JP4863237B2 - Modified asphalt composition for drainage pavement - Google Patents

Modified asphalt composition for drainage pavement Download PDF

Info

Publication number
JP4863237B2
JP4863237B2 JP04272399A JP4272399A JP4863237B2 JP 4863237 B2 JP4863237 B2 JP 4863237B2 JP 04272399 A JP04272399 A JP 04272399A JP 4272399 A JP4272399 A JP 4272399A JP 4863237 B2 JP4863237 B2 JP 4863237B2
Authority
JP
Japan
Prior art keywords
asphalt
weight
parts
aromatic
drainage pavement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04272399A
Other languages
Japanese (ja)
Other versions
JP2000239527A (en
Inventor
好和 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP04272399A priority Critical patent/JP4863237B2/en
Publication of JP2000239527A publication Critical patent/JP2000239527A/en
Application granted granted Critical
Publication of JP4863237B2 publication Critical patent/JP4863237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,主として排水性舗装に使用さる排水性舗装用改質アスファルト組成物に関する。
【0002】
【従来の技術】
アスファルト舗装は,適当な粒度分布を有する砕石,砂等の混合物に,バインダーとして,一般的には,針入度40〜100のストレートアスファルトを加熱状態で混合して製造した,いわゆるアスファルト混合物を敷き均し,ローラーで転圧して施工される。
【0003】
しかるに,近年交通量の増加,特に,重車両の交通量の増加により,アスファルト舗装道路にとっては過酷な使用状況となっている。このため,夏期において,アスファルト舗装道路面に混合物の流動によるわだち掘れの現象が頻発している。わだち掘れるは車の乗り心地を悪くするだけでなく,ハンドルの操作性を低下させ,また,わだち掘れ部分における降雨時の滞水がスリップの原因となり,交通安全上大きな問題となっている。わだち掘れ対策として,道路舗装用のストレートアスファルトにゴムや熱可塑性エラストマーなどの改質材を添加した耐流動対策用改質アスファルトとして改質アスファルトII型(以下,改質II型と記す。)をバインダーとして使用するケースが増加している。
【0004】
一方,降雨時の滞水防止と交通騒音の削減を目的とした開粒度アスファルト混合物による排水性舗装も社会的要請として実施されるようになってきた。排水性舗装とは,舗装表面の空隙率を20%前後(一般密粒度アスファルト混合物では3〜6%)に高め透水性を持たせたもので,これに使用されるバインダーは耐水性・耐久性の面から従来の耐流動対策改質アスファルトの改質II型に比べ,飛躍的に強い骨材との付着力,把握力が要求されることから,前述の改質II型に比べ,高分子量の改質材でその添加量を高めた高粘度の排水性舗装用改質アスファルトがバインダーとして用いられるのが普通である。しかし,ユーザーとしてはある特定の標準的性状(日本改質アスファルト協会が提案する標準的性状)を満足しているだけでは十分で無く,実用上の性能(後述)を重要視する傾向にある。
【0005】
【発明が解決しようとする課題】
前述の問題点を解決する対策としては,アスファルトにゴム,熱可塑性エラストマーなどを混合した改質アスファルトの使用が必要とされるが,以下に述べるような問題点がある。
【0006】
プレミックスタイプの排水性舗装は,アスファルト合材プラントにおいて骨材とバインダー(改質アスファルト)を混合する以前に,ストレートアスファルトと改質材を予め混合して改質アスファルトを製造しておくものであり,通常,加熱状態で貯蔵,使用されるが,加熱貯蔵の期間が長くなると改質材とアスファルトの分離や変質(熱劣化)といった問題が生ずる恐れがある。
【0007】
また,排水性舗装は,排水性,騒音低減などの機能を発揮させるために,通常のアスファルト混合物に比べ非常に多くの連続した空隙を有する配合となっている。従って,排水性舗装材料に要求される実用上の性能の1つとして,バインダーのダレによる空隙つぶれや骨材の飛散等を防止するため高粘度の改質アスファルトが要求されてされている。この高粘度に改質したアスファルトを製造するためには,単に改質材の添加量を高めるだけでは改善できず,添加量とともに添加する改質材の分子量の高いものを添加する必要が生じる。従って,アスファルトと改質材は元々相溶性が十分に良いわけではないことから,さらにアスファルトと改質材が分離する傾向にある。
【0008】
更に排水性舗装は,先に述べた通り通常のアスファルト混合物に比べ非常に多くの連続した空隙を有する配合となっていることから,水や空気の影響を受けバインダーが劣化しやすい状態となる。特に,水による劣化が懸念される。それは,骨材と水の間の付着力は,骨材とアスファルトの間の付着力より大きいため,一度アスファルトで被服された骨材でも,雨水などが浸入すれば,付着力の差で骨材からアスファルトが剥離し,アスファルト舗装道路は次第に劣化し,破壊してしまうという問題である。この様な現象は,特に道路のカーブ地点等は常に不規則な荷重のかかる交通が繰返されている場所に起こり易い。以上の問題点を解決するためには,高粘度でかつ加熱貯蔵時においてもアスファルトと改質材が分離することなく,また舗施後の耐久性を考慮し耐水性にも優れた高粘度の排水性舗装専用の改質アスファルトが望まれている。従って,この様な高品質な排水性舗装用アスファルトを製造するには,以上の点を同時に解決することが課題である。
【0009】
【課題を解決するための手段】
本発明者は、前述のように高粘度に改質しかつアスファルトと改質材の分離が無く、耐水性にも優れたプレミックスタイプの排水性舗装材料として使用する場合の問題点を解決するために鋭意研究を重ねた結果、改質材の熱可塑性エラストマーとストレートアスファルトの相溶性および骨材とバインダーの剥離を改良し、併せて、熱安定性を改良するために、芳香族プロセスオイル1〜10重量部と、イソプレン25〜70重量%、芳香族系モノオレフィン25〜70重量%および脂肪族系モノオレフィン5〜40重量%から成る単量混合物をハロゲン化アルミニウム系触媒の存在下にカチオン重合して得られる軟化点50〜120℃の固形炭化水素樹脂2〜15重量部を、併用することが有効であることを見出だし、本発明を完成させた。
【0010】
即ち、本発明の上記課題は、下記構成によって達成される。
(a)針入度が40を超え100以下のストレートアスファルト100重量部に対し、(b)スチレン・ブタジエン・スチレンブロック共重合体である熱可塑性エラストマー5〜12重量部、(c)芳香族系プロセスオイルで引火点250℃以上でかつ環分析での芳香族環(CA)が35〜50%である芳香族系鉱物油2〜10重量部、(d)イソプレン25〜70重量%、芳香族系モノオレフィン25〜70重量%および脂肪族系モノオレフィン5〜40重量%から成る単量混合物をハロゲン化アルミニウム系触媒の存在下にカチオン重合して得られる重合体で軟化点50〜120℃の固形炭化水素樹脂2〜15重量部、(e)エチレン・アクリル酸・無水マレイ酸からなる三元共重合体でメルトフローレイト(JISK6730)50〜200である付着力付与剤1〜5重量部を含有することを特徴とする排水性舗装用改質アスファルト組成物。
【0011】
【発明の実施の形態】
以下、本発明について詳述する。
【0012】
本発明で用いるストレートアスファルトは針入度40を超え,かつ,100以下のもである。これに該当するものとしては,日本工業規格(JIS規格)K2207に規定される針入度グレード40を超え60以下,60を超え80以下,80を超え100以下の3種類のストレートアスファルトがある。針入度が40以下のものは改質材との相溶性が極端に低下し,また,針入度が100を超えるものは改質材の添加量が増大する。
【0013】
改質材に使用する熱可塑性エラストマーとしては、スチレン・ブタジエン・スチレンブロック共重合体(SBS)が使用される。即ち、高温と酸素による二重結合の分子切断が生じにくく、かつ舗装の耐久性を向上させるために、軟化点や60℃粘度を高く改質可能なSBSが使用される。その配合を5〜12重量部としたのは、5重量部未満では希望する粘度が得られず、また、12重量部を超えると高粘度化し過ぎるからである。
【0014】
芳香族系鉱物油は芳香族系プロセスオイルで引火点250℃以上でかつ環分析での芳香族環(CA)が35〜50%のものをいう。その配合割合を2〜10重量部としたのは,2重量部未満では炭化水素樹脂を添加できないため,相分離および変質(熱劣化)が改善されず,また,10重量部を超えると改質材や炭化水素樹脂が増大しコストが高くなり経済的でないからである。
【0015】
固形炭化水素樹脂としては、イソプレン25〜70重量%、芳香族系モノオレフィン(スチレン、α―メチルスチレン等の炭素数10以下のもの)25〜70重量%および脂肪族モノオレフィン(イソブチレン、シクロペンテン等の炭素数4〜8のもの)5〜40重量%から成る単量体混合物をハロゲン化アルミニウム系触媒の存在下にカチオン重合して得られる固形炭化水素樹脂であって軟化点が50〜120℃のものが使用される。その配合割合を2〜15重量部としたのは、2重量部未満ではアスファルトと改質材相溶性が改善されず、また、15重量部を超えるとコストが高くなり経済的でないからである。
【0016】
付着力付与剤としては、エチレン・アクリル酸・無水マレイ酸からなる三元共重合体でメルトフローレイト(JISK6730)50〜200のものが使用される。特に、骨材とアスファルトの湿潤性と被覆性を改良する働きは無水マレイ酸が大きく貢献する。なお、その配合割合を1〜5重量部としたのは、1重量部未満ではアスファルトと骨材の付着性が改善されず、また、5重量部を超えるとコストが高くなり経済的でないからである。
【0017】
本発明の特徴は前記の炭化水素樹脂と付着力付与剤を用いたことにあり,そのことによって,溶解時に異臭を発生せず,また,加熱によるゲル化や粘度変化が全くなく,熱安定性が非常に優れており,かつ耐水性に優れていることから骨材とアファルトのはく離現象を抑制する効果を奏するものである。従って,本発明は,ハロゲン化アルミニウム系触媒を用いて製造した炭化水素樹脂とエチレン・アクリル酸・無水マレイ酸からなる三元共重合体の付着力付与剤を用いることが必須の要件であり,このどちらか一方かあるいは炭化水素樹脂を芳香族系の固形炭化水素樹脂の製造に際して一般的に賞用されるハロゲン化ホウ素系触媒を用いて製造した炭化水素樹脂を用いるのでは,本発明の効果を得ることはできない。
【0018】
本発明に係るアスファルト組成物は、排水性舗装用組成物として、利用される際、従来通りの用法でよく、例えば舗装表面の空隙率を20%前後になるように砕石類に加えられることが好ましい。
【0019】
【実施例】
以下実施例を上げて本発明をさらに具体的に説明するが,本発明は,これらの実施例に限定されるものではない。なお,実施例中の主な評価は,次のようにして求めたものである。
【0020】
加熱貯蔵安定試験:アスファルトと改質材の相溶性を評価する。500mlの円筒容器に試料約400g採取し,175℃に設定した恒温空気槽に所定時間貯蔵後,室温まで冷却し円筒容器を上,中,下の3つに分割しそのアスファルト性状を測定した。
【0021】
薄膜加熱試験:アスファルト舗装要綱に準拠して行い,施工時の加熱混合状態におけるバインダーの熱劣化を室内的に評価する方法である。試験温度は175℃行い,その経時時間とアスファルト性状を評価した。
【0022】
剥離抵抗性試験(Riedel&Weber Test):剥離試験方法の中でも最も苛酷な試験方法であるRiedel&Weber Testにより評価した。
【0023】
本試験結果は,実際の道路試験結果と良く対応していると言われている。粒径0.15〜0.074mmの砕石43重量部と粒径0.3〜0.15mmの砕石43重量部を混合して170℃に加熱する。これに加熱溶融したアスファルト14重量部を加えて激しく混合して170℃に加熱する。このアスファルト混合物0.5gを下表に示す所定濃度の炭酸ソーダ溶液25mlを入れたビーカの中に1分間沸騰させる。砕石とアスファルトが完全に剥離し始めた最初の溶液を記録して付着点数を定める。
【0024】
【表1】

Figure 0004863237
【0025】
カンタブロ試験:マーシャル供試体をロサンゼルスすりへり試験機に投入し、その飛散抵抗性を評価する。なお,供試体は20℃で約20時間養生後,ドラムに鋼球を入れないで300回転させた後の試料の重量減少から損失量を求めた。水浸カンタブロ試験:耐水性を評価する試験で,その方法は60℃の水槽に48時間水浸後,カンタブロ試験と同様の操作を行い,その損失量を求めた。
ダレ(付着)試験:ステンレス製のバットにアスファルト混合物を入れ,180℃に設定した恒温空気槽に1時間養生した時の混合物からダレるアスファルト重量を測定した。
【0026】
実施例1〜3
(a)針入度68(単位:1/10mm,測定方法JIS K2207による。),軟化点48.5℃(測定方法JIS K2207による。)のストレートアスファルト100重量部に(b)熱可塑性エラストマー,スチレン・ブタジエン・スチレンブロック共重合体(SBS,S/B=30/70),分子量(GPCで求めた分子量)約18万,(c)芳香族系プロセスオイル(表2に示すもの),請求項1に示される(d)成分である固形炭化水素樹脂(軟化点(R&B):100℃)および請求項1に示される(e)成分である付着力付与剤(メルトフロー(JIS K 6730):50〜200)の添加量を変えて配合したアスファルト性状の測定結果を表3に示す。
【0027】
なお,混合は加熱溶融状態で,卓上オートホモミキサーを使用し,十分攪拌して,均一な排水性舗装用改質アスファルトを得た。また,針入度,軟化点,タフネス・テナシティはアスファルト舗装要綱に準拠して行い,60℃粘度は石油学会法に準拠して行った。
【0028】
[比較例1〜3]
比較例は、(a)針入度68(単位:1/10mm,測定方法JIS K2207による。),軟化点48.5℃(測定方法JIS K2207による。)のストレートアスファルト100重量部に、(b)熱可塑性エラストマー,スチレン・ブタジエン・スチレンブロック共重合体(SBS,S/B=30/70),分子量(GPCで求めた分子量)約18万,(c)芳香族系プロセスオイル(表2に示すもの)を添加したものである。また,比較例2はハロゲン化ホウ素系触媒を用いて製造した芳香族系の固形炭化水素樹脂(軟化点(R&B):100℃)を,比較例3はさらに付着力付与剤(メルトフロー(JIS K 6730):50〜200)を併用し配合したものである。そのアスファルト性状の測定結果を表4に示す。
【0029】
【表2】
Figure 0004863237
【0030】
【表3】
Figure 0004863237
【0031】
*1○:分離なし ×:分離あり
*2混合および貯蔵試験時に観察
*3SBS:Mw(GPC)18万のものと10万のものを6:2の割合で混
合したもの
【0032】
【表4】
Figure 0004863237
【0033】
*1○:分離なし ×:分離あり
*2混合および貯蔵試験時に観察
*3SBS:Mw(GPC)18万のものと10万のものを6:2の割合で混
合したもの
表3および表4から次のことが明らかである。実施例1〜3および比較例1〜3に示すアスファルトの物理性状は,ほぼ同等の性状を示す。つまり,軟化点や60℃粘度が高い高粘度の排水性舗装として取り扱うことができる。しかし,さらに表3に示す本発明の排水性舗装用アスファルト組成物の物理的性状の特徴を述べると,実施例1〜3のいずれも貯蔵安定性に炭化水素樹脂からの異臭が全くないことである。また,剥離試験においてもアスファルトと骨材のはく離は認められない。比較例1,2は加熱貯蔵中にアスファルトと改質材(SBS)が分離し,所期の性能を発揮することが不可能である。また比較例3のアスファルトは,加熱貯蔵中にアスファルトの物理性状が急激に変化し同様に所期のの性能を発揮することが不可能であると同時に加熱時に独特の激しい異臭を発生することから環境面に悪影響を及ぼす可能性がある。しかし,実施例1〜3に示すアスファルトには全くその様な問題が認められないことから,長期加熱貯蔵後においても所期の性能を十分発揮し,かつ耐水性に優れた舗装が得られることが期待される。
【0034】
また、実施例1および比較例の配合の排水性舗装用アスファルト組成物をバインダーに使用したアスファルト混合物の試験結果を表に示す。なお、使用骨材は6号砕石,細砂、石粉でその骨材粒度分布(13mmトップ)は,空隙率が20%程度になるように配合設計した。
【0035】
【表5】
Figure 0004863237
【0036】
【表6】
Figure 0004863237
【0037】
本結果から表6のアスファルト舗装要綱に示される目標値(動的安定度は日本道路公団が提案する目標値)を十分上回っていることが確認できる。また,耐水性を評価する水浸マーシャル試験,水浸カンタブロ試験の結果から付着力付与剤を添加したバインダーを使用したものはその損失率が小さく無添加品に比べ大きく改良されおり,耐水性が向上したことが伺えることからも本発明の効果を証明している。即ち,本発明の排水性舗装用アスファルト組成物は高温貯蔵安定性に飛躍的に優れ,かつアスファルト混合物の耐水性・耐久性においても優れていることを明白に示す。
【0038】
【発明の効果】
本発明の排水性舗装用改質アスファルトは,排水性舗装用材料として使用した時,耐水性・耐久性を向上するに必要なアスファルト性状を備え,かつ高温加熱貯蔵安定性においてもアスファルトと改質材の分離が全く無いことから安定したアスファルト混合物が提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a modified asphalt composition for drainage pavement mainly used for drainage pavement.
[0002]
[Prior art]
Asphalt pavement is laid with a so-called asphalt mixture produced by mixing straight asphalt with a penetration of 40-100 in a heated state with a mixture of crushed stone and sand having an appropriate particle size distribution as a binder. It is leveled and rolled with a roller.
[0003]
However, due to the increase in traffic volume in recent years, especially the increase in traffic volume of heavy vehicles, it has become a severe use situation for asphalt paved roads. For this reason, rutting due to the flow of the mixture frequently occurs on the asphalt pavement surface in summer. Rutting is not only worsening the ride comfort of the car, but also reduces the operability of the steering wheel, and the stagnation of rain at the rutting area causes slipping, which is a major problem in traffic safety. As a countermeasure against rutting, modified asphalt type II (hereinafter referred to as modified type II) is used as a flow-resistant modified asphalt in which a modifying material such as rubber or thermoplastic elastomer is added to straight asphalt for road paving. The number of cases where it is used as a binder is increasing.
[0004]
On the other hand, drainage pavement using an open-graded asphalt mixture for the purpose of preventing water jamming during rainfall and reducing traffic noise has also been implemented as a social requirement. Drainable pavement is a pavement surface with a porosity of around 20% (3-6% for general dense grained asphalt mixture) with water permeability. The binder used for this is water resistant and durable. Compared with the modified type II of the conventional anti-flow resistance modified asphalt, the adhesion strength to the aggregate and the grasping power are required. It is usual to use high-viscosity modified asphalt for drainage pavement, the amount of which is increased with the above-mentioned modifier, as a binder. However, it is not enough for users to satisfy certain standard properties (standard properties proposed by the Japan Modified Asphalt Association), and there is a tendency to place importance on practical performance (described later).
[0005]
[Problems to be solved by the invention]
As a countermeasure to solve the above-mentioned problems, it is necessary to use modified asphalt in which asphalt is mixed with rubber, thermoplastic elastomer or the like, but there are problems as described below.
[0006]
Premix type drainage pavement is a method for producing modified asphalt by mixing straight asphalt and modifying material in advance before mixing aggregate and binder (modified asphalt) in an asphalt mixing plant. Yes, it is usually stored and used in a heated state. However, if the period of heating and storing becomes long, problems such as separation and alteration (thermal deterioration) of the modifier and asphalt may occur.
[0007]
In addition, drainage pavement has a lot of continuous voids compared to ordinary asphalt mixture in order to exert functions such as drainage and noise reduction. Therefore, as one of the practical performances required for drainage pavement materials, high-viscosity modified asphalt is required in order to prevent void collapse due to binder sag and scattering of aggregates. In order to produce this asphalt modified to have a high viscosity, it cannot be improved by simply increasing the amount of the modifier added, but it is necessary to add a modifier having a high molecular weight to be added together with the amount of additive. Accordingly, asphalt and the modifying material are not originally sufficiently compatible with each other, and asphalt and the modifying material tend to be further separated.
[0008]
Further, as described above, drainage pavement has a composition having a lot of continuous voids as compared with a normal asphalt mixture, so that the binder is easily deteriorated under the influence of water and air. In particular, there is concern about deterioration due to water. This is because the adhesive force between aggregate and water is greater than the adhesive force between aggregate and asphalt, so even if the aggregate is once covered with asphalt, if rainwater infiltrates, the difference in adhesive force causes the aggregate. Asphalt is peeled off from the road, and the asphalt paved road gradually deteriorates and breaks down. Such a phenomenon is likely to occur in places where traffic with irregular loads is always repeated, especially at curve points on roads. In order to solve the above-mentioned problems, the high viscosity is high and the asphalt and the modifying material are not separated even during heat storage, and the high viscosity is excellent in water resistance in consideration of the durability after paving. There is a need for modified asphalt exclusively for drainage pavement. Therefore, in order to manufacture such a high quality drainage pavement asphalt, it is a problem to solve the above points simultaneously.
[0009]
[Means for Solving the Problems]
The present inventor has no high viscosity separation using merge asphalt and modifier modified as described above, to solve the problems when used as exhaust aqueous paving material of the premix type which is excellent in water resistance In order to improve the compatibility of the thermoplastic elastomer and straight asphalt, the peeling of the aggregate and the binder, and to improve the thermal stability, aromatic process oil 1 and 10 parts by weight, isoprene 25-70 wt%, cations aromatic monoolefins 25-70 wt% and aliphatic monomers mixture consisting of monoolefins 5-40 wt% in the presence of aluminum halide catalyst It was found that it is effective to use 2 to 15 parts by weight of a solid hydrocarbon resin having a softening point of 50 to 120 ° C. obtained by polymerization, and the present invention was completed.
[0010]
That is, the said subject of this invention is achieved by the following structure.
(B) 5 to 12 parts by weight of a thermoplastic elastomer which is a styrene / butadiene / styrene block copolymer, and (c) an aromatic system with respect to 100 parts by weight of straight asphalt having a penetration of more than 40 and not more than 100 2-10 parts by weight of aromatic mineral oil having a flash point of 250 ° C. or higher and a ring analysis of 35-50% aromatic ring (CA), (d) 25-70% by weight of isoprene, aromatic system monoolefins 25-70 wt% and a softening point of 50 to 120 ° C. in aliphatic consisting monoolefins 5-40 wt% monomer mixture obtained by cationic polymerization in the presence of aluminum halide catalysts polymer 2 to 15 parts by weight of a solid hydrocarbon resin, (e) a terpolymer composed of ethylene, acrylic acid, and maleic anhydride, and melt flow rate (JIS K6730) 50 Drainage pavement for modified asphalt composition characterized by containing the adhesion imparting agent 1-5 parts by weight is 200.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0012]
The straight asphalt used in the present invention has a penetration of 40 and 100 or less. As this, there are three types of straight asphalt exceeding the penetration grade 40 defined in Japanese Industrial Standard (JIS standard) K2207, 60 or less, 60 to 80 or less, 80 to 100 or less. When the penetration is 40 or less, the compatibility with the modifying material is extremely lowered, and when the penetration is over 100, the amount of the modifying material added is increased.
[0013]
The thermoplastic elastomer used in the modifier, scan styrene-butadiene-styrene block copolymer (SBS) is used. That is, SBS that can be modified with high softening point and high viscosity at 60 ° C. is used in order to reduce the molecular bond of the double bond due to high temperature and oxygen and to improve the durability of the pavement. The reason why the blending is 5 to 12 parts by weight is that if it is less than 5 parts by weight, the desired viscosity cannot be obtained, and if it exceeds 12 parts by weight, the viscosity becomes too high.
[0014]
The aromatic mineral oil is an aromatic process oil having a flash point of 250 ° C. or higher and an aromatic ring (CA) in a ring analysis of 35 to 50%. If the blending ratio is 2 to 10 parts by weight, the hydrocarbon resin cannot be added if it is less than 2 parts by weight, so phase separation and alteration (thermal degradation) will not be improved. This is because the material and hydrocarbon resin increase, the cost increases, and it is not economical.
[0015]
The solid hydrocarbon resins, isoprene 25-70 wt%, aromatic monoolefins (styrene, those having 10 or less carbon atoms such as α- methylstyrene) 25 to 70 wt% and aliphatic mono-olefins (isobutylene, cyclopentene softening point one) monomer mixture consisting of 5-40% by weight 4 to 8 carbon atoms with a solid hydrocarbon resin obtained by cationic polymerization in the presence of aluminum halide-based catalyst and the like is 50 to 120 The one with ° C is used . The reason why the blending ratio is 2 to 15 parts by weight is that compatibility with asphalt and the modifier is not improved if it is less than 2 parts by weight, and if it exceeds 15 parts by weight, the cost increases and it is not economical.
[0016]
As the adhesion-imparting agent, a terpolymer composed of ethylene, acrylic acid, and maleic anhydride and having a melt flow rate (JIS K6730) of 50 to 200 is used . In particular, maleic anhydride contributes greatly to the work of improving the wettability and covering properties of aggregate and asphalt. In addition, the mixing ratio was set to 1 to 5 parts by weight because if less than 1 part by weight, the adhesion between asphalt and aggregate is not improved, and if it exceeds 5 parts by weight, the cost increases and it is not economical. is there.
[0017]
The feature of the present invention lies in the use of the above-mentioned hydrocarbon resin and an adhesion-imparting agent, so that no strange odor is generated at the time of dissolution, no gelation or viscosity change due to heating, and thermal stability. Is extremely superior and has excellent water resistance, and therefore has the effect of suppressing the peeling phenomenon between aggregate and aphalt. Therefore, in the present invention, it is an essential requirement to use an adhesion imparting agent of a terpolymer composed of a hydrocarbon resin produced using an aluminum halide catalyst and ethylene / acrylic acid / maleic anhydride, The effect of the present invention can be achieved by using either one of these or a hydrocarbon resin produced using a boron halide catalyst generally used for producing an aromatic solid hydrocarbon resin. Can't get.
[0018]
The asphalt composition according to the present invention may be used in a conventional manner when used as a drainage pavement composition. For example, the asphalt composition may be added to crushed stones so that the porosity of the pavement surface is about 20%. preferable.
[0019]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. The main evaluation in the examples was obtained as follows.
[0020]
Heat storage stability test: Evaluate the compatibility of asphalt and modifier. About 400 g of a sample was taken in a 500 ml cylindrical container, stored in a constant temperature air tank set at 175 ° C. for a predetermined time, cooled to room temperature, and the cylindrical container was divided into upper, middle, and lower three parts, and the asphalt properties were measured.
[0021]
Thin film heating test: A method for indoor evaluation of the thermal deterioration of the binder in the heated and mixed state at the time of construction in accordance with the asphalt pavement outline. The test temperature was 175 ° C., and the elapsed time and asphalt properties were evaluated.
[0022]
Peel resistance test (Riedel & Weber Test): Evaluation was made by Riedel & Weber Test, which is the most severe test method among the peel test methods.
[0023]
This test result is said to correspond well with the actual road test result. 43 parts by weight of crushed stone having a particle size of 0.15 to 0.074 mm and 43 parts by weight of crushed stone having a particle size of 0.3 to 0.15 mm are mixed and heated to 170 ° C. To this is added 14 parts by weight of heat-melted asphalt, mixed vigorously and heated to 170 ° C. 0.5 g of this asphalt mixture is boiled for 1 minute in a beaker containing 25 ml of a predetermined concentration sodium carbonate solution shown in the table below. Record the first solution at which the crushed stone and asphalt begin to exfoliate completely to determine the point of attachment.
[0024]
[Table 1]
Figure 0004863237
[0025]
Cantabro test: A Marshall specimen is put into a Los Angeles ground test machine and its scattering resistance is evaluated. The specimen was cured at 20 ° C. for about 20 hours, and the amount of loss was calculated from the weight loss of the sample after 300 revolutions without putting a steel ball in the drum. Water immersion cantabro test: A test for evaluating water resistance. The method was immersed in a water bath at 60 ° C. for 48 hours, and then the same operation as that of the cantabro test was performed to determine the loss amount.
Sagging (adhesion) test: An asphalt mixture was placed in a stainless steel vat, and the weight of asphalt sagging from the mixture after curing for 1 hour in a constant temperature air bath set at 180 ° C. was measured.
[0026]
Examples 1-3
(A) 100 parts by weight of straight asphalt having a penetration of 68 (unit: 1/10 mm, according to measurement method JIS K2207) and softening point of 48.5 ° C. (according to measurement method JIS K2207) , (b) thermoplastic elastomer Styrene / butadiene / styrene block copolymer (SBS, S / B = 30/70), molecular weight (molecular weight determined by GPC) of about 180,000, (c) aromatic process oil (shown in Table 2), The solid hydrocarbon resin (softening point (R & B): 100 ° C.) as component (d) shown in claim 1 and the adhesive force imparting agent (melt flow (JIS K 6730) as component (e) shown in claim 1. ): Measurement results of asphalt properties blended by changing the addition amount of 50 to 200) are shown in Table 3.
[0027]
In addition, mixing was in a heated and melted state, and a tabletop auto homomixer was used and stirred sufficiently to obtain a uniform modified asphalt for drainage pavement. The penetration, softening point, and toughness tenacity were determined according to the asphalt pavement outline, and the viscosity at 60 ° C. was determined according to the Petroleum Institute Law.
[0028]
[Comparative Examples 1-3]
In Comparative Example 1 , (a) straight asphalt having a penetration of 68 (unit: 1/10 mm, according to measurement method JIS K2207), softening point of 48.5 ° C. (according to measurement method JIS K2207) b) thermoplastic elastomer, styrene / butadiene / styrene block copolymer (SBS, S / B = 30/70), molecular weight (molecular weight determined by GPC) of about 180,000, (c) aromatic process oil (Table 2) 1) is added. Comparative Example 2 is an aromatic solid hydrocarbon resin produced using a boron halide catalyst (softening point (R & B): 100 ° C.), and Comparative Example 3 is an adhesion imparting agent (melt flow (JIS). K 6730): 50 to 200). The measurement results of the asphalt properties are shown in Table 4.
[0029]
[Table 2]
Figure 0004863237
[0030]
[Table 3]
Figure 0004863237
[0031]
* 1 ○: No separation ×: With separation * 2 Observed during mixing and storage tests * 3 SBS: Mw (GPC) 180,000 and 100,000 mixed at a ratio of 6: 2 [0032]
[Table 4]
Figure 0004863237
[0033]
* 1 ○: No separation ×: With separation * 2 Observed during mixing and storage tests * 3 SBS: Mw (GPC) 180,000 and 100,000 mixed at a ratio of 6: 2 From Table 3 and Table 4 The following is clear. The physical properties of asphalt shown in Examples 1 to 3 and Comparative Examples 1 to 3 are almost equivalent. That is, it can be handled as a high-viscosity drainage pavement with a softening point and a high viscosity at 60 ° C. However, the characteristics of the physical properties of the drainage pavement asphalt composition of the present invention shown in Table 3 are further described. In any of Examples 1 to 3, there is no off-flavor from the hydrocarbon resin in terms of storage stability. is there. In the peel test, asphalt and aggregates are not separated. In Comparative Examples 1 and 2, asphalt and the modifying material (SBS) are separated during heating and storage, and it is impossible to exhibit the desired performance. In addition, the asphalt of Comparative Example 3 is not capable of exhibiting the expected performance in the same way as the physical properties of the asphalt change rapidly during storage, and at the same time generates a unique and intense odor during heating. May adversely affect the environment. However, since the asphalt shown in Examples 1 to 3 does not have such a problem at all, the desired performance can be sufficiently exhibited even after long-term heat storage and a pavement excellent in water resistance can be obtained. There is expected.
[0034]
Table 5 shows the test results of the asphalt mixture using the drainage pavement asphalt composition having the composition of Example 1 and Comparative Example 1 as a binder. The aggregates used were No. 6 crushed stone, fine sand and stone powder, and the aggregate particle size distribution (13 mm top) was blended and designed so that the porosity was about 20%.
[0035]
[Table 5]
Figure 0004863237
[0036]
[Table 6]
Figure 0004863237
[0037]
From this result, it can be confirmed that the target value (dynamic stability is the target value proposed by the Japan Highway Public Corporation) shown in the asphalt pavement outline in Table 6 is sufficiently exceeded. In addition, from the results of the water immersion marshall test and water immersion cantabro test for evaluating water resistance, those using a binder with an adhesion-imparting agent have a small loss rate and are greatly improved compared to the additive-free product. The effect of the present invention is proved also from the fact that it can be said that it has been improved. That is, it clearly shows that the asphalt composition for drainage pavement of the present invention is remarkably excellent in high-temperature storage stability and excellent in water resistance and durability of the asphalt mixture.
[0038]
【Effect of the invention】
The modified asphalt for drainage pavement of the present invention has asphalt properties necessary for improving water resistance and durability when used as a drainage pavement material, and is also modified with asphalt in high-temperature heat storage stability. Since there is no separation of the material, a stable asphalt mixture can be provided.

Claims (1)

(a)針入度が40を超え100以下のストレートアスファルト100重量部に対し、(b)スチレン・ブタジエン・スチレンブロック共重合体である熱可塑性エラストマー5〜12重量部、(c)芳香族系プロセスオイルで引火点250℃以上でかつ環分析での芳香族環(CA)が35〜50%である芳香族系鉱物油2〜10重量部、(d)イソプレン25〜70重量%、芳香族系モノオレフィン25〜70重量%および脂肪族系モノオレフィン5〜40重量%から成る単量混合物をハロゲン化アルミニウム系触媒の存在下にカチオン重合して得られる重合体で軟化点50〜120℃の固形炭化水素樹脂2〜15重量部、(e)エチレン・アクリル酸・無水マレイ酸からなる三元共重合体でメルトフローレイト(JISK6730)50〜200である付着力付与剤1〜5重量部を含有することを特徴とする排水性舗装用改質アスファルト組成物。(B) 5 to 12 parts by weight of a thermoplastic elastomer which is a styrene / butadiene / styrene block copolymer, and (c) an aromatic system with respect to 100 parts by weight of straight asphalt having a penetration of more than 40 and not more than 100 2-10 parts by weight of aromatic mineral oil having a flash point of 250 ° C. or higher and a ring analysis of 35-50% aromatic ring (CA), (d) 25-70% by weight of isoprene, aromatic system monoolefins 25-70 wt% and a softening point of 50 to 120 ° C. in aliphatic consisting monoolefins 5-40 wt% monomer mixture obtained by cationic polymerization in the presence of aluminum halide catalysts polymer 2 to 15 parts by weight of a solid hydrocarbon resin, (e) a terpolymer composed of ethylene, acrylic acid, and maleic anhydride, and melt flow rate (JIS K6730) 50 Drainage pavement for modified asphalt composition characterized by containing the adhesion imparting agent 1-5 parts by weight is 200.
JP04272399A 1999-02-22 1999-02-22 Modified asphalt composition for drainage pavement Expired - Fee Related JP4863237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04272399A JP4863237B2 (en) 1999-02-22 1999-02-22 Modified asphalt composition for drainage pavement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04272399A JP4863237B2 (en) 1999-02-22 1999-02-22 Modified asphalt composition for drainage pavement

Publications (2)

Publication Number Publication Date
JP2000239527A JP2000239527A (en) 2000-09-05
JP4863237B2 true JP4863237B2 (en) 2012-01-25

Family

ID=12643999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04272399A Expired - Fee Related JP4863237B2 (en) 1999-02-22 1999-02-22 Modified asphalt composition for drainage pavement

Country Status (1)

Country Link
JP (1) JP4863237B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100422896B1 (en) * 2001-06-29 2004-03-12 강전택 Method for manufacturing and modify agent for drainage asphalt
US7648771B2 (en) * 2003-12-31 2010-01-19 Kimberly-Clark Worldwide, Inc. Thermal stabilization and processing behavior of block copolymer compositions by blending, applications thereof, and methods of making same
JP4850472B2 (en) * 2005-09-21 2012-01-11 出光興産株式会社 Process oil production method
KR100701821B1 (en) 2005-10-11 2007-03-30 금호석유화학 주식회사 Asphalt modifier foamed for road pavement and its preparation method
KR100704757B1 (en) 2007-01-18 2007-04-09 유한회사 로드씰 Aqueous asphalt repair agent for cracks and preparing method thereof
US20130184389A1 (en) * 2007-10-19 2013-07-18 Toda Kogyo Corporation Resin composition for pavement, and asphalt composition for pavement and process for producing the same
JP5265993B2 (en) 2008-09-04 2013-08-14 中国塗料株式会社 Modified asphalt and two-component resin composition
CN114591714B (en) * 2022-04-02 2023-07-21 中路交科科技股份有限公司 Hot melt adhesive for road expansion joint and preparation method thereof

Also Published As

Publication number Publication date
JP2000239527A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
JP6828042B2 (en) Asphalt composition for road pavement
US7968628B2 (en) Modified asphalt binder material using crosslinked crumb rubber and methods of manufacturing the modified asphalt binder
JP3375244B2 (en) Asphalt modifier and asphalt composition
US5328943A (en) Asphalt compositions for pavement
JP6852855B2 (en) Asphalt composition for road pavement
JPWO2005123834A1 (en) Block copolymer composition for asphalt modification, method for producing the same, and asphalt composition
US5558704A (en) Paving asphalt concrete composition
JP2007532742A (en) Polymer modified bitumen composition used in asphalt binder or roofing composition
JP4863237B2 (en) Modified asphalt composition for drainage pavement
JP2001072862A (en) Asphalt composition, its production and use
KR102123798B1 (en) High grade asphalt concrete composition for thin overlay pavement and constructing method using the same
CN116948415B (en) Asphalt modifier, modified asphalt and preparation method thereof
JP3419626B2 (en) Modified asphalt composition for drainage pavement
JPH0313603A (en) Asphalt paving composite
JP2007138380A (en) Binder for elastic pavement and elastic paving material using it
JP2892998B2 (en) Modified asphalt and method for producing the same
JP3635147B2 (en) Road pavement resin composition
JPH07150050A (en) Asphalt paving composition
JP2023012825A (en) Asphalt modifier for open-graded mixture
WO2021177445A1 (en) Asphalt composition
JPH1160960A (en) Asphalt composition, mixture and paved body
JP3836078B2 (en) Asphalt composition, mixture and pavement
JPH10182982A (en) Asphalt epoxy resin composition
JP3411162B2 (en) Asphalt compositions, mixtures and pavements
JP4366308B2 (en) Asphalt modifier, asphalt mixture containing the same, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081208

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees