JP4863181B2 - Composite oxide film covering member for preventing hydrogen isotope permeation and method for producing the same - Google Patents

Composite oxide film covering member for preventing hydrogen isotope permeation and method for producing the same Download PDF

Info

Publication number
JP4863181B2
JP4863181B2 JP2001058253A JP2001058253A JP4863181B2 JP 4863181 B2 JP4863181 B2 JP 4863181B2 JP 2001058253 A JP2001058253 A JP 2001058253A JP 2001058253 A JP2001058253 A JP 2001058253A JP 4863181 B2 JP4863181 B2 JP 4863181B2
Authority
JP
Japan
Prior art keywords
film
chromium oxide
aqueous solution
chemical
densified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001058253A
Other languages
Japanese (ja)
Other versions
JP2002256450A (en
Inventor
河村  弘
勝 中道
和美 谷
生欣 宮島
武馬 寺谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Japan Atomic Energy Agency
Original Assignee
Tocalo Co Ltd
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd, Japan Atomic Energy Agency filed Critical Tocalo Co Ltd
Priority to JP2001058253A priority Critical patent/JP4863181B2/en
Priority to EP20020090080 priority patent/EP1236813B1/en
Publication of JP2002256450A publication Critical patent/JP2002256450A/en
Application granted granted Critical
Publication of JP4863181B2 publication Critical patent/JP4863181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Description

【0001】
【発明の属する技術分野】
本発明は、水素同位体透過防止性に優れる複合酸化物皮膜被覆部材とそれの製造方法に関するものである。
【0002】
【従来の技術】
一般に、連続的に酸化クロムによって化学的に緻密化された施工法(化学的緻密化法)によるSiO2−CrO3からなる組成を有する皮膜(化学的緻密化皮膜)は、高硬度を有するため、耐耗用皮膜として用いられ、各種の機械構造部材に適用され、現在でもなお、有用な化学的緻密化法による耐摩耗性皮膜としての地位を保っている。
【0003】
これらは、ステンレス鋼製基材に、CrO3を化学変化させて微細なCr23からなる硬質皮膜を形成する技術として、特開昭59−9171号公報,特開昭61−52374号公報,特開昭63−126682号公報,特開昭63−317680号公報に開示の方法などが提案されている。
【0004】
また、鋼鉄製基材に、CrO3を化学変化させて微細なCr23からなる硬質皮膜を形成する技術として、特開昭59−9171号公報,特開昭61−52374号公報,特開昭63−126682号公報,特開昭63−317680号公報に開示の方法などが提案されている。
【0005】
しかし、化学的緻密化皮膜も、その皮膜内部を光学顕微鏡で観察すると、微細な気孔やき裂があり、その大部分はステンレス鋼製基材表面に達している場合も少なくないことがわかっている。この微細な気孔やき裂は、水素同位体が存在する環境下では、その水素同位体が化学的繊密化皮膜内を透過しステンレス鋼製基材に到達し、さらに、ステンレス鋼製基材を透過し外部環境へ流出してしまうため、水素同位体透過防止皮膜としては利用できないという欠点があった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、上述した従来化学的緻密化法によるSiO2−Cr23からなる組成を有する皮膜(化学的緻密化皮膜)が有する上述した欠点を補うことのできる技術の確立を図ることにあり、優れた水素同位体透過防止性を有する複合酸化物皮膜に変成させるために有効な技術を提案するところにある。
【0007】
即ち、このような目的を実現するために開発した本発明の考え方を整理して述べると、
(1)化学的緻密化皮膜内に発生している微細な気孔やき裂内に、水素同位体透過防止性に優れた酸化クロム−非晶質無機材料微粒子を充填することによって、水素同位体の透過を抑制する。
【0008】
(2)化学的緻密化皮膜の微細なき裂内に、酸化クロム−非晶質無機材料微粒子を充填し、それのみならず,さらにこの化学的繊密化皮膜の表面には無機材料複合材の薄膜をも形成することによって、水素同位体の内部侵入をより一層確実に防ぐようにする。
【0009】
(3)上述の点に関し、クロム酸水溶液ならびに焼成履歴をうけることによって非晶質無機物質を生成する材料を含む水溶液を塗布、これを加熱処理することによって固化させ析出物として得ることで微細な気孔やき裂を充填するプロセスを用いて、水素同位体の透過を抑えることができることがわかった。
【0010】
【課題を解決するための手段】
このような知見の下に上掲の目的を実現する方法として、本発明では、化学的緻密化法によるSiO2−Cr23からなる組成を有する皮膜(化学的緻密化皮膜)に発生している微細な気孔やき裂に対し、水素同位体の内部侵入を抑制するため、次のような手段を採用した。
【0011】
(1)化学的緻密化皮膜の表面に対して直接,焼成することによって非晶質無機物質を生成する材料を含む水溶液を塗布,噴霧もしくはこの水溶液中に化学的緻密化皮膜を浸して引き上げた後,焼成する方法。
【0012】
(2)化学的緻密化皮膜において,直接その表面に,焼成履歴を受けることによって非晶質無機物質を生成する材料を含む水溶液を塗布,噴霧もしくはこの水溶液中に化学的緻密化皮膜を浸漬して引き上げた後,焼成する方法を複数回繰り返すことによって,該化学的繊密化皮膜の微細気孔や亀裂内部へ非晶質無機物質を充するだけでなく,余剰の非晶質無機物質を化学的繊密化皮膜の最外層表面にも薄く被覆する方法。
【0013】
即ち、本発明要旨構成を列挙して述べると、下記のとおりである。
(1)本発明は,ステンレス鋼などの金属材料鋼基材の表面に,化学的緻密化皮膜を設けるとともに,該皮膜の気孔やき裂内に非晶質無機物質を充填することによって形成する複合酸化物皮膜被覆部材である。
【0014】
(2)また,本発明は,ステンレス鋼などの金属材料基材の表面に,化学的緻密化皮膜を設けるとともに,該皮膜の気孔やき裂内に非晶質無機物質を充填させ,かつ,その表面には非晶質無機物質層を形成させることによって得られる複合酸化物皮膜被覆部材である。
【0015】
(3)なお,本発明においては上記非晶質無機物質充填材としては,焼成することによって非晶質無機物質を生成する材料を含む水溶液を塗布,噴霧もしくはこの水溶液中に浸した後,加熱,焼成することによって生成させたものであり,珪酸塩ガラス,ほう珪酸塩ガラス,あるいはリン酸塩ガラスを主として含むものが好ましい。
【0016】
(4)次に,本発明にかかる部材は,ステンレス鋼などの金属材料基材の表面に化学的緻密化皮膜を設けるとともに,該皮膜の表面に,焼成履歴を受けることによって非晶質無機物質を生成する材料を含む水溶液を塗布,噴霧もしくはこの水溶液中に化学的緻密化皮膜を浸漬した後,加熱,焼成することによって,該化学的緻密化皮膜の気孔やき裂内に非晶質無機物質を充填して水素同位体透過防止用複合酸化物皮膜を形成させることによって製造するか,
(5)ステンレス鋼などの金属材料基材の表面に化学的緻密化皮膜を設けるとともに,該皮膜の表面に,焼成履歴を受けることによって非晶質無機物質を生成する材料を含む水溶液を塗布,噴霧もしくはこの水溶液中に化学的緻密化皮膜を浸漬した後,加熱,焼成することによって,該化学的緻密化皮膜の気孔やき裂内に非晶質無機物質を充填させると同時にその化学的緻密化皮膜表面にも該非晶質無機物質層を生成被覆させることによって製造する。
【0017】
【発明の実施の形態】
本発明の水素同位体透過防止性に優れる複合酸化物皮膜の作用機構について具体的に説明する。
【0018】
(1)ステンレス鋼製基材の表面に被覆されたSiO2−Cr23からなる組成を有する皮膜(化学的緻密化皮膜)は、化学的緻密化法により図1に示す施工流れにより形成する。しかし、形成された化学的緻密化皮膜は非常に硬く、耐摩耗性に優れているものの、その皮膜内には微細な気孔やき裂が存在し、そのうちには基材に直接達するような開口き裂もある。
【0019】
この微細な気孔やき裂は、水素同位体が存在する環境下では、その水素同位体が化学的緻密化皮膜内を透過し、ステンレス鋼製基材に到達し、さらに、ステンレス鋼製基材をも透過して外部環境へ流出してしまうため、水素同位体透過防止皮膜としては利用できないという欠点があった。
【0020】
そこで本発明では,この化学的緻密化皮膜の表面に直接,焼成履歴を受けることによって非晶質無機物質を生成する材料を含む水溶液とクロム酸水溶液の混合物を塗布,噴霧もしくはこの水溶液中に化学的緻密化皮膜を浸漬した後,加熱,焼成することによって,該化学的緻密化皮膜の気孔やき裂内に非晶質無機物質を侵入,充填させる。焼成履歴を受けることによって非晶質無機物質を生成する材料を含む水溶液とは,硼酸塩化合物,珪酸塩化合物,リン酸塩化合物を含む水溶液である。
【0021】
発明者らの実験によれば,硼酸塩化合物水溶液とクロム酸水溶液との混合物を塗布などの処理を施した化学的緻密化皮膜の場合は550〜720℃,クロム酸水溶液−リン酸塩化合物水溶液混合物を塗布などの処理を施した化学的緻密化皮膜の場合は250〜750℃の温度で0.5〜2時間加熱すると,水溶液中に含まれる水分は蒸発するとともに微細粒子からなるクロム酸化物は加熱残渣物として,気孔,き裂内に充填されるとともに,化学的緻密化皮膜の表面に生成することがわかった。
【0022】
すなわちクロム酸は中間体を経てCr23(酸化クロム)となり,同時に存在する硼酸塩化合物,珪酸塩化合物,リン酸塩化合物水溶液はそれぞれ水分を放出して非晶質無機物質となるのである。上記水溶液から析出したCr23はきわめて微細で硬く,耐摩耗性と耐食性に優れるものである。リン酸塩化合物,硼酸塩化合物,珪酸塩化合物はいずれも非晶質で一部ガラス状を呈し,皮膜内気孔,き裂内に析出,これらを封止する。さらに,皮膜構成粒子間の密着性を向上させる。
【0023】
本発明によれば,微細Cr23の折出と硼酸塩化合物,珪酸塩化合物,リン酸塩化合物が現出する非晶質物質がCr23微細粒の結合を強めていると考えられる。これらが水素同素体の侵入経路の遮断に寄与する。
【0024】
なお,クロム酸と,硼酸塩化合物,珪酸塩化合物,リン酸塩化合物水溶液を主成分とする処理液を塗布,噴霧,あるいはこれへの浸漬などをおこなった後これを加熱する工程を複数回繰り返すと,化学的緻密化皮膜の気孔,亀裂内部へのCr23と非晶質無機物の充填にとどまらず余剰の酸化クロム−非晶質無機化合物複合層に覆われているため、この皮膜によって水素同位体透過防止性を維持することとなる。表1は、水素同位体透過防止用複合酸化物皮膜施工条件を示したものである。
【0025】
【表1】

Figure 0004863181
【0026】
また、図2は、本発明に係る水素同位体透過防止用複合酸化物皮膜の断面構造例を示したものである。ここで1はステンレス鋼製基材、2は化学的緻密化皮膜、3は化学的緻密化皮膜に存在している貫通気孔(亀裂)、4は該気孔部,即ちき裂内に充填された酸化クロム−非晶質無機物複合微粒子であり、5は化学的緻密化皮膜の表面を覆っている酸化クロム−非晶質無機物複合微粒子の層を示している。なお、この断面構造から明らかなように、上記酸化クロム−非晶質無機物複合微粒子層は、その微粒子の化学的緻密化皮膜のき裂内にも完全に充填された状態になっているので、極めて高い密着性を発揮する。
【0027】
【実施例】
(実施例1)
この実施例では、SS400鋼製基材の表面に施工した化学的緻密化皮膜及びその気孔,き裂中に酸化クロム−非晶質無機物複合微粒子層を充填,被覆処理した水素同位体透過防止用複合酸化物皮膜について、これら皮膜被覆部材の耐食性をめっきの耐食性試験方法(キャス試験:JISH8502)に基づき実施した。
【0028】
(1)本発明の水素同位体透過防止用複合酸化物皮膜:皮膜部基材(SS400鋼)表面に化学的緻密化皮膜を施工後、55%クロム酸水溶液と15%ほう酸水溶液を1:1に混合して得た水溶液中に浸した後引き上げて、750℃で1時間の熱処理を施す工程を6回繰り返して複合酸化物皮膜(50μm)としたものを用いた。
【0029】
(2)比較例の化学的緻密化皮膜:上記の化学的緻密化皮膜(50μm)だけをそのまま用いた。
(3)キャス試験結果:キャス試験結果を表2に示した。この結果から明らかなように、比較例の無処理化学的緻密化皮膜は、皮膜の亀裂部分を通って環境からの水溶液が侵入して基材の炭素鋼を腐食し、これが化学的緻密化皮膜の表面に赤さびとして多量に認められた。
【0030】
これに対し本発明の処理を施した水素同位体透過防止用複合酸化物皮膜は、全く赤さびの発生は認められなかった。すなわち、化学的緻密化皮膜の気孔,き裂内に酸化クロム−ほう珪酸ガラス複合微粒子層が充填された結果、水溶液の侵入が抑制され、優れた耐食性を発揮したものと考えられる。
【0031】
【表2】
Figure 0004863181
【0032】
(実施例2)
この実施例では、本発明にかかる処理を施して得られた水素同位体透過防止用複合酸化物皮膜の重水素透過性を調査した。
【0033】
(1)本発明の水素同位体透過防止用複合酸化物皮膜:皮膜部基材(SUS316L:外径30.0mm×厚さ0.9mmの管材内面に化学的緻密化皮膜を施工後、CrOとリン酸を主成分とする水溶液中に浸漬した後引き上げて、450℃で1時間の熱処理を6回繰り返して複合酸化物皮膜(50μm)としたものを用いた。
【0034】
(2)比較例の皮膜:比較例の皮膜として、無処理の前記化学的緻密化皮膜のみのものを用いた。
(3)重水素透過試験:図3に示した重水素透過試験試験装置を用い、600℃における重水素透過量を測定し、透過低減率(皮膜未施工時の重水素透過量に対する皮膜施工時の重水素透過量の比)を求めた。
【0035】
(4)重水素透過試験結果:その試験結果を図4及び表3に取りまとめた。化学的緻密化皮膜は、重水素透過低減率が600℃において約1/50であったのに対し、水素同位体透過防止用複合酸化物皮膜は、重水素透過低減率が600℃において約1/1000であった。
【0036】
【表3】
Figure 0004863181
【0037】
【発明の効果】
以上説明したように本発明によれば、化学的緻密化皮膜を有する部材について、この部材表面に生成した気孔や,き裂を有する該化学的緻密化皮膜を、クロム酸水溶液および非晶質無機物質を生成する材料を含む水溶液を塗布等した後,加熱することによって、酸化クロム−非晶質無機物質複合材微粒子を生成させてこれを該気孔や,き裂中に充填すると同時に、さらには皮膜表面に一定の厚さで被覆することで、従来から十分でないとされていた化学的緻密化皮膜の水素同位体透過防止性を向上させることができる。この結果、ガス透過防止性が要求される機械構造物あるいは部材に対する水素同位体透過防止用複合酸化物皮膜の適用分野が拡大される。
【図面の簡単な説明】
【図1】 ステンレス鋼製基材の表面に化学的緻密化皮膜を形成するための施工流れ図である。
【図2】 ステンレス鋼製基材の表面に形成された化学的緻密化皮膜上に、クロム酸ならびに焼成によって非晶質無機物質を生成する材料を含む水溶液を主成分とする処理液を用いて酸化クロム−非晶質無機物質複合皮膜を形成した水素同位体透過防止用複合酸化物皮膜被覆部材の部分断面図である。
【符号の説明】
1:ステンレス鋼製基材、
2:化学的緻密化皮膜、
3:化学的緻密化皮膜に存在している貫通気孔(き裂)
4:該気孔部,即ち,き裂内に充填された酸化クロム−非晶質無機物質複合材微粒子
5:化学的緻密化皮膜の表面を覆っている酸化クロム−非晶質無機物質複合材層
【図3】 SUS316L基材管内面に皮膜施工したものを試験管とし、試験管の内側に重水素を既定濃度含むアルゴンカスを流し、試験管を透過した重水素を試験管外側に純アルゴンカスを流すことにより質量分析計に導き、重水素濃度を測定する重水素透過試験装置の部分概略図である。
【符号の説明】
1:SUS316L基材管(内径30.0mm×厚さ0.9mm)で内面に皮膜を50μm厚さ施工した試験管
2:ハステロイ−×基材管(内径50.0mm×厚さ3.0mm)を用いた測定管
3:試験管を透過した重水素透過量を測定する質量分析計
4:重水素含有アルゴンカス中に含まれる重水素、
5:試験管の重水素の透過
6:試験管内への重水素含有アルゴンカス供給ライン
7:試験管内からの重水素含有アルゴンガス排出ライン
8:試験管を透過した重水素を質量分析計へ導くための測定管内純アルゴンガス供給ライン
9:試験管を透過した重水素を質量分析計へ導くための測定管内純アルゴンガス排出ライン
【図4】 試験管の内側に重水素を既定濃度含むアルゴンガスを流し始め、試験管を透過した重水素量の変化を経時的に示した、600℃における重水素透過試験結果の図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite oxide film-coated member excellent in hydrogen isotope permeation-preventing property and a method for producing the same.
[0002]
[Prior art]
In general, a film (chemically densified film) having a composition composed of SiO 2 —CrO 3 by a construction method (chemical densification method) continuously chemically densified with chromium oxide has high hardness. They are used as anti-friction耗用coating is applied to various mechanical structural member, yet still has maintained its position as the abrasion-resistant films according to useful chemical densification method.
[0003]
These stainless steel substrate, a technique of forming a hard film composed of fine Cr 2 O 3 and the CrO 3 is chemically changed, JP 59-9171, JP-Sho 61-52374 JP JP-A-63-126682 and JP-A-63-317680 propose methods disclosed therein.
[0004]
Further, as a technique for chemically changing CrO 3 on a steel substrate to form a hard film composed of fine Cr 2 O 3 , Japanese Patent Laid-Open Nos. 59-9171 and 61-52374 are disclosed. Methods disclosed in Japanese Unexamined Patent Publication No. 63-126682 and Japanese Unexamined Patent Publication No. 63-317680 have been proposed.
[0005]
However, chemical densified films also have microscopic pores and cracks when observed inside the film with an optical microscope, and most of them reach the surface of the stainless steel substrate. . In the environment where hydrogen isotopes exist, these fine pores and cracks pass through the chemically densified film and reach the stainless steel substrate. Since it permeates and flows out to the external environment, there is a drawback that it cannot be used as a hydrogen isotope permeation preventive film.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to establish a technique capable of compensating for the above-described drawbacks of a film having a composition composed of SiO 2 —Cr 2 O 3 by the conventional chemical densification method described above (chemical densification film). In particular, an effective technique for transforming into a complex oxide film having excellent hydrogen isotope permeation-preventing properties is proposed.
[0007]
In other words, to summarize and describe the idea of the present invention that has been developed to achieve such purposes,
(1) By filling the fine pores and cracks generated in the chemically densified film with fine particles of chromium oxide-amorphous inorganic material excellent in hydrogen isotope permeation prevention properties, Suppresses transmission.
[0008]
(2) The fine cracks of the chemically densified film are filled with fine particles of chromium oxide-amorphous inorganic material. In addition, the surface of the chemically densified film is made of an inorganic material composite material. By forming a thin film as well, the internal penetration of hydrogen isotopes is more reliably prevented.
[0009]
(3) With regard to the above-mentioned points, it is possible to apply a chromic acid aqueous solution and an aqueous solution containing a material that generates an amorphous inorganic substance by receiving a firing history, and heat-treat this to solidify and obtain a fine precipitate. It was found that hydrogen isotope permeation can be suppressed by using a process of filling pores and cracks.
[0010]
[Means for Solving the Problems]
As a method for realizing the above-mentioned object based on such knowledge, in the present invention, it occurs in a film (chemically densified film) having a composition composed of SiO 2 —Cr 2 O 3 by a chemical densification method. In order to suppress the intrusion of hydrogen isotopes into the fine pores and cracks, the following measures were adopted.
[0011]
(1) directly to the surface of the chemical densified coating, an aqueous solution containing a material that generates an amorphous inorganic substance by sintering the coating, and immersion spray or chemical densification coating in the aqueous solution A method of firing after raising.
[0012]
(2) In a chemically densified film, an aqueous solution containing a material that generates an amorphous inorganic substance by receiving a firing history is directly applied to the surface, sprayed, or immersed in this aqueous solution. after raising Te, by repeating a plurality of times a process of firing, as well as Hama charging the amorphous inorganic material into fine pores and cracks inside the said chemical繊密of film, the amorphous inorganic material surplus A method of thinly coating the outermost surface of a chemically densified film.
[0013]
That is, the gist of the present invention is listed and described as follows.
(1) The present invention is a composite formed by providing a chemically densified film on the surface of a metal material steel substrate such as stainless steel and filling an amorphous inorganic substance in pores or cracks of the film. It is an oxide film covering member.
[0014]
(2) Further, the present invention provides a chemically densified film on the surface of a metal material base material such as stainless steel, fills pores or cracks in the film with an amorphous inorganic substance, and It is a complex oxide film covering member obtained by forming an amorphous inorganic substance layer on the surface.
[0015]
(3) As the above-mentioned amorphous inorganic material filler in the present invention, an aqueous solution containing a material that generates an amorphous inorganic substance by sintering the coating, after immersed into a spray or in the aqueous solution, It is produced by heating and baking, and preferably contains mainly silicate glass, borosilicate glass, or phosphate glass.
[0016]
(4) Next, the member according to the present invention is provided with a chemically densified film on the surface of a metal material base material such as stainless steel, and the surface of the film is subjected to a firing history to thereby form an amorphous inorganic substance. Applying, spraying, or immersing the chemical densified film in this aqueous solution, followed by heating and baking, an amorphous inorganic substance in the pores or cracks of the chemically densified film Or by forming a composite oxide film for preventing hydrogen isotope permeation,
(5) A chemical densified film is provided on the surface of a metal material substrate such as stainless steel, and an aqueous solution containing a material that generates an amorphous inorganic substance by receiving a firing history is applied to the surface of the film. By spraying or immersing the chemically densified film in this aqueous solution, followed by heating and baking, the pores and cracks of the chemically densified film are filled with the amorphous inorganic substance and at the same time the chemical densified It is produced by forming and coating the amorphous inorganic material layer on the surface of the film.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The action mechanism of the composite oxide film excellent in hydrogen isotope permeation-preventing property of the present invention will be specifically described.
[0018]
(1) A film (chemically densified film) having a composition composed of SiO 2 —Cr 2 O 3 coated on the surface of a stainless steel substrate is formed by the chemical densification method according to the construction flow shown in FIG. To do. However, although the formed chemically densified film is very hard and has excellent wear resistance, there are fine pores and cracks in the film, and some of the openings that directly reach the substrate. There is also a crack.
[0019]
In the environment where hydrogen isotopes exist, these fine pores and cracks penetrate the chemically densified film and reach the stainless steel substrate. In other words, the hydrogen isotope permeation film flows out to the external environment and cannot be used as a hydrogen isotope permeation preventive film.
[0020]
Therefore, in the present invention, a mixture of an aqueous solution containing a material that forms an amorphous inorganic substance by receiving a firing history directly on the surface of the chemically densified film and a chromic acid aqueous solution are applied, sprayed, or chemically applied to the aqueous solution. After immersing the mechanically densified film, heating and baking are performed, so that an amorphous inorganic substance enters and fills the pores and cracks of the chemically densified film. An aqueous solution containing a material that generates an amorphous inorganic substance by receiving a firing history is an aqueous solution containing a borate compound, a silicate compound, and a phosphate compound.
[0021]
According to the experiments by the inventors, in the case of a chemically densified film obtained by applying a mixture of a borate compound aqueous solution and a chromic acid aqueous solution to a treatment such as 550 to 720 ° C., a chromic acid aqueous solution-phosphate compound aqueous solution. In the case of a chemically densified film obtained by subjecting the mixture to a treatment such as coating, when heated at a temperature of 250 to 750 ° C. for 0.5 to 2 hours, the water contained in the aqueous solution evaporates and the chromium oxide composed of fine particles As a heating residue, it was found that it was filled in the pores and cracks and formed on the surface of the chemically densified film.
[0022]
In other words, chromic acid becomes Cr 2 O 3 (chromium oxide) through an intermediate, and simultaneously existing borate compound, silicate compound, and phosphate compound aqueous solution release amorphous water to become amorphous inorganic substance. . Cr 2 O 3 deposited from the aqueous solution is extremely fine and hard, and has excellent wear resistance and corrosion resistance. The phosphate compound, borate compound, and silicate compound are all amorphous and partially glassy, and precipitate in the pores and cracks in the film and seal them. Furthermore, the adhesion between the film-constituting particles is improved.
[0023]
According to the present invention, it is considered that the formation of fine Cr 2 O 3 and the amorphous material in which the borate compound, silicate compound, and phosphate compound appear enhance the bonding of Cr 2 O 3 fine particles. It is done. These contribute to blocking the invasion pathway of the hydrogen allotrope.
[0024]
The process of applying, spraying, or immersing the treatment liquid mainly composed of chromic acid and an aqueous solution of borate compound, silicate compound, and phosphate compound is repeated several times. And the pores of the chemically densified film, and not only the Cr 2 0 3 and the amorphous inorganic substance inside the crack, but also the extra chromium oxide-amorphous inorganic compound composite layer is covered by this film. The hydrogen isotope permeation preventing property will be maintained. Table 1 shows the construction conditions of the composite oxide film for preventing hydrogen isotope permeation.
[0025]
[Table 1]
Figure 0004863181
[0026]
FIG. 2 shows an example of a cross-sectional structure of a composite oxide film for preventing hydrogen isotope permeation according to the present invention. Here, 1 is a stainless steel substrate, 2 is a chemically densified film, 3 is a through pore (crack) existing in the chemically densified film, and 4 is filled in the pore part, that is, the crack. Reference numeral 5 denotes a chromium oxide-amorphous inorganic composite fine particle, and reference numeral 5 denotes a layer of the chromium oxide-amorphous inorganic composite fine particle covering the surface of the chemically densified film. As is clear from this cross-sectional structure, the chromium oxide-amorphous inorganic composite fine particle layer is completely filled in the cracks of the chemically densified film of the fine particles. Exhibits extremely high adhesion.
[0027]
【Example】
Example 1
In this example, a chemically densified film applied on the surface of a SS400 steel base material and its pores and cracks were filled with a chromium oxide-amorphous inorganic composite fine particle layer and coated with a coating to prevent hydrogen isotope permeation. For the composite oxide film, the corrosion resistance of these film-coated members was measured based on a plating corrosion resistance test method (Cass test: JISH8502).
[0028]
(1) The composite oxide film for preventing hydrogen isotope permeation according to the present invention: After applying a chemically densified film on the surface of the film base (SS400 steel), a 55% chromic acid aqueous solution and a 15% boric acid aqueous solution were mixed 1: 1. Raise after immersion in an aqueous solution obtained by mixing the used was a compound oxide film (50 [mu] m) is repeated 6 times a step of performing heat treatment of 1 hour at 750 ° C..
[0029]
(2) Chemically densified film of Comparative Example: Only the above chemically densified film (50 μm) was used as it was.
(3) Cast test results: Table 2 shows the cast test results. As is clear from this result, the non-processed chemical densified film of the comparative example corrodes the carbon steel of the base material by the penetration of the aqueous solution from the environment through the cracked part of the film, and this is the chemical densified film. A large amount of red rust was observed on the surface.
[0030]
On the other hand, the generation of red rust was not observed at all in the composite film for preventing hydrogen isotope permeation subjected to the treatment of the present invention. That is, it is considered that the chromium oxide-borosilicate glass composite fine particle layer was filled in the pores and cracks of the chemically densified film, so that the penetration of the aqueous solution was suppressed and the excellent corrosion resistance was exhibited.
[0031]
[Table 2]
Figure 0004863181
[0032]
(Example 2)
In this example, the deuterium permeability of the composite oxide film for preventing hydrogen isotope permeation obtained by performing the treatment according to the present invention was investigated.
[0033]
(1) Composite oxide film for preventing hydrogen isotope permeation according to the present invention: film base material (SUS316L: after applying a chemical densified film on the inner surface of a pipe having an outer diameter of 30.0 mm and a thickness of 0.9 mm, CrO 3 Then, it was dipped in an aqueous solution containing phosphoric acid as a main component, pulled up, and subjected to heat treatment at 450 ° C. for 1 hour six times to obtain a composite oxide film (50 μm).
[0034]
(2) Film of Comparative Example: As the film of the comparative example, only the untreated chemical densified film was used.
(3) Deuterium permeation test: Using the deuterium permeation test test device shown in FIG. 3, measure the deuterium permeation amount at 600 ° C. Of deuterium permeation amount).
[0035]
(4) Deuterium permeation test results: The test results are summarized in FIG. 4 and Table 3. The chemically densified film had a deuterium permeation reduction ratio of about 1/50 at 600 ° C., whereas the hydrogen oxide isotope permeation prevention composite oxide film had a deuterium permeation reduction ratio of about 1 at 600 ° C. / 1000.
[0036]
[Table 3]
Figure 0004863181
[0037]
【Effect of the invention】
As described above, according to the present invention, a chemically densified film having pores or cracks formed on the surface of a member having a chemically densified film is treated with an aqueous chromic acid solution and an amorphous inorganic substance. After application of an aqueous solution containing a material that generates a substance, heating is performed to generate chromium oxide-amorphous inorganic substance composite fine particles, which are filled in the pores and cracks, and further, By covering the surface of the film with a certain thickness, it is possible to improve the hydrogen isotope permeation-preventing property of a chemically densified film that has been considered to be insufficient. As a result, the field of application of the composite oxide film for preventing hydrogen isotope permeation to mechanical structures or members that require gas permeation prevention is expanded.
[Brief description of the drawings]
FIG. 1 is a construction flowchart for forming a chemically densified film on the surface of a stainless steel substrate.
[Fig. 2] Using a treatment liquid mainly composed of an aqueous solution containing chromic acid and a material that generates an amorphous inorganic substance by firing on a chemically densified film formed on the surface of a stainless steel substrate. It is a fragmentary sectional view of the composite oxide film covering member for hydrogen isotope permeation prevention which formed chromium oxide-amorphous inorganic substance composite film.
[Explanation of symbols]
1: stainless steel substrate,
2: Chemically densified film,
3: Through pores (cracks) present in the chemically densified film
4: Chromium oxide-amorphous inorganic material composite fine particles filled in the pores, that is, cracks 5: Chromium oxide-amorphous inorganic material composite layer covering the surface of the chemically densified film FIG. 3 shows a test tube made of SUS316L base material pipe coated on the inner surface. Argon degas containing a predetermined concentration of deuterium is allowed to flow inside the test tube. It is the partial schematic of the deuterium permeation | transmission test apparatus which leads to a mass spectrometer by this and measures a deuterium density | concentration.
[Explanation of symbols]
1: SUS316L base tube (inner diameter: 30.0 mm × thickness: 0.9 mm), test tube with inner surface coated with a thickness of 50 μm 2: Hastelloy- × base material tube (inner diameter: 50.0 mm × thickness: 3.0 mm) Measuring tube 3 using: Mass spectrometer 4 for measuring the amount of deuterium permeated through the test tube 4: Deuterium contained in the deuterium-containing argon residue,
5: Deuterium permeation through test tube 6: Deuterium-containing argon gas supply line 7 into the test tube 7: Deuterium-containing argon gas discharge line 8 from the test tube 8: In order to guide the deuterium that has passed through the test tube to the mass spectrometer Pure argon gas supply line 9 in the measurement tube: Pure argon gas discharge line in the measurement tube for introducing deuterium that has passed through the test tube to the mass spectrometer [Fig. 4] Argon gas containing deuterium at a predetermined concentration is placed inside the test tube. It is a figure of the deuterium permeation | transmission test result in 600 degreeC which showed the change of the amount of deuterium which began to flow and permeate | transmitted the test tube with time.

Claims (6)

ステンレス鋼製基材の表面に、連続的に酸化クロムによって化学的に緻密化される化学的緻密化法によるSiO2−Cr23からなる組成を有する化学的緻密化皮膜層を設けると共に、この化学的緻密化皮膜の気孔およびき裂内に、酸化クロムと硼酸塩化合物又は珪酸塩化合物とを含む酸化クロム−非晶質無機材料複合材微粒子を充填することによって形成される皮膜を、被覆してなる水素同位体透過防止用複合酸化物皮膜被覆部材。On the surface of the stainless steel substrate, a chemical densification film layer having a composition composed of SiO 2 —Cr 2 O 3 by a chemical densification method that is continuously chemically densified by chromium oxide is provided, A film formed by filling fine pores and cracks in this chemically densified film with chromium oxide-amorphous inorganic material composite particles containing chromium oxide and a borate compound or a silicate compound is coated. A composite oxide film covering member for preventing hydrogen isotope permeation. ステンレス鋼製基材の表面に、連続的に酸化クロムによって化学的に緻密化される化学的緻密化法によるSiO 2 −Cr 2 3 からなる組成を有する化学的緻密化皮膜層を設けると共に、この化学的緻密化皮膜の気孔およびき裂内に、酸化クロムと硼酸塩化合物又は珪酸塩化合物とを含む酸化クロム−非晶質無機材料複合材微粒子を充填すると同時にその表面には酸化クロム−非晶質無機材料複合材層を形成することによって得られる皮膜を、被覆してなる水素同位体透過防止用複合酸化物皮膜被覆部材。On the surface of the stainless steel substrate, a chemical densification film layer having a composition composed of SiO 2 —Cr 2 O 3 by a chemical densification method that is continuously chemically densified by chromium oxide is provided, The pores and cracks of this chemically densified film are filled with chromium oxide-amorphous inorganic material composite particles containing chromium oxide and a borate compound or a silicate compound, and at the same time, chromium oxide non-coated A composite oxide film covering member for preventing hydrogen isotope permeation, which is obtained by coating a film obtained by forming a crystalline inorganic material composite material layer. 該酸化クロム−非晶質無機材料複合材微粒子は、クロム酸ならびに硼酸塩化合物又は珪酸塩化合物を含む水溶液を塗布、噴霧もしくは該水溶液中に浸漬した後、550720℃で加熱,焼成することによって生成させたものであることを特徴とする請求項1または2に記載の部材。The chromium oxide-amorphous inorganic material composite fine particles are coated with an aqueous solution containing chromic acid and a borate compound or a silicate compound , sprayed or immersed in the aqueous solution, and then heated and fired at 550 to 720 ° C. The member according to claim 1, wherein the member is generated by the following. ステンレス鋼製基材の表面に、連続的に酸化クロムによって化学的に緻密化される化学的緻密化法によるSiO 2 −Cr 2 3 からなる組成を有する化学的緻密化皮膜層を施し、次いでこの化学的緻密化皮膜表面にクロム酸ならびに硼酸塩化合物又は珪酸塩化合物を含む水溶液を塗布、噴霧もしくはその水溶液中に浸漬したのち、550720℃の温度で保持することにより、前記化学的緻密化皮膜の気孔およびき裂内に、酸化クロムと硼酸塩化合物又は珪酸塩化合物とを含む酸化クロム−非晶質無機材料複合材微粒子を充填して複合酸化物皮膜を形成することを特徴とする水素同位体透過防止用複合酸化物皮膜被覆部材の製造方法。The surface of the stainless steel substrate is subjected to a chemical densified film layer having a composition composed of SiO 2 —Cr 2 O 3 by a chemical densification method that is continuously chemically densified by chromium oxide , The chemical densification film is coated with an aqueous solution containing chromic acid and a borate compound or a silicate compound , sprayed or immersed in the aqueous solution, and then kept at a temperature of 550 to 720 ° C. A composite oxide film is formed by filling chromium oxide and an amorphous inorganic material composite fine particle containing chromium oxide and a borate compound or a silicate compound into pores and cracks of the oxidized film. A method for producing a composite oxide film-coated member for preventing hydrogen isotope permeation. ステンレス鋼製基材の表面に、連続的に酸化クロムによって化学的に緻密化される化学的緻密化法によるSiO 2 −Cr 2 3 からなる組成を有する化学的緻密化皮膜層を施し、次いで化学的緻密化皮膜表面にクロム酸ならびに硼酸塩化合物又は珪酸塩化合物を含む水溶液を塗布、噴霧もしくはその水溶液中に浸漬した後、550720℃で加熱,焼成することによって、前記化学的緻密化皮膜の気孔およびき裂内に、酸化クロムと硼酸塩化合物又は珪酸塩化合物とを含む酸化クロム−非晶質無機材料複合材微粒子を充填すると同時にその化学的緻密化皮膜表面にも該酸化クロム−非晶質無機材料複合材層を被覆することを特徴とする水素同位体透過防止用複合酸化物皮膜被覆部材の製造方法。The surface of the stainless steel substrate is subjected to a chemical densified film layer having a composition composed of SiO 2 —Cr 2 O 3 by a chemical densification method that is continuously chemically densified by chromium oxide , The chemical densification film is coated with an aqueous solution containing chromic acid and a borate compound or a silicate compound , sprayed or immersed in the aqueous solution, and then heated and fired at 550 to 720 ° C. , whereby the chemical densification is performed. In the pores and cracks of the film, chromium oxide-amorphous inorganic material composite particles containing chromium oxide and a borate compound or a silicate compound are filled, and at the same time, the chromium oxide- A method for producing a composite oxide film-coated member for preventing hydrogen isotope permeation, comprising coating an amorphous inorganic material composite material layer. 上記水溶液の塗布、噴霧もしくは該水溶液中への浸漬、加熱の各操作を複数回繰り返すことによって、化学的緻密化皮膜の気孔およびき裂内に前記酸化クロム−非晶質無機材料複合材微粒子を充填することを特徴とする請求項4または5記載の製造方法。Application of the aqueous solution, immersion in spraying or the aqueous solution, by repeating several times the operation of heating, the chromium oxide into the pores and-out cleft chemical densified coating - an amorphous inorganic material complex microparticles 6. The manufacturing method according to claim 4, wherein filling is performed.
JP2001058253A 2001-03-02 2001-03-02 Composite oxide film covering member for preventing hydrogen isotope permeation and method for producing the same Expired - Fee Related JP4863181B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001058253A JP4863181B2 (en) 2001-03-02 2001-03-02 Composite oxide film covering member for preventing hydrogen isotope permeation and method for producing the same
EP20020090080 EP1236813B1 (en) 2001-03-02 2002-02-28 Members coated with composite oxide coatings for preventing the permeation of hydrogen isotopes and a process for producing such members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001058253A JP4863181B2 (en) 2001-03-02 2001-03-02 Composite oxide film covering member for preventing hydrogen isotope permeation and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002256450A JP2002256450A (en) 2002-09-11
JP4863181B2 true JP4863181B2 (en) 2012-01-25

Family

ID=18918003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058253A Expired - Fee Related JP4863181B2 (en) 2001-03-02 2001-03-02 Composite oxide film covering member for preventing hydrogen isotope permeation and method for producing the same

Country Status (2)

Country Link
EP (1) EP1236813B1 (en)
JP (1) JP4863181B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101518618B1 (en) * 2013-11-27 2015-05-13 주식회사 포스코 The coating method of improving adhesion for steel sheet and steel sheet treated with tem
CN107217281B (en) * 2017-05-26 2018-10-16 华中科技大学 Compound resistance tritium coating of one kind and preparation method thereof
US11111108B2 (en) 2018-05-04 2021-09-07 Otis Elevator Company Coated sheave

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3956531A (en) * 1967-06-01 1976-05-11 Kaman Sciences Corporation Chromium oxide densification, bonding, hardening and strengthening of bodies having interconnected porosity
US5820976A (en) * 1988-12-05 1998-10-13 Adiabatics, Inc. Thin insulative ceramic coating and process
US5360634A (en) * 1988-12-05 1994-11-01 Adiabatics, Inc. Composition and methods for densifying refractory oxide coatings
JPH02194183A (en) * 1989-01-20 1990-07-31 Japan Atom Energy Res Inst Ceramic-coated zirconium alloy article and its production
JP3220012B2 (en) * 1996-06-27 2001-10-22 トーカロ株式会社 Hard plating film coated member and method of manufacturing the same

Also Published As

Publication number Publication date
EP1236813B1 (en) 2011-05-25
JP2002256450A (en) 2002-09-11
EP1236813A2 (en) 2002-09-04
EP1236813A3 (en) 2003-08-13

Similar Documents

Publication Publication Date Title
US7595114B2 (en) Environmental barrier coating for a component and method for fabricating the same
US9834849B2 (en) Method of preparing corrosion resistant coatings
DE112013003838B4 (en) Hybrid air plasma spray and slurry process for environmental barrier deposition
WO2008018308A1 (en) Method for quenching of steel member, quenched steel member, and agent for protecting quenched surface
Luo et al. Preparation technologies and performance studies of tritium permeation barriers for future nuclear fusion reactors
CN106756775B (en) A kind of alloy surface forms the preparation method of spinelle coating
Paul et al. Formation and characterization of uniform SiC coating on 3-D graphite substrate using halide activated pack cementation method
JP2023506020A (en) ceramic composite
JP2020523477A (en) Coated turbomachine parts and related manufacturing method
US6284320B1 (en) Method for producing member for molten metal bath having coating film excellent in resistance to corrosion by molten metal
JP4863181B2 (en) Composite oxide film covering member for preventing hydrogen isotope permeation and method for producing the same
EP2130943B1 (en) Method of preventing sulfide corrosion, high-temperature member with resistance to sulfide corrosion
JPH02149698A (en) Improving method for chemical resistance of anodic oxide film
JP3408530B2 (en) Member for semiconductor manufacturing apparatus and method for manufacturing the same
CN114318202B (en) Nickel-based alloy surface wear-resistant coating and preparation method thereof
US20020192480A1 (en) Members for semiconductor manufacturing apparatus and method for producing the same
RU2402633C1 (en) Procedure for application of combined heat resistant coating
Verlotski Coatings of carbide-metal systems (Cr3C2-NiCr and WC-Co-Cr) deposited by high-velocity atmospheric plasma spraying from specially modified fine-grained powders
CN103305787A (en) Method for preparing permeable layer blocking nitrogen and isotope thereof on stainless steel matrix
RU2462535C1 (en) Method of chemical-heat treatment of parts of nickel alloys
WO2012089200A1 (en) Method for producing a corrosion-inhibiting diffusion layer in the peripheral zone, near the surface, of a substrate that consists of a metal or a metal alloy, and layer system therefor
JPH06228721A (en) Melting resistant metal eroding sealing material and production thereof
Rohatgi et al. Coating of copper on graphite fibers
DE10036264A1 (en) Process for the production of a surface layer
JP2023157290A (en) Sulfuric acid corrosion-resistant coating member, method for producing sulfuric acid corrosion-resistant coating member, and hydrogen production is process device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4863181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees