JP4858993B2 - Discharge lamp lighting device - Google Patents

Discharge lamp lighting device Download PDF

Info

Publication number
JP4858993B2
JP4858993B2 JP2008018246A JP2008018246A JP4858993B2 JP 4858993 B2 JP4858993 B2 JP 4858993B2 JP 2008018246 A JP2008018246 A JP 2008018246A JP 2008018246 A JP2008018246 A JP 2008018246A JP 4858993 B2 JP4858993 B2 JP 4858993B2
Authority
JP
Japan
Prior art keywords
transformer
voltage
resistor
discharge lamp
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008018246A
Other languages
Japanese (ja)
Other versions
JP2009181749A (en
Inventor
正 八野
克彦 松波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eizo Nanao Corp
Original Assignee
Eizo Nanao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eizo Nanao Corp filed Critical Eizo Nanao Corp
Priority to JP2008018246A priority Critical patent/JP4858993B2/en
Publication of JP2009181749A publication Critical patent/JP2009181749A/en
Application granted granted Critical
Publication of JP4858993B2 publication Critical patent/JP4858993B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

本発明は、駆動回路が発生させた高周波電圧を互いに逆位相に昇圧する正相変圧器及び逆相変圧器を備え、正相変圧器及び逆相変圧器の各二次巻線の各高圧側端子間に放電灯を接続して点灯させ、放電灯に流れる電流を検出し、検出した電流に基づき、駆動回路が放電灯に流す電流を一定に制御する放電灯点灯装置に関するものである。   The present invention includes a positive phase transformer and a negative phase transformer that step up high frequency voltages generated by a drive circuit in mutually opposite phases, and each high voltage side of each secondary winding of the positive phase transformer and the negative phase transformer. The present invention relates to a discharge lamp lighting device that connects and discharges a discharge lamp between terminals, detects a current flowing through the discharge lamp, and controls a current flowing through the discharge lamp by a drive circuit based on the detected current.

放電灯には、冷陰極管及び熱陰極管等が有り、特に冷陰極管は、近時、液晶表示装置のバックライトに採用され、そのサイズに応じて様々な使用方法が実用化されている。
図16は、従来の放電灯点灯装置の一例である他励式冷陰極管点灯装置の構成例を示すブロック図である。尚、以下の説明においては、他励二次共振式のインバータを例示しているが、自励式であっても良い。
この冷陰極管点灯装置は、インバータを含む駆動制御回路10が、30k〜80kHz程度の高周波電圧を発生させ、正相高圧トランス(正相変圧器)TX3及び逆相高圧トランス(逆相変圧器)TX4が、駆動制御回路10が発生させた高周波電圧を互いに逆位相に昇圧する。
The discharge lamp includes a cold cathode tube and a hot cathode tube, and in particular, the cold cathode tube has recently been adopted as a backlight of a liquid crystal display device, and various usage methods have been put into practical use depending on the size. .
FIG. 16 is a block diagram showing a configuration example of a separately excited cold cathode tube lighting device which is an example of a conventional discharge lamp lighting device. In the following description, a separately excited secondary resonance type inverter is exemplified, but a self-excited type inverter may be used.
In this cold-cathode tube lighting device, a drive control circuit 10 including an inverter generates a high-frequency voltage of about 30 to 80 kHz, and a positive-phase high-voltage transformer (positive-phase transformer) TX3 and a negative-phase high-voltage transformer (reverse-phase transformer). TX4 boosts the high-frequency voltage generated by the drive control circuit 10 in mutually opposite phases.

正相高圧トランスTX3の二次巻線の低圧側端子は、抵抗R65を通じて接地され、逆相高圧トランスTX4の二次巻線の低圧側端子は接地されており、両トランスTX3,TX4の各二次巻線には、コンデンサC2,C3がそれぞれ並列接続されている。
冷陰極管1は、両トランスTX3,TX4の各二次巻線の各高圧側端子に接続され、両トランスTX3,TX4がそれぞれ昇圧した高周波電圧が逆位相に印加されて点灯する。
The low voltage side terminal of the secondary winding of the positive phase high voltage transformer TX3 is grounded through the resistor R65, and the low voltage side terminal of the secondary winding of the negative phase high voltage transformer TX4 is grounded. Capacitors C2 and C3 are connected in parallel to the next winding.
The cold cathode tube 1 is connected to the high-voltage side terminals of the secondary windings of the transformers TX3 and TX4, and the high-frequency voltage boosted by the transformers TX3 and TX4 is applied in the opposite phase to light up.

整流回路31が、抵抗R65の両端電圧(正相高圧トランスTX3の二次巻線の低圧側端子電圧)を整流して、冷陰極管1に流れる電流値として検出し、その電流値を駆動制御回路10にフィードバックさせる。駆動制御回路10は、与えられた電流値に基づき、冷陰極管1に流す電流が所定値になるようにフィードバック制御する。   The rectifier circuit 31 rectifies the voltage across the resistor R65 (the low-voltage side terminal voltage of the secondary winding of the positive-phase high-voltage transformer TX3), detects it as a current value flowing through the cold cathode tube 1, and drives and controls the current value. The circuit 10 is fed back. The drive control circuit 10 performs feedback control based on the given current value so that the current passed through the cold cathode tube 1 becomes a predetermined value.

図17は、図16に示す冷陰極管点灯装置の冷陰極管1を抵抗及び容量(コンデンサ)で例示した等価回路を示す回路図である。但し、ここでは、冷陰極管1は液晶表示装置で多用されるU字管であり、上述したブロック図から整流回路31を省略してある。
正相高圧トランスTX3及び逆相高圧トランスTX4は、駆動制御回路10からの高周波電源を互いに逆位相で昇圧しており、管電流は、正相高圧トランスTX3の二次巻線から抵抗R1〜R14を通じて、逆相高圧トランスTX4の二次巻線を経由して接地側に流れ、抵抗R65を通じてトランスTX3に戻る。コンデンサC10,C11,C12,・・・C22は、冷陰極管1及びその支持構造物(図示せず)間の浮遊容量を模式的に示したものであり、抵抗R1−R2,R2−R3,R3−R4,・・・R13−R14の各接続節点と接地端子との間にそれぞれ接続されている。
FIG. 17 is a circuit diagram showing an equivalent circuit in which the cold cathode tube 1 of the cold cathode tube lighting device shown in FIG. 16 is exemplified by a resistor and a capacitor (capacitor). However, here, the cold-cathode tube 1 is a U-shaped tube frequently used in a liquid crystal display device, and the rectifier circuit 31 is omitted from the block diagram described above.
The positive-phase high-voltage transformer TX3 and the negative-phase high-voltage transformer TX4 boost the high-frequency power source from the drive control circuit 10 in opposite phases, and the tube current is supplied from the secondary winding of the positive-phase high-voltage transformer TX3 to resistors R1 to R14. Through the secondary winding of the negative-phase high-voltage transformer TX4 and flows to the ground side, and returns to the transformer TX3 through the resistor R65. Capacitors C10, C11, C12,... C22 schematically show stray capacitances between the cold cathode fluorescent lamp 1 and its supporting structure (not shown), and have resistances R1-R2, R2-R3, R3-R4,... R13-R14 are connected between the connection nodes and the ground terminal.

この状態では、正相高圧トランスTX3及び逆相高圧トランスTX4の出力電圧は等しく、コンデンサC2,C3に流れる電流も等しい。また、U字管を構成する一方の直管部の抵抗に相当する抵抗R1〜R7の各降圧分と、他方の直管部の抵抗に相当する抵抗R14〜R8の各降圧分も等しい。故に、一方の直管部の浮遊容量に相当するコンデンサC10〜C15に流れる電流と、他方の直管部の浮遊容量に相当するコンデンサC22〜C17に流れる電流は等しい。
従って、正相高圧トランスTX3につながる全ての抵抗及びコンデンサに流れる電流、逆相高圧トランスTX4につながる全ての抵抗及びコンデンサに流れる電流、並びに抵抗R65に流れる電流は、全て平衡状態になっている。
In this state, the output voltages of the positive-phase high-voltage transformer TX3 and the negative-phase high-voltage transformer TX4 are equal, and the currents flowing through the capacitors C2 and C3 are also equal. Further, each step-down portion of the resistors R1 to R7 corresponding to the resistance of one straight pipe portion constituting the U-shaped tube is equal to each step-down portion of the resistors R14 to R8 corresponding to the resistance of the other straight pipe portion. Therefore, the current flowing in the capacitors C10 to C15 corresponding to the stray capacitance of one straight tube portion is equal to the current flowing in the capacitors C22 to C17 corresponding to the stray capacitance of the other straight tube portion.
Therefore, the currents flowing through all the resistors and capacitors connected to the positive phase high voltage transformer TX3, the currents flowing through all the resistors and capacitors connected to the negative phase high voltage transformer TX4, and the current flowing through the resistor R65 are all in an equilibrium state.

図18は、図17の等価回路における抵抗R65に流れる電流の波形を示す波形図であり、実線Aは、上述した平衡状態の場合の電流波形であり、1点鎖線Bは、意図的にコンデンサC22,C21,C20(浮遊容量の一部)を存在しないものとして、平衡状態を崩した場合の抵抗R65に流れる電流波形である。
このように浮遊容量の一部を存在しないものとした場合の変化により、抵抗R65に流れる電流が、浮遊容量の影響を受けていることが分かる。従って、図16に示す従来の回路は、浮遊容量の影響を受けると、管電流を検出する為の抵抗R65に流れる電流が変動することから、駆動制御回路10は、冷陰極管1に対して安定したフィードバック制御ができなくなる。
FIG. 18 is a waveform diagram showing a waveform of a current flowing through the resistor R65 in the equivalent circuit of FIG. 17. A solid line A is a current waveform in the above-described equilibrium state, and a one-dot chain line B is a capacitor intentionally. It is a current waveform that flows through the resistor R65 when the equilibrium state is broken assuming that C22, C21, and C20 (part of the stray capacitance) do not exist.
Thus, it can be seen that the current flowing through the resistor R65 is affected by the stray capacitance due to the change when a part of the stray capacitance does not exist. Therefore, when the conventional circuit shown in FIG. 16 is affected by the stray capacitance, the current flowing through the resistor R65 for detecting the tube current fluctuates. Stable feedback control cannot be performed.

特許文献1には、第一発振トランス及び第二発振トランスの各二次巻線の一方の端子に冷陰極管の両電極を接続し、各二次巻線の一方の端子から互いに逆位相の発振電圧を印加し、第二発振トランスの二次巻線の他方の端子が、管電流検出用抵抗を介して接地されている冷陰極管点灯装置が開示されている。この場合、管電流は、第二発振トランスの2次巻線の接地側から測定される。
特許文献2には、圧電トランスの出力を冷陰極放電灯の両端電極に接続し、圧電トランス及び冷陰極放電灯間のライン上にカレントトランスを設けて管電流を検出し、検出された管電流は管電流検出処理部の入力端の差動増幅器に入力される圧電トランス駆動回路が開示されている。この場合、管電流は、圧電トランスの高電圧下において測定される。
In Patent Document 1, both electrodes of a cold-cathode tube are connected to one terminal of each secondary winding of the first oscillation transformer and the second oscillation transformer, and the opposite phases of the electrodes are connected to one terminal of each secondary winding. A cold-cathode tube lighting device is disclosed in which an oscillation voltage is applied and the other terminal of the secondary winding of the second oscillation transformer is grounded via a tube current detection resistor. In this case, the tube current is measured from the ground side of the secondary winding of the second oscillation transformer.
In Patent Document 2, the output of a piezoelectric transformer is connected to both end electrodes of a cold cathode discharge lamp, a current transformer is provided on the line between the piezoelectric transformer and the cold cathode discharge lamp, and the tube current is detected. Discloses a piezoelectric transformer drive circuit that is input to a differential amplifier at the input end of the tube current detection processing unit. In this case, the tube current is measured under the high voltage of the piezoelectric transformer.

特許文献3には、2個のトランスが2個のランプに対応するように、駆動部と2個のランプとの間に接続され、駆動部からの駆動信号がトランスを通してランプに供給され、2個のトランスの2次側が互いに接続された液晶表示装置のバックライト駆動装置が開示されている。2個のランプは抵抗を通じて直列接続されており、その抵抗の両端電圧を整流した電圧により、2個のランプの管電流を検出してフィードバック制御している。この場合、管電流は、トランスの2次巻線の高圧側で測定されている。   In Patent Document 3, two transformers are connected between a drive unit and two lamps so as to correspond to two lamps, and a drive signal from the drive unit is supplied to the lamp through the transformer. A backlight driving device for a liquid crystal display device in which the secondary sides of the transformers are connected to each other is disclosed. The two lamps are connected in series through resistors, and the tube currents of the two lamps are detected and feedback controlled by the voltage obtained by rectifying the voltage across the resistors. In this case, the tube current is measured on the high voltage side of the secondary winding of the transformer.

特許文献4には、2つの出力電極から互いに逆位相の交流電圧を出力する1入力2出力型の圧電トランスと、2つの出力電極間に直列接続された2つの冷陰極管の間に挿入された電流検出素子と、電流検出素子の両端電圧が入力される差動増幅器とを備える冷陰極管の点灯駆動装置が開示されている。差動増幅器の出力に基づき、冷陰極管に通流する電流が一定になるように、圧電トランスの駆動周波数を制御する。この場合、管電流は、圧電トランスの高電圧下で測定される。   In Patent Document 4, a 1-input 2-output-type piezoelectric transformer that outputs AC voltages of opposite phases from two output electrodes and two cold cathode tubes connected in series between the two output electrodes are inserted. A cold-cathode tube lighting drive device including a current detection element and a differential amplifier to which a voltage across the current detection element is input is disclosed. Based on the output of the differential amplifier, the drive frequency of the piezoelectric transformer is controlled so that the current flowing through the cold cathode tube is constant. In this case, the tube current is measured under the high voltage of the piezoelectric transformer.

特許文献5には、逆位相駆動される放電灯の管電流を、正相高圧トランス及び逆相高圧トランスの各二次巻線の各低圧側端子及び接地端子間に接続された各抵抗の両端電圧の何れか高い方により検出し、放電灯の目標輝度に対応した電流値となるようデジタルフィルタを用いてフィードバック制御し、放電灯をバースト調光で点灯する放電灯駆動装置が開示されている。この場合、管電流は、正相高圧トランス及び逆相高圧トランスの各2次巻線の接地側から測定される。   In Patent Document 5, the tube current of a discharge lamp driven in reverse phase is applied to both ends of each resistor connected between each low voltage side terminal and ground terminal of each secondary winding of the positive phase high voltage transformer and the negative phase high voltage transformer. A discharge lamp driving device that detects a higher one of the voltages and performs feedback control using a digital filter so as to obtain a current value corresponding to the target brightness of the discharge lamp, and lights the discharge lamp by burst dimming is disclosed. . In this case, the tube current is measured from the ground side of each secondary winding of the positive-phase high-voltage transformer and the negative-phase high-voltage transformer.

特許文献6には、インバータから出力される駆動パルスを、正相高圧トランス及び逆相高圧トランスにより昇圧し、各二次巻線の各冷陰極管の管電流を均一化する為の各バラスト素子を介して互いに逆相に複数の冷陰極管の各両側の入力端に印加して点灯させる冷陰極管点灯装置が開示されている。検出したバラスト素子に流れる各電流を加算し、その加算値に基づき管電流を求め、管電流が一定になるように、インバータの駆動パルスのデューティを設定する。この場合、管電流は、正相高圧トランス及び逆相高圧トランスの各2次巻線の高圧側で測定される。
実開平06−19299号公報 特開2003−249393号公報 特開2004−54294号公報 特開2004−241266号公報 特開2006−294328号公報 特開2007−59155号公報
In Patent Document 6, each ballast element for boosting a drive pulse output from an inverter by a positive-phase high-voltage transformer and a negative-phase high-voltage transformer and equalizing the tube current of each cold-cathode tube of each secondary winding is disclosed. A cold-cathode tube lighting device is disclosed in which light is applied to the input terminals on both sides of a plurality of cold-cathode tubes in opposite phases to each other to light them. The detected currents flowing through the ballast elements are added, a tube current is obtained based on the added value, and the duty of the inverter drive pulse is set so that the tube current becomes constant. In this case, the tube current is measured on the high voltage side of each secondary winding of the positive phase high voltage transformer and the negative phase high voltage transformer.
Japanese Utility Model Publication No. 06-19299 JP 2003-249393 A JP 2004-54294 A JP 2004-241266 A JP 2006-294328 A JP 2007-59155 A

逆位相点灯する冷陰極管点灯装置では、管電流を検出する方法として、高圧トランスの2次巻線の高圧側か接地側から測定する方法が考えられ、上述した特許文献では、特許文献3,6に記載されたものが、2次巻線の高圧側から測定し、特許文献1,5に記載されたものが、2次巻線の接地側から測定している。2次巻線の高圧側から測定するには、絶縁トランスを介さなければならず、部品コストが上昇する。また、検出することができても、冷陰極管及びその支持構造物間に生じる浮遊容量の影響を排除することができず、管電流を正確に検出できないので、フィードバックにより管電流を一定に制御できないという問題がある。   In cold-cathode tube lighting devices that perform reverse phase lighting, as a method of detecting the tube current, a method of measuring from the high voltage side or the ground side of the secondary winding of the high voltage transformer is considered. 6 is measured from the high-voltage side of the secondary winding, and those described in Patent Documents 1 and 5 are measured from the ground side of the secondary winding. In order to measure from the high voltage side of the secondary winding, it is necessary to pass through an insulation transformer, which increases the cost of parts. Even if it can be detected, the effect of stray capacitance between the cold cathode tube and its supporting structure cannot be eliminated, and the tube current cannot be accurately detected, so the tube current is controlled to be constant by feedback. There is a problem that you can not.

特許文献2,4に記載されたものは、圧電トランスを使用して、本願発明のような巻線は使用していないが、管電流は、圧電トランスの高電圧下で測定されており、高耐圧性能及び漏れ電流対策が必要であるので実用的でなく、浮遊容量成分による電流を分ける手段がないので、正しい管電流は測定できない。また、前述したように(図16)、高圧トランスの2次巻線の接地側に電流検出用の抵抗R65を設けても、冷陰極管及び支持構造物間の浮遊容量の影響は排除できていない。   In Patent Documents 2 and 4, a piezoelectric transformer is used and no winding as in the present invention is used, but the tube current is measured under the high voltage of the piezoelectric transformer, It is impractical because it requires pressure resistance and leakage current countermeasures, and there is no means for separating currents due to stray capacitance components, so the correct tube current cannot be measured. Further, as described above (FIG. 16), even if the current detection resistor R65 is provided on the ground side of the secondary winding of the high voltage transformer, the influence of the stray capacitance between the cold cathode tube and the supporting structure can be eliminated. Absent.

また、液晶表示装置で多用されるU字管型の冷陰極管の管電流測定では、トランスの2次電流を測定する以外に方法はなく、現在、実測されている管電流の測定値は、冷陰極管及び支持構造物間の浮遊容量の影響を受ける為に正確ではなく、フィードバックにより管電流を一定に制御できないという問題がある。この問題は、直管型の冷陰極管の管電流測定においても同様である。また、上記特許文献1〜6に開示されたものにおいても、冷陰極管及び支持構造物間の浮遊容量の影響は、排除されていないか、又は全く考慮されていない。   In addition, in the tube current measurement of a U-shaped cold cathode tube frequently used in liquid crystal display devices, there is no method other than measuring the secondary current of the transformer, and the currently measured tube current measurement value is There is a problem that it is not accurate because it is affected by the stray capacitance between the cold cathode tube and the support structure, and the tube current cannot be controlled constant by feedback. This problem also applies to the tube current measurement of a straight tube type cold cathode tube. Moreover, also in what was disclosed by the said patent documents 1-6, the influence of the stray capacitance between a cold cathode tube and a support structure is not excluded, or is not considered at all.

本発明は、上述したような事情に鑑みてなされたものであり、第1,2発明では、放電灯及びその支持構造物間の浮遊容量の影響を受け難く、管電流を正確に検出できる放電灯点灯装置を提供することを目的とする。
第3,4発明では、複数の放電灯を備え、放電灯及びその支持構造物間の浮遊容量の影響を受け難く、管電流を正確に検出できる放電灯点灯装置を提供することを目的とする。
The present invention has been made in view of the above-described circumstances. In the first and second inventions, the discharge current that is hardly affected by the stray capacitance between the discharge lamp and its supporting structure and can accurately detect the tube current. An object is to provide an electric lighting device.
It is an object of the third and fourth inventions to provide a discharge lamp lighting device that includes a plurality of discharge lamps, is less susceptible to stray capacitance between the discharge lamp and its supporting structure, and can accurately detect tube current. .

第1発明に係る放電灯点灯装置は、駆動用の交流電圧を発生させる駆動回路と、二次巻線の低圧側端子がそれぞれ接地電位側に接続され、前記駆動回路が発生させた交流電圧を互いに逆位相に昇圧する正相変圧器及び逆相変圧器とを備え、前記正相変圧器及び前記逆相変圧器の各二次巻線の各高圧側端子間に前記放電灯を接続して点灯させ、前記放電灯に流れる電流を検出し、検出した電流に基づき、前記駆動回路が前記放電灯に流す電流を一定に制御するように構成してある放電灯点灯装置において、
前記正相変圧器及び前記逆相変圧器の二次巻線の低圧側端子それぞれに各一方の端子が接続された第1抵抗及び第2抵抗と、接地電位側に一方の端子が接続された第3抵抗と、差動増幅器とを備え、前記第1抵抗、前記第2抵抗及び前記第3抵抗の各他方の端子が接続され、前記第1抵抗及び前記第2抵抗の各一方の端子間の電圧が前記差動増幅器に与えられ、
前記第3抵抗と前記差動増幅器が前記放電灯と接地との間に発生する浮遊容量に起因する電流を打ち消して、前記放電灯に流れる電流のみが検出されるようにしたことを特徴とする。
A discharge lamp lighting device according to a first aspect of the present invention is configured such that a driving circuit that generates an AC voltage for driving and a low-voltage side terminal of a secondary winding are connected to a ground potential side, respectively, and an AC voltage generated by the driving circuit is generated. and a positive-phase transformers and reversed-phase transformer for boosting the opposite phase, by connecting the discharge lamp between the high-voltage side terminal of the positive-phase transformer and the negative-phase transformer for each secondary winding is lit, detects a current flowing through the discharge lamp, based on the detected current, the discharge lamp lighting device is arranged to control the current the driving circuit is flowing through said discharge lamp constant,
A first resistor and a second resistor which each one terminal in each low-voltage side terminal of the positive-phase transformer and the negative-phase transformer secondary winding is connected, one terminal of which is connected to the ground potential side and a third resistor, and a differential amplifier, the first resistor, the respective other terminal of the second resistor and the third resistor is connected, between said first resistor and said second respective one terminal of the resistor Is provided to the differential amplifier,
The third resistor and the differential amplifier cancel the current caused by the stray capacitance generated between the discharge lamp and the ground so that only the current flowing through the discharge lamp is detected. .

この放電灯点灯装置では、二次巻線の低圧側端子がそれぞれ接地電位側に接続された正相変圧器及び逆相変圧器が、駆動回路が発生させた交流電圧を互いに逆位相に昇圧する。正相変圧器及び逆相変圧器の各二次巻線の各高圧側端子間に放電灯を接続して点灯させ、放電灯に流れる電流を検出し、検出した電流に基づき、駆動回路が放電灯に流す電流を一定に制御する。
正相変圧器及び逆相変圧器の二次巻線の低圧側端子それぞれに、第1抵抗及び第2抵抗の各一方の端子が接続され、第3抵抗の一方の端子が接地電位側に接続されている。第1抵抗、第2抵抗及び第3抵抗の各他方の端子が接続され、第1抵抗及び第2抵抗の各一方の端子間の電圧が差動増幅器に与えられる。
そして、第3抵抗と差動増幅器が放電灯と接地との間に発生する浮遊容量に起因する電流を打ち消して、放電灯に流れる電流のみが検出される。
In this discharge lamp lighting device, a positive-phase transformer and a negative-phase transformer, each of which has a low-voltage side terminal of the secondary winding connected to the ground potential side, boosts the AC voltage generated by the drive circuit in opposite phases to each other. . A discharge lamp is connected between each high-voltage side terminal of each secondary winding of the normal phase transformer and the reverse phase transformer to light it, the current flowing through the discharge lamp is detected, and the drive circuit is released based on the detected current. The current flowing through the lamp is controlled to be constant.
Each terminal of the first resistor and the second resistor is connected to each of the low voltage side terminals of the secondary windings of the positive phase transformer and the negative phase transformer, and one terminal of the third resistor is connected to the ground potential side. Has been. The other terminals of the first resistor, the second resistor, and the third resistor are connected, and the voltage between the one terminal of the first resistor and the second resistor is applied to the differential amplifier.
Then, the third resistor and the differential amplifier cancel out the current caused by the stray capacitance generated between the discharge lamp and the ground, and only the current flowing through the discharge lamp is detected.

第2発明に係る放電灯点灯装置は、駆動用の交流電圧を発生させる駆動回路と、二次巻線の低圧側端子がそれぞれ接地電位側に接続され、前記駆動回路が発生させた交流電圧を互いに逆位相に昇圧する正相変圧器及び逆相変圧器とを備え、該正相変圧器及び逆相変圧器の各二次巻線の各高圧側端子間に放電灯を接続して点灯させ、該放電灯に流れる電流を検出し、検出した電流に基づき、前記駆動回路が放電灯に流す電流を一定に制御するように構成してある放電灯点灯装置において、前記正相変圧器及び逆相変圧器の各二次巻線の低圧側端子間に接続され、中点が前記接地電位側に接続された一次巻線と、一方の端子が前記接地電位側に接続された二次巻線とを有する変圧器を備え、該変圧器の二次巻線に流れる電流に基づき前記放電灯に流れる電流を検出するように構成してあることを特徴とする。   A discharge lamp lighting device according to a second aspect of the present invention is configured such that a driving circuit that generates a driving AC voltage and a low-voltage side terminal of a secondary winding are connected to a ground potential side, respectively, and an AC voltage generated by the driving circuit is generated. A positive-phase transformer and a negative-phase transformer that step up in opposite phases with each other, and connect a discharge lamp between each high-voltage side terminal of each secondary winding of the positive-phase transformer and the negative-phase transformer to light it. In the discharge lamp lighting device configured to detect the current flowing through the discharge lamp and to control the current flowing through the discharge lamp to be constant based on the detected current, the positive phase transformer and the reverse A primary winding connected between the low-voltage side terminals of each secondary winding of the phase transformer, the middle point being connected to the ground potential side, and the secondary winding having one terminal connected to the ground potential side And the discharge lamp based on the current flowing in the secondary winding of the transformer. Characterized in that is arranged to detect the current.

この放電灯点灯装置では、二次巻線の低圧側端子がそれぞれ接地電位側に接続された正相変圧器及び逆相変圧器が、駆動回路が発生させた交流電圧を互いに逆位相に昇圧する。正相変圧器及び逆相変圧器の各二次巻線の各高圧側端子間に放電灯を接続して点灯させ、放電灯に流れる電流を検出し、検出した電流に基づき、駆動回路が放電灯に流す電流を一定に制御する。
変圧器は、一次巻線が、正相変圧器及び逆相変圧器の各二次巻線の低圧側端子間に接続されている。変圧器の一次巻線の中点は接地電位側に接続され、二次巻線の一方の端子が接地電位側に接続されている。変圧器の二次巻線に流れる電流に基づき放電灯に流れる電流を検出する。
In this discharge lamp lighting device, a positive-phase transformer and a negative-phase transformer, each of which has a low-voltage side terminal of the secondary winding connected to the ground potential side, boosts the AC voltage generated by the drive circuit in opposite phases to each other. . A discharge lamp is connected between each high-voltage side terminal of each secondary winding of the normal phase transformer and the reverse phase transformer to light it, the current flowing through the discharge lamp is detected, and the drive circuit is released based on the detected current. The current flowing through the lamp is controlled to be constant.
The primary winding of the transformer is connected between the low-voltage side terminals of the secondary windings of the positive phase transformer and the negative phase transformer. The midpoint of the primary winding of the transformer is connected to the ground potential side, and one terminal of the secondary winding is connected to the ground potential side. Based on the current flowing through the secondary winding of the transformer, the current flowing through the discharge lamp is detected.

第3発明に係る放電灯点灯装置は、駆動用の交流電圧を発生させる1又は複数の駆動回路と、二次巻線の低圧側端子がそれぞれ接地電位側に接続され、前記駆動回路が発生させた交流電圧を互いに逆位相に昇圧する複数の放電灯毎の正相変圧器及び逆相変圧器とを備え、該正相変圧器及び逆相変圧器の各二次巻線の各高圧側端子間に前記放電灯を接続して点灯させ、該放電灯に流れる電流を検出し、検出した電流に基づき、前記駆動回路が放電灯に流す電流を一定に制御するように構成してある放電灯点灯装置において、一の放電灯の前記正相変圧器及び他の放電灯の前記逆相変圧器の二次巻線の各低圧側端子間に直列接続された第1抵抗及び第2抵抗と、該第1抵抗及び第2抵抗の接続節点並びに前記接地電位側間に接続された第3抵抗とを前記複数の放電灯毎に備え、前記第1抵抗及び第2抵抗の直列回路の何れか1つの両端電圧が与えられる差動増幅器を備え、該差動増幅器の出力に基づき放電灯の電流を検出し、前記1又は複数の駆動回路に与えるように構成してあることを特徴とする。   According to a third aspect of the present invention, there is provided a discharge lamp lighting device in which one or a plurality of drive circuits for generating a driving AC voltage and a low-voltage side terminal of a secondary winding are connected to the ground potential side, respectively, A positive-phase transformer and a negative-phase transformer for each of the plurality of discharge lamps for boosting the alternating voltage in mutually opposite phases, and each high-voltage side terminal of each secondary winding of the positive-phase transformer and the negative-phase transformer A discharge lamp configured to connect and discharge the discharge lamp in between, detect a current flowing through the discharge lamp, and control the current flowing through the discharge lamp at a constant level based on the detected current In the lighting device, a first resistor and a second resistor connected in series between the low-voltage side terminals of the secondary winding of the positive phase transformer of one discharge lamp and the reverse phase transformer of another discharge lamp, A connection node between the first resistor and the second resistor and a third resistor connected between the ground potential sides; A differential amplifier that is provided for each of the plurality of discharge lamps and that is supplied with a voltage across one of the series circuit of the first resistor and the second resistor is provided, and the current of the discharge lamp is detected based on the output of the differential amplifier Further, it is configured to be provided to the one or a plurality of drive circuits.

この放電灯点灯装置では、1又は複数の駆動回路が、駆動用の交流電圧を発生させ、複数の放電灯毎の正相変圧器及び逆相変圧器は、二次巻線の低圧側端子がそれぞれ接地電位側に接続され、駆動回路が発生させた交流電圧を互いに逆位相に昇圧する。正相変圧器及び逆相変圧器の各二次巻線の各高圧側端子間に放電灯を接続して点灯させ、放電灯に流れる電流を検出し、検出した電流に基づき、駆動回路が放電灯に流す電流を一定に制御する。
一の放電灯の正相変圧器及び他の放電灯の逆相変圧器の二次巻線の各低圧側端子間に、第1抵抗及び第2抵抗が直列接続され、第3抵抗が、第1抵抗及び第2抵抗の接続節点並びに接地電位側間に接続されている。差動増幅器は、第1抵抗及び第2抵抗の直列回路の何れか1つの両端電圧が与えられ、差動増幅器の出力に基づき放電灯の電流を検出し、1又は複数の駆動回路に与える。
In this discharge lamp lighting device, one or a plurality of drive circuits generate a driving AC voltage, and the positive phase transformer and the reverse phase transformer for each of the plurality of discharge lamps have a low voltage side terminal of the secondary winding. Each of them is connected to the ground potential side, and boosts the AC voltage generated by the drive circuit in mutually opposite phases. A discharge lamp is connected between each high-voltage side terminal of each secondary winding of the normal phase transformer and the reverse phase transformer to light it, the current flowing through the discharge lamp is detected, and the drive circuit is released based on the detected current. The current flowing through the lamp is controlled to be constant.
A first resistor and a second resistor are connected in series between the low-voltage side terminals of the secondary winding of the positive phase transformer of one discharge lamp and the negative phase transformer of the other discharge lamp, and the third resistor is the first resistor The first and second resistors are connected between the connection node and the ground potential side. The differential amplifier is given a voltage across either one of the series circuit of the first resistor and the second resistor, detects the current of the discharge lamp based on the output of the differential amplifier, and supplies it to one or a plurality of drive circuits.

第4発明に係る放電灯点灯装置は、駆動用の交流電圧を発生させる1又は複数の駆動回路と、二次巻線の低圧側端子がそれぞれ接地電位側に接続され、前記駆動回路が発生させた交流電圧を互いに逆位相に昇圧する複数の放電灯毎の正相変圧器及び逆相変圧器とを備え、該正相変圧器及び逆相変圧器の各二次巻線の各高圧側端子間に前記放電灯を接続して点灯させ、該放電灯に流れる電流を検出し、検出した電流に基づき、前記駆動回路が放電灯に流す電流を一定に制御するように構成してある放電灯点灯装置において、前記放電灯の任意の1対における一方の放電灯の前記正相変圧器及び他方の放電灯の逆相変圧器の各二次巻線の低圧側端子間に両端子が接続され、中点が前記接地電位側に接続された一次巻線と、一方の端子が前記接地電位側に接続された二次巻線とを有する変圧器を備え、前記放電灯の他の1又は複数の対における一方の放電灯の逆相変圧器の二次巻線の低圧側端子に一方の端子が接続された第1抵抗と、他方の放電灯の正相変圧器の二次巻線の低圧側端子に一方の端子が接続された第2抵抗と、前記接地電位側に一方の端子が接続された第3抵抗とを備え、前記第1抵抗、第2抵抗及び第3抵抗の各他方の端子が接続され、前記変圧器の二次巻線に流れる電流に基づき、放電灯に流れる電流を検出し、前記1又は複数の駆動回路に与えるように構成してあることを特徴とする。   According to a fourth aspect of the present invention, there is provided a discharge lamp lighting device in which one or a plurality of driving circuits for generating a driving AC voltage and a low-voltage side terminal of a secondary winding are connected to a ground potential side, and the driving circuit generates the driving voltage. A positive-phase transformer and a negative-phase transformer for each of the plurality of discharge lamps for boosting the alternating voltage in mutually opposite phases, and each high-voltage side terminal of each secondary winding of the positive-phase transformer and the negative-phase transformer A discharge lamp configured to connect and discharge the discharge lamp in between, detect a current flowing through the discharge lamp, and control the current flowing through the discharge lamp at a constant level based on the detected current In the lighting device, both terminals are connected between the low-voltage side terminals of the secondary windings of the positive phase transformer of one discharge lamp and the reverse phase transformer of the other discharge lamp in an arbitrary pair of the discharge lamps. A primary winding whose middle point is connected to the ground potential side and one terminal of the ground winding A transformer having a secondary winding connected to the side of the discharge lamp, and one of the low-voltage side terminals of the secondary winding of the reverse-phase transformer of one of the discharge lamps in the other one or more pairs of the discharge lamp. A first resistor having a terminal connected thereto, a second resistor having one terminal connected to the low voltage side terminal of the secondary winding of the positive phase transformer of the other discharge lamp, and one terminal being connected to the ground potential side. A third resistor connected to the other terminal of the first resistor, the second resistor, and the third resistor, and a current flowing through the discharge lamp based on a current flowing through the secondary winding of the transformer. Is detected and applied to the one or a plurality of driving circuits.

この放電灯点灯装置では、1又は複数の駆動回路が、駆動用の交流電圧を発生させ、複数の放電灯毎の正相変圧器及び逆相変圧器は、二次巻線の低圧側端子がそれぞれ接地電位側に接続され、駆動回路が発生させた交流電圧を互いに逆位相に昇圧する。正相変圧器及び逆相変圧器の各二次巻線の各高圧側端子間に放電灯を接続して点灯させ、放電灯に流れる電流を検出し、検出した電流に基づき、駆動回路が放電灯に流す電流を一定に制御する。   In this discharge lamp lighting device, one or a plurality of drive circuits generate a driving AC voltage, and the positive phase transformer and the reverse phase transformer for each of the plurality of discharge lamps have a low voltage side terminal of the secondary winding. Each of them is connected to the ground potential side, and boosts the AC voltage generated by the drive circuit in mutually opposite phases. A discharge lamp is connected between each high-voltage side terminal of each secondary winding of the normal phase transformer and the reverse phase transformer to light it, the current flowing through the discharge lamp is detected, and the drive circuit is released based on the detected current. The current flowing through the lamp is controlled to be constant.

変圧器の一次巻線が、放電灯の任意の1対における一方の放電灯の正相変圧器及び他方の放電灯の逆相変圧器の各二次巻線の低圧側端子間に、両端子が接続され、その中点が接地電位側に接続され、二次巻線は、一方の端子が接地電位側に接続されている。
放電灯の他の1又は複数の対では、一方の放電灯の逆相変圧器の二次巻線の低圧側端子に、第1抵抗の一方の端子が接続され、他方の放電灯の正相変圧器の二次巻線の低圧側端子に、第2抵抗の一方の端子が接続され、接地電位側に第3抵抗の一方の端子が接続され、第1抵抗、第2抵抗及び第3抵抗の各他方の端子は接続されている。変圧器の二次巻線に流れる電流に基づき、放電灯に流れる電流を検出し、1又は複数の駆動回路に与える。
The primary winding of the transformer is connected between the low-voltage side terminals of the secondary windings of the positive phase transformer of one discharge lamp and the negative phase transformer of the other discharge lamp in any pair of discharge lamps. Are connected, the middle point thereof is connected to the ground potential side, and one terminal of the secondary winding is connected to the ground potential side.
In the other one or more pairs of discharge lamps, one terminal of the first resistor is connected to the low voltage side terminal of the secondary winding of the reverse phase transformer of one discharge lamp, and the positive phase of the other discharge lamp One terminal of the second resistor is connected to the low-voltage side terminal of the secondary winding of the transformer, and one terminal of the third resistor is connected to the ground potential side, and the first resistor, the second resistor, and the third resistor Each other terminal is connected. Based on the current flowing through the secondary winding of the transformer, the current flowing through the discharge lamp is detected and applied to one or more drive circuits.

第1,2発明に係る放電灯点灯装置によれば、電流検出用回路に流れる電流への浮遊容量成分の影響を低減することができるので、放電灯及びその支持構造物間の浮遊容量の影響を受け難く、管電流を正確に検出できる放電灯点灯装置を実現することができる。また、フィードバックにより管電流を一定に制御できるので、バックライトに使用された場合は、液晶表示装置に輝度ムラが生じ難い。   According to the discharge lamp lighting device according to the first and second inventions, the influence of the stray capacitance component on the current flowing through the current detection circuit can be reduced. Therefore, it is possible to realize a discharge lamp lighting device that can detect the tube current accurately. Further, since the tube current can be controlled to be constant by feedback, luminance unevenness hardly occurs in the liquid crystal display device when used for a backlight.

第3,4発明に係る放電灯点灯装置によれば、電流検出用回路に流れる電流への浮遊容量成分の影響を低減することができるので、複数の放電灯を備え、放電灯及びその支持構造物間の浮遊容量の影響を受け難く、管電流を正確に検出できる放電灯点灯装置を実現することができる。また、フィードバックにより管電流を一定に制御できるので、バックライトに使用された場合は、液晶表示装置に輝度ムラが生じ難い。   According to the discharge lamp lighting device according to the third and fourth inventions, since the influence of the stray capacitance component on the current flowing through the current detection circuit can be reduced, the discharge lamp includes a plurality of discharge lamps, and the support structure thereof. It is possible to realize a discharge lamp lighting device that is less susceptible to stray capacitance between objects and can accurately detect tube current. Further, since the tube current can be controlled to be constant by feedback, luminance unevenness hardly occurs in the liquid crystal display device when used for a backlight.

以下に、本発明をその実施の形態を示す図面に基づき説明する。
(発明の経緯)
図14は、前述した図17に示す冷陰極管点灯装置の正相高圧トランスTX3の二次巻線に接続された抵抗R65、及び逆相高圧トランスTX4の二次巻線の接地に代えて、正相高圧トランスTX3の二次巻線及び逆相高圧トランスTX4の二次巻線の各低圧側端子間にトランスTX1の一次巻線を接続した等価回路を示す回路図である。
Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments thereof.
(Background of the invention)
14 is replaced with the resistor R65 connected to the secondary winding of the positive phase high voltage transformer TX3 of the cold cathode tube lighting device shown in FIG. 17 and the grounding of the secondary winding of the negative phase high voltage transformer TX4, It is a circuit diagram which shows the equivalent circuit which connected the primary winding of transformer TX1 between each low voltage | pressure side terminal of the secondary winding of positive phase high voltage transformer TX3, and the secondary winding of reverse phase high voltage transformer TX4.

図15は、図14のトランスTX1の二次巻線の両端に接続された抵抗R19に流れる電流の波形を示す波形図であり、実線Aは、浮遊容量が安定している平衡状態の場合の電流波形であり、1点鎖線Bは、意図的にコンデンサC22,C21,C20(浮遊容量の一部)を存在しないものとして、平衡状態を崩した場合の抵抗R19に流れる電流波形である。両者には殆ど差が無く、抵抗R19に流れる電流は、浮遊容量の影響を受け難いことが分かる。   FIG. 15 is a waveform diagram showing a waveform of a current flowing through the resistor R19 connected to both ends of the secondary winding of the transformer TX1 in FIG. 14, and a solid line A represents a case of an equilibrium state where the stray capacitance is stable. A one-dot chain line B is a current waveform that flows in the resistor R19 when the equilibrium state is broken assuming that the capacitors C22, C21, and C20 (part of the stray capacitance) do not exist intentionally. There is almost no difference between the two, and it can be seen that the current flowing through the resistor R19 is hardly affected by the stray capacitance.

つまり、コンデンサC22,C21,C20(浮遊容量の一部)を存在しないものとして、平衡状態を崩した場合の不平衡電流は、コンデンサC2,C3とコンデンサ(浮遊容量)C10〜C22との平衡状態で定まる電位と、正相高圧トランスTX3及び逆相高圧トランスTX4の接地電位との電位差により生じていることが分かる。
また、図14に示すように構成すると、冷陰極管(U字管)1の管電流が、正相高圧トランスTX3の二次巻線から抵抗R1〜R14を通じて、トランスTX4の二次巻線に流れるループが形成されており、接地電位との関係は小さい。しかし、実際問題として、トランスTX1の一次側を接地電位から浮かせることは、安全上容認できないので、以下のように構成した。
That is, assuming that the capacitors C22, C21, and C20 (part of the stray capacitance) do not exist, the unbalanced current when the balanced state is lost is the balanced state between the capacitors C2 and C3 and the capacitors (floating capacitances) C10 to C22. It can be seen that this is caused by the potential difference between the potential determined by the above and the ground potential of the positive-phase high-voltage transformer TX3 and the negative-phase high-voltage transformer TX4.
Further, when configured as shown in FIG. 14, the tube current of the cold cathode tube (U-shaped tube) 1 is transferred from the secondary winding of the positive phase high voltage transformer TX3 to the secondary winding of the transformer TX4 through the resistors R1 to R14. A flowing loop is formed, and the relationship with the ground potential is small. However, as a practical matter, floating the primary side of the transformer TX1 from the ground potential is unacceptable for safety reasons, so the following configuration is adopted.

(実施の形態1)
図1は、本発明に係る放電灯点灯装置の実施の形態1である冷陰極管点灯装置の要部構成を示す回路図である。
この冷陰極管点灯装置は、インバータを含む駆動制御回路(駆動回路)10が、30k〜80kHz程度の高周波電圧を発生させ、冷陰極管1に流れる管電流が所定値になるようにフィードバック制御する。駆動制御回路10が発生させた高周波電圧は、正相高圧トランス(正相変圧器)TX3及び逆相高圧トランス(逆相変圧器)TX4に与えられる。正相高圧トランスTX3及び逆相高圧トランスTX4は、与えられた高周波電圧をそれぞれ互いに逆位相に昇圧する。
(Embodiment 1)
FIG. 1 is a circuit diagram showing a main configuration of a cold cathode tube lighting device which is Embodiment 1 of a discharge lamp lighting device according to the present invention.
In this cold-cathode tube lighting device, a drive control circuit (drive circuit) 10 including an inverter generates a high-frequency voltage of about 30 k to 80 kHz and performs feedback control so that the tube current flowing through the cold-cathode tube 1 becomes a predetermined value. . The high-frequency voltage generated by the drive control circuit 10 is applied to the positive-phase high-voltage transformer (normal-phase transformer) TX3 and the negative-phase high-voltage transformer (negative-phase transformer) TX4. The positive-phase high-voltage transformer TX3 and the negative-phase high-voltage transformer TX4 boost the given high-frequency voltages in mutually opposite phases.

正相高圧トランスTX3及び逆相高圧トランスTX4の二次巻線の低圧側端子それぞれには、抵抗R56及び抵抗R57の一方の端子がそれぞれ接続されている。抵抗R58の一方の端子が接地され、抵抗R56,R57,R58の各他方の端子は共通接続されている。正相高圧トランスTX3の二次巻線の高圧側端子には、一方の端子が接地されたコンデンサC2の他方の端子が接続されている。逆相高圧トランスTX4の二次巻線の高圧側端子には、一方の端子が接地されたコンデンサC3の他方の端子が接続されている。
冷陰極管1が、正相高圧トランスTX3及び逆相高圧トランスTX4の各二次巻線の各高圧側端子間に接続されている。尚、ここでは、冷陰極管1は、液晶表示装置で多用されるU字管とする。
One terminals of a resistor R56 and a resistor R57 are connected to the low-voltage side terminals of the secondary windings of the positive-phase high-voltage transformer TX3 and the negative-phase high-voltage transformer TX4, respectively. One terminal of the resistor R58 is grounded, and the other terminals of the resistors R56, R57, and R58 are commonly connected. The other terminal of the capacitor C2, whose one terminal is grounded, is connected to the high voltage side terminal of the secondary winding of the positive phase high voltage transformer TX3. The other terminal of the capacitor C3 with one terminal grounded is connected to the high voltage side terminal of the secondary winding of the negative phase high voltage transformer TX4.
The cold cathode tube 1 is connected between the high-voltage side terminals of the secondary windings of the positive-phase high-voltage transformer TX3 and the reverse-phase high-voltage transformer TX4. Here, the cold cathode tube 1 is a U-shaped tube frequently used in a liquid crystal display device.

差動増幅器20の両入力端子に抵抗R56,R57の両端電圧が与えられ、差動増幅器20は、与えられた両端電圧に応じた電圧を出力し、整流回路30に与える。整流回路30は、与えられた電圧を整流して、冷陰極管1に流れる電流値として検出し、その電流値を駆動制御回路10にフィードバックさせる。駆動制御回路10は、与えられた電流値に基づき、冷陰極管1に流す電流が所定値になるようにフィードバック制御する。   Both ends of the resistors R56 and R57 are given to both input terminals of the differential amplifier 20, and the differential amplifier 20 outputs a voltage corresponding to the given both-ends voltage and gives it to the rectifier circuit 30. The rectifier circuit 30 rectifies the applied voltage, detects it as a current value flowing through the cold cathode tube 1, and feeds back the current value to the drive control circuit 10. The drive control circuit 10 performs feedback control based on the given current value so that the current passed through the cold cathode tube 1 becomes a predetermined value.

差動増幅器20は、抵抗56の一方の端子電位が、コンデンサC72を通じて、NPN型トランジスタQ9のベースに与えられる。抵抗57の一方の端子電位が、コンデンサC73を通じて、NPN型トランジスタQ10のベースに与えられる。トランジスタQ9のコレクタは、抵抗R72を通じて電源V6に接続され、エミッタは、抵抗R74を通じて、負端子が接地された定電流源I1の正端子に接続されている。トランジスタQ10のコレクタは、抵抗R73を通じて電源V6に接続され、エミッタは、抵抗R75を通じて、定電流源I1の正端子に接続されている。   In the differential amplifier 20, one terminal potential of the resistor 56 is given to the base of the NPN transistor Q9 through the capacitor C72. One terminal potential of the resistor 57 is given to the base of the NPN transistor Q10 through the capacitor C73. The collector of the transistor Q9 is connected to the power supply V6 through the resistor R72, and the emitter is connected to the positive terminal of the constant current source I1 whose negative terminal is grounded through the resistor R74. The collector of the transistor Q10 is connected to the power source V6 through the resistor R73, and the emitter is connected to the positive terminal of the constant current source I1 through the resistor R75.

トランジスタQ9のベースには抵抗R78の一方の端子が接続され、抵抗R78の他方の端子には、電源V6及び接地端子間に接続された抵抗R76,R77による分圧が与えられている。トランジスタQ10のベースには抵抗R79の一方の端子が接続され、抵抗R79の他方の端子には、電源V6及び接地端子間に接続された抵抗R76,R77による分圧が与えられている。
トランジスタQ9のコレクタは、コンデンサC71及び抵抗R70を通じて接地されており、抵抗R70には、アノードが接地されたダイオードD2が並列接続されている。
One terminal of a resistor R78 is connected to the base of the transistor Q9, and the other terminal of the resistor R78 is divided by resistors R76 and R77 connected between the power supply V6 and the ground terminal. One terminal of a resistor R79 is connected to the base of the transistor Q10, and the other terminal of the resistor R79 is divided by resistors R76 and R77 connected between the power supply V6 and the ground terminal.
The collector of the transistor Q9 is grounded through a capacitor C71 and a resistor R70, and a diode D2 whose anode is grounded is connected in parallel to the resistor R70.

トランジスタQ10のコレクタは、コンデンサC70及び抵抗R71を通じて接地されており、抵抗R71には、アノードが接地されたダイオードD1が並列接続されている。ダイオードD1のカソードには、ダイオードD3のアノードが接続され、ダイオードD2のカソードには、ダイオードD4のアノードが接続され、ダイオードD3,D4の各カソードは共通接続されている。これにより、整流回路30は、差動増幅器20の出力を全波整流して駆動制御回路10へ管電流をフィードバックする。   The collector of the transistor Q10 is grounded through a capacitor C70 and a resistor R71, and a diode D1 whose anode is grounded is connected in parallel to the resistor R71. The anode of the diode D3 is connected to the cathode of the diode D1, the anode of the diode D4 is connected to the cathode of the diode D2, and the cathodes of the diodes D3 and D4 are connected in common. As a result, the rectifier circuit 30 performs full-wave rectification on the output of the differential amplifier 20 and feeds back the tube current to the drive control circuit 10.

図2は、図1の冷陰極管点灯装置を示す回路図において、冷陰極管(U字管)1を抵抗R1〜R14及び容量(コンデンサ)C10〜C22で等価回路表示し、差動増幅器20及び整流回路30をブロックで表示したブロック図である。冷陰極管1の等価回路は、上述した図14,17の冷陰極管1の等価回路と同様であるので、説明を省略する。   FIG. 2 is a circuit diagram showing the cold-cathode tube lighting device of FIG. 1. In FIG. 2, the cold-cathode tube (U-shaped tube) 1 is displayed as an equivalent circuit by resistors R1 to R14 and capacitors (capacitors) C10 to C22. 2 is a block diagram showing the rectifier circuit 30 in blocks. The equivalent circuit of the cold cathode tube 1 is the same as the equivalent circuit of the cold cathode tube 1 shown in FIGS.

このような構成の冷陰極管点灯装置では、管電流が、正相高圧トランスTX3の二次巻線の高圧側端子、冷陰極管1、逆相高圧トランスTX4の二次巻線の高圧側端子、同低圧側端子、抵抗R57,R56、及び正相高圧トランスTX3の二次巻線の低圧側端子で形成されるループを流れる。抵抗R56,R57の両端電圧を差動増幅器20で取出す際に、差動増幅器20の後述する動作により、また、浮遊容量及び接地端子間に流れる電流が、抵抗R58により打消されることにより、トランスTX3からトランスTX4に戻る管電流のみを取出すことができる。   In the cold cathode tube lighting device having such a configuration, the tube current is supplied to the high voltage side terminal of the secondary winding of the positive phase high voltage transformer TX3, the high voltage side terminal of the secondary winding of the cold cathode tube 1 and the negative phase high voltage transformer TX4. The low-voltage side terminal, resistors R57 and R56, and the low-voltage side terminal of the secondary winding of the positive phase high-voltage transformer TX3 flow. When the voltage across the resistors R56 and R57 is taken out by the differential amplifier 20, the current flowing between the stray capacitance and the ground terminal is canceled by the resistor R58 by the operation of the differential amplifier 20, which will be described later. Only the tube current returning from TX3 to transformer TX4 can be taken.

図3,4は、図1,2に示す差動増幅器20の動作を示す波形図である。
図1,2の冷陰極管点灯装置が、冷陰極管1の浮遊容量が安定している平衡状態であるとき、図3(c)に示すように、トランジスタQ9,Q10のベース電圧は、互いに逆位相で振幅が等しい。従って、トランジスタQ9,Q10のエミッタ電流は互いに逆位相で振幅が等しくなることから、図3(b)に示すように、定電流源I1には電圧変動が発生しない。故に、トランジスタQ9,Q10への入力は、定電流源I1の電圧変動分は加わらず、各ベースへの電圧のみであり、その差が増幅され、例えば、抵抗R70の両端電圧は、図3(a)に示すようになる。
3 and 4 are waveform diagrams showing the operation of the differential amplifier 20 shown in FIGS.
When the cold-cathode tube lighting device of FIGS. 1 and 2 is in an equilibrium state in which the stray capacitance of the cold-cathode tube 1 is stable, as shown in FIG. 3C, the base voltages of the transistors Q9 and Q10 are Amplitude is equal in antiphase. Therefore, since the emitter currents of the transistors Q9 and Q10 have the opposite phases and the same amplitude, no voltage fluctuation occurs in the constant current source I1 as shown in FIG. Therefore, the input to the transistors Q9 and Q10 is only the voltage to each base without adding the voltage fluctuation of the constant current source I1, and the difference is amplified. For example, the voltage across the resistor R70 is shown in FIG. As shown in a).

図1,2の冷陰極管点灯装置を不平衡状態にしたとき(例えば、図2のコンデンサC22,C21,C20(浮遊容量の一部)を存在しないものとしたとき)、図4(c)に示すように、トランジスタQ9,Q10のベース電圧は互いに異なり、図4(b)に示すように、その差分が定電流源I1の電圧変動として現れる。トランジスタQ9への真の入力は、ベースへの電圧(図4(c)破線)と定電流源I1の電圧(図4(b))との電圧差となるので、その分振幅が小さくなる。一方、トランジスタQ10への真の入力は、ベースへの電圧(図4(c)実線)と定電流源I1の電圧(図4(b))との電圧差となるが、互いに逆位相となるので、振幅は大きくなる。   When the cold-cathode tube lighting device of FIGS. 1 and 2 is in an unbalanced state (for example, when the capacitors C22, C21, and C20 (part of the stray capacitance) of FIG. 2 are not present), FIG. As shown in FIG. 4, the base voltages of the transistors Q9 and Q10 are different from each other, and as shown in FIG. 4B, the difference appears as a voltage fluctuation of the constant current source I1. Since the true input to the transistor Q9 is a voltage difference between the voltage to the base (broken line in FIG. 4C) and the voltage of the constant current source I1 (FIG. 4B), the amplitude is reduced accordingly. On the other hand, the true input to the transistor Q10 is a voltage difference between the voltage to the base (solid line in FIG. 4 (c)) and the voltage of the constant current source I1 (FIG. 4 (b)), but in opposite phases. Therefore, the amplitude becomes large.

従って、トランジスタQ9,Q10への真の入力差は、共通成分が取除かれ、結果として、抵抗R70の両端電圧は、図4(a)に示すように、冷陰極管点灯装置が平衡状態であったとき(コンデンサC22,C21,C20が存在しているとき)の抵抗R70の両端電圧(図3(a))と等しくなる。尚、ここでは、共通成分とは、浮遊容量の変動によって、浮遊容量及び接地端子間に流れる電流が変動し、抵抗R58及び接地端子間に流れる電流が変動することにより発生する電圧の変動成分である。
このように、浮遊容量の変動による電流分は、差動増幅器20の2つの入力の共通成分として取除かれるので、抵抗R70の両端電圧には影響せず、これは、抵抗R71の両端電圧についても同様である。
Therefore, the true input difference to the transistors Q9 and Q10 eliminates the common component. As a result, as shown in FIG. 4A, the voltage across the resistor R70 is obtained when the cold-cathode tube lighting device is in an equilibrium state. When this occurs (when capacitors C22, C21, and C20 are present), the voltage is equal to the voltage across resistor R70 (FIG. 3A). Here, the common component is a fluctuation component of a voltage generated when the current flowing between the stray capacitance and the ground terminal varies due to the variation of the stray capacitance, and the current flowing between the resistor R58 and the ground terminal varies. is there.
Thus, since the current due to the fluctuation of the stray capacitance is removed as a common component of the two inputs of the differential amplifier 20, it does not affect the voltage across the resistor R70. Is the same.

図5は、図1に示す差動増幅器20の負荷となる抵抗R71の両端電圧の波形を示す波形図であり、実線Aは、平衡状態のときの電流波形であり、1点鎖線Bは、意図的に図2におけるコンデンサC22,C21,C20(浮遊容量の一部)を存在しないものとして、平衡状態を崩した場合の電流波形である。上述した図15の波形図と同様であり、抵抗R56,R57に流れる冷陰極管1の管電流は、浮遊容量の影響を受け難いことが分かる。   5 is a waveform diagram showing a waveform of the voltage across the resistor R71 serving as a load of the differential amplifier 20 shown in FIG. 1. A solid line A is a current waveform in an equilibrium state, and a one-dot chain line B is This is a current waveform when the equilibrium state is broken assuming that the capacitors C22, C21, and C20 (part of the stray capacitance) in FIG. It is the same as the waveform diagram of FIG. 15 described above, and it can be seen that the tube current of the cold cathode tube 1 flowing through the resistors R56 and R57 is hardly affected by the stray capacitance.

(実施の形態2)
図6は、本発明に係る放電灯点灯装置の実施の形態2である冷陰極管点灯装置の要部構成を示すブロック図である。
この冷陰極管点灯装置は、図1に示す冷陰極管点灯装置の抵抗R56,R57,R58及び差動増幅器20等の代わりに、差動トランスTX2を取付けたものである。
(Embodiment 2)
FIG. 6 is a block diagram showing a main configuration of a cold cathode tube lighting device which is Embodiment 2 of the discharge lamp lighting device according to the present invention.
This cold cathode tube lighting device is provided with a differential transformer TX2 instead of the resistors R56, R57, R58, the differential amplifier 20 and the like of the cold cathode tube lighting device shown in FIG.

正相高圧トランスTX3の二次巻線、及び逆相高圧トランスTX4の二次巻線の各低圧側端子間に、抵抗R56,R57に代えて、差動トランスTX2の一次巻線を接続し、一次巻線の中点は接地してある。
差動トランスTX2の二次巻線の一方の端子は接地してあり、二次巻線の他方の端子は、整流回路31に接続されている。差動トランスTX2の二次巻線には抵抗R19が並列接続され、二次巻線に生じた電圧は、整流回路31で整流されて駆動制御回路10に与えられる。その他の構成は、実施の形態1で説明した冷陰極管点灯装置(図1)と同様であるので、説明を省略する。
Instead of the resistors R56 and R57, the primary winding of the differential transformer TX2 is connected between the low-voltage side terminals of the secondary winding of the positive-phase high-voltage transformer TX3 and the secondary winding of the negative-phase high-voltage transformer TX4. The midpoint of the primary winding is grounded.
One terminal of the secondary winding of the differential transformer TX2 is grounded, and the other terminal of the secondary winding is connected to the rectifier circuit 31. A resistor R19 is connected in parallel to the secondary winding of the differential transformer TX2, and the voltage generated in the secondary winding is rectified by the rectifier circuit 31 and applied to the drive control circuit 10. Other configurations are the same as those of the cold-cathode tube lighting device (FIG. 1) described in the first embodiment, and thus description thereof is omitted.

図7は、図6の冷陰極管点灯装置を示すブロック図において、冷陰極管(U字管)1を抵抗R1〜R14及び容量(コンデンサ)C10〜C22で等価回路表示した等価回路図であり、また、図14に示すトランスTX1の代わりに、差動トランスTX2を接続した場合を示す回路図である。冷陰極管1の等価回路は、上述した図14,17のU字管1の等価回路と同様であるので、説明を省略する。   FIG. 7 is an equivalent circuit diagram showing an equivalent circuit of the cold cathode tube (U-shaped tube) 1 with resistors R1 to R14 and capacitors (capacitors) C10 to C22 in the block diagram showing the cold cathode tube lighting device of FIG. FIG. 15 is a circuit diagram showing a case where a differential transformer TX2 is connected instead of the transformer TX1 shown in FIG. The equivalent circuit of the cold cathode tube 1 is the same as the equivalent circuit of the U-shaped tube 1 shown in FIGS.

このような構成の冷陰極管点灯装置では、電流が、正相高圧トランスTX3の二次巻線の高圧側端子→冷陰極管1→逆相高圧トランスTX4の二次巻線の高圧側端子→同低圧側端子→差動トランスTX2の一次巻線→正相高圧トランスTX3の二次巻線の低圧側端子のように流れるループが形成されている。その際、浮遊容量及び接地端子間に流れる電流は、差動トランスTX2の一次巻線の中点及び二次巻線と接地端子との間に流れる電流により打消し合うので、正相高圧トランスTX3から逆相高圧トランスTX4に戻る電流のみに関連する電圧を、差動トランスTX2の二次巻線から取出すことができる。   In the cold-cathode tube lighting device having such a configuration, the current flows from the high-voltage side terminal of the secondary winding of the positive-phase high-voltage transformer TX3 → the cold-cathode tube 1 → the high-voltage side terminal of the secondary winding of the reverse-phase high-voltage transformer TX4 → A loop is formed in which the low voltage side terminal → the primary winding of the differential transformer TX2 → the low voltage side terminal of the secondary winding of the positive phase high voltage transformer TX3. At this time, the current flowing between the stray capacitance and the ground terminal cancels out due to the current flowing between the midpoint of the primary winding of the differential transformer TX2 and the secondary winding and the ground terminal, so that the positive-phase high-voltage transformer TX3 Can be taken from the secondary winding of the differential transformer TX2 only in relation to the current returning from the reverse phase high voltage transformer TX4.

図14に示すトランスTX1では、一次側を接地電位から浮かせていたが、図7の差動トランスTX2では、一次巻線の中点を接地してあるので、安全上問題はない。また、抵抗R19に流れる電流の波形は、図15に示す波形図と同様であり、浮遊容量の影響を受け難いので、冷陰極管1の管電流を正確に検出することができる。   In the transformer TX1 shown in FIG. 14, the primary side is floated from the ground potential. However, in the differential transformer TX2 in FIG. 7, there is no safety problem because the midpoint of the primary winding is grounded. Further, the waveform of the current flowing through the resistor R19 is the same as the waveform diagram shown in FIG. 15 and is not easily affected by the stray capacitance, so that the tube current of the cold cathode tube 1 can be accurately detected.

(実施の形態3)
図8は、本発明に係る放電灯点灯装置の実施の形態3である冷陰極管点灯装置の要部構成を示すブロック図である。
この冷陰極管点灯装置は、冷陰極管(U字管)1,2,3を備えており、冷陰極管1の正相高圧トランスTX3及び逆相高圧トランスTX4は、駆動制御回路10から互いに逆位相の高周波電圧を与えられる。冷陰極管2の正相高圧トランスTX5及び逆相高圧トランスTX6は、駆動制御回路11から互いに逆位相の高周波電圧を与えられ、冷陰極管3の正相高圧トランスTX7及び逆相高圧トランスTX8は、駆動制御回路12から互いに逆位相の高周波電圧を与えられる。
(Embodiment 3)
FIG. 8 is a block diagram showing a main configuration of a cold cathode tube lighting device which is Embodiment 3 of the discharge lamp lighting device according to the present invention.
The cold-cathode tube lighting device includes cold-cathode tubes (U-shaped tubes) 1, 2, 3, and the positive-phase high-voltage transformer TX 3 and the reverse-phase high-voltage transformer TX 4 of the cold-cathode tube 1 are mutually connected from the drive control circuit 10. A high-frequency voltage with an opposite phase is given. The positive-phase high-voltage transformer TX5 and the negative-phase high-voltage transformer TX6 of the cold-cathode tube 2 are given high-frequency voltages of opposite phases from the drive control circuit 11, and the positive-phase high-voltage transformer TX7 and the negative-phase high-voltage transformer TX8 of the cold-cathode tube 3 are The drive control circuit 12 applies high-frequency voltages having opposite phases to each other.

冷陰極管1は、正相高圧トランスTX3及び逆相高圧トランスTX4の各二次巻線の高圧側端子間に接続されている。逆相高圧トランスTX4の低圧側端子には抵抗R56の一方の端子が接続され、その他方の端子には、抵抗R57の一方の端子に接続されている。抵抗R57の他方の端子は、正相高圧トランスTX5の二次巻線の低圧側端子に接続されている。抵抗R56,R57の接続点は、抵抗R58を通じて接地されている。
正相高圧トランスTX3の二次巻線の高圧側端子には、一方の端子が接地されたコンデンサC2の他方の端子が接続されている。逆相高圧トランスTX4の二次巻線の高圧側端子には、一方の端子が接地されたコンデンサC3の他方の端子が接続されている。
The cold cathode tube 1 is connected between the high-voltage side terminals of the secondary windings of the positive-phase high-voltage transformer TX3 and the negative-phase high-voltage transformer TX4. One terminal of the resistor R56 is connected to the low-voltage side terminal of the negative-phase high-voltage transformer TX4, and the other terminal is connected to one terminal of the resistor R57. The other terminal of the resistor R57 is connected to the low voltage side terminal of the secondary winding of the positive phase high voltage transformer TX5. The connection point between the resistors R56 and R57 is grounded through the resistor R58.
The other terminal of the capacitor C2, whose one terminal is grounded, is connected to the high voltage side terminal of the secondary winding of the positive phase high voltage transformer TX3. The other terminal of the capacitor C3 with one terminal grounded is connected to the high voltage side terminal of the secondary winding of the negative phase high voltage transformer TX4.

冷陰極管2は、正相高圧トランスTX5及び逆相高圧トランスTX6の各二次巻線の高圧側端子間に接続されている。逆相高圧トランスTX6の低圧側端子には抵抗R59の一方の端子が接続され、その他方の端子には、抵抗R60の一方の端子に接続されている。抵抗R60の他方の端子は、正相高圧トランスTX7の二次巻線の低圧側端子に接続されている。抵抗R59,R60の接続点は、抵抗R61を通じて接地されている。
正相高圧トランスTX5の二次巻線の高圧側端子には、一方の端子が接地されたコンデンサC4の他方の端子が接続されている。逆相高圧トランスTX6の二次巻線の高圧側端子には、一方の端子が接地されたコンデンサC5の他方の端子が接続されている。
The cold cathode tube 2 is connected between the high-voltage side terminals of the secondary windings of the positive-phase high-voltage transformer TX5 and the negative-phase high-voltage transformer TX6. One terminal of the resistor R59 is connected to the low voltage side terminal of the negative phase high voltage transformer TX6, and the other terminal is connected to one terminal of the resistor R60. The other terminal of the resistor R60 is connected to the low voltage side terminal of the secondary winding of the positive phase high voltage transformer TX7. The connection point of the resistors R59 and R60 is grounded through the resistor R61.
The other terminal of the capacitor C4 whose one terminal is grounded is connected to the high voltage side terminal of the secondary winding of the positive phase high voltage transformer TX5. The other terminal of the capacitor C5 whose one terminal is grounded is connected to the high-voltage side terminal of the secondary winding of the negative-phase high-voltage transformer TX6.

冷陰極管3は、正相高圧トランスTX7及び逆相高圧トランスTX8の各二次巻線の高圧側端子間に接続されている。逆相高圧トランスTX8の低圧側端子には抵抗R62の一方の端子が接続され、その他方の端子には、抵抗R63の一方の端子に接続されている。抵抗R63の他方の端子は、正相高圧トランスTX3の二次巻線の低圧側端子に接続されている。抵抗R62,R63の接続点は、抵抗R64を通じて接地されている。   The cold cathode tube 3 is connected between the high-voltage side terminals of the secondary windings of the positive-phase high-voltage transformer TX7 and the negative-phase high-voltage transformer TX8. One terminal of the resistor R62 is connected to the low voltage side terminal of the negative phase high voltage transformer TX8, and the other terminal is connected to one terminal of the resistor R63. The other terminal of the resistor R63 is connected to the low voltage side terminal of the secondary winding of the positive phase high voltage transformer TX3. The connection point between the resistors R62 and R63 is grounded through the resistor R64.

正相高圧トランスTX7の二次巻線の高圧側端子には、一方の端子が接地されたコンデンサC6の他方の端子が接続されている。逆相高圧トランスTX8の二次巻線の高圧側端子には、一方の端子が接地されたコンデンサC7の他方の端子が接続されている。
差動増幅器20の両入力端子には、接続された抵抗R56,R57の両端電圧が与えられ、差動増幅器20の出力は整流回路30に与えられる。整流回路30が整流した出力は、各駆動制御回路10,11,12に与えられる。
The other terminal of the capacitor C6 whose one terminal is grounded is connected to the high voltage side terminal of the secondary winding of the positive phase high voltage transformer TX7. The other terminal of the capacitor C7 whose one terminal is grounded is connected to the high voltage side terminal of the secondary winding of the negative phase high voltage transformer TX8.
Both input terminals of the differential amplifier 20 are given voltages across the connected resistors R56 and R57, and the output of the differential amplifier 20 is given to the rectifier circuit 30. The output rectified by the rectifier circuit 30 is given to each drive control circuit 10, 11, 12.

上述した構成により、この冷陰極管点灯装置では、冷陰極管1は、正相高圧トランスTX3及び逆相高圧トランスTX4が互いに逆位相で昇圧した電圧により点灯する。冷陰極管2は、正相高圧トランスTX5及び逆相高圧トランスTX6が互いに逆位相で昇圧した電圧により点灯する。冷陰極管3は、正相高圧トランスTX7及び逆相高圧トランスTX8が互いに逆位相で昇圧した電圧により点灯する。   With the above-described configuration, in this cold cathode tube lighting device, the cold cathode tube 1 is lit by the voltage boosted by the positive phase high voltage transformer TX3 and the negative phase high voltage transformer TX4 in opposite phases. The cold-cathode tube 2 is lit by a voltage boosted in the opposite phase by the positive-phase high-voltage transformer TX5 and the negative-phase high-voltage transformer TX6. The cold-cathode tube 3 is lit by a voltage boosted in the opposite phase by the positive-phase high-voltage transformer TX7 and the negative-phase high-voltage transformer TX8.

差動増幅器20が、抵抗R56,R57の両端電圧を増幅して整流回路30に与える。整流回路30は、与えられた電圧を整流して、冷陰極管1の管電流の検出値として、各駆動制御回路10,11,12に与える。各駆動制御回路10,11,12は、与えられた検出値に基づき、冷陰極管1の管電流が所定値になるように、出力する高周波電圧をフィードバック制御する。   The differential amplifier 20 amplifies the voltage across the resistors R56 and R57 and supplies the amplified voltage to the rectifier circuit 30. The rectifier circuit 30 rectifies the applied voltage and supplies it to the drive control circuits 10, 11, 12 as a detected value of the tube current of the cold cathode tube 1. Each drive control circuit 10, 11, 12 performs feedback control of the output high-frequency voltage so that the tube current of the cold cathode tube 1 becomes a predetermined value based on the given detection value.

この冷陰極管点灯装置では、電流が、正相高圧トランスTX3→冷陰極管1→逆相高圧トランスTX4→抵抗R56,R57→正相高圧トランスTX5→冷陰極管2→逆相高圧トランスTX6→抵抗R59,R60→正相高圧トランスTX7→冷陰極管3→逆相高圧トランスTX8→抵抗R62,R63→正相高圧トランスTX3と流れるループが形成される。   In this cold-cathode tube lighting device, the current flows from the positive-phase high-voltage transformer TX3 → the cold-cathode tube 1 → the negative-phase high-voltage transformer TX4 → the resistors R56, R57 → the positive-phase high-voltage transformer TX5 → the cold-cathode tube 2 → the negative-phase high-voltage transformer TX6 → A loop is formed in which the resistors R59, R60 → positive phase high voltage transformer TX7 → cold cathode tube 3 → reverse phase high voltage transformer TX8 → resistors R62, R63 → positive phase high voltage transformer TX3.

従って、抵抗R56,R57の両端電圧を差動増幅器20で検出して、冷陰極管1の管電流を検出することにより、それと等しい他の冷陰極管2,3の管電流を検出することができる。故に、検出した管電流値を冷陰極管1,2,3のそれぞれの駆動制御回路10,11,12に与えることにより、冷陰極管1,2,3の各管電流が所定値になるようにフィードバック制御することができる。尚、抵抗R56,R57に代えて、抵抗R59,R60又は抵抗R62,R63の両端電圧を差動増幅器20で検出するように構成しても、同様のことが可能である。   Therefore, by detecting the voltage across the resistors R56 and R57 with the differential amplifier 20 and detecting the tube current of the cold cathode tube 1, it is possible to detect the tube currents of the other cold cathode tubes 2 and 3 that are equal thereto. it can. Therefore, by supplying the detected tube current value to the respective drive control circuits 10, 11, 12 of the cold cathode tubes 1, 2, 3, each tube current of the cold cathode tubes 1, 2, 3 is set to a predetermined value. Can be feedback controlled. Note that the same can be achieved if the differential amplifier 20 detects the voltage across the resistors R59 and R60 or the resistors R62 and R63 instead of the resistors R56 and R57.

図9は、図8の冷陰極管点灯装置を示すブロック図において、冷陰極管(U字管)1,2,3を抵抗及び容量で等価回路表示した等価回路図であり、差動増幅器20及び整流回路30は図示を省略してある。
ここでは、冷陰極管1を抵抗R1〜R14及び容量(コンデンサ)C10〜C22で、冷陰極管2を抵抗R21〜R34及び容量(コンデンサ)C30〜C42で、冷陰極管3を抵抗R41〜R54及び容量(コンデンサ)C50〜C62で、それぞれ等価回路表示してある。
冷陰極管1の容量(コンデンサ)C10〜C22、冷陰極管2の容量(コンデンサ)C30〜C42、及び冷陰極管3の容量(コンデンサ)C50〜C62は、それぞれの冷陰極管1,2,3及びその支持構造物(図示せず)間の浮遊容量を模式的に示したものである。
FIG. 9 is an equivalent circuit diagram in which the cold cathode tubes (U-tubes) 1, 2, and 3 are represented by equivalent circuits in terms of resistance and capacitance in the block diagram showing the cold cathode tube lighting device of FIG. The rectifier circuit 30 is not shown.
Here, the cold cathode tube 1 has resistors R1 to R14 and capacitors (capacitors) C10 to C22, the cold cathode tube 2 has resistors R21 to R34 and capacitors (capacitors) C30 to C42, and the cold cathode tube 3 has resistors R41 to R54. In addition, equivalent circuits are indicated by capacitances (capacitors) C50 to C62.
The capacities (capacitors) C10 to C22 of the cold cathode tubes 1, the capacities (capacitors) C30 to C42 of the cold cathode tubes 2, and the capacities (capacitors) C50 to C62 of the cold cathode tubes 3 are the cold cathode tubes 1, 2, 3 schematically shows the stray capacitance between 3 and its supporting structure (not shown).

冷陰極管1では、管電流は、正相高圧トランスTX3の二次巻線の高圧側端子から抵抗R1〜R14を通じて、逆相高圧トランスTX4の二次巻線の高圧側端子、同低圧側端子に流れ、抵抗R56,R57を通じて、冷陰極管2の正相高圧トランスTX5の二次巻線の低圧側端子に流れる。
冷陰極管2では、管電流は、正相高圧トランスTX5の二次巻線の高圧側端子から抵抗R21〜R34を通じて、逆相高圧トランスTX6の二次巻線の高圧側端子、同低圧側端子に流れ、抵抗R59,R60を通じて、冷陰極管3の正相高圧トランスTX7の二次巻線の低圧側端子に流れる。
In the cold cathode tube 1, the tube current is supplied from the high voltage side terminal of the secondary winding of the positive phase high voltage transformer TX3 through the resistors R1 to R14 to the high voltage side terminal and the low voltage side terminal of the secondary winding of the negative phase high voltage transformer TX4. And flows to the low voltage side terminal of the secondary winding of the positive phase high voltage transformer TX5 of the cold cathode tube 2 through the resistors R56 and R57.
In the cold cathode tube 2, the tube current is supplied from the high-voltage side terminal of the secondary winding of the positive-phase high-voltage transformer TX5 through the resistors R21 to R34 to the high-voltage side terminal and the low-voltage side terminal of the secondary winding of the negative-phase high-voltage transformer TX6. And flows to the low voltage side terminal of the secondary winding of the positive phase high voltage transformer TX7 of the cold cathode tube 3 through the resistors R59 and R60.

冷陰極管3では、管電流は、正相高圧トランスTX7の二次巻線の高圧側端子から抵抗R41〜R54を通じて、逆相高圧トランスTX8の二次巻線の高圧側端子、同低圧側端子に流れ、抵抗R62,R63を通じて、冷陰極管1の正相高圧トランスTX3の二次巻線の低圧側端子に流れ、同高圧側端子から冷陰極管1へ流れる。
以上により、冷陰極管1,2,3に流れる管電流のループが形成される。この際、冷陰極管1,2,3において、浮遊容量及び接地端子間に流れる電流は、抵抗R58,R61,R64及び接地端子間に流れる電流により打消され、また、管電流を差動増幅器20で検出しているので、浮遊容量による管電流への影響は生じ難い。
In the cold cathode tube 3, the tube current is supplied from the high-voltage side terminal of the secondary winding of the positive-phase high-voltage transformer TX7 through the resistors R41 to R54 to the high-voltage side terminal and the low-voltage side terminal of the secondary winding of the negative-phase high-voltage transformer TX8. And flows to the low voltage side terminal of the secondary winding of the positive phase high voltage transformer TX3 of the cold cathode tube 1 and flows from the high voltage side terminal to the cold cathode tube 1 through the resistors R62 and R63.
Thus, a loop of tube current flowing through the cold cathode tubes 1, 2, 3 is formed. At this time, in the cold cathode tubes 1, 2 and 3, the current flowing between the stray capacitance and the ground terminal is canceled by the current flowing between the resistors R58, R61 and R64 and the ground terminal, and the tube current is converted into the differential amplifier 20. Therefore, the stray capacitance hardly affects the tube current.

尚、上述した構成では、駆動制御回路10,11,12の電圧が異なる場合でも、管電流のループが形成されるので、管電流のばらつきは平均化され、冷陰極管1,2,3の管電流は等しくなる。
上述したような構成により、複数の冷陰極管(U字管)を使用する場合でも、管電流の検出用回路は1系統で良いので、部品コストを下げることが可能である。
尚、上述した構成では、構成駆動制御回路10,11,12を使用しているが、1つの駆動制御回路で代用させて、正相高圧トランスTX3,TX5,TX7及び逆相高圧トランスTX4,TX6,TX8をそれぞれ並列に接続しても良い。
In the above-described configuration, even when the voltages of the drive control circuits 10, 11, and 12 are different, a tube current loop is formed. Therefore, variations in tube current are averaged, and the cold cathode tubes 1, 2, and 3 are Tube currents are equal.
With the above-described configuration, even when a plurality of cold cathode tubes (U-shaped tubes) are used, the number of tube current detection circuits may be one, so that component costs can be reduced.
In the above-described configuration, the configuration drive control circuits 10, 11, and 12 are used. However, the single-phase high-voltage transformers TX3, TX5, and TX7 and the negative-phase high-voltage transformers TX4 and TX6 can be substituted by one drive control circuit. , TX8 may be connected in parallel.

また、U字管に限らず、例えば、液晶パネルユニットの上下エッジ各2灯の直管を使用する場合でも、直列接続にすることで、上、下の4本の直管をループ化できるので、各直管の電流は等しくなる。また、U字管の場合と同様に、浮遊容量による管電流への影響を低減できる。
例えば、図8に示す3つの駆動制御回路10,11,12の内の2つの駆動制御回路10,11を備える冷陰極管点灯装置を構成する場合、図10に示すように、液晶パネルユニット35の上部エッジ用に、正相高圧トランスTX3の二次巻線及び逆相高圧トランスTX4の二次巻線の各高圧側端子間に、直管型の冷陰極管1−1,1−2を直列接続する。また、液晶パネルユニット35の下部エッジ用に、正相高圧トランスTX5の二次巻線及び逆相高圧トランスTX6の二次巻線の各高圧側端子間に、直管型の冷陰極管2−1,2−2を直列接続する。
Moreover, not only the U-shaped tube but also, for example, even when using two straight tubes on each of the upper and lower edges of the liquid crystal panel unit, the upper and lower four straight tubes can be looped by connecting them in series. The current of each straight pipe becomes equal. Further, as in the case of the U-shaped tube, the influence on the tube current due to the stray capacitance can be reduced.
For example, when a cold-cathode tube lighting device including two drive control circuits 10, 11 of the three drive control circuits 10, 11, 12 shown in FIG. 8 is configured, as shown in FIG. For the upper edge of the straight tube type cold cathode tubes 1-1 and 1-2, between the high-voltage side terminals of the secondary winding of the positive phase high-voltage transformer TX3 and the secondary winding of the negative-phase high-voltage transformer TX4 Connect in series. Further, for the lower edge of the liquid crystal panel unit 35, a straight tube type cold cathode tube 2- is provided between the high voltage side terminals of the secondary winding of the positive phase high voltage transformer TX5 and the secondary winding of the negative phase high voltage transformer TX6. 1 and 2-2 are connected in series.

このように接続することにより、この冷陰極管点灯装置では、電流が、正相高圧トランスTX3→冷陰極管1−1→冷陰極管1−2→逆相高圧トランスTX4→抵抗R56,R57→正相高圧トランスTX5→冷陰極管2−1→冷陰極管2−2→逆相高圧トランスTX6→抵抗R62,R63→正相高圧トランスTX3と流れるループが形成される。
従って、抵抗R56,R57又は抵抗R62,R63の両端電圧を差動増幅器20で検出して、ループに流れる電流を検出することにより、冷陰極管1−1,1−2,2−1,2−2の管電流を検出することができる。また、検出した管電流値を駆動制御回路10,11に与えることにより、冷陰極管1−1,1−2,2−1,2−2の各管電流が所定値になるようにフィードバック制御することができる。
By connecting in this way, in this cold-cathode tube lighting device, the current flows from the positive-phase high-voltage transformer TX3 → cold-cathode tube 1-1 → cold-cathode tube 1-2 → reverse-phase high-voltage transformer TX4 → resistors R56 and R57 → A loop is formed in which the positive-phase high-voltage transformer TX5 → the cold cathode tube 2-1 → the cold-cathode tube 2-2 → the reverse-phase high-voltage transformer TX6 → the resistors R62 and R63 → the positive-phase high-voltage transformer TX3.
Therefore, the cold-cathode tubes 1-1, 1-2, 2-1 and 2 are detected by detecting the voltage across the resistors R56 and R57 or the resistors R62 and R63 with the differential amplifier 20 and detecting the current flowing through the loop. -2 tube current can be detected. Further, by providing the detected tube current values to the drive control circuits 10 and 11, feedback control is performed so that the tube currents of the cold cathode tubes 1-1, 1-2, 2-1, and 2-2 become predetermined values. can do.

また、同じく2つの駆動制御回路10,11を備える冷陰極管点灯装置を構成する場合、図11に示すように、液晶パネルユニット35の上部エッジ用に、直管型の冷陰極管1−1,1−2を、液晶パネルユニット35の下部エッジ用に、直管型の冷陰極管2−1,2−2を備える。この配置で、正相高圧トランスTX3の二次巻線及び逆相高圧トランスTX4の二次巻線の各高圧側端子間に、冷陰極管1−1,2−2を直列接続し、正相高圧トランスTX5の二次巻線及び逆相高圧トランスTX6の二次巻線の各高圧側端子間に、冷陰極管1−2,2−1を直列接続する。   When a cold-cathode tube lighting device having two drive control circuits 10 and 11 is also configured, a straight-tube cold-cathode tube 1-1 is used for the upper edge of the liquid crystal panel unit 35 as shown in FIG. , 1-2 are provided for the lower edge of the liquid crystal panel unit 35 as straight-type cold cathode tubes 2-1, 2-2. In this arrangement, the cold cathode tubes 1-1 and 2-2 are connected in series between the high-voltage side terminals of the secondary winding of the positive-phase high-voltage transformer TX3 and the secondary winding of the negative-phase high-voltage transformer TX4, and the positive-phase Cold cathode tubes 1-2 and 2-1 are connected in series between the high-voltage side terminals of the secondary winding of the high-voltage transformer TX5 and the secondary winding of the reverse-phase high-voltage transformer TX6.

このように接続することにより、この冷陰極管点灯装置では、電流が、正相高圧トランスTX3→冷陰極管1−1→冷陰極管2−2→逆相高圧トランスTX4→抵抗R56,R57→正相高圧トランスTX5→冷陰極管1−2→冷陰極管2−1→逆相高圧トランスTX6→抵抗R62,R63→正相高圧トランスTX3と流れるループが形成される。
従って、抵抗R56,R57又は抵抗R62,R63の両端電圧を差動増幅器20で検出して、ループに流れる電流を検出することにより、冷陰極管1−1,1−2,2−1,2−2の管電流を検出することができる。また、検出した管電流値を駆動制御回路10,11に与えることにより、冷陰極管1−1,1−2,2−1,2−2の各管電流が所定値になるようにフィードバック制御することができる。
By connecting in this way, in this cold cathode tube lighting device, the current flows from the positive phase high voltage transformer TX3 → the cold cathode tube 1-1 → the cold cathode tube 2-2 → the negative phase high voltage transformer TX4 → resistors R56, R57 → A loop is formed in which the positive-phase high-voltage transformer TX5 → the cold cathode tube 1-2 → the cold-cathode tube 2-1 → the reverse-phase high-voltage transformer TX6 → the resistors R62 and R63 → the positive-phase high-voltage transformer TX3.
Therefore, the cold-cathode tubes 1-1, 1-2, 2-1 and 2 are detected by detecting the voltage across the resistors R56 and R57 or the resistors R62 and R63 with the differential amplifier 20 and detecting the current flowing through the loop. -2 tube current can be detected. Further, by providing the detected tube current values to the drive control circuits 10 and 11, feedback control is performed so that the tube currents of the cold cathode tubes 1-1, 1-2, 2-1, and 2-2 become predetermined values. can do.

また、同じく2つの駆動制御回路10,11を備える冷陰極管点灯装置を構成する場合、図12に示すように、液晶パネルユニット35の上部エッジ用に、直管型の冷陰極管1−1,1−2を、液晶パネルユニット35の下部エッジ用に、直管型の冷陰極管2−1,2−2を備える。この配置で、正相高圧トランスTX3の二次巻線及び逆相高圧トランスTX4の二次巻線の各高圧側端子間に、冷陰極管1−1,2−2を直列接続し、正相高圧トランスTX5の二次巻線及び逆相高圧トランスTX6の二次巻線の各高圧側端子間に、冷陰極管2−1,1−2を直列接続する。   When a cold-cathode tube lighting device comprising two drive control circuits 10 and 11 is also configured, a straight-tube cold-cathode tube 1-1 is used for the upper edge of the liquid crystal panel unit 35 as shown in FIG. , 1-2 are provided for the lower edge of the liquid crystal panel unit 35 as straight-type cold cathode tubes 2-1, 2-2. In this arrangement, the cold cathode tubes 1-1 and 2-2 are connected in series between the high-voltage side terminals of the secondary winding of the positive-phase high-voltage transformer TX3 and the secondary winding of the negative-phase high-voltage transformer TX4, and the positive-phase Cold cathode tubes 2-1 and 1-2 are connected in series between the high-voltage side terminals of the secondary winding of the high-voltage transformer TX5 and the secondary winding of the reverse-phase high-voltage transformer TX6.

このように接続することにより、この冷陰極管点灯装置では、電流が、正相高圧トランスTX3→冷陰極管1−1→冷陰極管2−2→逆相高圧トランスTX4→抵抗R56,R57→正相高圧トランスTX5→冷陰極管2−1→冷陰極管1−2→逆相高圧トランスTX6→抵抗R62,R63→正相高圧トランスTX3と流れるループが形成される。
従って、抵抗R56,R57又は抵抗R62,R63の両端電圧を差動増幅器20で検出して、ループに流れる電流を検出することにより、冷陰極管1−1,1−2,2−1,2−2の管電流を検出することができる。また、検出した管電流値を駆動制御回路10,11に与えることにより、冷陰極管1−1,1−2,2−1,2−2の各管電流が所定値になるようにフィードバック制御することができる。
By connecting in this way, in this cold cathode tube lighting device, the current flows from the positive phase high voltage transformer TX3 → the cold cathode tube 1-1 → the cold cathode tube 2-2 → the negative phase high voltage transformer TX4 → resistors R56, R57 → A loop is formed in which the positive-phase high-voltage transformer TX5 → the cold-cathode tube 2-1 → the cold-cathode tube 1-2 → the reverse-phase high-voltage transformer TX6 → the resistors R62 and R63 → the positive-phase high-voltage transformer TX3.
Therefore, the cold-cathode tubes 1-1, 1-2, 2-1 and 2 are detected by detecting the voltage across the resistors R56 and R57 or the resistors R62 and R63 with the differential amplifier 20 and detecting the current flowing through the loop. -2 tube current can be detected. Further, by providing the detected tube current values to the drive control circuits 10 and 11, feedback control is performed so that the tube currents of the cold cathode tubes 1-1, 1-2, 2-1, and 2-2 become predetermined values. can do.

(実施の形態4)
図13は、本発明に係る放電灯点灯装置の実施の形態4である冷陰極管点灯装置の要部構成を示すブロック図である。
この冷陰極管点灯装置は、図8に示す冷陰極管点灯装置の抵抗R56,R57,R58、差動増幅器20及び整流回路30等に代えて、逆相高圧トランスTX4の二次巻線及び正相高圧トランスTX5の二次巻線の各低圧側端子間に、差動トランスTX2の一次巻線を接続し、その二次巻線の一方の端子を接地してある。差動トランスTX2の一次巻線の中点は接地してある。差動トランスTX2の二次巻線の他方の端子は、整流回路31に接続され、二次巻線に生じた電圧は、整流されて駆動制御回路10,11,12に与えられる。その他の構成は、実施の形態3で説明した冷陰極管点灯装置(図8)と同様であるので、説明を省略する。
(Embodiment 4)
FIG. 13: is a block diagram which shows the principal part structure of the cold cathode tube lighting device which is Embodiment 4 of the discharge lamp lighting device which concerns on this invention.
This cold-cathode tube lighting device replaces the resistors R56, R57, R58, differential amplifier 20, rectifier circuit 30 and the like of the cold-cathode tube lighting device shown in FIG. The primary winding of the differential transformer TX2 is connected between the low-voltage side terminals of the secondary winding of the phase high-voltage transformer TX5, and one terminal of the secondary winding is grounded. The midpoint of the primary winding of the differential transformer TX2 is grounded. The other terminal of the secondary winding of the differential transformer TX2 is connected to the rectifier circuit 31, and the voltage generated in the secondary winding is rectified and supplied to the drive control circuits 10, 11, and 12. Other configurations are the same as those of the cold-cathode tube lighting device (FIG. 8) described in the third embodiment, and thus description thereof is omitted.

上述したような構成により、この冷陰極管点灯装置では、電流が、正相高圧トランスTX3→冷陰極管1→逆相高圧トランスTX4→差動トランスTX2の一次巻線→正相高圧トランスTX5→冷陰極管2→逆相高圧トランスTX6→抵抗R59,R60→正相高圧トランスTX7→冷陰極管3→逆相高圧トランスTX8→抵抗R62,R63→正相高圧トランスTX3と流れるループが形成される。この際、冷陰極管1,2,3において、浮遊容量及び接地端子間に流れる電流は、差動トランスTX2の一次巻線の中点、二次巻線、抵抗R61,R64と接地端子との間に流れる電流により打消されたので、浮遊容量による管電流への影響は生じ難い。   With this configuration, in this cold-cathode tube lighting device, the current flows from the positive-phase high-voltage transformer TX3 → the cold-cathode tube 1 → the negative-phase high-voltage transformer TX4 → the primary winding of the differential transformer TX2 → the positive-phase high-voltage transformer TX5 → A cold current tube 2 → reverse phase high voltage transformer TX6 → resistances R59, R60 → positive phase high voltage transformer TX7 → cold cathode tube 3 → reverse phase high voltage transformer TX8 → resistances R62, R63 → positive phase high voltage transformer TX3 is formed. . At this time, in the cold cathode tubes 1, 2 and 3, the current flowing between the stray capacitance and the ground terminal is generated between the midpoint of the primary winding of the differential transformer TX2, the secondary winding, the resistors R61 and R64 and the ground terminal. Since it was canceled by the current flowing between them, the stray capacitance hardly affects the tube current.

よって、差動トランスTX2の二次巻線に生じる電圧を検出して、冷陰極管1,2,3の何れか1つの管電流を検出することにより、それと等しい他の冷陰極管1,2,3の管電流を検出することができる。故に、検出した管電流値を冷陰極管1,2,3のそれぞれの駆動制御回路10,11,12に与えることにより、冷陰極管1,2,3の各管電流が所定値になるようにフィードバック制御することができる。
尚、上述した構成では、構成駆動制御回路10,11,12を使用しているが、1つの駆動制御回路で代用させて、正相高圧トランスTX3,TX5,TX7及び逆相高圧トランスTX4,TX6,TX8をそれぞれ並列に接続しても良い。
Therefore, by detecting the voltage generated in the secondary winding of the differential transformer TX2 and detecting the tube current of any one of the cold cathode tubes 1, 2, 3, another cold cathode tube 1, 2 equal to that is detected. , 3 tube currents can be detected. Therefore, by supplying the detected tube current value to the respective drive control circuits 10, 11, 12 of the cold cathode tubes 1, 2, 3, each tube current of the cold cathode tubes 1, 2, 3 is set to a predetermined value. Can be feedback controlled.
In the above-described configuration, the configuration drive control circuits 10, 11, and 12 are used. However, the single-phase high-voltage transformers TX3, TX5, and TX7 and the negative-phase high-voltage transformers TX4 and TX6 can be substituted by one drive control circuit. , TX8 may be connected in parallel.

本発明に係る放電灯点灯装置の実施の形態1である冷陰極管点灯装置の要部構成を示す回路図である。It is a circuit diagram which shows the principal part structure of the cold cathode tube lighting device which is Embodiment 1 of the discharge lamp lighting device which concerns on this invention. 図1の冷陰極管点灯装置を示す回路図において、冷陰極管を抵抗及び容量(コンデンサ)で等価回路表示したブロック図である。In the circuit diagram showing the cold cathode tube lighting device of FIG. 1, it is a block diagram in which the cold cathode tube is represented by an equivalent circuit with a resistor and a capacitor (capacitor). 図1,2に示す差動増幅器の動作を示す波形図である。It is a wave form diagram which shows operation | movement of the differential amplifier shown to FIG. 図1,2に示す差動増幅器の動作を示す波形図である。It is a wave form diagram which shows operation | movement of the differential amplifier shown to FIG. 図1に示す差動増幅器の負荷となる抵抗R71の両端電圧の波形を示す波形図である。It is a wave form diagram which shows the waveform of the both-ends voltage of resistance R71 used as the load of the differential amplifier shown in FIG. 本発明に係る放電灯点灯装置の実施の形態2である冷陰極管点灯装置の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the cold cathode tube lighting device which is Embodiment 2 of the discharge lamp lighting device which concerns on this invention. 図6の冷陰極管点灯装置を示すブロック図において、冷陰極管を抵抗及び容量(コンデンサ)で等価回路表示した回路図である。FIG. 7 is a circuit diagram showing an equivalent circuit of a cold cathode tube with a resistor and a capacitor (capacitor) in the block diagram showing the cold cathode tube lighting device of FIG. 6. 本発明に係る放電灯点灯装置の実施の形態3である冷陰極管点灯装置の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the cold cathode tube lighting device which is Embodiment 3 of the discharge lamp lighting device which concerns on this invention. 図8の冷陰極管点灯装置を示すブロック図において、冷陰極管を抵抗及び容量で等価回路表示した回路図である。FIG. 9 is a circuit diagram showing an equivalent circuit of a cold cathode tube by resistance and capacitance in the block diagram showing the cold cathode tube lighting device of FIG. 8. 本発明に係る放電灯点灯装置において複数の直管型の冷陰極管を点灯させる場合の接続例を示すブロック図である。It is a block diagram which shows the example of a connection in the case of lighting a some straight tube | pipe type cold cathode tube in the discharge lamp lighting device which concerns on this invention. 本発明に係る放電灯点灯装置において複数の直管型の冷陰極管を点灯させる場合の接続例を示すブロック図である。It is a block diagram which shows the example of a connection in the case of lighting a some straight tube | pipe type cold cathode tube in the discharge lamp lighting device which concerns on this invention. 本発明に係る放電灯点灯装置において複数の直管型の冷陰極管を点灯させる場合の接続例を示すブロック図である。It is a block diagram which shows the example of a connection in the case of lighting a some straight tube | pipe type cold cathode tube in the discharge lamp lighting device which concerns on this invention. 本発明に係る放電灯点灯装置の実施の形態4である冷陰極管点灯装置の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the cold cathode tube lighting device which is Embodiment 4 of the discharge lamp lighting device which concerns on this invention. 図17に示す正相高圧トランスの二次巻線及び逆相高圧トランスの二次巻線の各低圧側端子間にトランスの一次巻線を接続した回路図である。FIG. 18 is a circuit diagram in which the primary winding of the transformer is connected between the low-voltage side terminals of the secondary winding of the positive-phase high-voltage transformer and the secondary winding of the negative-phase high-voltage transformer shown in FIG. 17. 図14に示すトランスの二次巻線の両端に接続された抵抗に流れる電流の波形を示す波形図である。It is a wave form diagram which shows the waveform of the electric current which flows into the resistance connected to the both ends of the secondary winding of the transformer shown in FIG. 従来の放電灯点灯装置の一例である他励式冷陰極管点灯装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the separately excited cold cathode tube lighting device which is an example of the conventional discharge lamp lighting device. 図16に示す冷陰極管点灯装置の冷陰極管を抵抗及び容量(コンデンサ)で例示した等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit which illustrated the cold cathode tube of the cold cathode tube lighting device shown in FIG. 16 by resistance and a capacity | capacitance (capacitor). 図17の等価回路における抵抗R65に流れる電流の波形を示す波形図である。It is a wave form diagram which shows the waveform of the electric current which flows into resistance R65 in the equivalent circuit of FIG.

符号の説明Explanation of symbols

1,2,3 冷陰極管(U字管、放電灯)
1−1,1−2,2−1,2−2 冷陰極管(直管、放電灯)
10,11,12 駆動制御回路(駆動回路)
20 差動増幅器
30,31 整流回路
35 液晶パネルユニット
R19,R56〜R64 抵抗
TX2 差動トランス(変圧器)
TX3,TX5,TX7 正相高圧トランス(正相変圧器)
TX4,TX6,TX8 逆相高圧トランス(逆相変圧器)
1, 2, 3 Cold cathode tube (U-shaped tube, discharge lamp)
1-1, 1-2, 2-1, 2-2 Cold cathode tube (straight tube, discharge lamp)
10, 11, 12 Drive control circuit (drive circuit)
20 Differential amplifier 30, 31 Rectifier circuit 35 Liquid crystal panel unit R19, R56 to R64 Resistor TX2 Differential transformer (transformer)
TX3, TX5, TX7 Positive phase high voltage transformer (positive phase transformer)
TX4, TX6, TX8 Reverse phase high voltage transformer (Reverse phase transformer)

Claims (1)

駆動用の交流電圧を発生させる駆動回路と、二次巻線の低圧側端子がそれぞれ接地電位側に接続され、前記駆動回路が発生させた交流電圧を互いに逆位相に昇圧する正相変圧器及び逆相変圧器とを備え、前記正相変圧器及び前記逆相変圧器の各二次巻線の各高圧側端子間に前記放電灯を接続して点灯させ、前記放電灯に流れる電流を検出し、検出した電流に基づき、前記駆動回路が前記放電灯に流す電流を一定に制御するように構成してある放電灯点灯装置において、
前記正相変圧器及び前記逆相変圧器の二次巻線の低圧側端子それぞれに各一方の端子が接続された第1抵抗及び第2抵抗と、接地電位側に一方の端子が接続された第3抵抗と、差動増幅器とを備え、前記第1抵抗、前記第2抵抗及び前記第3抵抗の各他方の端子が接続され、前記第1抵抗及び前記第2抵抗の各一方の端子間の電圧が前記差動増幅器に与えられ、
前記第3抵抗と前記差動増幅器が前記放電灯と接地との間に発生する浮遊容量に起因する電流を打ち消して、前記放電灯に流れる電流のみが検出されるようにしたことを特徴とする放電灯点灯装置。
A drive circuit that generates an AC voltage for driving, a low-voltage side terminal of the secondary winding connected to the ground potential side, and a positive-phase transformer that boosts the AC voltage generated by the drive circuit in opposite phases to each other; and a reverse-phase transformer, the positive-phase transformer and is turned to connect the discharge lamp between the high-voltage side terminal of the secondary winding of the reverse-phase transformer, detecting a current flowing through the discharge lamp and, based on the detected current, the discharge lamp lighting device is arranged to control the current the driving circuit is flowing through said discharge lamp constant,
A first resistor and a second resistor which each one terminal in each low-voltage side terminal of the positive-phase transformer and the negative-phase transformer secondary winding is connected, one terminal of which is connected to the ground potential side and a third resistor, and a differential amplifier, the first resistor, the respective other terminal of the second resistor and the third resistor is connected, between said first resistor and said second respective one terminal of the resistor Is provided to the differential amplifier,
The third resistor and the differential amplifier cancel the current caused by the stray capacitance generated between the discharge lamp and the ground so that only the current flowing through the discharge lamp is detected. Discharge lamp lighting device.
JP2008018246A 2008-01-29 2008-01-29 Discharge lamp lighting device Expired - Fee Related JP4858993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008018246A JP4858993B2 (en) 2008-01-29 2008-01-29 Discharge lamp lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008018246A JP4858993B2 (en) 2008-01-29 2008-01-29 Discharge lamp lighting device

Publications (2)

Publication Number Publication Date
JP2009181749A JP2009181749A (en) 2009-08-13
JP4858993B2 true JP4858993B2 (en) 2012-01-18

Family

ID=41035564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008018246A Expired - Fee Related JP4858993B2 (en) 2008-01-29 2008-01-29 Discharge lamp lighting device

Country Status (1)

Country Link
JP (1) JP4858993B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4101228B2 (en) * 2004-03-19 2008-06-18 昌和 牛嶋 Discharge tube parallel lighting system for surface light source
KR100616613B1 (en) * 2004-08-27 2006-08-28 삼성전기주식회사 Black-light inverter for u-shaped lamp
JP2007265816A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Electrodeless discharge lamp lighting device and luminaire
WO2007117011A1 (en) * 2006-04-12 2007-10-18 Sanken Electric Co., Ltd. Discharge tube lighting device

Also Published As

Publication number Publication date
JP2009181749A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
US7218059B2 (en) Discharge-lamp control device
US7242147B2 (en) Current sharing scheme for multiple CCF lamp operation
US7550929B2 (en) Power system and method for driving plural lamps
JP2005507145A (en) Load drive system
JP4276104B2 (en) Discharge lamp lighting device
JP2009259833A (en) Light source driving device
WO2006082849A1 (en) Discharge lamp operating device
JP4318659B2 (en) Discharge lamp driving device
US7764024B2 (en) Piezoelectric transformer module for generating balance resonance driving current and related light module
JP2006024511A (en) Discharge lamp lighting device
CN101277570B (en) Fluorescent lamp driving method and apparatus
US7224129B2 (en) Discharge lamp drive apparatus and liquid crystal display apparatus
KR20030031406A (en) Apparatus of driving discharge tube lamp
JP4858993B2 (en) Discharge lamp lighting device
US6009001A (en) Self-oscillation-resonance type power supply circuit
JP3919016B2 (en) Discharge lamp driving device and liquid crystal display device
KR100717671B1 (en) Method and apparatus for driving discharge lamps in a floating configuration
JP3881997B2 (en) Discharge lamp driving device
JP2009009721A (en) Discharge lamp lighting device
CN101411246A (en) Alternating current power supply device and integrated circuit for alternating current power supply device
JP2008016241A (en) Inverter drive circuit
JP2007317503A (en) Discharge lamp lighting device
KR100631837B1 (en) Backlight Inverter with Early Stabilization of Lamp Current
JP2009043532A (en) Discharge lamp lighting device
JP4475073B2 (en) Discharge lamp lighting device and lighting apparatus using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20110414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees