JP4858234B2 - Internal combustion engine stop / start control device - Google Patents

Internal combustion engine stop / start control device Download PDF

Info

Publication number
JP4858234B2
JP4858234B2 JP2007052421A JP2007052421A JP4858234B2 JP 4858234 B2 JP4858234 B2 JP 4858234B2 JP 2007052421 A JP2007052421 A JP 2007052421A JP 2007052421 A JP2007052421 A JP 2007052421A JP 4858234 B2 JP4858234 B2 JP 4858234B2
Authority
JP
Japan
Prior art keywords
stop
internal combustion
combustion engine
satisfied
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007052421A
Other languages
Japanese (ja)
Other versions
JP2008215154A (en
Inventor
宏樹 一瀬
孝之 大塚
錬太郎 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007052421A priority Critical patent/JP4858234B2/en
Publication of JP2008215154A publication Critical patent/JP2008215154A/en
Application granted granted Critical
Publication of JP4858234B2 publication Critical patent/JP4858234B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0844Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop with means for restarting the engine directly after an engine stop request, e.g. caused by change of driver mind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/065Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D2011/101Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles
    • F02D2011/102Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles at least one throttle being moved only by an electric actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、火花点火型内燃機関に適用されて、内燃機関の停止及びその再始動を自動的に行う内燃機関の停止始動制御装置に関する。   The present invention relates to a stop / start control device for an internal combustion engine that is applied to a spark ignition internal combustion engine and automatically stops and restarts the internal combustion engine.

車両の走行用動力源として搭載される内燃機関において、アイドリング時の燃料消費量及び排出ガスの低減などを図るため、車両が停止する等の停止条件が成立すると内燃機関を停止させ、その停止状態から再始動条件が成立すると内燃機関を再始動させる停止始動制御装置が広く知られている。例えば、この種の制御装置として、自動停止動作期間中に再始動要求があった場合、膨張行程の気筒に燃料を噴射して点火燃焼させ、更に圧縮行程気筒に燃料を噴射して点火燃焼をさせて再始動を行うものがある(特許文献1)。また、内燃機関を停止させる過程で気筒内に燃料を封入しておき、停止完了後にその燃料を点火燃焼させることにより再始動を行うものもある(特許文献2)。   In an internal combustion engine mounted as a driving power source for a vehicle, in order to reduce fuel consumption and exhaust gas when idling, the internal combustion engine is stopped when a stop condition such as a vehicle stop is satisfied, and the stop state A stop / start control device that restarts the internal combustion engine when the restart condition is satisfied is widely known. For example, as a control device of this type, when there is a restart request during the automatic stop operation period, fuel is injected into an expansion stroke cylinder for ignition combustion, and further fuel is injected into a compression stroke cylinder for ignition combustion. There is one in which restart is performed (Patent Document 1). In addition, there is a technique in which fuel is sealed in a cylinder in the process of stopping the internal combustion engine, and restarting is performed by igniting and burning the fuel after the completion of the stop (Patent Document 2).

特開2005−155362号公報JP 2005-155362 A 特開2005−30237号公報JP 2005-30237 A

特許文献1の装置は、内燃機関の停止が完了するまでの過程で再始動条件の成立を判定してから所定気筒に対して燃焼を噴射するので、その判定タイミングが遅ければ内燃機関の機関回転数の低下具合によって燃料を噴射する機会を逸してしまうこともある。このような場合には内燃機関の停止を完了させてから再始動させる必要があるため、ドライバビリティを損なうおそれがある。また、特許文献2の装置は内燃機関の停止完了前の停止過程で再始動を行うものではない。   Since the apparatus of Patent Document 1 injects combustion to a predetermined cylinder after determining that the restart condition is satisfied in the process until the stop of the internal combustion engine is completed, if the determination timing is late, the engine rotation of the internal combustion engine The chance of injecting fuel may be missed due to the drop in number. In such a case, drivability may be impaired because it is necessary to restart the internal combustion engine after it has been stopped. Moreover, the apparatus of patent document 2 does not restart in the stop process before the stop of an internal combustion engine is completed.

そこで、本発明は、内燃機関の停止過程中に再始動条件が成立した場合における再始動の成功可能性を高めることができる内燃機関の停止始動制御装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a stop / start control device for an internal combustion engine that can increase the possibility of a successful restart when a restart condition is satisfied during the stop process of the internal combustion engine.

本発明の停止始動制御装置は、火花点火型内燃機関に適用され、所定の停止条件が成立した場合に前記内燃機関を停止させるとともに所定の再始動条件が成立した場合に前記内燃機関を再始動させる内燃機関の停止始動制御装置であって、前記停止条件の成立直後から前記内燃機関への火花点火を中止させつつ前記内燃機関への燃料供給を継続させる停止制御手段と、前記停止条件の成立後前記内燃機関の停止完了前に前記再始動条件が成立した場合、前記停止条件の成立後に火花点火が中止した状態で継続して供給された燃料が燃焼するように前記内燃機関への火花点火を再開させる再始動制御手段と、を備え、前記内燃機関は複数の気筒を備えた4ストローク1サイクル機関として構成され、かつ前記内燃機関の停止完了後の再始動の際に所定行程で停止した気筒から火花点火を開始するように構成されており、前記停止制御手段は、前記所定行程で停止する気筒を前記複数の気筒のなかから特定するとともに、前記停止条件が成立してから、その特定した気筒まで燃料供給を継続させて、以後の燃料供給を前記内燃機関の停止完了まで中止させることにより上述した課題を解決する(請求項1)。 The stop / start control device of the present invention is applied to a spark ignition type internal combustion engine, and stops the internal combustion engine when a predetermined stop condition is satisfied and restarts the internal combustion engine when a predetermined restart condition is satisfied. An internal combustion engine stop / start control device, wherein stop control means for continuing fuel supply to the internal combustion engine while stopping spark ignition to the internal combustion engine immediately after the stop condition is satisfied, and establishment of the stop condition When the restart condition is satisfied before the completion of the stop of the internal combustion engine, the spark ignition to the internal combustion engine is performed so that the fuel continuously supplied with the spark ignition stopped after the stop condition is satisfied is burned. Restart control means for restarting the engine, wherein the internal combustion engine is configured as a four-stroke one-cycle engine having a plurality of cylinders, and when the internal combustion engine is restarted after completion of stoppage Spark ignition is started from a cylinder stopped in a predetermined stroke, and the stop control means specifies a cylinder to be stopped in the predetermined stroke from among the plurality of cylinders, and the stop condition is satisfied. Then, the fuel supply is continued until the specified cylinder, and the subsequent fuel supply is stopped until the stop of the internal combustion engine is completed (claim 1).

この制御装置によれば、再始動条件の成否に関わりなく、停止条件成立後に火花点火が中止された状態で燃料供給が行われる。そのため、停止条件成立後停止完了前の停止過程において再始動条件が成立したときには、再始動条件成立後に燃料供給をせずに火花点火を再開することにより点火燃焼させて速やかに再始動できる。この制御装置は再始動条件成立後に燃料供給してから点火燃焼する場合よりも再始動の機会を逸する可能性が低いため、内燃機関の停止過程中に再始動条件が成立した場合における再始動の成功可能性を高めることができる。
According to this control device, regardless of whether or not the restart condition is satisfied, the fuel is supplied in a state where the spark ignition is stopped after the stop condition is satisfied. Therefore, when the restart condition is satisfied in the stop process after the stop condition is established and before the stop is completed, the ignition can be performed quickly by restarting spark ignition without supplying fuel after the restart condition is satisfied. Since this control device is less likely to miss the restart opportunity than when the fuel is supplied after the restart condition is satisfied and then ignition combustion is performed, the restart when the restart condition is satisfied during the stop process of the internal combustion engine Can increase the chances of success.

停止完了後の再始動において、所定行程(例えば、圧縮行程又は膨張行程)で停止した気筒から火花点火を開始する内燃機関の場合、停止過程において再始動条件が成立しないまま停止完了したときには、停止完了まで燃料供給を続行すると所定行程で停止する気筒への燃料供給後の他の気筒への燃料供給が無駄になる。この制御装置によれば、所定行程で停止する気筒を特定し、その気筒まで燃料供給が継続されて以後の燃料供給が停止完了まで中止される。そのため、燃料供給の無駄を省くことができるので燃費悪化を防止できる。In the case of an internal combustion engine that starts spark ignition from a cylinder that has been stopped in a predetermined stroke (for example, a compression stroke or an expansion stroke) during a restart after the completion of the stop, the engine is stopped when the stop is completed without satisfying the restart condition in the stop process. If the fuel supply is continued until completion, the fuel supply to the other cylinders after the fuel supply to the cylinders stopped in a predetermined stroke is wasted. According to this control device, a cylinder to be stopped in a predetermined stroke is specified, fuel supply is continued up to that cylinder, and subsequent fuel supply is stopped until the stop is completed. For this reason, waste of fuel supply can be eliminated, and deterioration of fuel consumption can be prevented.

本発明の停止始動制御装置の一態様においては、前記内燃機関には該内燃機関に供給する供給空気量を開度の変化により調整可能なスロットル弁が設けられており、前記停止条件の成立後停止完了前に前記再始動条件が成立した場合、前記停止条件の成立後前記再始動条件の成立前よりも供給空気量が増加するように、前記スロットル弁の開度を開き側に制御するスロットル弁制御手段を更に備えてもよい(請求項2)。この態様によれば、再始動条件の成立後にその成立前よりも供給空気量が増加するので、再始動を試みる際の空気量不足を解消することができる。このため、火花点火を再開した後の点火燃焼が良好となって再始動の成功可能性が更に向上する。この態様においては、前記スロットル弁制御手段は、前記停止条件が成立した場合はその成立前よりも供給空気量が減少するように、前記スロットル弁の開度を閉じ側に制御してもよい(請求項3)。この場合には、停止条件成立前よりも供給空気量が減少するので、その空気の反力によってトルク変動が抑制されるため停止過程における振動を低減できる。また、仮に停止過程において再始動条件が成立しなかった場合でも、停止完了までの過程が速やかに進行するため停止条件成立後に供給された燃料の機関外への排出を抑制することができる。In one aspect of the stop / start control apparatus of the present invention, the internal combustion engine is provided with a throttle valve capable of adjusting the amount of air supplied to the internal combustion engine by changing the opening, and after the stop condition is satisfied. When the restart condition is satisfied before the stop is completed, the throttle valve that controls the opening of the throttle valve to the open side so that the supply air amount increases after the stop condition is satisfied than before the restart condition is satisfied. Valve control means may further be provided (claim 2). According to this aspect, since the supply air amount increases after the restart condition is satisfied than before the restart condition is satisfied, it is possible to solve the shortage of the air amount when attempting the restart. For this reason, the ignition combustion after resuming the spark ignition becomes good, and the possibility of a successful restart is further improved. In this aspect, when the stop condition is satisfied, the throttle valve control means may control the opening of the throttle valve to the closed side so that the amount of supplied air is smaller than that before the stop condition is satisfied ( Claim 3). In this case, since the amount of supplied air is reduced as compared with that before the stop condition is satisfied, the torque fluctuation is suppressed by the reaction force of the air, so that vibration in the stop process can be reduced. Even if the restart condition is not satisfied during the stop process, the process up to the completion of the stop proceeds promptly, so that the fuel supplied after the stop condition is satisfied can be prevented from being discharged outside the engine.

本発明の停止始動制御装置の一態様においては、前記内燃機関には電動機を駆動源とした始動装置が設けられており、前記再始動制御手段は、前記停止条件の成立後前記内燃機関の停止完了前に前記再始動条件が成立した際の前記内燃機関の機関回転数が所定値以下の場合、前記始動装置を作動させながら前記内燃機関への火花点火を再開させてもよい(請求項4)。停止過程においては機関回転数が低いほど点火燃焼によるトルクが不足するため再始動が難しくなる。この態様によれば、機関回転数が所定値以下の場合には始動装置の助けを借りて十分なトルクで再始動を試みることができるので確実に再始動を成功できるようになる。In one aspect of the stop / start control apparatus of the present invention, the internal combustion engine is provided with a starter using an electric motor as a drive source, and the restart control means stops the internal combustion engine after the stop condition is satisfied. If the engine speed of the internal combustion engine when the restart condition is satisfied before completion is less than a predetermined value, spark ignition to the internal combustion engine may be resumed while operating the starter. ). In the stop process, the lower the engine speed, the less the torque due to ignition and combustion, and the more difficult it is to restart. According to this aspect, when the engine speed is equal to or lower than the predetermined value, the restart can be attempted with sufficient torque with the help of the starter, so that the restart can be surely succeeded.

本発明の停止始動制御装置の一態様において、前記再始動制御手段は、前記停止条件の成立後前記内燃機関の停止完了前に前記再始動条件が成立した場合、当該再始動条件の成立の際に圧縮行程にある気筒から火花点火を再開させてもよい(請求項)。この態様によれば、再始動条件の成立後に圧縮気筒にある気筒から火花点火が開始するので、速やかな再始動が実現できる。
One aspect odor stop and start control system of the present invention Te, before Symbol restart control means, when said restart condition before complete stop of satisfied after the internal combustion engine of the stop condition is satisfied, the establishment of the restart condition It may be allowed to resume spark ignition from the cylinder in the compression stroke at the time of (claim 5). According to this aspect, since the spark ignition starts from the cylinder in the compression cylinder after the restart condition is satisfied, a quick restart can be realized.

以上説明したように、本発明によれば、停止過程中の再始動条件成立後に燃料供給をせずに火花点火を再開して速やかに再始動できるので、再始動条件成立後に燃料供給してから点火燃焼する場合よりも再始動の機会を逸する可能性が低いため、内燃機関の停止過程中に再始動条件が成立した場合における再始動の成功可能性を高めることができる。また、所定行程で停止する気筒を特定し、その気筒まで燃料供給が継続されて以後の燃料供給が停止完了まで中止されることにより、燃料供給の無駄を省くことができるので燃費悪化を防止できる。 As described above, according to the present invention, the spark ignition can be restarted and restarted quickly without supplying the fuel after the restart condition is established during the stop process. Since the possibility of missing the restart is lower than in the case of ignition combustion, it is possible to increase the possibility of a successful restart when the restart condition is satisfied during the stop process of the internal combustion engine. Further, by identifying a cylinder that stops in a predetermined stroke, fuel supply is continued up to that cylinder, and subsequent fuel supply is stopped until the completion of the stop, so that waste of fuel supply can be eliminated, so that deterioration of fuel consumption can be prevented. .

図1は本発明の一形態に係る停止始動制御装置が適用された内燃機関を示している。内燃機関1は不図示の車両に走行用動力源として搭載される。図1において、内燃機関1は4ストローク1サイクル機関として構成されており、一方向に並ぶ4つの気筒2を備える。なお、図1では単一の気筒2のみを示すが、他の気筒2に関する構成も同じである。これらの気筒2を互いに区別するため、以下の説明又は図面においてこれらの気筒2の並び方向の一端から他端に向かって#1〜#4の気筒番号を与えることがある。   FIG. 1 shows an internal combustion engine to which a stop / start control apparatus according to an embodiment of the present invention is applied. The internal combustion engine 1 is mounted on a vehicle (not shown) as a driving power source. In FIG. 1, the internal combustion engine 1 is configured as a four-stroke one-cycle engine and includes four cylinders 2 arranged in one direction. Although only a single cylinder 2 is shown in FIG. 1, the configuration relating to the other cylinders 2 is the same. In order to distinguish these cylinders 2 from each other, cylinder numbers # 1 to # 4 may be given from one end to the other end in the arrangement direction of the cylinders 2 in the following description or drawings.

各気筒2におけるピストン3の位相は気筒2の個数及びレイアウトに応じて互いにずらされている。内燃機関1は直列4気筒型であるので、ピストン3の位相はクランク角にして180°CAずつずらされている。これにより、4つの気筒2のうちいずれか一つの気筒2のピストン3は必ず吸気行程にあり、他のいずれか一つの気筒2のピストン3は必ず膨張行程にある。また、内燃機関1は、燃料噴射弁4から吸気ポート5に燃料を噴射して各気筒2内に混合気を導入し、その混合気に点火プラグ6の火花により点火するポート噴射型の火花点火型内燃機関として構成されている。各気筒2の点火順序は、#1、#3、#4、#2の順序に設定されている。燃料噴射弁4から噴射される燃料は一例としてガソリンである。更に、内燃機関1には、燃焼室7と吸気通路8及び排気通路9との間をそれぞれ開閉する吸気弁10及び排気弁11、吸気通路8からの空気量を調整するスロットル弁12、及びピストン3の往復運動をクランク軸14に回転運動として伝達するコンロッド13が設けられる。これらの構成は周知の内燃機関と同様でよい。   The phases of the pistons 3 in each cylinder 2 are shifted from each other according to the number and layout of the cylinders 2. Since the internal combustion engine 1 is an in-line four-cylinder type, the phase of the piston 3 is shifted by 180 ° CA as a crank angle. As a result, the piston 3 of any one of the four cylinders 2 is always in the intake stroke, and the piston 3 of any one of the other cylinders 2 is always in the expansion stroke. Further, the internal combustion engine 1 injects fuel from the fuel injection valve 4 into the intake port 5 to introduce an air-fuel mixture into each cylinder 2 and ignites the air-fuel mixture by the spark of the spark plug 6. It is configured as a type internal combustion engine. The firing order of each cylinder 2 is set in the order of # 1, # 3, # 4, and # 2. The fuel injected from the fuel injection valve 4 is gasoline as an example. Further, the internal combustion engine 1 includes an intake valve 10 and an exhaust valve 11 that open and close between the combustion chamber 7 and the intake passage 8 and the exhaust passage 9, respectively, a throttle valve 12 that adjusts the amount of air from the intake passage 8, and a piston. A connecting rod 13 that transmits the reciprocating motion 3 to the crankshaft 14 as a rotational motion is provided. These configurations may be the same as those of a known internal combustion engine.

内燃機関1には、これを始動させるための始動装置としてのスタータ15が設けられている。スタータ15は、電動機16を駆動源とし、電動機16の回転を減速歯車機構17を介してクランク軸14と一体回転するリングギア18に伝達する周知のものである。なお、減速歯車機構17は、電動機16からクランク軸14への回転伝達を許容し、クランク軸14から電動機16への回転伝達を阻止するワンウェイクラッチを内蔵する。   The internal combustion engine 1 is provided with a starter 15 as a starting device for starting it. The starter 15 is a known device that uses the electric motor 16 as a drive source and transmits the rotation of the electric motor 16 to the ring gear 18 that rotates integrally with the crankshaft 14 via the reduction gear mechanism 17. The reduction gear mechanism 17 incorporates a one-way clutch that allows rotation transmission from the electric motor 16 to the crankshaft 14 and prevents rotation transmission from the crankshaft 14 to the electric motor 16.

内燃機関1の運転状態はエンジンコントロールユニット(ECU)20によって制御される。ECU20はマイクロプロセッサ、及びその動作に必要なRAM、ROM等の周辺装置を含んだコンピュータとして構成され、ROMに記録されたプログラムに従って内燃機関1の運転状態を制御するために必要な各種の処理を実行する。一例として、ECU20は、吸入空気量や空燃比を各種センサの出力信号から検出して、所定の空燃比が得られるように燃料噴射弁4の燃料噴射量を制御する。また、ECU20は点火プラグ6を駆動する点火回路19を操作して火花点火の実行を制御する。ECU20が参照するセンサとしては、クランク軸14の回転位置(クランク角)に対応した信号を出力するクランク角センサ21、アクセルペダルの開度を検出するアクセル開度センサ22、内燃機関1を搭載する車両の車速を検出する車速センサ23及び車両に設けられるミッションの変速段(シフト位置)を検出するシフト位置センサ24等が設けられる。その他にも、ブレーキペダルの操作を検出するブレーキペダルセンサ等が設けられるが図示は省略した。また、ECU20はスロットル弁12を操作してその開度を制御することができる。   The operating state of the internal combustion engine 1 is controlled by an engine control unit (ECU) 20. The ECU 20 is configured as a computer including a microprocessor and peripheral devices such as RAM and ROM necessary for its operation, and performs various processes necessary for controlling the operating state of the internal combustion engine 1 according to a program recorded in the ROM. Execute. As an example, the ECU 20 detects the intake air amount and the air-fuel ratio from the output signals of various sensors, and controls the fuel injection amount of the fuel injection valve 4 so as to obtain a predetermined air-fuel ratio. Further, the ECU 20 controls the execution of spark ignition by operating the ignition circuit 19 that drives the spark plug 6. As sensors referred to by the ECU 20, a crank angle sensor 21 that outputs a signal corresponding to the rotational position (crank angle) of the crankshaft 14, an accelerator opening sensor 22 that detects the opening of an accelerator pedal, and the internal combustion engine 1 are mounted. A vehicle speed sensor 23 that detects the vehicle speed of the vehicle, a shift position sensor 24 that detects a gear position (shift position) of a mission provided in the vehicle, and the like are provided. In addition, a brake pedal sensor for detecting the operation of the brake pedal is provided, but the illustration is omitted. Further, the ECU 20 can control the opening degree by operating the throttle valve 12.

ECU20は、車両が停止する等の所定の停止条件が成立すると内燃機関1を停止させ、所定の再始動条件が成立するとその停止状態から内燃機関1を再始動させる、いわゆるアイドルストップ制御を内燃機関1に対して実行する。停止条件及び再始動条件はアイドルストップ制御に関する公知の技術と同様に設定してよい。例えば、車両が停止しかつ機関回転数(回転速度)がアイドル回転数になることをもって停止条件の成立を判断して、内燃機関1に対して停止指令を出力する。この場合、停止条件の成否の判断はクランク角センサ21及び車速センサ23からの信号に基づいて行われる。また、車両停止状態でミッションのシフト位置がドライブレンジの場合にアクセルペダルが踏まれ又はブレーキペダルが離されることをもって再始動条件の成立を判断して、内燃機関1に対して再始動指令を出力する。この場合、再始動条件の成否の判断はアクセル開度センサ22及びシフト位置センサ24又は不図示のブレーキペダルセンサの出力信号に基づいて行われる。停止条件又は再始動条件の成立の判断には機関温度やバッテリの状態等の種々の要素も加味されてよいが、これらは公知技術であるので詳しい説明は省略する。   The ECU 20 performs so-called idle stop control in which the internal combustion engine 1 is stopped when a predetermined stop condition such as a vehicle stop is satisfied, and the internal combustion engine 1 is restarted from the stopped state when a predetermined restart condition is satisfied. Run for 1. The stop condition and the restart condition may be set in the same manner as a known technique related to idle stop control. For example, when the vehicle stops and the engine speed (rotational speed) becomes the idle speed, it is determined that the stop condition is satisfied, and a stop command is output to the internal combustion engine 1. In this case, whether or not the stop condition is satisfied is determined based on signals from the crank angle sensor 21 and the vehicle speed sensor 23. Further, when the vehicle is stopped and the mission shift position is in the drive range, the restart condition is determined when the accelerator pedal is depressed or the brake pedal is released, and a restart command is output to the internal combustion engine 1. To do. In this case, whether or not the restart condition is satisfied is determined based on output signals of the accelerator opening sensor 22 and the shift position sensor 24 or a brake pedal sensor (not shown). Various factors such as the engine temperature and the battery state may be considered in determining whether the stop condition or the restart condition is satisfied. However, since these are known techniques, detailed description thereof is omitted.

本形態はアイドルストップ制御において停止条件が成立してから内燃機関1の停止が完了する前に再始動条件が成立した場合の制御に特徴がある。まず、図2及び図3を参照して本形態に係る制御例を説明する。これらの図は内燃機関1のクランク角、機関回転数NE、スロットル弁12の開度及びスタータ15の動作状態の時間的変化を示し、これらに合わせて#1〜#4の各気筒2のストロークと各気筒2に対する燃料供給(燃料噴射)及び火花点火の実行時期を示している。   The present embodiment is characterized in the control when the restart condition is satisfied before the stop of the internal combustion engine 1 is completed after the stop condition is satisfied in the idle stop control. First, an example of control according to this embodiment will be described with reference to FIGS. 2 and 3. These drawings show the time variation of the crank angle of the internal combustion engine 1, the engine speed NE, the opening degree of the throttle valve 12, and the operating state of the starter 15, and the strokes of the cylinders # 1 to # 4 corresponding to these changes. And the fuel supply (fuel injection) and spark ignition execution timing for each cylinder 2 are shown.

図2は本形態に係る制御結果の一例を示すタイミングチャートである。図示するように、停止条件が成立して停止指令が出力されると燃料噴射が継続された状態でその指令後直ちに火花点火が中止される。これと並行してスロットル弁12の開度が閉じ側、この場合はスロットル弁12が略全閉状態に制御される。燃料供給が継続されるものの火花点火が中止されるので、気筒2内での燃焼が行われずに機関回転数NEは徐々に低下して停止完了に向かう。この間、スロットル弁12が略全閉状態に制御されるので機関回転数NEの変動が抑えられる。停止完了までの停止過程で再始動指令がない場合は、一点鎖線で示すように、火花点火が中止されつつ燃料噴射が圧縮行程で停止する気筒2まで(この例では#2気筒まで)継続されてから停止完了する。燃料噴射を圧縮行程で停止する気筒まで継続するのは、停止完了後の再始動で圧縮気筒から火花点火を開始するため無駄な燃料噴射を回避するためである。   FIG. 2 is a timing chart showing an example of a control result according to this embodiment. As shown in the figure, when the stop condition is satisfied and a stop command is output, the spark ignition is stopped immediately after the command in a state where fuel injection is continued. In parallel with this, the opening degree of the throttle valve 12 is closed, and in this case, the throttle valve 12 is controlled to be substantially fully closed. Although the fuel supply is continued, the spark ignition is stopped, so that the combustion in the cylinder 2 is not performed, and the engine speed NE is gradually lowered to the completion of the stop. During this time, the throttle valve 12 is controlled to be substantially fully closed, so that fluctuations in the engine speed NE are suppressed. If there is no restart command in the stop process until the stop is completed, as shown by a one-dot chain line, the spark ignition is stopped and the fuel injection is continued until the cylinder 2 where it stops in the compression stroke (in this example, up to the # 2 cylinder). Then stop. The reason why fuel injection is continued up to the cylinder that stops in the compression stroke is to avoid unnecessary fuel injection because spark ignition is started from the compression cylinder by restart after completion of the stop.

一方、停止過程で再始動指令が出力される場合には、直ちにスロットル弁12の開度が指令出力前よりも開き側に制御されて供給空気量が増加され、続いて再始動指令時に圧縮行程にあった気筒2(この例では#1気筒)から火花点火が再開される。停止指令後に燃料噴射が行われているので、その燃料を含んだ気筒2内の混合気が火花点火の再開により燃焼し、これにより実線で示すように機関回転数NEが立ち上がり再始動が成功する。図2の例では、再始動指令時の機関回転数NEが火花点火のみによる再始動が困難となる閾値NEstを超えていて火花点火のみでも再始動に必要なトルクを確保できるので、再始動時にスタータ15は作動されない。   On the other hand, when a restart command is output in the stop process, the opening degree of the throttle valve 12 is immediately controlled to be opened more than before the command is output, and the supply air amount is increased. The spark ignition is restarted from the cylinder 2 (# 1 cylinder in this example). Since fuel injection is performed after the stop command, the air-fuel mixture in the cylinder 2 containing the fuel is combusted by resuming spark ignition, and as a result, the engine speed NE rises and restart is successful as indicated by the solid line. . In the example of FIG. 2, the engine speed NE at the time of the restart command exceeds the threshold NEst that makes it difficult to restart only by spark ignition, and the torque necessary for restart can be secured only by spark ignition. The starter 15 is not activated.

図3は本形態に係る制御結果の他の例を示すタイミングチャートである。この例は再始動指令のタイミングが図2よりも遅い場合を示している。停止過程で再始動指令がない場合は図2と同様である。再始動指令前の状態も図2と同様である。図3の例では、再始動指令時の機関回転数NEが閾値NEst以下なので、再始動指令後直ちにスタータ15が作動される。同時にスロットル弁12の開度も開き側に制御されて供給空気量が増加される。その後停止指令時に圧縮行程にある気筒2(この例では#4気筒)から火花点火が再開される。この場合はスタータ15の助けを借りることで再始動に必要なトルクを確保できるため実線で示すように機関回転数NEが立ち上がり再始動が成功する。   FIG. 3 is a timing chart showing another example of the control result according to this embodiment. This example shows a case where the timing of the restart command is later than that in FIG. When there is no restart command in the stop process, it is the same as FIG. The state before the restart command is the same as in FIG. In the example of FIG. 3, since the engine speed NE at the time of the restart command is equal to or less than the threshold value NEst, the starter 15 is operated immediately after the restart command. At the same time, the opening degree of the throttle valve 12 is also controlled to the opening side, and the supply air amount is increased. Thereafter, spark ignition is restarted from cylinder 2 (# 4 cylinder in this example) in the compression stroke at the time of the stop command. In this case, the torque required for restart can be secured with the help of the starter 15, so that the engine speed NE rises as shown by the solid line and the restart is successful.

次に、以上の制御を実現するための具体的な処理手順についてフローチャートに沿って説明する。図4〜図6はECU20が実行する制御ルーチンの一例を示すフローチャートであり、これらのルーチンは互いに並行して実行される。各制御ルーチンのプログラムはECU20に保持されており、適時に読み出されて所定クランク角毎に繰り返し実行される。図4はアイドリングストップ制御に係る点火制御及び空気量制御の制御ルーチンの一例を示している。まず、ステップS1において、ECU20は停止条件が成立しているか否か、即ち停止指令が出力されているか否かを判断する。この判断は例えば停止指令の有無を管理するためのフラグをECU20のRAMに割り当てて、そのフラグの状態を参照することにより実施できる。停止条件が成立していない場合は以後の処理をスキップして今回のルーチンを終了する。停止条件が成立している場合はステップS2に進み、スロットル弁の開度TAを閉じ側に制御する。ここでの閉じ側の開度θ0は、アイドリング時の空気量に満たない空気量になる開度θ0に設定され、例えば略全閉状態に設定される(TA←θ0)。即ち、アイドリング時の開度をθidlとすると、θ0≦θidlとなる。   Next, a specific processing procedure for realizing the above control will be described with reference to a flowchart. 4 to 6 are flowcharts showing an example of a control routine executed by the ECU 20, and these routines are executed in parallel with each other. A program for each control routine is held in the ECU 20, read out in a timely manner, and repeatedly executed at every predetermined crank angle. FIG. 4 shows an example of a control routine for ignition control and air amount control related to idling stop control. First, in step S1, the ECU 20 determines whether or not a stop condition is satisfied, that is, whether or not a stop command is output. This determination can be performed, for example, by assigning a flag for managing the presence or absence of a stop command to the RAM of the ECU 20 and referring to the state of the flag. If the stop condition is not satisfied, the subsequent processing is skipped and the current routine is terminated. When the stop condition is satisfied, the process proceeds to step S2, and the throttle valve opening TA is controlled to the closed side. Here, the opening degree θ0 on the closing side is set to an opening degree θ0 that becomes an air amount that is less than the air amount at the time of idling, and is set to, for example, a substantially fully closed state (TA ← θ0). That is, if the opening at idling is θidl, θ0 ≦ θidl.

次にステップS3では、この処理時点の直後に点火時期が到来する気筒2に対する火花点火を中止(カット)する。次いで、ステップS4において再始動条件が成立しているか否か、即ち再始動指令が出力されているか否かを判断する。この判断はステップS1の場合と同様に例えば再始動指令の有無を管理するためのフラグをECU20のRAMに割り当てて、そのフラグの状態を参照することにより実施する。再始動条件が成立していない場合は以後の処理をスキップして今回のルーチンを終了する。再始動条件が成立している場合はステップS5に進み、スロットル弁12の開度TAを開き側に制御する。ここでの開き側の開度θopは、アイドリング状態の空気量以上の空気量が得られる開度として適宜設定される。即ち、θop≧θidlとなる。   Next, in step S3, the spark ignition for the cylinder 2 whose ignition timing comes immediately after this processing time point is stopped (cut). Next, in step S4, it is determined whether or not a restart condition is satisfied, that is, whether or not a restart command is output. This determination is performed by assigning, for example, a flag for managing the presence / absence of the restart command to the RAM of the ECU 20 and referring to the state of the flag as in the case of step S1. If the restart condition is not satisfied, the subsequent processing is skipped and the current routine is terminated. If the restart condition is satisfied, the process proceeds to step S5, and the opening degree TA of the throttle valve 12 is controlled to open. The opening degree θop on the opening side here is appropriately set as an opening degree at which an air amount equal to or larger than the air amount in the idling state is obtained. That is, θop ≧ θidl.

次にステップS6では、機関回転数NEが閾値NEstを超えているか否かを判断する。機関回転数NEはクランク角センサ21の出力に基づいて演算される。閾値NEstは上述したように、火花点火のみでは再始動が困難になる回転数の限界を意味し、換言すればスタータ15による助力が必要となる回転数の上限を意味し、予め実験的に定めておくことができる。閾値NEstは一定値(例えば、400rpm)に設定してもよいし、状況に応じて値を変化させる変数でもよい。機関回転数NEが閾値NEst以下の場合はスタータ15の助力を要するため、ステップS7に進んでスタータ15を起動させる。一方機関回転数NEが閾値NEstを超えている場合はスタータ15の助力が必要ないので、ステップS8に進んで、現時点において圧縮行程にある気筒2を特定し、続くステップS9において、特定された圧縮行程にある気筒2に対して火花点火を実行する。そして、今回のルーチンを終了する。   Next, in step S6, it is determined whether or not the engine speed NE exceeds a threshold value NEst. The engine speed NE is calculated based on the output of the crank angle sensor 21. As described above, the threshold value NEst means the limit of the rotational speed at which it is difficult to restart only by spark ignition, in other words, means the upper limit of the rotational speed at which the starter 15 needs assistance, and is determined experimentally in advance. I can keep it. The threshold value NEst may be set to a constant value (for example, 400 rpm), or may be a variable that changes the value depending on the situation. If the engine speed NE is less than or equal to the threshold value NEst, the starter 15 needs to be assisted. Therefore, the process proceeds to step S7 to start the starter 15. On the other hand, if the engine speed NE exceeds the threshold value NEst, the starter 15 does not need assistance, so the process proceeds to step S8 to identify the cylinder 2 that is currently in the compression stroke, and in the subsequent step S9, the identified compression is performed. Spark ignition is performed on the cylinder 2 in the stroke. Then, the current routine is terminated.

図5はアイドリングストップ制御に係る燃料噴射制御の制御ルーチンの一例を示している。まず、ステップS11において、ECU20は停止条件が成立したか否かを判定する。停止条件が成立している場合はステップS12に進み、そうでない場合は以後の処理をスキップして今回のルーチンを終了する。ステップS12では、圧縮行程でピストン3が停止する気筒(圧縮行程停止気筒)に対する燃料噴射が終了したか否かを判定する。この判定は、その燃料噴射(最終噴射)の終了を管理するために設けられた最終噴射フラグFcoの状態に基づいて行われる。そのフラグFcoは最終噴射が終了したときにONに設定され、それ以外の場合はOFFに設定される。最終噴射が終了した場合、つまりフラグFcoがONの場合にはステップS13に進んで、以後の燃料噴射を中止(カット)し、今回のルーチンを終了する。一方、最終噴射が未了の場合はステップS14に進んで、燃料噴射時期を迎える気筒が圧縮行程停止気筒か否かを判別する。この判別は図6に示す制御ルーチンにてON/OFFされる停止気筒判別フラグCcoの状態に基づいて行われる。   FIG. 5 shows an example of a control routine for fuel injection control related to idling stop control. First, in step S11, the ECU 20 determines whether a stop condition is satisfied. If the stop condition is satisfied, the process proceeds to step S12. If not, the subsequent process is skipped and the current routine is terminated. In step S12, it is determined whether or not the fuel injection for the cylinder in which the piston 3 stops in the compression stroke (compression stroke stop cylinder) is completed. This determination is made based on the state of the final injection flag Fco provided for managing the end of the fuel injection (final injection). The flag Fco is set to ON when the final injection is completed, and is set to OFF in other cases. When the final injection is completed, that is, when the flag Fco is ON, the process proceeds to step S13, the subsequent fuel injection is stopped (cut), and the current routine is terminated. On the other hand, if the final injection has not been completed, the process proceeds to step S14, and it is determined whether or not the cylinder that reaches the fuel injection timing is a cylinder that has stopped the compression stroke. This determination is made based on the state of the stopped cylinder determination flag Cco that is turned ON / OFF in the control routine shown in FIG.

図6は圧縮行程停止気筒判定制御の制御ルーチンの一例を示している。まずステップS21において、機関回転数NEが所定値NEco以下か否かを判定する。図7は圧縮行程停止気筒を判別のために使用する所定値NEcoを説明する説明図である。この図に示すように、所定値NEcoの具体的な値は、機関回転数NEが所定値NEcoのときに排気行程にある気筒がその後圧縮行程で停止完了を迎える実験的な事実に基づいて設定される。つまり、機関回転数が所定値NEcoの際に排気行程にある気筒が圧縮行程停止気筒に相当する。そこで、ステップS21において機関回転数NEが所定値NEco以下と判定された場合はステップS22に進み、排気行程にある気筒を圧縮行程停止気筒として特定し、停止気筒判別フラグCcoをONに設定する(Cco←ON)。その後、今回のルーチンを終了する。周知のように各気筒2の行程(ストローク)はクランク角センサ21の出力から特定される。一方、機関回転数NEが所定値を超えている場合は、圧縮行程停止気筒を判別できる時期にないので、ステップS23に進んで、停止気筒判別フラグCcoをOFFに設定し(Cco←OFF)、今回のルーチンを終了する。   FIG. 6 shows an example of a control routine of the compression stroke stop cylinder determination control. First, in step S21, it is determined whether the engine speed NE is equal to or smaller than a predetermined value NEco. FIG. 7 is an explanatory diagram for explaining the predetermined value NEco used for determining the compression stroke stopped cylinder. As shown in this figure, the specific value of the predetermined value NEco is set based on the experimental fact that when the engine speed NE is the predetermined value NEco, the cylinder in the exhaust stroke reaches the stop completion in the compression stroke thereafter. Is done. That is, the cylinder in the exhaust stroke when the engine speed is the predetermined value NEco corresponds to the compression stroke stop cylinder. Therefore, if it is determined in step S21 that the engine speed NE is equal to or less than the predetermined value NEco, the process proceeds to step S22, the cylinder in the exhaust stroke is specified as the compression stroke stop cylinder, and the stop cylinder determination flag Cco is set to ON ( Cco ← ON). Thereafter, the current routine is terminated. As is well known, the stroke (stroke) of each cylinder 2 is specified from the output of the crank angle sensor 21. On the other hand, if the engine speed NE exceeds the predetermined value, it is not time to determine the compression stroke stop cylinder, so the process proceeds to step S23, where the stop cylinder determination flag Cco is set to OFF (Cco ← OFF). End this routine.

図5に戻り、ステップS14で停止気筒判別フラグCcoがONの場合はステップS15に進んで最終噴射フラグFcoをONに設定し(Fco←ON)、その上でステップS16において圧縮行程気筒に対する燃料噴射を実行して今回のルーチンを終了する。一方、停止気筒判別フラグCcoがONでない場合は、ステップS17に進んで最終噴射フラグFcoをOFFに設定し(Fco←OFF)、その上でステップS16において燃料噴射を実行して今回のルーチンを終了する。   Returning to FIG. 5, if the stop cylinder discrimination flag Cco is ON in step S14, the process proceeds to step S15, the final injection flag Fco is set to ON (Fco ← ON), and then fuel injection to the compression stroke cylinder is performed in step S16. To finish the current routine. On the other hand, if the stopped cylinder discrimination flag Cco is not ON, the process proceeds to step S17, the final injection flag Fco is set to OFF (Fco ← OFF), and then fuel injection is executed in step S16, and the current routine is terminated. To do.

以上の図4〜図6に示した制御ルーチンを実行することにより、図2及び図3に示した結果を得ることができる。即ち、再始動条件の成否に関わりなく、停止条件成立後に火花点火が中止された状態で燃料供給が行われるため、停止条件成立後停止完了前の停止過程において再始動条件が成立したときには、再始動条件成立後に燃料供給をせずに火花点火を再開することにより点火燃焼させて速やかに再始動できる。本形態の制御は再始動条件成立後に燃料供給してから点火燃焼する場合よりも再始動の機会を逸する可能性が低いため、内燃機関1の停止過程中に再始動条件が成立した場合における再始動の成功可能性を高めることができる。   The results shown in FIGS. 2 and 3 can be obtained by executing the control routines shown in FIGS. That is, regardless of whether or not the restart condition is satisfied, fuel is supplied in a state in which spark ignition is stopped after the stop condition is satisfied, so when the restart condition is satisfied in the stop process after the stop condition is established and before the stop is completed, By restarting spark ignition without supplying fuel after the start condition is established, ignition and combustion can be performed quickly and restarted. Since the control of this embodiment is less likely to miss the restart opportunity than the case where ignition is performed after fuel is supplied after the restart condition is satisfied, the restart condition is satisfied when the internal combustion engine 1 is stopped. The possibility of a successful restart can be increased.

以上の形態において、ECU20は図4〜図6の制御ルーチンを実行することにより、本発明に係る停止制御手段として、図4のステップS4〜9を実行することにより、本発明に係る再始動制御手段として、図4のステップS2及びステップS5を実行することにより、本発明に係るスロットル弁制御手段としてそれぞれ機能する。   In the above embodiment, the ECU 20 executes the control routines of FIGS. 4 to 6, thereby executing the restart control according to the present invention by executing steps S <b> 4 to S <b> 9 of FIG. 4 as the stop control means according to the present invention. As a means, by performing step S2 and step S5 of FIG. 4, each functions as a throttle valve control means according to the present invention.

但し、本発明は以上の形態に限定されるものではなく、本発明の要旨の範囲内において種々の形態にて実施できる。本発明の停止始動制御装置が適用される内燃機関はポート噴射型の内燃機関に限定されず、気筒内に燃料を直接的に噴射するいわゆる直噴型の内燃機関にも適用できる。直噴型の内燃機関に適用する場合には停止条件成立後に燃料供給できる時期についてポート噴射型の内燃機関よりも制約が少ないので、その燃料供給時期の自由度が高まる利点がある。   However, the present invention is not limited to the above form, and can be implemented in various forms within the scope of the gist of the present invention. The internal combustion engine to which the stop / start control device of the present invention is applied is not limited to a port injection type internal combustion engine, but can also be applied to a so-called direct injection type internal combustion engine that directly injects fuel into a cylinder. When applied to a direct injection type internal combustion engine, there are fewer restrictions than the port injection type internal combustion engine as to when the fuel can be supplied after the stop condition is satisfied, and there is an advantage that the degree of freedom of the fuel supply timing is increased.

また、停止条件成立後における燃料供給の継続を圧縮行程停止気筒までとするのは一例にすぎない。例えば、本発明を適用する内燃機関が停止完了後の再始動において膨張行程から火花点火を開始するように構成されている場合には、その燃料供給を停止完了時において膨張行程で停止する膨張行程停止気筒まで継続させてもよい。膨張行程停止気筒の判別は図7に示したものと同様の方法で実施することができる。   In addition, the continuation of fuel supply after the stop condition is satisfied is limited to the compression stroke stop cylinder. For example, when the internal combustion engine to which the present invention is applied is configured to start spark ignition from the expansion stroke in the restart after the completion of the stop, the expansion stroke in which the fuel supply is stopped in the expansion stroke when the stop is completed. You may continue to a stop cylinder. The determination of the expansion stroke stop cylinder can be performed by the same method as that shown in FIG.

また、内燃機関の停止過程において供給空気量を減量あるいは増量させる手段としては、スロットル弁の開度を制御する形態に限定されない。例えば、気筒毎に設けられる吸気弁の開閉時期を制御することで供給空気量を減量あるいは増量させることもできる。即ち吸気弁の閉弁時期を遅角させて供給空気量を減量させたり、吸気弁の閉弁時期を進角させて供給空気量を増量させてもよい。また、スロットル弁の開度制御と吸気弁の開閉時期制御とを併用して、供給空気量を減量あるいは増量させることもできる。   Further, the means for decreasing or increasing the supply air amount in the stop process of the internal combustion engine is not limited to the form for controlling the opening degree of the throttle valve. For example, the supply air amount can be reduced or increased by controlling the opening and closing timing of the intake valve provided for each cylinder. That is, the supply air amount may be decreased by delaying the closing timing of the intake valve, or may be increased by advancing the closing timing of the intake valve. Further, the supply air amount can be decreased or increased by using the throttle valve opening control and the intake valve opening / closing timing control together.

本発明の一形態に係る停止始動制御装置が適用された内燃機関を示した図。The figure which showed the internal combustion engine to which the stop start control apparatus which concerns on one form of this invention was applied. 本発明の一形態に係る制御結果の一例を示すタイミングチャート。4 is a timing chart illustrating an example of a control result according to one embodiment of the present invention. 本発明の一形態に係る制御結果の他の例を示すタイミングチャート。7 is a timing chart showing another example of the control result according to one embodiment of the present invention. アイドリングストップ制御に係る点火制御及び空気量制御の制御ルーチンの一例を示したフローチャート。The flowchart which showed an example of the control routine of the ignition control which concerns on idling stop control, and air quantity control. アイドリングストップ制御に係る燃料噴射制御の制御ルーチンの一例を示したフローチャート。The flowchart which showed an example of the control routine of the fuel-injection control which concerns on idling stop control. 圧縮行程停止気筒判定制御の制御ルーチンの一例を示したフローチャート。The flowchart which showed an example of the control routine of compression stroke stop cylinder determination control. 圧縮行程停止気筒を判別のために使用する所定値NEcoを説明する説明図。Explanatory drawing explaining predetermined value NEco used for discrimination | determination of a compression stroke stop cylinder.

符号の説明Explanation of symbols

1 内燃機関
2 気筒
12 スロットル弁
15 スタータ(始動装置)
16 電動機
20 ECU(停止制御手段、再始動制御手段、スロットル弁制御手段)
1 Internal combustion engine 2 Cylinder 12 Throttle valve 15 Starter (starter)
16 Electric motor 20 ECU (stop control means, restart control means, throttle valve control means)

Claims (5)

火花点火型内燃機関に適用され、所定の停止条件が成立した場合に前記内燃機関を停止させるとともに所定の再始動条件が成立した場合に前記内燃機関を再始動させる内燃機関の停止始動制御装置であって、
前記停止条件の成立直後から前記内燃機関への火花点火を中止させつつ前記内燃機関への燃料供給を継続させる停止制御手段と、前記停止条件の成立後前記内燃機関の停止完了前に前記再始動条件が成立した場合、前記停止条件の成立後に火花点火が中止した状態で継続して供給された燃料が燃焼するように前記内燃機関への火花点火を再開させる再始動制御手段と、を備え、
前記内燃機関は複数の気筒を備えた4ストローク1サイクル機関として構成され、かつ前記内燃機関の停止完了後の再始動の際に所定行程で停止した気筒から火花点火を開始するように構成されており、
前記停止制御手段は、前記所定行程で停止する気筒を前記複数の気筒のなかから特定するとともに、前記停止条件が成立してから、その特定した気筒まで燃料供給を継続させて、以後の燃料供給を前記内燃機関の停止完了まで中止させることを特徴とする内燃機関の停止始動制御装置。
An internal combustion engine stop / start control device that is applied to a spark ignition type internal combustion engine and stops the internal combustion engine when a predetermined stop condition is satisfied and restarts the internal combustion engine when a predetermined restart condition is satisfied. There,
Stop control means for continuing fuel supply to the internal combustion engine while stopping spark ignition to the internal combustion engine immediately after the stop condition is satisfied, and restarting the engine after the stop condition is satisfied and before the stop of the internal combustion engine is completed A restart control means for restarting the spark ignition to the internal combustion engine so that the fuel continuously supplied in a state where the spark ignition is stopped after the stop condition is satisfied when the condition is satisfied;
The internal combustion engine is configured as a four-stroke one-cycle engine having a plurality of cylinders, and is configured to start spark ignition from a cylinder that has stopped in a predetermined stroke when restarting after completion of the stop of the internal combustion engine. And
The stop control means specifies a cylinder to be stopped in the predetermined stroke from among the plurality of cylinders, and continues to supply fuel to the specified cylinder after the stop condition is satisfied, so that the subsequent fuel supply Is stopped until the stop of the internal combustion engine is completed.
前記内燃機関には該内燃機関に供給する供給空気量を開度の変化により調整可能なスロットル弁が設けられており、
前記停止条件の成立後前記内燃機関の停止完了前に前記再始動条件が成立した場合、前記停止条件の成立後前記再始動条件の成立前よりも供給空気量が増加するように、前記スロットル弁の開度を開き側に制御するスロットル弁制御手段を更に備えることを特徴とする請求項1記載の内燃機関の停止始動制御装置。
The internal combustion engine is provided with a throttle valve capable of adjusting the amount of air supplied to the internal combustion engine by changing the opening degree;
When the restart condition is satisfied after the stop condition is satisfied but before the stop of the internal combustion engine is completed, the throttle valve is set so that the supply air amount is increased after the stop condition is satisfied than before the restart condition is satisfied. 2. The stop / start control device for an internal combustion engine according to claim 1, further comprising throttle valve control means for controlling the opening of the engine to an open side.
前記スロットル弁制御手段は、前記停止条件が成立した場合はその成立前よりも供給空気量が減少するように、前記スロットル弁の開度を閉じ側に制御することを特徴とする請求項2に記載の内燃機関の停止始動制御装置。   The throttle valve control means controls the opening degree of the throttle valve to the closed side so that, when the stop condition is satisfied, the amount of supplied air is smaller than before the satisfaction. The internal combustion engine stop / start control device according to claim. 前記内燃機関には電動機を駆動源とした始動装置が設けられており、
前記再始動制御手段は、前記停止条件の成立後前記内燃機関の停止完了前に前記再始動条件が成立した際の前記内燃機関の機関回転数が所定値以下の場合、前記始動装置を作動させながら前記内燃機関への火花点火を再開させることを特徴とする請求項1〜3のいずれか一項に記載の内燃機関の停止始動制御装置。
The internal combustion engine is provided with a starting device using an electric motor as a drive source,
The restart control means activates the starter when the engine speed of the internal combustion engine is less than a predetermined value when the restart condition is satisfied after the stop condition is satisfied and before the stop of the internal combustion engine is completed. The ignition / stop control device for an internal combustion engine according to any one of claims 1 to 3, wherein spark ignition to the internal combustion engine is resumed.
記再始動制御手段は、前記停止条件の成立後前記内燃機関の停止完了前に前記再始動条件が成立した場合、当該再始動条件の成立の際に圧縮行程にある気筒から火花点火を再開させることを特徴とする請求項1〜3のいずれか一項に記載の内燃機関の停止始動制御装置。 Before SL restart control means, when said restart condition before complete stop of satisfied after the internal combustion engine of the stop condition is satisfied, restarting the spark ignition from the cylinder in the compression stroke at the time of establishment of the restart condition The stop / start control device for an internal combustion engine according to any one of claims 1 to 3, wherein:
JP2007052421A 2007-03-02 2007-03-02 Internal combustion engine stop / start control device Expired - Fee Related JP4858234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007052421A JP4858234B2 (en) 2007-03-02 2007-03-02 Internal combustion engine stop / start control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007052421A JP4858234B2 (en) 2007-03-02 2007-03-02 Internal combustion engine stop / start control device

Publications (2)

Publication Number Publication Date
JP2008215154A JP2008215154A (en) 2008-09-18
JP4858234B2 true JP4858234B2 (en) 2012-01-18

Family

ID=39835506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007052421A Expired - Fee Related JP4858234B2 (en) 2007-03-02 2007-03-02 Internal combustion engine stop / start control device

Country Status (1)

Country Link
JP (1) JP4858234B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5036682B2 (en) 2008-10-20 2012-09-26 トヨタ自動車株式会社 Control device for in-vehicle internal combustion engine
JP5075145B2 (en) * 2009-02-13 2012-11-14 トヨタ自動車株式会社 Control device for internal combustion engine
JP5059043B2 (en) * 2009-03-17 2012-10-24 株式会社デンソー Engine stop / start control device
JP2010223008A (en) * 2009-03-19 2010-10-07 Denso Corp Automatic start-stop control device for internal combustion engine
JP5402338B2 (en) * 2009-07-13 2014-01-29 トヨタ自動車株式会社 Multi-cylinder internal combustion engine start control device
DE102010001773B4 (en) * 2010-02-10 2020-06-18 Seg Automotive Germany Gmbh Method for engaging a starter pinion in a ring gear of an internal combustion engine
CN103109062B (en) * 2011-09-12 2014-09-10 丰田自动车株式会社 Vehicle control device
WO2018047226A1 (en) * 2016-09-06 2018-03-15 日産自動車株式会社 Vehicle control method and vehicle control device
JP7073974B2 (en) * 2018-08-07 2022-05-24 トヨタ自動車株式会社 Internal combustion engine control device
US11859588B2 (en) 2020-09-24 2024-01-02 Nissan Motor Co., Ltd. Method for controlling internal combustion engine, and device for controlling internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152039A (en) * 1984-01-20 1985-08-10 Toshiba Corp Gaas gate array integrated circuit
JP2003065191A (en) * 2001-08-28 2003-03-05 Toyota Motor Corp Start control device of internal combustion engine
JP3707408B2 (en) * 2001-08-29 2005-10-19 トヨタ自動車株式会社 Internal combustion engine stop / start control device
JP3571014B2 (en) * 2001-08-30 2004-09-29 本田技研工業株式会社 Automatic stop / start control device for internal combustion engine
JP4419655B2 (en) * 2004-04-08 2010-02-24 株式会社デンソー Engine stop / start control device
JP4428308B2 (en) * 2005-07-13 2010-03-10 三菱自動車工業株式会社 Engine control device

Also Published As

Publication number Publication date
JP2008215154A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
WO2009139040A1 (en) Stop/start control device for internal combustion engine
JP4858234B2 (en) Internal combustion engine stop / start control device
JP4428308B2 (en) Engine control device
US20080092841A1 (en) Engine Start Control Apparatus, Engine Start Control Method, and Motor Vehicle Equipped with Engine Start Control Apparatus
JP2005127169A (en) Control method for internal combustion engine
JP2006144567A (en) Valve timing controller for internal combustion engine
US7941266B2 (en) Method and device for controlling an internal combustion engine in stop/start operation
JP4438839B2 (en) Control device for internal combustion engine
JP2011027077A (en) Method and device for controlling engine
JP4626557B2 (en) Engine stop control device
JP2006183467A (en) Control device of vehicle
JP2009052416A (en) Automatic stop device for engine
JP4367646B2 (en) Engine starter
JP4252008B2 (en) Starting method for internal combustion engine
JP2008215299A (en) Automatic stop starting system of vehicular engine with manual transmission
JP2007218088A (en) Control device for internal combustion engine, and starting method for internal combustion engine
JP2006188963A (en) Vehicle control device
JP4770787B2 (en) Control device for vehicle engine
JP2007270769A (en) Engine starter
JP4325477B2 (en) Engine starter
JP4379327B2 (en) Vehicle control device
JP2008121587A (en) Engine control device
JP4206847B2 (en) Vehicle control device
JP3661535B2 (en) In-cylinder injection engine starter
JP4479912B2 (en) Engine control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees