JP4857142B2 - Air ion concentration measuring device cleaning device - Google Patents

Air ion concentration measuring device cleaning device

Info

Publication number
JP4857142B2
JP4857142B2 JP2007038758A JP2007038758A JP4857142B2 JP 4857142 B2 JP4857142 B2 JP 4857142B2 JP 2007038758 A JP2007038758 A JP 2007038758A JP 2007038758 A JP2007038758 A JP 2007038758A JP 4857142 B2 JP4857142 B2 JP 4857142B2
Authority
JP
Japan
Prior art keywords
air
ion concentration
concentration measuring
electrode member
air ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007038758A
Other languages
Japanese (ja)
Other versions
JP2008203056A (en
Inventor
和幸 福居
勲 山本
槇一 山本
Original Assignee
和幸 福居
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 和幸 福居 filed Critical 和幸 福居
Priority to JP2007038758A priority Critical patent/JP4857142B2/en
Publication of JP2008203056A publication Critical patent/JP2008203056A/en
Application granted granted Critical
Publication of JP4857142B2 publication Critical patent/JP4857142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、空気中に存在する帯電した気体分子や微粒子であるイオンの濃度を測定する装置に於いて、このイオンが測定装置内に滞留し又電極に固着することにより惹起されるイオン濃度の測定不良や絶縁部分の絶縁不良現象を空気イオン濃度測定清浄制御部により防止すべくした空気イオン濃度測定器の清浄装置に関する。 The present invention relates to an apparatus for measuring the concentration of charged gas molecules and fine ions existing in the air, and the concentration of ions caused by the ions staying in the measuring apparatus and adhering to the electrodes. The present invention relates to a cleaning device for an air ion concentration measuring device which is intended to prevent a measurement failure or an insulation failure phenomenon of an insulating portion by an air ion concentration measurement cleaning control unit.

この種、従来の技術の一つの例としては、図10に示す空気イオン濃度測定器Aの構成例がある。
これについて説明すれば、1は測定筒や内実状電極バーでなる測定電極としての第1電極部材であり、該空気イオン濃度測定器Aの略中心垂直方向に配置・固定されている。すなわち、該第1電極部材1はその上端1a及び下端1bを支持バー2、4により外ケース(外筒)3に固定されている。そして、上記第1電極部材1の周囲の外域には、高電圧が印加される高圧筒等で構成された第2電極部材5を配置している。このとき、上記第1電極部材1は該第2電極部材5の略中心部分であって長さ方向に配置されることとなる。また、上記第2電極部材5は略中心部分に該第2電極部材5の外径寸法と略同一径の貫通孔を有する略円盤状支持基板6、7により該貫通孔に嵌着されると共に上方側及び下方側を上記外ケース3に固定されている。
而して、図10に示すように空気Bが該空気イオン濃度測定器Aの開口から流過し、電源装置8から所定電圧、例えば、200ないし1000(V)程度の電圧を印加すれば上記第1電極部材1及び第2電極部材5にプラス及びマイナスの帯電粒子(イオン)が捕集される。この捕集されたプラス及びマイナスの帯電粒子(イオン)9、10は電流値として計測され、これをイオン濃度測定手段としての電流・電圧変換回路11により電圧値に変換され、空気イオン濃度を検出する。
尚、図中12は信号制御線、13は電圧線である。
As an example of this type of conventional technique, there is a configuration example of an air ion concentration measuring device A shown in FIG.
To describe this, reference numeral 1 denotes a first electrode member as a measurement electrode made up of a measurement cylinder or a solid electrode bar, which is arranged and fixed in a direction substantially perpendicular to the center of the air ion concentration measuring device A. That is, the upper end 1 a and the lower end 1 b of the first electrode member 1 are fixed to the outer case (outer cylinder) 3 by the support bars 2 and 4. In the outer region around the first electrode member 1, a second electrode member 5 composed of a high voltage cylinder to which a high voltage is applied is disposed. At this time, the first electrode member 1 is arranged in the longitudinal direction at a substantially central portion of the second electrode member 5. The second electrode member 5 is fitted into the through hole by substantially disc-like support substrates 6 and 7 having a through hole having a diameter substantially the same as the outer diameter of the second electrode member 5 at a substantially central portion. The upper side and the lower side are fixed to the outer case 3.
Thus, as shown in FIG. 10, if the air B flows from the opening of the air ion concentration measuring device A and a predetermined voltage, for example, a voltage of about 200 to 1000 (V) is applied from the power supply device 8, Positive and negative charged particles (ions) are collected on the first electrode member 1 and the second electrode member 5. The collected positive and negative charged particles (ions) 9 and 10 are measured as current values, converted into voltage values by a current / voltage conversion circuit 11 as ion concentration measuring means, and air ion concentration is detected. To do.
In the figure, 12 is a signal control line, and 13 is a voltage line.

従来の技術の他の例としての空気イオン濃度測定器は、例えば、特開2003−194777に開示された技術がある。
これについて説明すれば、図11は、空気イオン濃度測定器Cの構成概要図を示しており、空気イオン濃度測定器Cは、空気中のプラスイオンが衝突することで帯電するプラス用電荷集電板14と、このプラス用電荷集電板14と相対向して配置される反発電極板15、15とからなるプラスイオン検出部16と、同じく空気中のマイナスイオンが衝突することで帯電するマイナス用電荷集電板17と、このマイナス用電荷集電板17と相対向して配置される反発電極板18、18とからなるマイナスイオン検出部19とを、内部に空気を通じる1つの測定経路である空気導入管20内に、絶縁層21を間に挟んで配置するとともに、空気吸引口と反対側には空気導入管20内にイオンを含む空気を取り込むための電動ファンからなる通風部材22を設けている。そして、この帯電した電荷集電板14、17の電荷を検出し演算する測定演算手段(図示せず)を、この帯電している電荷集電板14、17の電荷を除電すべく接地するリレースイッチ等でなる除電手段(図示せず)を配設している。また、図7に示すようにプラス用電荷集電板14と反発電極板15、15とからなるプラスイオン検出部16と、マイナス用電荷集電板17と反発電極板18、18とからなるマイナスイオン検出部19とを、絶縁層21を間に挟んで上下に積層して配置したものである。そして、通風部材22を駆動することで、空気吸引口から空気導入管20内にプラスイオンとマイナスイオンを含む空気を導入し、その内プラスイオン検出部16に導入されたプラスイオンは、プラスに帯電して反発電極板15、15に近付くと跳ね返されて電荷集電板14に衝突し、収集される。マイナスイオンは反発電極板18、18に引き寄せられて中和される。また、マイナスイオン検出部19に導入されたプラスイオンは、プラスに帯電して反発電極板18、18に近付くと跳ね返されて電荷集電板17に衝突し、収集され、プラスイオンは反発電極板18、18に引き寄せられて中和される。そして、プラスイオン、マイナスイオンが衝突することで帯電した電荷集電板14、17の電荷は、測定演算手段においてイオン電圧検出アンプ(図示せず)と高抵抗を介したノイズ検出アンプ(図示せず)に入力され、この測定値から周期的、定在的なノイズ成分を差し引くべくオペアンプを経て、これをアナログ−デジタル変換回路(図示せず)に通すことでデジタル信号に変換するものである。
特開2003−194777公開特許公報
As another example of the conventional technology, there is a technology disclosed in Japanese Patent Application Laid-Open No. 2003-194777, for example.
Describing this, FIG. 11 shows a schematic configuration diagram of the air ion concentration measuring device C. The air ion concentration measuring device C is a positive charge collector that is charged by collision of positive ions in the air. A negative ion that is charged when negative ions in the air collide with a positive ion detector 16 comprising a plate 14 and repulsive electrode plates 15, 15 disposed opposite to the positive charge collecting plate 14. One measuring path through which air is passed through the negative charge detection plate 17 and the negative ion detector 19 composed of the repulsive electrode plates 18, 18 arranged opposite to the negative charge collector 17. A ventilation portion comprising an electric fan for taking in air containing ions into the air introduction tube 20 on the side opposite to the air suction port, with the insulating layer 21 interposed therebetween in the air introduction tube 20. A is provided 22. Then, a measurement calculation means (not shown) for detecting and calculating the charges of the charged charge collector plates 14 and 17 is grounded to eliminate the charges of the charged charge collector plates 14 and 17. A neutralizing means (not shown) such as a switch is provided. Further, as shown in FIG. 7, a positive ion detector 16 composed of a positive charge collector plate 14 and repulsive electrode plates 15 and 15, and a negative ion composed of a negative charge collector plate 17 and repellent electrode plates 18 and 18. The ion detector 19 is arranged by stacking up and down with an insulating layer 21 in between. Then, by driving the ventilation member 22, air containing positive ions and negative ions is introduced from the air suction port into the air introduction tube 20, and the positive ions introduced into the positive ion detector 16 are positive. When it is charged and approaches the repulsive electrode plates 15, 15, it rebounds, collides with the charge collector plate 14, and is collected. Negative ions are attracted to the repulsive electrode plates 18 and 18 and neutralized. The positive ions introduced into the negative ion detector 19 are positively charged and rebound when they approach the repulsive electrode plates 18, 18 and collide with the charge collector plate 17, and are collected. 18 and 18 are attracted and neutralized. The charges on the charge collecting plates 14 and 17 charged by the collision of positive ions and negative ions are converted into an ion voltage detection amplifier (not shown) and a noise detection amplifier (not shown) via a high resistance in the measurement calculation means. In order to subtract periodic and standing noise components from this measured value, it is converted into a digital signal by passing it through an analog-digital conversion circuit (not shown). .
Japanese Patent Laid-Open No. 2003-194777

従来の技術は、叙上の構成であるので次の課題が存在した。
上記した図10に示す従来の構成によれば、電源装置8により第1電極部材1と第2電極部材5との間に所定電圧を印加されれば、該第1電極部材1の表面や該第2電極部材5の内周面等に帯電粒子(イオン)が捕捉されかつ付着する。これが長時間を経れば、上述した該第1電極部材の表面等に堆積・滞留することとなる。また一方に於いて、空気Bが空気イオン濃度測定器Aの開口から流入し、イオン化空気として図12に示すように、イオン化空気B1及びB2が外ケース(外筒)3の内壁面3a、略円盤状支持基板6の上面6a及び第2電極部材5の外面を介して該第1電極部材1と該第2電極部材5の間に流過する。然れば、図12に示すように上記略円盤状支持基板6の上面6aに帯電粒子(イオン)が滞留しかつ堆積する。これは微粒子(帯電粒子)付着物Dであり、上記略円盤状支持基板6の絶縁不良現象を誘起するばかりか、上述した第1電極部材1の表面等に堆積・滞留又は残留した帯電粒子(イオン)の塊としてのいわゆる付着物Dが原因となる当該空気イオン濃度測定器Aのイオン濃度測定不良現象を惹起せしめるという問題点があった。これを解決するためには当該空気イオン濃度測定器Aを分解する等の作業を行ない、また別の清浄器具を使用して定期的に手作業等によりこれら付着物Dを除去する必要があり、その工数は著しく増大するうえに清浄作業が完全に行き渉らないという弊害が存した。加えて、当該従来の技術によれば、電流・電圧変換回路から導入された信号を正・負波高値の差分値に基づき波高分布図を作成する波高分布作成手段等を有しかつ自動的に空気イオン濃度測定器内を清浄するための空気イオン濃度測定清浄制御部を備えておらず、該空気イオン濃度測定器内を合理的に清浄することができないという問題点があった。
Since the conventional technique has the above-described configuration, the following problems existed.
According to the conventional configuration shown in FIG. 10 described above, if a predetermined voltage is applied between the first electrode member 1 and the second electrode member 5 by the power supply device 8, the surface of the first electrode member 1 and the Charged particles (ions) are captured and attached to the inner peripheral surface of the second electrode member 5 and the like. If this takes a long time, it accumulates and stays on the surface of the first electrode member described above. On the other hand, air B flows from the opening of the air ion concentration measuring device A, and as ionized air, as shown in FIG. 12, ionized air B1 and B2 are the inner wall surface 3a of the outer case (outer cylinder) 3, It flows between the first electrode member 1 and the second electrode member 5 through the upper surface 6 a of the disc-like support substrate 6 and the outer surface of the second electrode member 5. Then, as shown in FIG. 12, charged particles (ions) stay on and accumulate on the upper surface 6a of the substantially disc-like support substrate 6. This is a fine particle (charged particle) adhering substance D, which not only induces an insulation failure phenomenon of the substantially disk-shaped support substrate 6, but also charged particles (deposited, retained or remaining on the surface of the first electrode member 1). There is a problem that the ion concentration measurement failure phenomenon of the air ion concentration measuring device A is caused due to the so-called deposit D as a lump of ions. In order to solve this, it is necessary to work such as disassembling the air ion concentration measuring device A, and to periodically remove these deposits D manually by using another cleaning device, The number of man-hours increased significantly, and there was a detrimental effect that the cleaning work did not go all the way. In addition, according to the conventional technique, the signal introduced from the current / voltage conversion circuit has a wave height distribution creating means for creating a wave height distribution map based on the difference value between the positive and negative wave peak values and automatically. There is a problem that the air ion concentration measuring and cleaning control unit for cleaning the inside of the air ion concentration measuring device is not provided, and the inside of the air ion concentration measuring device cannot be rationally cleaned.

上述した図11に示す特開2003−194777の従来の技術に於いても、該空気イオン測定器Cは、イオンの清浄装置又はイオンの清浄機能が付加されておらず、長時間の使用に際して該空気イオン測定器Cの空気導入管20の内壁面部、プラス用又はマイナス用電荷集電板14、17及び反発電極板15、15、18、18に帯電粒子(イオン)を素とする付着物Dが堆積・残留する理論は上述した図10に示す従来の技術の一つの例と同じであり、同様な問題点が残存するものであった。
本発明が解決しようとする課題は、上記背景技術で述べた問題点を解決することにある。
Also in the conventional technique disclosed in Japanese Patent Application Laid-Open No. 2003-194777 shown in FIG. 11 described above, the air ion measuring device C is not added with an ion cleaning device or an ion cleaning function, and the Deposit D containing charged particles (ions) as prime elements on the inner wall surface of the air introduction tube 20 of the air ion measuring device C, the positive or negative charge collecting plates 14 and 17 and the repulsive electrode plates 15, 15, 18 and 18. The theory of depositing and remaining is the same as that of the example of the prior art shown in FIG. 10, and similar problems remain.
The problem to be solved by the present invention is to solve the problems described in the background art.

本発明は、例えば、全体が略円筒体で構成された外ケース(外筒)と、該外ケース(外筒)内に収容されかつ略円筒体で構成された第2電極部材と、該第2電極部材内の略中心部分であって、その長さ方向に垂直配置された第1電極部材とでなり、この第1電極部材と、この第2電極部材との間に所定の高電圧を印加し、かつ上記第1電極部材の表面や上記第2電極部材の内周面等に浮遊しかつ捕集された帯電粒子(イオン)等の濃度を測定する装置に於いて、空気イオン濃度測定手段からの信号を正の波高値及び負の波高値を検出しその差分値(ピークピーク値)によって分布図を作成する波高分布作成手段と、該波高分布作成手段からの信号で空気イオンの清浄要否を判定・指令する中央制御手段(CPU)と、該中央制御手段からの制御信号により上記第1電極部材及び第2電極部材間に反対極性の電圧を印加する高電圧発生手段から逆バイアス電圧を印加することにより、上記帯電粒子(イオン)等を残留・堆積させることなく該帯電粒子(イオン)を該第1電極部材の表面及び第2電極部材の内周面等から離脱せしめること又は上記第2電極部材を支持する閉塞用支持基板の上面に該帯電粒子(イオン)が残留かつ堆積させることなく、例えば、当該空気イオン濃度測定装置の上・下の開口部分であって上記外ケース(外筒)と第2電極部材との間のスペース(空間)部分の所望位置又は閉塞用支持基板に隣接した位置に空気流入阻止部材をそれぞれ介装し、該閉塞用支持基板の上面に帯電粒子(イオン)の残留・堆積を防止すること等これらの付着物を自動的に清浄する技術であり、イオン濃度測定不良や空気イオン濃度測定器の絶縁不良の諸現象を未然に防止すること及び測定データから正・負の波高値の差分値、すなわち波形の山と谷との差(ピークピーク値)を検出し、その分布図から自動的に帯電粒子(イオン)を清浄するときを決め、該正・負の波高値に於ける差分値の分布図から測定不能状態を検出し、反対極性の高電圧装置を制御し、空気イオン濃度を測定する装置のダメージを回避することを目的としたものであって、次の構成、手段から成立する。 The present invention includes, for example, an outer case (outer cylinder) that is entirely formed of a substantially cylindrical body, a second electrode member that is housed in the outer case (outer cylinder) and is configured of a substantially cylindrical body, It is a substantially central portion in the two-electrode member, and is composed of a first electrode member arranged vertically in the length direction, and a predetermined high voltage is applied between the first electrode member and the second electrode member. Measurement of air ion concentration in a device that measures the concentration of charged particles (ions) that are applied and floated and collected on the surface of the first electrode member or the inner peripheral surface of the second electrode member A wave height distribution creating means for detecting a positive peak value and a negative peak value from the signal from the means and creating a distribution map based on the difference value (peak peak value), and cleaning of air ions with the signal from the pulse height creating means Central control means (CPU) for determining / commanding necessity and control from the central control means By applying a reverse bias voltage from the high voltage generating means for applying voltages of opposite polarity between the first electrode member and the second electrode member by a signal, it said without residual-depositing the charged particles (ions), etc. The charged particles (ions) are released from the surface of the first electrode member and the inner peripheral surface of the second electrode member, or the charged particles (ions) are on the upper surface of the support substrate for closing that supports the second electrode member. Without remaining and depositing, for example, a desired position of a space (space) portion between the outer case (outer cylinder) and the second electrode member in the upper and lower opening portions of the air ion concentration measuring device. An air inflow prevention member is interposed at a position adjacent to the closing support substrate, and these deposits are automatically cleaned by preventing charged particles (ions) from remaining on the upper surface of the closing support substrate. You It is a technology that prevents various phenomena such as poor ion concentration measurement and insulation failure of air ion concentration measuring instrument, and the difference between positive and negative peak values from the measurement data, that is, the difference between the peak and valley of the waveform ( (Peak peak value) is detected, the time to automatically clean charged particles (ions) is determined from the distribution map, and the measurement impossible state is detected from the distribution map of the difference values in the positive and negative wave height values. The purpose is to control a high-voltage device of opposite polarity and avoid damage to the device that measures the air ion concentration, and consists of the following configuration and means.

すなわち、請求項1記載の発明によれば、筒体で構成された第2電極部材と、該筒体の長さ方向に沿って該筒体の略中心部分に配置された第1電極部材と、該第1電極部材及び第2電極部材を収容する外ケースと、該第1及び第2電極部材間からの信号で空気イオン濃度を検出する空気イオン濃度測定手段と、該第2電極部材及び外ケース間に介装しかつ該第2電極部材と該外ケースを固定する閉塞用支持基板と、該閉塞用支持基板に隣接した位置であって外ケースの内周面に固定された空気流入防止部材と、該第1及び第2電極部材に電圧を印加してから所定時間経過後に該第1電極部材及び第2電極部材間に反対極性の電圧を印加する高電圧発生手段とでなる空気イオン濃度測定器の清浄装置に於いて、上記空気流入防止部材は上記外ケースに固定する外側面と、該空気流入防止部材の内部を空洞に形成しかつ内周面でなる内側面と、該内側面に連なって形成された擂鉢状庇部とを形成し、上記空気イオン濃度測定手段からの信号を正の波高値及び負の波高値を検出しその差分値(ピークピーク値)をデータ処理する波高データ処理手段と、該波高データ処理手段からの信号で分布図を作成する波高分布作成手段と、該波高分布作成手段からの信号で空気イオンの清浄要否を判定・指令する中央制御手段(CPU)とでなり上記高電圧発生手段が上記中央制御手段からの制御信号により上記第1電極部材及び第2電極部材間に反対極性の電圧を印加することを特徴とする。 That is, according to the first aspect of the present invention, the second electrode member formed of a cylindrical body, and the first electrode member disposed at a substantially central portion of the cylindrical body along the length direction of the cylindrical body, An outer case for housing the first electrode member and the second electrode member, an air ion concentration measuring means for detecting an air ion concentration by a signal from between the first and second electrode members, the second electrode member, A closing support substrate interposed between the outer cases and fixing the second electrode member and the outer case, and an air inflow fixed to the inner peripheral surface of the outer case at a position adjacent to the closing support substrate An air composed of a prevention member and high voltage generating means for applying a voltage of opposite polarity between the first electrode member and the second electrode member after a predetermined time has elapsed since the voltage was applied to the first and second electrode members. In the cleaning device of the ion concentration measuring device, the air inflow prevention member is the outer casing. Forming an outer surface for securing to scan an inner surface formed inside the inner peripheral surface vital formed in the cavity of the air inflow preventing member, and a cone-shaped overhang portion which is formed continuous with the inner side surface, the air The signal from the ion concentration measuring means detects a positive peak value and a negative peak value, and performs a data processing on the difference value (peak peak value), and a signal distribution from the pulse height data processing means. a pulse height distribution generation means for generating, by a signal from the pulse-height distribution generating means becomes out with central control means for determining and instructing the cleaning necessity of air ions (CPU), the high voltage generating means from said central control means A voltage of opposite polarity is applied between the first electrode member and the second electrode member by a control signal.

請求項記載の発明によれば、請求項1記載の空気イオン濃度測定器の清浄装置に於いて、前記空気イオン濃度測定器の清浄装置の中央制御手段が前記波高分布作成手段により作成した波高分布図で流入空気の高湿度による空気イオン濃度測定不能を判定し、この指令信号で前記高電圧発生手段を制御することを特徴とする。 According to the invention of claim 2, wherein, in the cleaning device of the air ion concentration measuring device according to claim 1 Symbol mounting, the central control unit of the air ion concentration measuring instrument cleaning apparatus created by the pulse height distribution creation means It is determined that the air ion concentration cannot be measured due to the high humidity of the inflowing air from the wave height distribution diagram, and the high voltage generating means is controlled by this command signal.

請求項記載の発明によれば、請求項1記載の空気イオン濃度測定器の清浄装置に於いて、前記空気イオン濃度測定器の清浄装置の中央制御手段が前記波高分布作成手段により作成した波高分布図で流入空気の高湿度から低湿度に変化した際、空気イオン濃度測定可能と判定し、この指令信号で空気乾燥器を制御することを特徴とする。 According to the invention of claim 3, wherein, in the cleaning device of the air ion concentration measuring device according to claim 1 Symbol mounting, the central control unit of the air ion concentration measuring instrument cleaning apparatus created by the pulse height distribution creation means When the inflowing air changes from high humidity to low humidity in the wave height distribution diagram, it is determined that the air ion concentration can be measured, and the air dryer is controlled by this command signal.

本発明に係る空気イオン濃度測定器の清浄装置は、叙上の構成を有するので次の効果がある。 Since the air ion concentration measuring device cleaning apparatus according to the present invention has the above-described configuration, the following effects can be obtained.

すなわち、請求項1記載の発明によれば、筒体で構成された第2電極部材と、該筒体の長さ方向に沿って該筒体の略中心部分に配置された第1電極部材と、該第1電極部材及び第2電極部材を収容する外ケースと、該第1及び第2電極部材間からの信号で空気イオン濃度を検出する空気イオン濃度測定手段と、該第2電極部材及び外ケース間に介装しかつ該第2電極部材と該外ケースを固定する閉塞用支持基板と、該閉塞用支持基板に隣接した位置であって外ケースの内周面に固定された空気流入防止部材と、該第1及び第2電極部材に電圧を印加してから所定時間経過後に該第1電極部材及び第2電極部材間に反対極性の電圧を印加する高電圧発生手段とでなる空気イオン濃度測定器の清浄装置に於いて、上記空気流入防止部材は上記外ケースに固定する外側面と、該空気流入防止部材の内部を空洞に形成しかつ内周面でなる内側面と、該内側面に連なって形成された擂鉢状庇部とを形成し、上記空気イオン濃度測定手段からの信号を正の波高値及び負の波高値を検出しその差分値(ピークピーク値)をデータ処理する波高データ処理手段と、該波高データ処理手段からの信号で分布図を作成する波高分布作成手段と、該波高分布作成手段からの信号で空気イオンの清浄要否を判定・指令する中央制御手段(CPU)とでなり上記高電圧発生手段が上記中央制御手段からの制御信号により上記第1電極部材及び第2電極部材間に反対極性の電圧を印加することを特徴とする空気イオン濃度測定器の清浄装置を提供する。
このような構成としたので、第1電極部材の表面や第2電極部材の内周面等に帯電粒子(イオン)の塊として付着・固定した付着物を手作業によることなく反対極性の印加電圧による簡易かつ迅速であって清浄工数を要することなく当該空気イオン濃度測定器を清浄することができ、効率的に空気イオン濃度測定器内の清掃を行うことでさらに測定データや波高分布図の精度を向上させ、空気イオン濃度の測定を常に実行することができること及び絶縁を確保し、高電圧の漏洩を防止し、該空気イオン濃度測定器の測定不良や絶縁部分の絶縁不良現象を防止できると共に、空気イオン濃度測定データを正・負波高値の差分値をデータ処理する波高データ処理手段を備えたので空気イオンの測定データをより正確にし、該測定データの基準電圧値を正確にでき、その分布図が安定化し信頼性の高い清浄要否を検出でき、合理的手段で該空気イオン濃度測定器の測定不良や絶縁部分の絶縁不良現象を防止でき、長時間に渉り安定化した測定機能を確保できる効果がある。
That is, according to the first aspect of the present invention, the second electrode member formed of a cylindrical body, and the first electrode member disposed at a substantially central portion of the cylindrical body along the length direction of the cylindrical body, An outer case for housing the first electrode member and the second electrode member, an air ion concentration measuring means for detecting an air ion concentration by a signal from between the first and second electrode members, the second electrode member, A closing support substrate interposed between the outer cases and fixing the second electrode member and the outer case, and an air inflow fixed to the inner peripheral surface of the outer case at a position adjacent to the closing support substrate An air composed of a prevention member and high voltage generating means for applying a voltage of opposite polarity between the first electrode member and the second electrode member after a predetermined time has elapsed since the voltage was applied to the first and second electrode members. In the cleaning device of the ion concentration measuring device, the air inflow prevention member is the outer casing. Forming an outer surface for securing to scan an inner surface formed inside the inner peripheral surface vital formed in the cavity of the air inflow preventing member, and a cone-shaped overhang portion which is formed continuous with the inner side surface, the air The signal from the ion concentration measuring means detects a positive peak value and a negative peak value, and performs a data processing on the difference value (peak peak value), and a signal distribution from the pulse height data processing means. a pulse height distribution generation means for generating, by a signal from the pulse-height distribution generating means becomes out with central control means for determining and instructing the cleaning necessity of air ions (CPU), the high voltage generating means from said central control means A cleaning device for an air ion concentration measuring device is provided, wherein a voltage of opposite polarity is applied between the first electrode member and the second electrode member by a control signal.
Due to such a configuration, the applied voltage having the opposite polarity can be applied to the surface of the first electrode member, the inner peripheral surface of the second electrode member, and the like, which are attached and fixed as a lump of charged particles (ions) without manual operation. The air ion concentration measuring instrument can be cleaned easily and quickly without requiring any man-hours for cleaning, and the air ion concentration measuring instrument can be efficiently cleaned to further improve the accuracy of measurement data and wave height distribution maps. the improved to ensure that and the insulating measurement of air ion concentration can be always performed, and prevent leakage of high voltage, with an insulation failure phenomena of the measuring failure and insulating portions of the air ion concentration measuring device can be prevented The air ion concentration measurement data is provided with a pulse height data processing means for processing the difference between the positive and negative peak values, so that the measurement data of the air ions is made more accurate and the reference voltage of the measurement data The accurately, its distribution diagram can be detected with high cleaning necessity reliable stabilized, prevents insulation failure phenomena of the measuring failure and insulating portions of the air ion concentration measuring instrument at a reasonable means, over a long period of time This has the effect of ensuring a more stable measurement function.

請求項2記載の発明によれば、前記空気イオン濃度測定器の清浄装置の中央制御手段が前記波高分布作成手段により作成した波高分布図で流入空気の高湿度による空気イオン濃度測定不能を判定し、この指令信号で前記高電圧発生手段を制御することを特徴とする請求項1記載の空気イオン濃度測定器の清浄装置を提供する。
このような構成としたので、上記請求項1記載の発明の効果に加えて、雨の日など流入空気が高湿度であるときは空気中の湿度により誘電率が変化して高電圧のリークなどが発生し測定データが不良になるが空気イオン濃度測定不能を判定し、高電圧のリークにより空気イオン濃度測定器がダメージを受けることもなく該空気イオン濃度測定器の破損が少なくなるという効果がある。
According to a second aspect of the present invention, the central control means of the cleaning device of the air ion concentration measuring device determines that the air ion concentration cannot be measured due to the high humidity of the inflowing air based on the wave height distribution map created by the wave height distribution creating means. 2. The air ion concentration measuring device cleaning apparatus according to claim 1, wherein the high voltage generating means is controlled by the command signal.
With such a configuration, in addition to the effect of the first aspect of the invention, when the inflowing air is at a high humidity such as on a rainy day, the dielectric constant changes due to the humidity in the air and a high voltage leak or the like The measurement data becomes defective but the measurement of the air ion concentration is judged to be impossible, and the air ion concentration measuring device is not damaged by the high voltage leak, and the damage of the air ion concentration measuring device is reduced. is there.

請求項3記載の発明によれば、前記空気イオン濃度測定器の清浄装置の中央制御手段が前記波高分布作成手段により作成した波高分布図で流入空気の高湿度から低湿度に変化した際、空気イオン濃度測定可能と判定し、この指令信号で空気乾燥器を制御することを特徴とする請求項1記載の空気イオン濃度測定器の清浄装置を提供する。
このような構成としたので、上記請求項1記載の発明の効果に加えて、流入空気中の湿度は低下したときでも空気イオン濃度測定器には水分、水蒸気が残留し、空気イオン濃度を安定に測定することが出来ない状態から、早期に測定できる状態にもどす必要があり、流入空気の湿度が空気イオン濃度測定不能状態から空気イオン濃度測定可能状態に変化したときに、空気イオン濃度測定器内の空気流入口に取付けられた空気乾燥器により乾燥空気を流入させて空気イオン濃度測定器の被測定部分を乾燥させて、高圧電圧の表面リークを防ぎ空気イオン濃度の測定を安定化させる効果がある。
According to the invention of claim 3, when the central control means of the cleaning device of the air ion concentration measuring device changes from high humidity to low humidity of the inflowing air in the wave height distribution map created by the wave height distribution creating means, It is determined that the ion concentration can be measured, and the air dryer is controlled by this command signal. The cleaning apparatus for an air ion concentration measuring device according to claim 1 is provided.
With such a configuration, in addition to the effect of the invention described in claim 1, moisture and water vapor remain in the air ion concentration measuring device even when the humidity in the inflowing air is reduced, thereby stabilizing the air ion concentration. When the humidity of the incoming air changes from a state where air ion concentration cannot be measured to a state where air ion concentration can be measured, the air ion concentration meter The effect of stabilizing the measurement of the air ion concentration by preventing the surface leakage of the high-voltage voltage by allowing dry air to flow in by the air dryer attached to the air inlet and drying the measured part of the air ion concentration meter There is.

以下、本発明に係る空気イオン濃度測定器の清浄装置に於ける実施の形態について添付図面に基づき詳細に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an air ion concentration measuring device cleaning apparatus according to the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本発明に係る空気イオン濃度測定器の清浄装置に於ける実施の形態の構成を示すシステム図であって、空気イオン濃度測定器の垂直断面図である。 FIG. 1 is a system diagram showing a configuration of an embodiment of a cleaning apparatus for an air ion concentration measuring device according to the present invention, and is a vertical sectional view of the air ion concentration measuring device.

先づ、本発明に係る空気イオン濃度測定器の清浄装置に於ける実施の形態の構成を説明するに当り、図2に基づき空気イオン濃度測定器の清浄装置の基本構成について説明する。
Eは、本発明に空気イオン濃度測定器の清浄装置であってその一例を示す。該空気イオン濃度測定器の清浄装置Eは、空気イオン濃度測定器本体を備え一般的に例えば、宇宙線α線等の放射線や紫外線、X線等の短波長電磁波又はコロナ放電等を照射すること、またはコロナ放電等静電気現象によって発生する帯電粒子(イオン)を該空気イオン濃度測定器Eの電極部材に捕集し、粒子数に換算して電流値として計測する。また、この電流値は、電圧信号に変換して帯電粒子(イオン)濃度に換算して測定される。
First, in describing the configuration of the embodiment of the cleaning device for an air ion concentration measuring device according to the present invention, the basic configuration of the cleaning device for the air ion concentration measuring device will be described with reference to FIG.
E is a cleaning apparatus for an air ion concentration measuring device according to the present invention, and an example thereof is shown. The cleaning device E of the air ion concentration measuring device includes an air ion concentration measuring device main body, and generally irradiates radiation such as cosmic ray α rays, short wavelength electromagnetic waves such as ultraviolet rays and X rays, corona discharge, or the like. Alternatively, charged particles (ions) generated by an electrostatic phenomenon such as corona discharge are collected on the electrode member of the air ion concentration measuring device E, and converted into the number of particles and measured as a current value. The current value is measured by converting it into a voltage signal and converting it to a charged particle (ion) concentration.

そして、上述した帯電粒子(イオン)はいわゆる大気イオンであって、大イオン及び小イオンに分けており、小イオンは、大気組成成分が放射性物質からの放射線や宇宙線によって電離され生成されたイオンであり、比較的安定な状態を保持している。この小イオンの直径は1(nm)程度で清浄な大気の地表付近の場合、正負のイオン数は約5〜6×10個/m、混雑した都会地域や高汚染地区でのそれは、100〜1000×10個/mである。 The charged particles (ions) described above are so-called atmospheric ions, which are divided into large ions and small ions. The small ions are ions generated by ionizing atmospheric components or radiation from radioactive substances or cosmic rays. And a relatively stable state is maintained. When the diameter of this small ion is about 1 (nm) and near the surface of a clean atmosphere, the number of positive and negative ions is about 5-6 × 10 8 / m 3 , in crowded urban areas and highly polluted areas, 100-1000 × 10 8 pieces / m 3 .

一方、大イオンは、既に存在している例えば、粉塵や人工的化学物質など大気組成成分以外の浮遊粒子でなる中性のエアゾル粒子に小イオンが衝突し又は付着して帯電され生成されるが、小イオンの消滅と同時に該大イオンが生成される。
而して、エアロゾル濃度と小イオン濃度は反比例し、該エアロゾルは大気生成成分以外の汚染物質であり、大気の汚染状況を監視するためには小イオンの濃度を計測する必要があり、本発明に係る空気イオン濃度測定器の清浄装置Eは本体部が帯電粒子としての小イオン濃度を検出する役目を有する。そして、本発明に係る空気イオン濃度測定器の清浄装置Eは基本的にはその空気イオン濃度測定器本体が、例えば2重同心筒を使用して、帯電粒子(イオン)の濃度を計測するいわゆるゲルディエン法の理論に基づき構成されたものである。
ここで、本発明に係る空気イオン濃度測定器は小イオンのみではなく、大イオン、中イオン、小イオンの測定が可能である。各イオンの区分は、第1、第2電極部材23、26間に印加される高電圧値や該第1、第2電極部材23、26間の距離又は該第1、第2電極部材23、26の長さ等により決定され、例えば流入空気Bがこの第1、第2電極部材23、26間に流れる風速が一定であれば、そのイオンの電荷量によって第1、第2電極部材23、26間に到達する時間が相違する。すなわち大イオンは速やかに(短時間)到達し、小イオンは遅く(長時間)到達する。従って小イオンに於ける空気イオン濃度を測定するためには比較的第1、第2電極部材23、26の長さを長くする構成にした設計仕様とする。
かくして、本発明に係る空気イオン濃度測定器は印加高電圧値、第1、第2電極部材23、26間距離及び第1、第2電極部材23、26の長さを適宜調整して、大イオン、中イオン又は小イオンの各空気イオン濃度を測定する。
Large ions, on the other hand, are generated by small ions colliding with or adhering to neutral aerosol particles made of suspended particles other than atmospheric components such as dust and artificial chemicals. The large ions are generated simultaneously with the disappearance of the small ions.
Thus, the aerosol concentration and the small ion concentration are inversely proportional to each other, and the aerosol is a pollutant other than the air generation component, and it is necessary to measure the concentration of small ions in order to monitor the air pollution state. In the air ion concentration measuring device E according to the cleaning device E, the main body has a role of detecting a small ion concentration as charged particles. And the cleaning apparatus E of the air ion concentration measuring device according to the present invention is basically a so-called air ion concentration measuring device body that measures the concentration of charged particles (ions) using, for example, a double concentric cylinder. It is constructed based on the theory of Gerdien method.
Here, the air ion concentration measuring device according to the present invention can measure not only small ions but also large ions, medium ions, and small ions. Each ion is divided into a high voltage value applied between the first and second electrode members 23 and 26, a distance between the first and second electrode members 23 and 26, or the first and second electrode members 23, 26, for example, if the wind speed of the inflowing air B flowing between the first and second electrode members 23, 26 is constant, the first, second electrode members 23, The time to reach 26 is different. That is, large ions arrive quickly (short time) and small ions arrive slowly (long time). Therefore, in order to measure the air ion concentration in small ions, the design specifications are such that the lengths of the first and second electrode members 23 and 26 are relatively long.
Thus, the air ion concentration measuring device according to the present invention adjusts the applied high voltage value, the distance between the first and second electrode members 23 and 26, and the length of the first and second electrode members 23 and 26 as appropriate. Each air ion concentration of ions, medium ions or small ions is measured.

以下、本発明に係る空気イオン濃度測定器の清浄装置Eの基本構成について詳しく説明する。
23は測定筒や内実状電極バー等各種の形状でなる測定電極としての第1電極部材であり、イオン捕集電極としての機能を有する。該空気イオン濃度測定器本体の略中心垂直方向に配置・固定されている。すなわち、該第1電極部材23はその上端23a及び下端23bを支持バー24、24により外ケース(外筒)25に固定されている。そして、上記第1電極部材23の周囲の外域には、高電圧が印加される高圧筒等で構成され、イオン捕集電極としての機能を有する第2電極部材26を配置している。この第2電極部材26も上記外ケース(外筒)25と略同一形状である例えば、筒体で構成するが他の形状でもよい。このとき、上記第1電極部材23は該第2電極部材26の略中心部分であって長さ方向に配置されることとなる。また、上記第2電極部材26は略中心部分に該第2電極部材26の外径寸法と略同一径の貫通孔27a、28aを有する例えば略円盤形状でなる閉塞用支持基板27、28により該貫通孔27a、28aに嵌入された後固定されると共に上方側及び下方側を上記外ケース25に固定されている。この固定方法は接着剤等を使用して行い、また、上記貫通孔27a、28aの径長を第2電極部材26の外径長より若干短く設定し圧入・固定してもよい。また、上記閉塞用支持基板27、28を外ケース(外筒)25及び第2電極部材26と異材料に構成したうえでそれと一体成形してもよく、空気イオン濃度測定器本体の製作工数を削減することができる。
Hereinafter, the basic structure of the cleaning apparatus E of the air ion concentration measuring device according to the present invention will be described in detail.
Reference numeral 23 denotes a first electrode member as a measurement electrode having various shapes such as a measurement tube and a solid electrode bar, and has a function as an ion collection electrode. The air ion concentration measuring device main body is arranged and fixed substantially in the center vertical direction. That is, the upper end 23 a and the lower end 23 b of the first electrode member 23 are fixed to the outer case (outer cylinder) 25 by the support bars 24 and 24. In the outer region around the first electrode member 23, a second electrode member 26 that is configured by a high-pressure cylinder or the like to which a high voltage is applied and has a function as an ion collection electrode is disposed. The second electrode member 26 is also substantially the same shape as the outer case (outer cylinder) 25. For example, the second electrode member 26 is constituted by a cylindrical body, but may have other shapes. At this time, the first electrode member 23 is disposed in the longitudinal direction at a substantially central portion of the second electrode member 26. Further, the second electrode member 26 has a through hole 27a, 28a having substantially the same diameter as the outer diameter of the second electrode member 26 at a substantially central portion, for example, by means of a closing support substrate 27, 28 having a substantially disk shape. The upper case and the lower side are fixed to the outer case 25 while being fixed after being inserted into the through holes 27a and 28a. This fixing method is performed using an adhesive or the like, and the diameter length of the through holes 27a and 28a may be set slightly shorter than the outer diameter length of the second electrode member 26 and may be press-fitted and fixed. Further, the closing support substrates 27 and 28 may be formed of a different material from the outer case (outer cylinder) 25 and the second electrode member 26 and may be integrally formed therewith. Can be reduced.

而して、図2に示すように流入空気Bが該空気イオン濃度測定器本体の入口開口Eaから流過し、清浄装置を構成する反対極性の電圧電源装置29から直流電圧等の所定電圧、例えば、1ないし30(V)程度の電圧を印加すれば上記第1電極部材23及び第2電極部材26にプラス及びマイナスの帯電粒子(イオン)30a、30bが捕集される。この捕集されたプラス及びマイナスの帯電粒子(イオン)30a、30bは電流値として計測され、これをイオン濃度測定手段としての電流・電圧変換回路31により電圧値に変換され、空気イオン濃度を検出する。そして、該反対極性の電圧電源装置29から所定時間経過後に極性を逆にした電圧を印加する。
尚、図中32は空気イオン濃度測定手段としての上記電流・電圧変換回路31に接続された信号制御線、33は高圧発生手段としての上記反対極性の電圧電源装置29に接続された電圧線である。
Thus, as shown in FIG. 2, the inflowing air B flows from the inlet opening Ea of the air ion concentration measuring device main body, and a predetermined voltage such as a DC voltage from the voltage power supply device 29 of the opposite polarity constituting the cleaning device, For example, when a voltage of about 1 to 30 (V) is applied, positive and negative charged particles (ions) 30 a and 30 b are collected on the first electrode member 23 and the second electrode member 26. The collected positive and negative charged particles (ions) 30a and 30b are measured as current values, converted into voltage values by a current / voltage conversion circuit 31 serving as ion concentration measuring means, and air ion concentration is detected. To do. Then, applying a voltage with the polarity opposite from said opposite polarity voltage power supply 29 after a predetermined time has elapsed.
In the figure, 32 is a signal control line connected to the current / voltage conversion circuit 31 as air ion concentration measuring means, and 33 is a voltage line connected to the opposite polarity voltage power supply device 29 as high voltage generating means. is there.

次に、本発明に係る空気イオン濃度測定器の清浄装置Eの基本構成について図2及び図3に基づき、その動作を説明する。
上述したように、流入空気Bが当該空気イオン濃度測定器の本体の入口開口Eaから内部に流入し、第1電極部材23と第2電極部材26との間に所定電位、例えば図2に示すように、反対極性の電圧電源装置29により該第1電極部材23に負(マイナス)の電位を、該第2電極部材26に正(プラス)の電位を印加すれば、それぞれ該第1電極部材23の表面23cにプラスの帯電粒子(プラスイオン)30a及び該第2電極部材26の内周面26aにマイナスの帯電粒子(マイナスイオン)30bが荷電され付着する。
Next, the operation | movement is demonstrated based on FIG.2 and FIG.3 about the basic composition of the cleaning apparatus E of the air ion concentration measuring device based on this invention.
As described above, the inflow air B flows into the inside from the inlet opening Ea of the main body of the air ion concentration measuring device, and has a predetermined potential between the first electrode member 23 and the second electrode member 26, for example, as shown in FIG. Thus, if a negative (minus) potential is applied to the first electrode member 23 and a positive (plus) potential is applied to the second electrode member 26 by the voltage power supply device 29 of opposite polarity, the first electrode member Positively charged particles (positive ions) 30 a are charged on the surface 23 c of the negative electrode 23, and negatively charged particles (negative ions) 30 b are charged and attached to the inner peripheral surface 26 a of the second electrode member 26.

そして、所定時間経過すれば、このプラス及びマイナスの帯電粒子30a、30bが第1及び第2電極部材23の表面23cや内周面26aに堆積かつ滞留する。これは帯電粒子付着物となり、該第1電極部材23と該第2電極部材26に信号制御線32で接続した空気イオン濃度測定手段としての電流・電圧変換回路31が動作不良を誘起し、空気イオン濃度測定器の本体内に流過した空気中の帯電粒子(イオン)を正確に測定できないこととなる。 When a predetermined time elapses, the positive and negative charged particles 30a and 30b accumulate and stay on the surface 23c and the inner peripheral surface 26a of the first and second electrode members 23. This becomes a charged particle adhering substance, and the current / voltage conversion circuit 31 as the air ion concentration measuring means connected to the first electrode member 23 and the second electrode member 26 by the signal control line 32 induces a malfunction. The charged particles (ions) in the air that have flowed into the main body of the ion concentration measuring device cannot be measured accurately.

本発明装置によれば、これに対処すべく例えば別途に設置したタイマー等により所定時間経過後であって、帯電粒子付着物の堆積・滞留状態を検出しかつ確認し、図3に示すように上記反対極性の電圧電源装置29により該第1電極部材23に正(プラス)の電位を、該第2電極部材26に負(マイナス)の電位を印加すれば、この印加電圧によりそれぞれ該第1電極部材23の表面23c及び第2電極部材26の内周面26aにそれぞれ帯電されたプラスの帯電粒子(プラスイオン)30a及びマイナスの帯電粒子(マイナスイオン)30bが反発され、第1及び第2電極部材23、26から離脱し、第2電極部材26の筒体内を落下することとなり上記反対極性の電圧電源装置29は自動清浄装置としての機能を果すことになる。 According to the apparatus of the present invention, in order to cope with this, after a predetermined time elapses, for example, by a separately installed timer or the like, the accumulation / stagnation state of charged particle deposits is detected and confirmed, as shown in FIG. When a positive potential is applied to the first electrode member 23 and a negative potential is applied to the second electrode member 26 by the voltage power supply device 29 having the opposite polarity, the first voltage is applied to the first electrode member 23, respectively. Positively charged particles (positive ions) 30a and negatively charged particles (negative ions) 30b charged on the surface 23c of the electrode member 23 and the inner peripheral surface 26a of the second electrode member 26 are repelled, respectively. The voltage power supply device 29 having the opposite polarity will function as an automatic cleaning device because it is detached from the electrode members 23 and 26 and falls in the cylinder of the second electrode member 26.

このように本発明に係る空気イオン濃度測定器の本体や清浄装置を含んだ空気イオン濃度測定器は図示するように縦置方式にした方が空気イオンの付着物の清浄機能をより効果的に発揮する。
かくして、本発明に係る空気イオン濃度測定器の清浄装置Eの基本構成によれば、イオン濃度の測定不良を改善しかつ空気イオン濃度測定器の本体の絶縁不良を防止することができた。
As described above, the air ion concentration measuring device including the main body of the air ion concentration measuring device and the cleaning device according to the present invention is more effective in the cleaning function of the adhering matter of air ions when it is vertically installed as shown in the figure. Demonstrate.
Thus, according to the basic configuration of the air ion concentration measuring device cleaning device E according to the present invention, it was possible to improve the measurement failure of the ion concentration and prevent the insulation failure of the main body of the air ion concentration measuring device.

次に、本発明に係る空気イオン濃度測定器の清浄装置に於ける実施の形態について図1に基づき詳細に説明する。 Next, an embodiment of the air ion concentration measuring device cleaning apparatus according to the present invention will be described in detail with reference to FIG.

図1は、本発明に係る空気イオン濃度測定器の清浄装置Eに於ける実施の形態の具体的な構成を示すシステム図であって、その空気イオン濃度測定器の本体を垂直断面した図である。
当該実施の形態を示す構成は、特に、前述した本発明に係る空気イオン濃度測定器の清浄装置Eに於ける基本構成を示す図2及び図3の構成に於いて、さらに、空気流入防止部材34を配備した点及び空気イオン濃度測定清浄制御部G等を設けた点を特徴としている。
FIG. 1 is a system diagram showing a specific configuration of an embodiment of a cleaning apparatus E for an air ion concentration measuring device according to the present invention, and is a diagram showing a vertical section of the main body of the air ion concentration measuring device. is there.
The configuration showing the embodiment is particularly the configuration shown in FIGS. 2 and 3 showing the basic configuration of the cleaning device E of the air ion concentration measuring device according to the present invention described above. The point which provided 34 and the point which provided the air ion concentration measurement cleaning control part G etc. are the characteristics.

この空気流入防止部材34は、外ケース(外筒)25の内部形状つまり該外ケース(外筒)25の内周面25aの形状に適合するように例えば全体形状が略円筒体形状に構成されており、図1に示す例では筒状の外側面34aと、内部が空洞に形成しかつ内周面でなる内側面34bと、この内側面34bに連なって形成れさた擂鉢状庇部34cとを形成している。然らば、外ケース(外筒)25の内周面25aが角型4面で構成される場合は、該外側面34aも同様に角型4面となる。この擂鉢状庇部34cは空気イオン濃度測定器の本体の中心方向に突出形成し、その外面は中心方向に下り坂となるように形成した第1段差面34c1とこの第1段差面34c1から垂下した第2段差面(立設部)34c2を形成してなる。そして、この空気流入防止部材34は、当該空気イオン濃度測定器の清浄装置Eの入口開口Ea側と、その出口開口Eb側とに、それぞれ配置する。しかし、当該空気イオン濃度測定器の清浄装置Eの出口開口Eb側には必ずしも配置する必要はない。該空気流入防止部材34は、第2電極部材26と外ケース(外筒)25とで形成されたスペース(空間)Sに配備されている。特に、該空気流入防止部材34の内側面34b及び擂鉢状庇部34cの部位が該第2電極部材26の上、下端を被覆するように外ケース(外筒)25の内周面25aに固定する。 The air inflow prevention member 34 is configured, for example, in a substantially cylindrical shape so as to conform to the internal shape of the outer case (outer cylinder) 25, that is, the shape of the inner peripheral surface 25 a of the outer case (outer cylinder) 25. In the example shown in FIG. 1, a cylindrical outer side surface 34a, an inner side surface 34b that is hollow and has an inner peripheral surface, and a mortar-shaped ridge portion 34c that is formed continuously to the inner side surface 34b. And form. In other words, when the inner peripheral surface 25a of the outer case (outer cylinder) 25 is composed of four rectangular surfaces, the outer surface 34a is similarly four rectangular surfaces. The mortar-shaped ridge 34c is formed so as to protrude in the center direction of the main body of the air ion concentration measuring device, and the outer surface of the basin-shaped ridge portion 34c is formed so as to descend downward in the center direction. The second step surface (standing portion) 34c2 is formed. And this air inflow prevention member 34 is each arrange | positioned at the entrance opening Ea side of the cleaning apparatus E of the said air ion concentration measuring device, and the exit opening Eb side. However, it is not always necessary to arrange the air ion concentration measuring device on the outlet opening Eb side of the cleaning device E. The air inflow prevention member 34 is disposed in a space (space) S formed by the second electrode member 26 and the outer case (outer cylinder) 25. In particular, it is fixed to the inner peripheral surface 25a of the outer case (outer cylinder) 25 so that the inner side surface 34b of the air inflow preventing member 34 and the mortar-shaped ridge portion 34c cover the upper and lower ends of the second electrode member 26. To do.

上記空気流入防止部材34の外側面34aの外ケース(外筒)25への固定方法はいずれか一方又は両者に強力接着剤を塗布することやビス等によるねじ締め固定すること又はいずれか一方の表面を凸部又は凹部を形成し、これを嵌合すること、さらには、上記外ケース(外筒)25と上記空気流入防止部材34を製造工程で一体加工成型すること等がある。そして、該空気流入防止部材34を外ケース(外筒)25へ固定したとき、該空気流入防止部材34の擂鉢状庇部34cの第2段差面34c2の垂直ラインは上記第2電極部材26の内壁面26aの垂直ラインと一致させるか、少なくとも該第2段差面34c2を第2電極部材26の中心方向に突出させるように構成する。 The outer surface 34a of the air inflow prevention member 34 is fixed to the outer case (outer cylinder) 25 either by applying a strong adhesive to both or by screwing with screws or the like. For example, the surface may be formed with a convex portion or a concave portion, and the outer case (outer cylinder) 25 and the air inflow prevention member 34 may be integrally formed in a manufacturing process. When the air inflow prevention member 34 is fixed to the outer case (outer cylinder) 25, the vertical line of the second step surface 34 c 2 of the mortar-shaped ridge 34 c of the air inflow prevention member 34 is the same as that of the second electrode member 26. It is configured to coincide with the vertical line of the inner wall surface 26 a or to project at least the second step surface 34 c 2 in the center direction of the second electrode member 26.

尚、図中、35は空気イオン濃度測定器の清浄装置Eの出口開口Eb側に配置した空気吐出ファン、36は、建築物の躯体等でなる固定部材、37は大地である。また、ほかの構成部材については図2及び図3に示す基本構成のものと略同一であり同一番号、同一符号を付して、その説明を省略する。 In the figure, 35 is an air discharge fan arranged on the outlet opening Eb side of the cleaning device E of the air ion concentration measuring device, 36 is a fixing member made of a building frame or the like, and 37 is the ground. Further, the other components are substantially the same as those of the basic configuration shown in FIGS. 2 and 3, and the same numbers and the same reference numerals are given, and the description thereof is omitted.

次に、空気イオン濃度測定器の清浄装置Eに於ける実施の形態を示す図1の構成は、外ケース(外筒)25の入口開口Eaにイオン発生手段Fを配置した構成を有する。該イオン発生手段Fは例えばイオン風流送ノズル39、ノズル管40、イオン発生器41、フィルタ42、空気圧縮機43及び空気取入部44、空気乾燥器45で構成されるが、これらの部材すべて備えることはない。 Next, the configuration of FIG. 1 showing the embodiment of the cleaning apparatus E of the air ion concentration measuring device has a configuration in which the ion generating means F is arranged in the inlet opening Ea of the outer case (outer cylinder) 25. The ion generating means F includes, for example, an ion air flow nozzle 39, a nozzle tube 40, an ion generator 41, a filter 42, an air compressor 43, an air intake unit 44, and an air dryer 45, all of which are provided. There is nothing.

上記イオン風流送ノズル39は、空気イオン濃度測定器の本体の入口開口Eaの部位であって、その中心かつ垂直方向にノズル39aを向けて配置する。このイオン風流送ノズル39は、その本体部がノズル管40を接続してある。一方、パイプ等で構成された空気取入部44は、空気圧縮機(コンプレッサ)43に接続され、外部から取入れた空気(気体)を該空気圧縮機43により圧縮する。圧縮された空気は次段のフィルタ42により除塵され、空気に包含されている微細粒子を除去し、イオン発生器41に流送される。イオン発生器41では、高圧のイオン化された空気(気体)をノズル管40を介してイオン風流送ノズル39に流送する。イオン風流送ノズル39では、第1及び第2電極部材23、26に向けてイオン化された高圧の空気を噴出しかつ強制流送する。このことから、該第1及び第2電極部材23、26の表面や内周面に堆積・滞留した帯電粒子(イオン)を静電気剥離力を付与しつつ吹き飛ばす。これにより落下した該帯電粒子(イオン)は出口開口Ebから空気吐出ファン35の駆動により本装置の外部へ飛散される。前記空気乾燥器45は後述する空気イオン濃度測定清浄制御部Gの中央制御回路(CPU)からの信号により外ケース(外筒)25内の湿度が上昇したとき動作させ、その湿度を下げる働きをする。 The ion wind feed nozzle 39 is a part of the inlet opening Ea of the main body of the air ion concentration measuring device, and is arranged with the nozzle 39a directed in the center and in the vertical direction. The ion wind nozzle 39 has a main body connected to a nozzle tube 40. On the other hand, the air intake unit 44 configured by a pipe or the like is connected to an air compressor (compressor) 43, and compresses air (gas) taken from the outside by the air compressor 43. The compressed air is dedusted by the filter 42 in the next stage, fine particles contained in the air are removed, and the compressed air is sent to the ion generator 41. In the ion generator 41, high-pressure ionized air (gas) is flowed to the ion wind flow nozzle 39 through the nozzle tube 40. In the ion wind nozzle 39, high-pressure air ionized toward the first and second electrode members 23 and 26 is ejected and forcedly fed. From this, the charged particles (ions) deposited and staying on the surfaces and inner peripheral surfaces of the first and second electrode members 23 and 26 are blown off while applying an electrostatic peeling force. The charged particles (ions) thus dropped are scattered outside the apparatus by driving the air discharge fan 35 from the outlet opening Eb. The air dryer 45 is operated when the humidity in the outer case (outer cylinder) 25 is increased by a signal from a central control circuit (CPU) of the air ion concentration measuring and cleaning control unit G, which will be described later, and functions to lower the humidity. To do.

本発明に係る空気イオン濃度測定器の清浄装置Eに於ける実施の形態の動作等について図1等に基づき説明する。
本発明装置の電源50から昇圧して直流電圧等の所定電圧、例えば、200ないし1000(V)程度の電圧を印加すれば上記第1電極部材23及び第2電極部材26にプラス及びマイナスの帯電粒子(イオン)30a、30bが捕集される。この捕集されたプラス及びマイナスの帯電粒子(イオン)30a、30bは電流値として計測され、これをイオン濃度測定手段としての電流・電圧変換回路31により電圧値に変換され、空気イオン濃度を検出する。そして、該反対極性の高電圧装置29Aから極性を逆にした電圧を印加する。そして、空気イオン濃度測定清浄制御部Gにより正・負の波高値の差分値を中央制御回路(CPU)47のデータとして記憶し、また空気イオン濃度被測定部の状態を検出し、また、流入空気Bの温度や湿度の状態はセンサー52で電圧に変換され、アナログ・デジタル変換器53でデジタル信号に変換されて状態を検出する。空気イオン濃度被測定部の状態により該被測定部すなわち帯電粒子30a、30bの付着部分等を自己清浄するために本発明装置の電源50に接続された反対極性の高電圧装置29A、回転数制御回路51、イオン発生器41及び空気乾燥器45を駆動して当該被測定部すなわち閉塞用支持基板27、28の表面等の付着物や空気イオン濃度測定器内の清浄を行なう。測定されたデータや波高分布図は遠距離データ通信としては無線通信のPHS電話回線を含む携帯電話回線48に送信する。電話回線、ファイバーケーブルの光回線やLAN回線としての有線回線49にも送出する。差分値データの信頼性のため、また、清浄中のデータ補完のため複数システムのイオン濃度測定器を並列で使用しているときは、イオン濃度測定装置間でデータの共有を行うため別置したデータ記録コンピュータ61にも該差分値データを送出する。
The operation of the embodiment in the cleaning device E of the air ion concentration measuring device according to the present invention will be described with reference to FIG.
When a predetermined voltage such as a DC voltage, for example, a voltage of about 200 to 1000 (V) is applied by boosting from the power supply 50 of the present invention device, positive and negative charges are applied to the first electrode member 23 and the second electrode member 26. Particles (ions) 30a and 30b are collected. The collected positive and negative charged particles (ions) 30a and 30b are measured as current values, converted into voltage values by a current / voltage conversion circuit 31 serving as ion concentration measuring means, and air ion concentration is detected. To do. Then, applying a voltage with the polarity opposite from the high-voltage device 29A of the opposite polarity. Then, the air ion concentration measurement clean control unit G stores the difference value between the positive and negative peak values as data of the central control circuit (CPU) 47, detects the state of the air ion concentration measured portion, The temperature and humidity states of the air B are converted into a voltage by the sensor 52 and converted into a digital signal by the analog / digital converter 53 to detect the state. High voltage device 29A of opposite polarity connected to the power source 50 of the present invention device for controlling the measured portion, that is, the adhering portion of the charged particles 30a, 30b, etc. according to the state of the measured portion of the air ion concentration, the rotational speed control The circuit 51, the ion generator 41, and the air dryer 45 are driven to clean the inside of the measurement object, that is, the deposits such as the surfaces of the closing support substrates 27 and 28 and the air ion concentration measuring instrument. The measured data and the wave height distribution map are transmitted to a cellular phone line 48 including a PHS telephone line for wireless communication as long-distance data communication. The data is also transmitted to a telephone line, a fiber cable optical line, and a wired line 49 as a LAN line. When multiple ion concentration measuring instruments are used in parallel for the reliability of differential value data and for data supplementation during cleaning, they are placed separately to share data between ion concentration measuring devices. The difference value data is also sent to the data recording computer 61.

ここに於いて、上記流入空気Bは空気イオン濃度測定器の本体の入口開口Eaから導入された後、上記外ケース(外筒)25の内周面25aを経る等して矢印B3で示す空気及び矢印B4で示す空気の如く流過して、上記第2電極部材26の内部に流送される。つまり、空気B3及びB4は上記空気流入防止部材34によりスペース(空間)S内に流れ込むことを阻止され、常に該空気流入防止部材34の第1段差面34c1及び第2段差面34c2を経て、円滑に所定量の空気Bが漏洩することなく第1及び第2電極部材23、26の表面や内周面等に円滑に流過し、出口開口Ebから空気吐出ファン35により流出される。
然らば、該空気B3及びB4は第2電極部材26及び外ケース(外筒)25の上側及び下側のスペース(空間)Sに介装された上記閉塞用支持基板27、28の表面27b、28b等に流過せず、従来の技術に於いて説明したが、該閉塞用支持基板27、28の表面27b、28bや第2電極部材26の内周面26a等に帯電粒子(イオン)付着物Dが発生すること及び存在することがなく、そのため、該閉塞用支持基板27、28等の絶縁性は確保でき、本装置が常に正常に空気イオン濃度を測定できると共に絶縁不良現象を招来することがない。
Here, the inflow air B is introduced from the inlet opening Ea of the main body of the air ion concentration measuring device, and then passes through the inner peripheral surface 25a of the outer case (outer cylinder) 25 to indicate the air indicated by the arrow B3. And it flows like the air shown by the arrow B4 and is sent into the second electrode member 26. That is, the air B3 and B4 are prevented from flowing into the space (space) S by the air inflow prevention member 34, and are always smoothly passed through the first step surface 34c1 and the second step surface 34c2 of the air inflow prevention member 34. A predetermined amount of air B flows smoothly on the surfaces and inner peripheral surfaces of the first and second electrode members 23 and 26 without leaking, and flows out from the outlet opening Eb by the air discharge fan 35.
Thus, the air B3 and B4 are the surfaces 27b of the closing support substrates 27 and 28 interposed between the second electrode member 26 and the space (space) S above and below the outer case (outer cylinder) 25, respectively. , 28b, etc., but explained in the prior art, charged particles (ions) are attached to the surfaces 27b, 28b of the closing support substrates 27, 28, the inner peripheral surface 26a of the second electrode member 26, etc. The kimono D does not occur and does not exist. Therefore, it is possible to ensure the insulation of the closing support substrates 27, 28, etc., so that the apparatus can always measure the air ion concentration normally and cause an insulation failure phenomenon. There is nothing.

また、図1に示す構成に於いて、上記反対極性の高電圧装置29Aにより該第1電極部材23に正(プラス)の電位を、該第2電極部材26に負(マイナス)の電位を印加すれば、この印加電圧によりそれぞれ該第1電極部材23の表面23c及び第2電極部材26の内周面26aにそれぞれ帯電されたプラスの帯電粒子(プラスイオン)及びマイナスの帯電粒子(マイナスイオン)が反発され、第1及び第2電極部材23、26から離脱し、第2電極部材26の筒体内を落下することとなり上記反対極性の高電圧装置29Aは自動清浄装置としての機能を果す構成を含むものであり、本発明装置の第1及び第2電極部材23、26の表面23cや内周面26aへの帯電粒子の堆積・滞留を防止することによる空気イオン濃度の測定不良現象を防止するうえに更に絶縁不良現象を防止するという特徴を備えるものである。 Further, in the configuration shown in FIG. 1, a positive potential is applied to the first electrode member 23 and a negative potential is applied to the second electrode member 26 by the high voltage device 29A having the opposite polarity . Then, positive charged particles (positive ions) and negative charged particles (negative ions) charged on the surface 23c of the first electrode member 23 and the inner peripheral surface 26a of the second electrode member 26, respectively, by the applied voltage. Is repelled, disengages from the first and second electrode members 23 and 26, and falls within the cylindrical body of the second electrode member 26, so that the high-voltage device 29A having the opposite polarity functions as an automatic cleaning device. The measurement failure phenomenon of the air ion concentration by preventing the accumulation and retention of charged particles on the surface 23c and the inner peripheral surface 26a of the first and second electrode members 23 and 26 of the apparatus of the present invention. In which with the characteristic that the further prevent insulation failure phenomena on top to prevent.

尚、空気イオン濃度測定器の本体又は外ケース(外筒)25を緊締バンドや紐等で構成された緊締部材38により、例えば、図1に示す如く出口開口Ebが下向きに配置されるように、固定部材36により固定・配置する。このようにすれば、第1及び第2電極部材23、26から離脱した帯電粒子(イオン)が落下し易く、常に第1及び第2電極部材23、26内を清浄化でき、空気イオン濃度を安定的に測定することができる。 Note that the outlet opening Eb is disposed downward as shown in FIG. 1, for example, by a tightening member 38 formed of a tightening band, string or the like on the main body or outer case (outer cylinder) 25 of the air ion concentration measuring instrument. The fixing member 36 is used for fixing and arranging. In this way, the charged particles (ions) separated from the first and second electrode members 23 and 26 can easily fall, and the inside of the first and second electrode members 23 and 26 can be always cleaned, and the air ion concentration can be reduced. It can be measured stably.

上記空気イオン濃度測定清浄制御部Gは、図1に示すように中央制御手段(CPU)としての中央制御回路47を備え、この中央制御回路47は、例えば、マイコンで構成されてあり、イオン濃度測定手段としての電流・電圧変換回路31で空気イオン濃度を電圧値かつデジタル数値に変換させ、図5(a)に示すような空気イオン濃度に係る信号を受信し、これを演算・記憶処理する。中央制御回路47により演算処理されデータは、データ処理計算機を介して無線通信としてのPHS電話回線を含む携帯電話回線48に送信される。このデータはまたさらにLAN回線や電話回線としての有線回線49に送信される。 The air ion concentration measurement clean control unit G includes a central control circuit 47 as a central control means (CPU) as shown in FIG. 1, and the central control circuit 47 is constituted by a microcomputer, for example, and has an ion concentration. The current / voltage conversion circuit 31 as a measuring means converts the air ion concentration into a voltage value and a digital numerical value, receives a signal related to the air ion concentration as shown in FIG. 5A, and calculates / stores it. . The data processed by the central control circuit 47 is transmitted to a cellular phone line 48 including a PHS telephone line as wireless communication via a data processing computer. This data is further transmitted to a wired line 49 as a LAN line or a telephone line.

そこで、空気イオン濃度測定清浄制御部Gは、例えば、閉塞用支持基板27、28の表面27b、28bや第2電極部材26の内周面26a等のイオン濃度被測定部からイオン濃度検出手段としての電流・電圧変換回路31により検出した図5(a)に示す時間t(sec)に対する帯電粒子等の電圧V(ボルト)の特性、すなわちその信号波形を図5(b)に示すように拡大し、該電流・電圧変換回路31の出力側に接続されたフィルタ46で例えば、ローパスフィルタ機能を有し図5(b)の波形を図5(c)に示すようにそのノイズ成分を除去し、整形する。これはスムージング処理をするためである。そして、ここまでは図6に示す空気イオン濃度測定清浄制御部Gのフローに於けるSTARTからステップS1及びステップS2である。該ステップS1は電流を電圧に変換するステップである。該ステップS2はフィルタでノイズを取るステップである。この整形された信号波形は、該フィルタ46の出力側に接続された負の波高値検出回路54及び正の波高値検出回路56からの信号を中央制御手段としての中央制御回路47に出力し、該中央制御回路47によりそのボトム電圧値(底値)とピーク電圧値(頂点値)を検出し、該フィルタ46の出力側に接続されたボトム電圧値保持回路55及びピーク電圧値保持回路57で保持される。そしてここまでは、図6に示す空気イオン濃度測定清浄制御部Gのフローに於けるステップS3からステップS6である。ここで、前記ステップとS3及びステップS5に於いて整形された図5(c)に示す波形の負の波高値(ボトム電圧値)及び正の波高値(ピーク電圧値)を検出できない場合は、それぞれ検出できるまでNO側に帰環させる。ステップS6はピーク電圧値を保持するステップである。ステップS5はピーク電圧値を検出するステップである。ステップS3はボトム電圧値を検出するステップである。ステップS4はボトム電圧値を保持するステップである。前記ピーク電圧値は信号波形の山の頂点値であり、ボトム電圧値は該信号波形の谷の最低値を意味する。そして、前のデータと今のデータを比較し今のデータが小さいと、次のデータを読む、それを繰り返して行き、前のデータより大きくなる点を見つける。このときの前のデータを最小データ(ボトム電圧値)とする。次からは最大データを探す、前のデータと今のデータを比較し今のデータが大きいと次のデータを読む、これを繰り返して行き、前のデータより今のデータが少ない点を見つける。このときの前のデータが最大点なのでこれを最大データ(ピーク電圧値)とする。直前の最小データと最大データの差を、差分値でありこのときの山谷の波高値(ピークピーク値)とする。 Therefore, the air ion concentration measuring and cleaning control unit G serves as an ion concentration detecting unit from the ion concentration measured portion such as the surfaces 27b and 28b of the closing support substrates 27 and 28 and the inner peripheral surface 26a of the second electrode member 26, for example. The characteristic of the voltage V (volt) of the charged particles and the like with respect to the time t (sec) shown in FIG. 5A detected by the current / voltage conversion circuit 31 of FIG. 5, that is, the signal waveform is enlarged as shown in FIG. The filter 46 connected to the output side of the current / voltage conversion circuit 31 has, for example, a low-pass filter function and removes the noise component of the waveform of FIG. 5B as shown in FIG. , Shape. This is to perform a smoothing process. The steps up to here are steps S1 and S2 from START in the flow of the air ion concentration measurement cleaning control unit G shown in FIG. Step S1 is a step of converting a current into a voltage. Step S2 is a step of removing noise by a filter. This shaped signal waveform is output to the central control circuit 47 as a central control means, signals from the negative peak value detection circuit 54 and the positive peak value detection circuit 56 connected to the output side of the filter 46, The central control circuit 47 detects the bottom voltage value (bottom value) and the peak voltage value (vertex value), and holds them by the bottom voltage value holding circuit 55 and the peak voltage value holding circuit 57 connected to the output side of the filter 46. Is done. The steps up to here are step S3 to step S6 in the flow of the air ion concentration measurement cleaning control unit G shown in FIG. Here, when the negative peak value (bottom voltage value) and the positive peak value (peak voltage value) of the waveform shown in FIG. 5C shaped in step S3 and step S5 cannot be detected, Return to the NO side until each can be detected. Step S6 is a step of holding the peak voltage value. Step S5 is a step of detecting a peak voltage value. Step S3 is a step of detecting a bottom voltage value. Step S4 is a step of holding the bottom voltage value. The peak voltage value is the peak value of the peak of the signal waveform, and the bottom voltage value is the lowest value of the valley of the signal waveform. Then, the previous data is compared with the current data, and if the current data is small, the next data is read, it is repeated, and a point that becomes larger than the previous data is found. The previous data at this time is the minimum data (bottom voltage value). Next, search for the maximum data, compare the previous data with the current data, read the next data if the current data is large, repeat this, find the point where the current data is less than the previous data. Since the previous data at this time is the maximum point, this is the maximum data (peak voltage value). The difference between the immediately preceding minimum data and maximum data is the difference value, and the peak value (peak peak value) of the valley at this time.

58は差分増幅回路であり、波高データ処理手段であって前記ピーク電圧値保持回路57及びボトム電圧値保持回路55の出力側に接続されており、図5(c)に示す信号波形の負の波高値(ボトム電圧値)とこれに隣接する正の波高値(ピーク電圧値)の差分値を演算・処理する。該差分増幅回路58は図5(c)に示すように例えば信号波形に基づき連続するボトム電圧値a、c、e、g、iとピーク電圧値b、d、f、h、jの差分電圧値V1、V2、V3、V4、Vn…を演算し、処理する。そして、該差分増幅回路58の出力側に接続されたAD変換回路59によりアナログ信号をデジタル信号に変換し、コンピュータで処理する。該AD変換回路59の出力側に接続された波高分布作成回路60により該差分電圧値V1、V2、V3、V4、Vn毎にその個数を計算し、演算し、記憶し、図7(a)ないし(c)に示すように波高分布図を作成する。そして、ここまでは図6に示す空気イオン濃度測定清浄制御部Gのフローに於けるステップS7からステップS10である。ここで前記ステップS10で、空気イオン濃度の測定時間の経過を計測・判定し測定不能のときは最初のステップS1へ帰環させ、測定可能の状態まで本装置を停止させ又は反対極性の高電圧装置29Aが高電圧を印加しないように動作させる。ここでステップS7はピーク電圧値とボトム電圧値の差を求め波高データとするステップである。ステップS8はアナログ信号をデジタル信号に変換するステップである。ステップS9はピーク電圧値、ボトム電圧値及び中央制御回路(CPU)47をリセットするステップである。ステップS10は前記ステップS1による空気イオン濃度の検出測定可能時間が経過したかどうかの判定を行なうステップである。 Reference numeral 58 denotes a differential amplifier circuit, which is a pulse height data processing means, which is connected to the output side of the peak voltage value holding circuit 57 and the bottom voltage value holding circuit 55, and has a negative signal waveform shown in FIG. The difference value between the peak value (bottom voltage value) and the positive peak value (peak voltage value) adjacent thereto is calculated and processed. As shown in FIG. 5C, the differential amplifier circuit 58 is a differential voltage between continuous bottom voltage values a, c, e, g, i and peak voltage values b, d, f, h, j based on, for example, a signal waveform. The values V1, V2, V3, V4, Vn... Are calculated and processed. Then, the analog signal is converted into a digital signal by the AD conversion circuit 59 connected to the output side of the differential amplifier circuit 58 and processed by a computer. The number of differential voltage values V1, V2, V3, V4, and Vn are calculated, calculated, and stored by the wave height distribution creating circuit 60 connected to the output side of the AD conversion circuit 59. FIG. A wave height distribution map is created as shown in FIG. The steps so far are steps S7 to S10 in the flow of the air ion concentration measuring and cleaning control unit G shown in FIG. Here, in step S10, the passage of the measurement time of the air ion concentration is measured and judged, and when the measurement is impossible, the process returns to the first step S1 and the apparatus is stopped until the measurement is possible or the high voltage of the opposite polarity The device 29A is operated so as not to apply a high voltage. Here, step S7 is a step in which the difference between the peak voltage value and the bottom voltage value is obtained and used as wave height data. Step S8 is a step of converting an analog signal into a digital signal. Step S9 is a step of resetting the peak voltage value, the bottom voltage value, and the central control circuit (CPU) 47. Step S10 is a step in which it is determined whether or not the air ion concentration detection measurable time in step S1 has elapsed.

該波高分布作成回路60は波高分布作成手段であって、例えばマイコンで構成され上述したように波高分布図を図6に示すステップS11で作成する。そして、該波高分布作成回路60は出力信号を中央制御手段としての中央制御回路47に導入する。該中央制御回路47は外ケース(外筒)25内の空気中のイオンや帯電粒子等の付着物や被測定部位等について清浄要否を判定し、指令する。この指令を受けた高電圧発生手段としての反対極性の高電圧装置29Aは、図7(b)に示すようにイオン濃度測定器を長時間使用して測定すると例えば帯電粒子等の電荷の電圧が25(mV)の電圧値から右下がりの隣にもうひとつ小さな山の波形D1すなわち帯電粒子等の電荷の個数の集積が形成される。この山の波形D1が不良データの部分である。この山の波形D1が大きくなる前に清浄を行なう。図8に示す実験例がこのときの波形を示す。これがステップS12で清浄の必要かどうかを判定する。また、イオン濃度測定器の流入空気Bの湿度が高くなり、イオン濃度被測定部の高圧電圧のリークや雨天のときなどにより図7(c)に示すように波高分布図も正常状態時の右下がり部分波形の右側が飽和状態に大きい山の波形D2すなわち帯電粒子等の個数の集積を形成し空気イオン濃度が測定不能状態になる。この状態になるとステップ13で測定不能なことを測定・判定し、反対極性の高電圧装置29Aが高圧電圧を下げ又は停止させ当該本発明の空気イオン濃度測定器の破損を予防する。そして、ステップS14で前記中央制御回路47が信号を出力し空気乾燥器45を動作させ、流入空気Bや被測定部分を乾燥させる。ここで流入空気中の湿度は低下したときでも空気イオン濃度測定器には水分、水蒸気が残留し、空気イオン濃度を安定に測定することが出来ない状態から、早期に測定できる状態にもどす必要があり、流入空気の湿度が空気イオン濃度測定不能状態から空気イオン濃度測定可能状態に変化したときに、空気イオン濃度測定器内の空気流入口に取付けられた空気乾燥器により乾燥空気を流入させて空気イオン濃度測定器の被測定部分を乾燥させて、高圧電圧の表面リークを防ぎ空気イオン濃度の測定を安定化させる。また、ステップ15で湿度が低下し正常となることを判定すれば、ステップS18に進み、測定タイマーをリセットし、次の空気イオン濃度や被測定部位等の測定を準備する。
以上を繰り返して行ない滞留した帯電粒子や空気イオン濃度の清浄を行なう。さらに、ステップ13で測定可能な状態になれば、ステップS17で波高分布図が正常としてデータをデータ記録コンピュータ61に送出し、これを記録する。このように空気イオン濃度や被測定部位等が清浄済みの波形は図7(a)で示すように図7(b)、(c)のような隣接する大きい山の波形D1、D2が全く存在しないこととなる。このときの実験例では図9に示す波形となり当該空気イオン濃度測定器が常に正常に働くこととなる。
The wave height distribution creating circuit 60 is a wave height distribution creating means, which is composed of, for example, a microcomputer and creates a wave height distribution chart in step S11 shown in FIG. 6 as described above. The wave height distribution creating circuit 60 introduces the output signal to the central control circuit 47 as central control means. The central control circuit 47 determines whether or not it is necessary to clean the adhering matter such as ions and charged particles in the air in the outer case (outer cylinder) 25, the site to be measured, and the like. The high-voltage device 29A having the opposite polarity as the high-voltage generating means that has received this command, when measured using an ion concentration measuring instrument for a long time as shown in FIG. Next to the lower right side of the voltage value of 25 (mV), another small peak waveform D1, that is, an accumulation of the number of charges such as charged particles is formed. This peak waveform D1 is a portion of defective data. Cleaning is performed before the peak waveform D1 becomes large. The experimental example shown in FIG. 8 shows the waveform at this time. In step S12, it is determined whether or not cleaning is necessary. In addition, when the humidity of the inflowing air B of the ion concentration measuring device becomes high and the ion concentration measurement part leaks a high voltage or in the rain, the wave height distribution map is also on the right in the normal state as shown in FIG. The right side of the falling partial waveform forms a large peak waveform D2 in a saturated state, that is, an accumulation of the number of charged particles and the like, and the air ion concentration becomes unmeasurable. In this state, it is determined in step 13 that measurement is impossible, and the high voltage device 29A having the opposite polarity lowers or stops the high voltage to prevent the air ion concentration measuring instrument of the present invention from being damaged. In step S14, the central control circuit 47 outputs a signal to operate the air dryer 45 to dry the inflowing air B and the part to be measured. Here, even when the humidity in the inflowing air drops, moisture and water vapor remain in the air ion concentration measuring device, so it is necessary to return to a state where it can be measured early, from a state where the air ion concentration cannot be measured stably. Yes, when the humidity of the inflowing air changes from the state in which the air ion concentration cannot be measured to the state in which the air ion concentration can be measured, dry air is caused to flow in by the air dryer attached to the air inlet of the air ion concentration measuring device. The part to be measured of the air ion concentration measuring device is dried to prevent the surface leakage of the high voltage and stabilize the measurement of the air ion concentration. If it is determined in step 15 that the humidity is reduced and normal, the process proceeds to step S18, the measurement timer is reset, and the next measurement of the air ion concentration, the measurement site, and the like is prepared.
The above process is repeated to clean the staying charged particles and air ion concentration. Further, if the state becomes measurable in step 13, in step S17, the wave height distribution map is normal and the data is sent to the data recording computer 61 and recorded. As shown in FIG. 7 (a), the waveform with the air ion concentration and the measurement site being cleaned in this way has the adjacent large mountain waveforms D1 and D2 as shown in FIGS. 7 (b) and (c). Will not. In the experimental example at this time, the waveform shown in FIG. 9 is obtained, and the air ion concentration measuring device always operates normally.

また、本発明に係る空気イオン濃度測定器の清浄装置Eの電源50は高電圧発生器としての機能を有する上記反対極性の高電圧装置29Aにより、上記第1及び第2電極部材23、26間に例えば約700(V)ないし約2000(V)程度の高電圧を印加すること及び上記中央制御回路47からの信号で直流電圧等の所定の正逆電位を印加することにより、上記第1及び第2電極部材23、26の表面23cや内周面26a等に堆積・滞留した帯電粒子(イオン)を上記第1及び第2電極部材23、26の表面23cや内周面26a等から離脱させる。 In addition, the power source 50 of the cleaning device E of the air ion concentration measuring device according to the present invention is connected between the first and second electrode members 23 and 26 by the high voltage device 29A having the function of a high voltage generator and having the opposite polarity. By applying a high voltage of about 700 (V) to about 2000 (V), for example, and applying a predetermined forward / reverse potential such as a DC voltage in response to a signal from the central control circuit 47, the first and Charged particles (ions) accumulated and retained on the surface 23c of the second electrode members 23, 26, the inner peripheral surface 26a, etc. are separated from the surfaces 23c, the inner peripheral surface 26a, etc. of the first and second electrode members 23, 26. .

さらに、上記空気イオン濃度測定清浄制御部Gに空気吐出ファン35の回転数を増減する回転数制御回路51を備え、この回転数制御回路51により、上記第1及び第2電極部材23、26の表面23cや内周面26a等に堆積・滞留した帯電粒子(イオン)を強制的に本装置の外部へ放出する。 Further, the air ion concentration measuring and cleaning control unit G is provided with a rotation speed control circuit 51 for increasing or decreasing the rotation speed of the air discharge fan 35, and the rotation speed control circuit 51 allows the first and second electrode members 23 and 26 to be controlled. Charged particles (ions) deposited and staying on the surface 23c, the inner peripheral surface 26a, etc. are forcibly discharged to the outside of the apparatus.

一方、上記外ケース(外筒)25や空気イオン濃度測定器の本体の所定箇所に温度センサ、磁気センサ等の各種センサ52特に、湿度センサを配備し、この各種センサ52から制御線を介してアナログ・デジタル変換回路53に送信され、これを環境データとして、上記中央制御回路47に送信される。該中央制御回路47はこれを外部に設置した例えば、地球環境研究センタ(図示せず)等に送信し、地球環境保全や空気イオン濃度の変化に伴う地震予知等の研究に役立てることができる。 On the other hand, various sensors 52 such as a temperature sensor and a magnetic sensor, particularly a humidity sensor, are provided at predetermined locations on the outer case (outer cylinder) 25 and the main body of the air ion concentration measuring instrument. The data is transmitted to the analog / digital conversion circuit 53 and transmitted to the central control circuit 47 as environment data. The central control circuit 47 can transmit it to, for example, a global environment research center (not shown) or the like installed outside, and can be used for research on global environment conservation or earthquake prediction accompanying changes in air ion concentration.

次に、本発明に係る空気イオン濃度測定器の清浄装置に於ける実施例について詳細に説明する。 Next, an embodiment of the cleaning apparatus for an air ion concentration measuring device according to the present invention will be described in detail.

本発明に係る装置は、前述した空気流入防止部材34が図1に示す構成のものに限定することなく、図4に示す構成例もある。これについて説明すれば、空気流入防止部材34Aは筒状の外側面34aと内部が空洞に形成しかつ円周面でなる内側面34bと、この内側面34bに連なって形成された擂鉢状庇部34cとを備えている点は図1のものと同一である。しかし、図4に示す構成例のものは、該擂鉢状庇部34cの外面は立設部を形成することなく上記第2電極部材26の中心方向に下り坂となる単一の斜面34c3を形成している点が相異している。このように構成すると擂鉢状庇部34cの外面がフラットな形状となり擂鉢状庇部34c自体が簡素化され、製作性が向上すると共に空気B3及びB4がさらに円滑に流送する。他の構成や動作等については前述した図1に示すものと略同一であり、その説明を省略する。 The apparatus according to the present invention is not limited to the above-described air inflow prevention member 34 having the structure shown in FIG. Explaining this, the air inflow prevention member 34A includes a cylindrical outer side surface 34a, an inner side surface 34b having a hollow inside and a circumferential surface, and a mortar-like ridge portion formed continuously to the inner side surface 34b. 34c is the same as that of FIG. However, in the configuration example shown in FIG. 4, the outer surface of the mortar-shaped ridge portion 34 c forms a single inclined surface 34 c 3 that forms a downward slope in the center direction of the second electrode member 26 without forming an upright portion. The points are different. If comprised in this way, the outer surface of the bowl-shaped collar part 34c will become a flat shape, and the bowl-shaped collar part 34c itself will be simplified, productivity will improve and air B3 and B4 will flow more smoothly. Other configurations and operations are substantially the same as those shown in FIG. 1 described above, and a description thereof will be omitted.

本発明に係る空気イオン濃度測定器の清浄装置Eに於ける実施の形態の具体的な構成を示すシステム図であって、その空気イオン濃度測定器の本体を垂直断面した図である。FIG. 2 is a system diagram showing a specific configuration of an embodiment in a cleaning apparatus E for an air ion concentration measuring device according to the present invention, and is a diagram showing a vertical section of the main body of the air ion concentration measuring device. 本発明に係る空気イオン濃度測定器の清浄装置に於ける基本構成を示す垂直断面図である。It is a vertical sectional view showing the basic composition in the cleaning device of the air ion concentration measuring device according to the present invention. 本発明に係る空気イオン濃度測定器の清浄装置に於ける基本構成を示すものであって、図2の場合から逆電圧を印加した状態を示す垂直断面図である。FIG. 3 is a vertical sectional view showing a basic configuration in a cleaning device for an air ion concentration measuring device according to the present invention and showing a state in which a reverse voltage is applied from the case of FIG. 2. 本発明に係る空気イオン濃度測定器の清浄装置に於ける基本構成の実施例を示す一部切欠した垂直断面図である。FIG. 3 is a partially cutaway vertical sectional view showing an embodiment of a basic configuration in a cleaning device for an air ion concentration measuring device according to the present invention. 本発明に係る空気イオン濃度測定器の清浄装置に於けるフィルタによる時間t(sec)に対する帯電粒子等の電圧(ボルト)の波形であって、(a)は信号波形図、(b)は(a)を拡大した信号波形図、(c)はスムージング処理しかつ正・負の波高値を示す波形図である。FIG. 4 is a waveform of a voltage (volt) of charged particles or the like with respect to time t (sec) by a filter in the air ion concentration measuring device cleaning apparatus according to the present invention, where (a) is a signal waveform diagram and (b) is ( (a) is an enlarged waveform diagram of a signal, and (c) is a waveform diagram showing a smoothing process and showing positive and negative peak values. 本発明に係る空気イオン濃度測定器の清浄装置に於ける空気イオン濃度測定清浄制御部Gの動作を示すフロー図である。It is a flowchart which shows operation | movement of the air ion concentration measurement cleaning control part G in the cleaning apparatus of the air ion concentration measuring device which concerns on this invention. 本発明に係る空気イオン濃度測定器の清浄装置の波高分布作成回路により作成された分布図であって、(a)は清浄直後の帯電粒子等の電圧(mV)に対する帯電粒子等の個数を表示する特性図、(b)は清浄をする必要がある場合の帯電粒子等の電圧(mV)に対する帯電粒子等の個数を表示する特性図、(c)は雨天のとき等高湿度で本装置による測定不能のときの状態を示す帯電粒子等の電圧(mV)に対する帯電粒子等の個数を表示する特性図である。It is the distribution map created by the wave height distribution creation circuit of the cleaning device of the air ion concentration measuring device according to the present invention, wherein (a) displays the number of charged particles etc. with respect to the voltage (mV) of the charged particles etc. immediately after cleaning. (B) is a characteristic diagram for displaying the number of charged particles, etc. with respect to the voltage (mV) of charged particles, etc., when it is necessary to clean. It is a characteristic view which displays the number of charged particles etc. with respect to voltage (mV) of charged particles etc. which shows a state when measurement is impossible. 本発明に係る空気イオン濃度測定器の清浄装置に於ける清浄前(クリーニング前)の実験例を示すものでアナログ信号電圧値(mV)に対するイオン粒子等の個数(個)を示す特性図である。FIG. 6 is a characteristic diagram showing an example of an experiment before cleaning (before cleaning) in the cleaning apparatus of the air ion concentration measuring device according to the present invention, showing the number (number) of ion particles and the like with respect to an analog signal voltage value (mV). . 本発明に係る空気イオン濃度測定器の清浄装置に於ける清浄後(クリーニング後)の実験例を示すものでアナログ信号電圧値(mV)に対するイオン粒子等の個数(個)を示す特性図である。FIG. 6 is a characteristic diagram showing an experimental example after cleaning (after cleaning) in the cleaning apparatus of the air ion concentration measuring device according to the present invention and showing the number (pieces) of ion particles and the like with respect to an analog signal voltage value (mV). . 従来の技術に於ける空気イオン濃度測定器の一つの例を示す垂直断面図である。It is a vertical sectional view showing one example of an air ion concentration measuring device in the prior art. 従来の技術に於ける空気イオン濃度測定器の他の例を示す垂直断面図である。It is a vertical sectional view showing another example of an air ion concentration measuring device in the prior art. 従来の技術に於ける空気イオン濃度測定器の一つの例を示すものであって、イオン化空気の流過状況を示す拡大垂直断面図である。It is one example of the air ion concentration measuring device in the prior art, and is an enlarged vertical sectional view showing the flow state of ionized air.

23 第1電極部材
23a 第1電極部材の上端
23b 第1電極部材の下端
23c 第1電極部材の表面
24 支持バー
25 外ケース(外筒)
25a 外ケース(外筒)の内周面
26 第2電極部材
26a 第2電極部材の内周面
27 閉塞用支持基板
27a 閉塞用支持基板の貫通孔
27b 閉塞用支持基板の表面
28 閉塞用支持基板
28a 閉塞用支持基板の貫通孔
28b 閉塞用支持基板の表面
29 反対極性の電圧電源装置
29A 反対極性の高電圧装置(高電圧発生手段)
30a プラスの帯電粒子
30b マイナスの帯電粒子
31 電流・電圧変換回路
32 信号制御線
33 電圧線
34 空気流入防止部材
34A 空気流入防止部材
34a 空気流入防止部材の外側面
34b 空気流入防止部材の内側面
34c 空気流入防止部材の擂鉢状庇部
34c1 空気流入防止部材擂鉢状庇部の第1段差面
34c2 空気流入防止部材擂鉢状庇部の第2段差面(立設部)
34c3 空気流入防止部材擂鉢状庇部の単一の斜面
35 空気吐出ファン
36 固定部材
37 大地
38 緊締部材
39 イオン風流送ノズル
39a イオン風流送ノズルのノズル口
40 ノズル管
41 イオン発生器
42 フィルタ
43 空気圧縮機(コンプレッサ)
44 空気取入部
45 空気乾燥器
46 フィルタ
47 中央制御回路(中央制御手段)
48 携帯電話回線
49 有線回線
50 本発明装置の電源
51 回転数制御回路
52 各種センサ(湿度センサ)
53 アナログ・デジタル変換回路
54 負の波高値検出回路
55 ボトム電圧値保持回路
56 正の波高値検出回路
57 ピーク電圧値保持回路
58 差分増幅回路(波高データ処理手段)
59 AD変換回路
60 波高分布作成回路(波高分布作成手段)
61 データ記録コンピュータ
B 流入空気
B1 イオン化空気
B2 イオン化空気
B3 空気
B4 空気
C 空気イオン濃度測定器
D 帯電粒子(イオン)付着物
E 空気イオン濃度測定器の清浄装置
Ea 空気イオン濃度測定器の本体の入口開口
Eb 空気イオン濃度測定器の本体の出口開口
F イオン発生手段
G 空気イオン濃度測定清浄制御部

23 first electrode member 23a first electrode member upper end 23b first electrode member lower end 23c surface of first electrode member 24 support bar 25 outer case (outer cylinder)
25a Inner peripheral surface 26 of outer case (outer cylinder) Second electrode member 26a Inner peripheral surface 27 of second electrode member Blocking support substrate 27a Closing support substrate through hole 27b Closing support substrate surface 28 Closing support substrate high voltage device of the voltage power supply 29A opposite polarity 28a surface 29 opposite polarities of the through-hole 28b closed supporting substrate of the closure supporting substrate (high-voltage generating means)
30a Positive charged particle 30b Negative charged particle 31 Current / voltage conversion circuit 32 Signal control line 33 Voltage line 34 Air inflow prevention member 34A Air inflow prevention member 34a Air inflow prevention member outer side surface 34b Air inflow prevention member inner side surface 34c Air inflow prevention member mortar-shaped ridge 34c1 Air inflow prevention member mortar-shaped ridge first step surface 34c2 Air inflow prevention member mortar-shaped ridge second step surface (standing portion)
34c3 Air inflow prevention member Single slope 35 of bowl-shaped saddle 35 Air discharge fan 36 Fixing member 37 Ground 38 Tightening member 39 Ion air flow nozzle 39a Ion air flow nozzle nozzle port 40 Nozzle tube 41 Ion generator 42 Filter 43 Air Compressor
44 Air intake section 45 Air dryer 46 Filter 47 Central control circuit (central control means)
48 Cellular phone line 49 Wired line 50 Power supply 51 of the present invention device Rotational speed control circuit 52 Various sensors (humidity sensors)
53 Analog / digital conversion circuit 54 Negative peak value detection circuit 55 Bottom voltage value holding circuit 56 Positive peak value detection circuit 57 Peak voltage value holding circuit 58 Differential amplifier circuit (Peak data processing means)
59 AD conversion circuit 60 Wave height distribution creation circuit (wave height distribution creation means)
61 Data recording computer B Inlet air B1 Ionized air B2 Ionized air B3 Air B4 Air C Air ion concentration measuring device D Charged particle (ion) deposit E Cleaning device for air ion concentration measuring device Ea Inlet of main body of air ion concentration measuring device Opening Eb Outlet opening F of the main body of the air ion concentration measuring device F Ion generating means G Air ion concentration measuring and cleaning control unit

Claims (3)

筒体で構成された第2電極部材と、該筒体の長さ方向に沿って該筒体の略中心部分に配置された第1電極部材と、該第1電極部材及び第2電極部材を収容する外ケースと、該第1及び第2電極部材間からの信号で空気イオン濃度を検出する空気イオン濃度測定手段と、該第2電極部材及び外ケース間に介装しかつ該第2電極部材と該外ケースを固定する閉塞用支持基板と、該閉塞用支持基板に隣接した位置であって外ケースの内周面に固定された空気流入防止部材と、該第1及び第2電極部材に電圧を印加してから所定時間経過後に該第1電極部材及び第2電極部材間に反対極性の電圧を印加する高電圧発生手段とでなる空気イオン濃度測定器の清浄装置に於いて、上記空気流入防止部材は上記外ケースに固定する外側面と、該空気流入防止部材の内部を空洞に形成しかつ内周面でなる内側面と、該内側面に連なって形成された擂鉢状庇部とを形成し、上記空気イオン濃度測定手段からの信号を正の波高値及び負の波高値を検出しその差分値(ピークピーク値)をデータ処理する波高データ処理手段と、該波高データ処理手段からの信号で分布図を作成する波高分布作成手段と、該波高分布作成手段からの信号で空気イオンの清浄要否を判定・指令する中央制御手段(CPU)とでなり上記高電圧発生手段が上記中央制御手段からの制御信号により上記第1電極部材及び第2電極部材間に反対極性の電圧を印加することを特徴とする空気イオン濃度測定器の清浄装置。 A second electrode member formed of a cylindrical body, a first electrode member disposed at a substantially central portion of the cylindrical body along a length direction of the cylindrical body, and the first electrode member and the second electrode member. An outer case to be accommodated; an air ion concentration measuring means for detecting an air ion concentration by a signal from between the first and second electrode members; and the second electrode interposed between the second electrode member and the outer case A closing support substrate for fixing the member and the outer case, an air inflow prevention member fixed to the inner peripheral surface of the outer case at a position adjacent to the closing support substrate, and the first and second electrode members In a cleaning apparatus for an air ion concentration measuring instrument comprising high voltage generating means for applying a voltage of opposite polarity between the first electrode member and the second electrode member after a predetermined time has elapsed since the voltage was applied to The air inflow prevention member includes an outer surface fixed to the outer case and the air inflow prevention. An inner surface formed internally in the life-and-death formed cavity peripheral surface of the wood to form a cone-shaped overhang portion which is formed continuous with the inner side, signals a positive peak value from the air ion concentration measuring means And a wave height data processing means for detecting a negative wave height value and processing the difference value (peak peak value), a wave height distribution creating means for creating a distribution map with a signal from the wave height data processing means, and the wave height distribution creating And a central control means (CPU) for determining and instructing whether or not air ions need to be cleaned by a signal from the means , and the high voltage generating means receives the first electrode member and the second electrode by a control signal from the central control means A cleaning device for an air ion concentration measuring device, wherein a voltage of opposite polarity is applied between members. 前記空気イオン濃度測定器の清浄装置の中央制御手段が前記波高分布作成手段により作成した波高分布図で流入空気の高湿度による空気イオン濃度測定不能を判定し、この指令信号で前記高電圧発生手段を制御することを特徴とする請求項1記載の空気イオン濃度測定器の清浄装置。 The central control means of the cleaning device of the air ion concentration measuring device determines that the air ion concentration cannot be measured due to the high humidity of the inflowing air from the wave height distribution map created by the wave height distribution creating means, and the high voltage generating means is determined by this command signal. The apparatus for cleaning an air ion concentration measuring device according to claim 1, wherein: 前記空気イオン濃度測定器の清浄装置の中央制御手段が前記波高分布作成手段により作成した波高分布図で流入空気の高湿度から低湿度に変化した際、空気イオン濃度測定可能と判定し、この指令信号で空気乾燥器を制御することを特徴とする請求項1記載の空気イオン濃度測定器の清浄装置。 When the central control means of the cleaning device of the air ion concentration measuring device changes from high humidity to low humidity of the incoming air in the wave height distribution map created by the wave height distribution creating means, it is determined that the air ion concentration can be measured, and this command 2. The apparatus for cleaning an air ion concentration measuring device according to claim 1, wherein the air dryer is controlled by a signal.
JP2007038758A 2007-02-20 2007-02-20 Air ion concentration measuring device cleaning device Active JP4857142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007038758A JP4857142B2 (en) 2007-02-20 2007-02-20 Air ion concentration measuring device cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007038758A JP4857142B2 (en) 2007-02-20 2007-02-20 Air ion concentration measuring device cleaning device

Publications (2)

Publication Number Publication Date
JP2008203056A JP2008203056A (en) 2008-09-04
JP4857142B2 true JP4857142B2 (en) 2012-01-18

Family

ID=39780731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007038758A Active JP4857142B2 (en) 2007-02-20 2007-02-20 Air ion concentration measuring device cleaning device

Country Status (1)

Country Link
JP (1) JP4857142B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4703770B1 (en) * 2010-02-19 2011-06-15 シャープ株式会社 Ion generator and method for determining presence / absence of ions
CN111398520A (en) * 2020-02-17 2020-07-10 元博科技(香港)有限公司 Air ion outdoor detector and control method thereof
CN112067522A (en) * 2020-10-12 2020-12-11 北京雨根科技有限公司 Air negative ion sensor and measuring method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4412764B2 (en) * 1999-06-29 2010-02-10 フィーサ株式会社 Positive / negative ion content measuring device
JP3525384B2 (en) * 2001-06-29 2004-05-10 アンデス電気株式会社 Ion measuring instrument
JP3503627B2 (en) * 2001-12-27 2004-03-08 アンデス電気株式会社 Ion measuring instrument
JP4807729B2 (en) * 2005-05-31 2011-11-02 和幸 福居 Air ion concentration measuring device cleaning device

Also Published As

Publication number Publication date
JP2008203056A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
FI83481B (en) OVER ANCHORING FOER RENGOERING AV LUFT, ROEKGASER ELLER MOTSVARANDE.
Kim et al. Experimental study of electrostatic precipitator performance and comparison with existing theoretical prediction models
US6192740B1 (en) Method and apparatus for detecting particles in a flow
US6761752B2 (en) Gas particle partitioner
JP4857142B2 (en) Air ion concentration measuring device cleaning device
KR102053347B1 (en) Wet type fine dust removing apparatus using static electricity
TWI580959B (en) Method for determining ion current in an ion chamber and apparatus for detecting
JP2015507208A (en) Apparatus and method for generating an approved air stream and use of such apparatus in measuring particle concentration in an approved air stream
KR200484692Y1 (en) Apparatus and process for producing acknowledged air flow and the use of such apparatus in measuring particle concentration in acknowledged air flow
CN108693092B (en) Dust concentration detection device
Masuda et al. Electrostatic precipitation
Dinh et al. Particle precipitation by bipolar corona discharge ion winds
JP4807729B2 (en) Air ion concentration measuring device cleaning device
Ngo et al. Measurement of PM 2.5 mass concentration using an electrostatic particle concentrator-based quartz crystal microbalance
CN208642964U (en) A kind of electric control system of wet electrical dust precipitator
CN207615020U (en) Air suspended particulated collector
KR102173407B1 (en) Air purification system using corona discharge
US3939694A (en) Method and apparatus for measuring the concentration of solid particles suspended in a gas phase
JP2001034863A (en) Air blow-type fire alarm system
JPH01180258A (en) Dust concentration detector and air cleaner provided with said detector
Nouri et al. Effect of relative humidity on the collection efficiency of a wire-to-plane electrostatic precipitator
CN208825168U (en) A kind of dust arrester installation
CN208373338U (en) A kind of high-pressure electrostatic wet scrubber
JP3531707B2 (en) Operating method of electric dust collector
CN212059812U (en) Dust concentration detection device of evenly distributed air current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4857142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250