウム分子の割合が大きく異なっていたものの、膜A、B、Cの結晶粒界サイズは、いずれも0.49〜0.50nmで、大きな差異は無かった。このことから、膜Cでは、貫通した結晶粒界が数多く存在していることが分かる。   FIG. 7 shows the pore size distribution and interparticle void size distribution of the membranes A, B, and C. As shown in FIG. 6, in the films A, B, and C, the ratio of helium molecules that permeate the crystal grain boundaries was greatly different, but the crystal grain boundary sizes of the films A, B, and C were all 0.49. There was no significant difference at ˜0.50 nm. From this, it can be seen that in the film C, there are many penetrating crystal grain boundaries.

以上詳述したように、本発明は、多孔質材料膜の透過細孔を識別する方法に係るものであり、本発明により、多孔質材料膜の材料の骨格構造に由来した細孔と粒子間にできた空隙からなる透過細孔の細孔径分布を測定することが可能な新しい透過細孔の測定方法を提供することができる。また、本発明により、多孔質材料膜の細孔と粒子間の空隙から構成される透過細孔の細孔と空隙を識別(判別)することが可能な透過細孔の識別方法を提供することができる。本発明は、多孔質材料膜の透過細孔の評価や、目的及び用途に応じた所望の透過細孔を有する多孔質材料膜の設計及び作製を可能とする新しい手法を提供するものとして、また、透過細孔を制御した高精度の多孔質材料膜の製造を可能にするものとして高い技術的な意義を有する。   As described above in detail, the present invention relates to a method for identifying the permeation pores of a porous material film, and according to the present invention, the pores and the particles derived from the skeleton structure of the material of the porous material film It is possible to provide a new method for measuring the permeation pores, which can measure the pore size distribution of the permeation pores composed of the voids formed. Further, according to the present invention, there is provided a method for identifying a permeation pore capable of identifying (discriminating) a permeation pore and a void composed of a pore of a porous material film and a void between particles. Can do. The present invention provides a new method that enables the evaluation of the permeation pores of a porous material membrane and the design and production of a porous material membrane having a desired permeation pore according to the purpose and application. It has a high technical significance as enabling the production of a highly accurate porous material film with controlled permeation pores.

多孔質材料薄膜に存在する、材料の骨格構造に由来する細孔と粒子間にできた空隙を模式的に示す。The void | space formed between the pore and particle | grains which originate in the skeleton structure of material which exist in a porous material thin film is shown typically. パームポロシメトリーの実験装置を示す。An experimental apparatus for palm porosimetry is shown. MFI型ゼオライトの細孔径分布を示す。The pore size distribution of MFI type zeolite is shown. 細孔サイズと圧力の関係を示す。The relationship between pore size and pressure is shown. チャンバー中のプロパン分圧とヘリウムの無次元透過速度の関係を示す。The relationship between the propane partial pressure in the chamber and the dimensionless permeation rate of helium is shown. 膜A〜Cの解析結果を示す。The analysis result of film | membrane AC is shown. 膜A、B、Cの細孔サイズ分布及び粒子間空隙サイズの分布を示す。The pore size distribution of the membranes A, B, and C and the distribution of interparticle void sizes are shown.

符号の説明Explanation of symbols

1a チャンバー
1b チャンバー
2a 検査ガス供給管
2b スイープガス供給管
3a 余剰ガス排出管
3b 透過ガス排出管
4a 流量制御装置
4b 流量制御装置
5a 圧力制御装置
5b 圧力制御装置
6a 圧力センサー
6b 圧力センサー
7a ガス採取点
7b ガス採取点
8 組成分析装置(ガスクロマトグラフ)
9 データ収集、解析装置(パソコン)
10 空気恒温槽
1a chamber 1b chamber 2a inspection gas supply pipe 2b sweep gas supply pipe 3a surplus gas discharge pipe 3b permeate gas discharge pipe 4a flow rate control device 4b flow rate control device 5a pressure control device 5b pressure control device 6a pressure sensor 6b pressure sensor 7a gas sampling point 7b Gas sampling point 8 Composition analyzer (gas chromatograph)
9 Data collection and analysis equipment (PC)
10 Air temperature chamber

Claims (8)

凝縮性成分と非凝縮性成分との混合ガスを用いて、多孔質材料膜における材料の骨格構造に由来した細孔と粒子間にできた空隙からなる透過細孔の細孔径分布を測定する方法であって、上記凝縮性成分として標準状態で気体である分子(ただし、臨界温度が50℃以上)を用い、また、上記非凝縮性成分として、測定温度で多孔質材料に吸着しない分子を用いて、算出した透過細孔内に吸着もしくは凝集した分子の平均ポテンシャルエネルギーに基づいて凝縮性成分を吸着もしくは凝集する蒸気圧が細孔の形状によって異なることを利用して透過細孔の細孔径分布を測定する、ことを特徴とする透過細孔の細孔径分布の測定方法。 A method for measuring the pore size distribution of permeation pores consisting of pores derived from the skeletal structure of the material in the porous material film and voids formed between the particles using a mixed gas of a condensable component and a non-condensable component a is, molecules (provided that the critical temperature of 50 ° C. or higher) is a gas at standard conditions as described above condensable components used, and as the non-condensable components, using a molecule that is not adsorbed at a measuring temperature of the porous material Te, calculated vapor pressure for adsorbing or aggregating the compressible component coagulation on the basis of the average potential energy of adsorption or aggregated molecules transmissive pores by using the difference depending on the shape of the pores the pore size of the permeable pores A method for measuring the pore size distribution of permeating pores, characterized by measuring the distribution. 上記凝縮性成分のプロパン、プロピレン、ブタン、イソブタン、又はブタジエン、と非凝縮性成分のヘリウム、アルゴン、窒素、又は水素との混合ガスを用いる、請求項1記載の測定方法。 Propane of the condensable components, propylene, butane, isobutane, or butadiene, and helium noncondensable components employs argon, nitrogen, or a mixed gas of hydrogen, measured process of claim 1. 透過細孔の細孔径分布を測定する際に、細孔の形状が、円筒形状、球形、又はスリット形の細孔内に吸着した分子の平均ポテンシャルエネルギーを、Horvath−Kawazoe(HK)式を用いて、それぞれ、式(1)、式(2)、又は式(3)、
により算出する、請求項1記載の測定方法。
When measuring the pore size distribution of the permeating pores, the average potential energy of the molecules adsorbed in the pores having a cylindrical shape, a spherical shape, or a slit shape is used using the Horvath-Kawazoe (HK) equation. Respectively, Formula (1), Formula (2), or Formula (3),
The measurement method according to claim 1, which is calculated by:
細孔内の平均ポテンシャルエネルギーを、細孔内と吸着平衡状態にある気相のポテンシャルエネルギーから算出する、請求項1記載の測定方法。   The measurement method according to claim 1, wherein the average potential energy in the pores is calculated from the potential energy of the gas phase in an adsorption equilibrium state with the pores. 気相のポテンシャルエネルギーを、式(4)
により求める、請求項4記載の測定方法。
The potential energy of the gas phase is expressed by equation (4)
The measurement method according to claim 4, which is obtained by:
高圧で吸着量が飽和に達するLangmuir式に従う場合、式(5)
に補正した吸着ポテンシャルエネルギーを用いる、請求項5記載の測定方法。
When following the Langmuir equation where the adsorption amount reaches saturation at high pressure, the equation (5)
The measurement method according to claim 5, wherein the adsorption potential energy corrected to is used.
多孔質材料膜における材料の骨格構造に由来した細孔と粒子間にできた空隙からなる透過細孔の細孔と空隙とを識別する方法であって、請求項1から6のいずれかに記載の測定方法を使用して、算出した透過細孔内に吸着もしくは凝集した分子の平均ポテンシャルエネルギーに基づいて凝縮性成分を吸着もしくは凝縮する蒸気圧が細孔の形状によって異なることを利用して、細孔と空隙とを識別することを特徴とする透過細孔の識別方法。 7. A method for distinguishing between pores and voids of permeation pores composed of pores derived from a skeleton structure of a material in a porous material film and voids formed between particles, wherein: use of the measuring method, the vapor pressure for adsorbing or condensing condensable components on the basis of the average potential energy of adsorption or aggregated molecules using different depending on the shape of the pores on the calculated transmission pores, A method for identifying a permeating pore, wherein the pore is identified from a void. 請求項1から7のいずれかに記載の方法を用いて、多孔質材料膜の材料の骨格構造に由来した細孔と粒子間にできた空隙からなる透過細孔の細孔径分布、及び/又は細孔と空隙との識別について評価することを特徴とする多孔質材料の透過細孔の評価方法。 Using the method according to any one of claims 1 to 7 , pore size distribution of permeation pores comprising pores derived from the skeletal structure of the material of the porous material film and voids between the particles , and / or A method for evaluating the permeation pores of a porous material, characterized by evaluating discrimination between pores and voids .
JP2006348675A 2006-12-25 2006-12-25 Method for identifying permeation pores Expired - Fee Related JP4863488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348675A JP4863488B2 (en) 2006-12-25 2006-12-25 Method for identifying permeation pores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006348675A JP4863488B2 (en) 2006-12-25 2006-12-25 Method for identifying permeation pores

Publications (2)

Publication Number Publication Date
JP2008157826A JP2008157826A (en) 2008-07-10
JP4863488B2 true JP4863488B2 (en) 2012-01-25

Family

ID=39658885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348675A Expired - Fee Related JP4863488B2 (en) 2006-12-25 2006-12-25 Method for identifying permeation pores

Country Status (1)

Country Link
JP (1) JP4863488B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4845004B2 (en) * 2005-07-14 2011-12-28 財団法人電力中央研究所 Method for measuring pore size distribution
US8387256B2 (en) * 2009-08-13 2013-03-05 Emd Millipore Corporation Method for improved scaling of filters
CN101995373B (en) * 2010-11-24 2012-05-30 中国科学院武汉岩土力学所 Method and device for measuring pore volume change of porous medium
CN102507407B (en) * 2011-09-30 2013-02-06 西南石油大学 Device and method for simultaneously measuring permeability coefficient, compressibility coefficient and porosity of rock
CN103411866A (en) * 2013-07-15 2013-11-27 同济大学 Pore structure analysis method for foam concrete
JP6081348B2 (en) * 2013-12-24 2017-02-15 日立造船株式会社 Porous membrane evaluation apparatus and porous membrane evaluation method
JP6645773B2 (en) * 2015-08-28 2020-02-14 公益財団法人地球環境産業技術研究機構 Pore diameter evaluation device and pore diameter evaluation method
JP6842686B2 (en) * 2016-04-15 2021-03-17 国立大学法人広島大学 Material amount measurement method, pore size distribution derivation method, substance amount measurement device and pore size distribution derivation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3291691B2 (en) * 2000-02-25 2002-06-10 西華産業株式会社 Pore size distribution measuring device

Also Published As

Publication number Publication date
JP2008157826A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP4863488B2 (en) Method for identifying permeation pores
Güntner et al. Zeolite membranes for highly selective formaldehyde sensors
Sing The use of physisorption for the characterization of microporous carbons
JP2019514021A (en) Multiple capillary column preconcentration system for increasing the sensitivity of gas chromatography (GC) and gas chromatography mass spectrometry (GCMS)
WO2010079491A1 (en) Volatile organic compounds as diagnostic markers in the breath for lung cancer
Wiciak et al. Experimental stand for CO2 membrane separation
Barkhordari et al. Analysis of formaldehyde and acrolein in the aqueous samples using a novel needle trap device containing nanoporous silica aerogel sorbent
McAlary et al. Passive sampling for volatile organic compounds in indoor air-controlled laboratory comparison of four sampler types
Ye et al. Efficient separation of N2 and he at low temperature using MFI membranes
Uchytil et al. Influence of capillary condensation effects on mass transport through porous membranes
Ye et al. Air separation at cryogenic temperature using MFI membranes
CN109696380B (en) Method and device for evaluating gas separation performance of microporous material
WO2017138646A1 (en) Three-component simultaneous analysis device and three-component simultaneous analysis method
Barhate et al. Effect of aerosol sampling conditions on PM2. 5 sampling accuracy
Katsaros et al. Preparation and characterisation of gas selective microporous carbon membranes
Brown et al. Diffusive sampling using tube-type samplers
Uchytil Gas permeation in ceramic membranes Part I. Theory and testing of ceramic membranes
Jiang et al. Diffusion of n-butane, isobutane and ethane in a MFI-zeolite membrane investigated by gas permeation and ZLC measurements
Lahlou et al. Preparation and characterisation of a planar pre-concentrator for benzene based on different activated carbon materials deposited by air-brushing
SONG et al. Research on influence factors on determination of specific surface area of carbon materical by N2 adsorption method
Ji et al. Investigation and simulation of the transport of gas containing mercury in microporous silica membranes
Lee et al. Better standards are needed for membrane materials
Amid et al. Dynamic adsorption of ammonia: Apparatus, testing conditions, and adsorption capacities
JP6081348B2 (en) Porous membrane evaluation apparatus and porous membrane evaluation method
de Oliveira et al. Monte Carlo Simulation Strategies for Predicting CO2/CH4 adsorption onto activated carbons from pure gas isotherms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees