JP4857032B2 - Steel structure reinforcing method and reinforcing structure - Google Patents

Steel structure reinforcing method and reinforcing structure Download PDF

Info

Publication number
JP4857032B2
JP4857032B2 JP2006166104A JP2006166104A JP4857032B2 JP 4857032 B2 JP4857032 B2 JP 4857032B2 JP 2006166104 A JP2006166104 A JP 2006166104A JP 2006166104 A JP2006166104 A JP 2006166104A JP 4857032 B2 JP4857032 B2 JP 4857032B2
Authority
JP
Japan
Prior art keywords
steel
sheet
reinforcing
fiber sheet
reinforcing fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006166104A
Other languages
Japanese (ja)
Other versions
JP2007332674A (en
Inventor
賀津雄 大垣
江 杉浦
尚文 稲葉
芳男 冨田
朗 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Kawasaki Motors Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd, Kawasaki Jukogyo KK filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to JP2006166104A priority Critical patent/JP4857032B2/en
Publication of JP2007332674A publication Critical patent/JP2007332674A/en
Application granted granted Critical
Publication of JP4857032B2 publication Critical patent/JP4857032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

請求項に係る発明は、橋梁や高架道路等の鋼構造物を補強する方法、および補強された鋼構造物に関するものである。なお、ここでいう補強には、既設の鋼構造物における鋼部材が腐食等したことに起因する補修的な補強のほか、さらに高い負荷を支え得るように既設物を強化する向上的な補強をも含むものとする。   The present invention relates to a method for reinforcing a steel structure such as a bridge or an elevated road, and a reinforced steel structure. In addition, the reinforcement mentioned here includes not only repair reinforcement caused by corrosion of steel members in the existing steel structure, but also improvement reinforcement that strengthens the existing structure to support higher loads. Shall also be included.

橋梁などの鋼構造物を補強する手段として、既設の鋼部材上の必要な箇所に溶接やボルトにより鋼材を添接する工法がよく知られている。しかし、そのような工法によると、既設の鋼部材に熱影響を及ぼしたりボルト孔をあけたりする必要があってその分の強度低下がともなうほか、工事が簡単には行えない、添接した鋼材自体の重量が鋼構造物の負担となるといった不都合があるとして、近年、炭素繊維樹脂板による補強方法が提案されている。   As a means for reinforcing a steel structure such as a bridge, a method of attaching a steel material to a necessary portion on an existing steel member by welding or a bolt is well known. However, according to such a construction method, it is necessary to heat the existing steel member or to make a bolt hole, which causes a decrease in strength, and the attached steel material that cannot be easily constructed. In recent years, a reinforcement method using a carbon fiber resin plate has been proposed as having the disadvantage that the weight of itself becomes a burden on the steel structure.

下記の特許文献1はそのような補強方法に関するもので、所定強度と所定形状の炭素繊維強化樹脂板をあらかじめ接着剤により複数重ね合わせたものを橋梁の鋼製部材下面に接着剤にて接合することを提案している。すなわち、厚さ1.2mmの炭素繊維樹脂板を6層程度(厚さ約8mmに)接着した板を、図8のように橋梁の鋼部材に接合し、もってその橋梁を補強するものである。梁の中央部付近では大きめの曲げモーメントがはたらくため、中央部付近では当該樹脂板の接合枚数を増やすこととしている。
特開2003−193425号公報
Patent Document 1 below relates to such a reinforcing method, in which a plurality of carbon fiber reinforced resin plates having a predetermined strength and a predetermined shape are previously overlapped with an adhesive and bonded to the lower surface of a steel member of the bridge with an adhesive. Propose that. That is, a plate obtained by bonding about 6 layers of carbon fiber resin plates having a thickness of 1.2 mm (to a thickness of about 8 mm) is joined to a steel member of a bridge as shown in FIG. 8, thereby reinforcing the bridge. . Since a large bending moment works in the vicinity of the center of the beam, the number of bonded resin plates is increased in the vicinity of the center.
JP 2003-193425 A

特許文献1に示されたようにあらかじめ厚さが数mm程度以上の板として固められた炭素繊維樹脂板を橋梁等に接着した場合、当該鋼構造物の使用中に、鋼部材の表面からその樹脂板が剥離しやすいと予想される。一般に、鋼部材のヤング係数に比較して炭素繊維樹脂のヤング係数はかなり高く、したがって、厚さが1mmを超える程度の板を用いた場合には鋼部材との間で剛性がかなり大きく相違してしまうからである。   When a carbon fiber resin plate that has been hardened in advance as a plate having a thickness of several millimeters or more as shown in Patent Document 1 is bonded to a bridge or the like, the surface of the steel member is used during the use of the steel structure. The resin plate is expected to be easily peeled off. In general, the Young's modulus of carbon fiber resin is considerably higher than the Young's modulus of steel members. Therefore, when a plate having a thickness exceeding 1 mm is used, the rigidity is significantly different from that of steel members. Because it will end up.

たとえば図3(a)に示す橋梁(鋼構造物1)において、鋼部材2の下面(b部等)に図3(b1)のように炭素繊維樹脂板10を接着したのち、図示左右の方向に引張力(たとえば曲げモーメントに基づく引張力)がはたらく場合を考える。鋼部材2と炭素繊維樹脂板10との間の接着面には、両者の剛性の相違に基づいて図示のように水平せん断力Hが作用し、その水平せん断力Hは、引張力の方向における樹脂板10の端部11においてピークとなる。上記のように厚さが1mmを超える程度の板を接着した場合には、その端部におけるピーク値が図3(c)の曲線b1のように極めて大きくなるため、接着材(樹脂)の耐剥離強度を超えやすい。   For example, in the bridge (steel structure 1) shown in FIG. 3 (a), the carbon fiber resin plate 10 is bonded to the lower surface (b portion, etc.) of the steel member 2 as shown in FIG. Let us consider a case where a tensile force (for example, a tensile force based on a bending moment) is applied. A horizontal shearing force H acts on the bonding surface between the steel member 2 and the carbon fiber resin plate 10 based on the difference in rigidity between the steel member 2 and the carbon fiber resin plate 10, and the horizontal shearing force H is in the direction of the tensile force. It peaks at the end 11 of the resin plate 10. When a plate having a thickness exceeding 1 mm is bonded as described above, the peak value at the end becomes extremely large as shown by the curve b1 in FIG. Easy to exceed peel strength.

請求項に係る発明は、以上の点に基づき、鋼構造物の補強を簡単かつ効果的に行えるとともに、荷重を受けても補強材の剥離が生じがたい鋼構造物の補強方法等を提供するものである。   Based on the above points, the claimed invention provides a method for reinforcing a steel structure that can easily and effectively reinforce a steel structure and is difficult to cause separation of a reinforcing material even under load. Is.

請求項に記載した鋼構造物の補強方法は、鋼構造物における鋼部材の表面に複数枚の強化繊維シートを重ねて接着するとともに、それら強化繊維シートのうち力(引張力または圧縮力)の作用する方向における端部に、接着面に生じる水平せん断力を分散させるための処置を施すことを特徴とする。
「強化繊維シート」とは、炭素繊維(カーボンファイバー。長尺繊維)等の強化繊維を布状の薄いシートにしたもの(樹脂未含浸のシート)をいう。強化繊維を一方向に配列したものであっても、そうでないシート状織物であってもよい。
強化繊維シートの「接着」とは、上記のようなシートを含浸接着剤(エポキシ樹脂など)とともに鋼部材等の表面上に接合することをいう。接着の手順としてはたとえば、鋼部材の表面の該当箇所に含浸接着剤を塗り、それが固化する前に強化繊維シートを重ね、やはり固化する前にさらにその上に含浸接着剤を塗り、ローラ等を用いて繊維間に含浸接着剤を浸透させるとともに表面を平坦化したうえ、接着剤が固化するのを待つ。複数枚の強化繊維シートを接着するのであるから、こうした手順を繰り返して強化繊維シート同士の間をも接着することになる。
The method for reinforcing a steel structure described in the claims is to overlap and bond a plurality of reinforcing fiber sheets on the surface of a steel member in the steel structure, and to force (tensile force or compressive force) of the reinforcing fiber sheets. It is characterized in that a treatment for dispersing the horizontal shearing force generated on the adhesive surface is applied to the end in the acting direction.
“Reinforcing fiber sheet” refers to a sheet (non-resin-impregnated sheet) in which reinforcing fibers such as carbon fibers (carbon fibers, long fibers) are made into thin cloth-like sheets. The reinforcing fibers may be arranged in one direction or may be a sheet-like woven fabric that is not.
“Adhesion” of the reinforcing fiber sheet means that the above-described sheet is bonded onto the surface of a steel member or the like together with an impregnation adhesive (such as an epoxy resin). As the bonding procedure, for example, an impregnation adhesive is applied to a corresponding portion of the surface of a steel member, a reinforcing fiber sheet is stacked before it solidifies, and an impregnation adhesive is further applied thereon before solidifying, and a roller or the like. Is used to infiltrate the impregnated adhesive between the fibers, flatten the surface, and wait for the adhesive to solidify. Since a plurality of reinforcing fiber sheets are bonded, such a procedure is repeated to bond the reinforcing fiber sheets together.

上記の補強方法によれば、補強材とする強化繊維シートが剥離を起こしにくい。従来(特許文献1)の技術と同じく、強化繊維シートというヤング係数の高い補強材を鋼部材の表面に接着するとはいえ、あらかじめ積層・固化された板(炭素繊維樹脂板)ではなく、図3(b2)のように薄いシート20を使用し、しかもシート20の端部21(力の作用する方向における端部。図3(a)におけるb部)に、接着面に生じる水平せん断力を分散させるための処置を施すからである。薄いシート20をこのように接着した場合、ヤング係数の相違に基づいて図示のとおりシート20と鋼部材2との間に水平せん断力Hが作用するものの、シート20の端部に生じるピークせん断力Hは、たとえば図3(c)の曲線b2のように分散し小さな値となる。端部付近でのせん断力Hのピーク値が小さくなれば、端部を起点にしてシートが鋼部材から剥離する可能性も小さくなるわけである。
なお、ボルト・ナットや溶接によって鋼材を接合するという方法ではないため、この補強方法によると、ボルト孔の加工や溶接の熱影響による強度低下を招かないほか、鋼構造物の重量的負担を増加させない、工事が簡単であるといったメリットもある。
According to the above reinforcing method, the reinforcing fiber sheet used as the reinforcing material is unlikely to peel off. Similar to the conventional technique (Patent Document 1), a reinforcing material having a high Young's modulus called a reinforcing fiber sheet is bonded to the surface of the steel member, but it is not a pre-laminated and solidified plate (carbon fiber resin plate). The thin sheet 20 as shown in (b2) is used, and the horizontal shearing force generated on the adhesive surface is distributed to the end portion 21 (the end portion in the direction in which the force acts. B portion in FIG. 3A) of the sheet 20. It is because the treatment for making it take place. When the thin sheet 20 is bonded in this way, the horizontal shearing force H acts between the sheet 20 and the steel member 2 as shown in the figure based on the difference in Young's modulus, but the peak shearing force generated at the end of the sheet 20. For example, H is dispersed and becomes a small value as shown by a curve b2 in FIG. If the peak value of the shearing force H in the vicinity of the end portion becomes small, the possibility that the sheet peels from the steel member starting from the end portion is also reduced.
Since this method is not a method of joining steel materials by bolts, nuts, or welding, this reinforcement method does not cause a decrease in strength due to the processing of bolt holes or the thermal effect of welding, and increases the weight burden on the steel structure. There is also a merit that the construction is simple and easy.

発明の補強方法についてはとくに、鋼構造物における鋼部材の表面に、力の作用する方向において端部が階段状に重なるように複数枚の強化繊維シートを接着するのがよい。
ここにいう「端部が階段状に重なる」状態は、外側(鋼部材から遠い側)のシートの端が内側(鋼部材に近い側)のシートの端からはみ出ることのないように、端の位置がずれ合って複数枚のシートが重ねられた状態をさす。ただし、シートそれぞれの端部がすべて階段の1段をなすようにずれているには及ばず、一部のシート間では端が一致していてもよい。なお、各強化繊維シートは、鋼部材または内側の強化繊維シートと接する面の全面において接着するものとする。
Especially about the reinforcement method of invention, it is good to adhere | attach several reinforcing fiber sheets on the surface of the steel member in a steel structure so that an edge part may overlap in steps in the direction where force acts.
The state where "the end overlaps stepwise" here means that the end of the sheet on the outer side (the side far from the steel member) does not protrude from the end of the inner sheet (the side closer to the steel member). A state in which a plurality of sheets are stacked with the positions shifted. However, the end of each sheet does not necessarily deviate so as to form one step of the staircase, and the end may coincide between some sheets. In addition, each reinforcing fiber sheet shall adhere | attach on the whole surface in contact with a steel member or an inner reinforcing fiber sheet.

このように強化繊維シートの端部を階段状にずらして重ねるなら、鋼部材の表面に接着した強化繊維シートの剥離を適切に防止することができる。図3(b2)の例のようにシート20の端部21をずらして重ねると、シート20と鋼部材2との間に作用する水平せん断力Hが図3(c)の曲線b2のように分散し、端部付近のピーク値が小さくなるからである。   If the end portions of the reinforcing fiber sheet are shifted in a stepped manner and overlapped as described above, peeling of the reinforcing fiber sheet adhered to the surface of the steel member can be appropriately prevented. When the end portion 21 of the sheet 20 is shifted and overlapped as in the example of FIG. 3 (b2), the horizontal shearing force H acting between the sheet 20 and the steel member 2 is as shown by the curve b2 in FIG. 3 (c). This is because it is dispersed and the peak value near the end becomes small.

発明の補強方法についてはさらに、上記強化繊維シートの端部に対し、それを覆うカバーシートを、鋼部材の表面と強化繊維シートの端部とに接着することにより取り付けるのも好ましい。強化繊維シートの端部は、上記のとおり階段状に重なったものであってもよいが、すべて(全層)のシートの端が一致する重なり方であってもよい。   About the reinforcement method of invention, it is also preferable to attach to the edge part of the said reinforced fiber sheet | seat by adhere | attaching the cover sheet which covers it on the surface of a steel member, and the edge part of a reinforced fiber sheet | seat. The ends of the reinforcing fiber sheets may be overlapped in a stepped manner as described above, but may be overlapped so that the ends of all (all layers) sheets coincide.

強化繊維シートについては、前記のとおり端部を階段状に重ねることによって剥離を効果的に防止できる。しかしそのように重ねた場合にも、鋼構造物の荷重または変形が増してシートが剥離を起こす限界に達した場合には、引張力の作用する方向における端部が必ず剥離の起点になる。それゆえに、上記のとおり強化繊維シートの端部を覆うカバーシートを鋼部材の表面と当該端部とに接着し、そのカバーシートによって当該端部を固定しておけば、強化繊維シートの剥離防止に関して一層効果的である。ただし、強化繊維シートの端部が階段状にはなっておらす、すべてのシートの端が一致する場合であっても、このようにカバーシートを取り付けると同様に剥離防止の効果がもたらされる。   About a reinforced fiber sheet, peeling can be effectively prevented by overlapping an edge part in steps as mentioned above. However, even in such a case, when the load or deformation of the steel structure increases and the sheet reaches the limit at which peeling occurs, the end in the direction in which the tensile force acts is always the starting point of peeling. Therefore, if the cover sheet covering the end of the reinforcing fiber sheet is bonded to the surface of the steel member and the end as described above, and the end is fixed by the cover sheet, the peeling of the reinforcing fiber sheet is prevented. Is more effective with respect to However, even if the ends of the reinforcing fiber sheets are stepped, and the ends of all the sheets coincide with each other, the effect of preventing peeling is brought about in the same manner as the cover sheets are attached in this way.

また、力の作用する方向の端部において外側のシートの端部を内側のシートの端からはみ出させ、はみ出たシートの端部をも鋼部材の表面に接着することとするのもよい。図7(a)・(b)は、そのようにする場合を例示する図である。   Further, the end of the outer sheet may protrude from the end of the inner sheet at the end in the direction in which the force acts, and the end of the protruded sheet may also be bonded to the surface of the steel member. FIGS. 7A and 7B are diagrams illustrating such a case.

こうして外側のシートの端部を内側のシートの端からはみ出させたうえ鋼部材の表面に接着する場合にも、鋼部材からのシートの剥離を防止する効果が得られる。各シートの端が一致しないため、シートと鋼部材との間に作用する水平せん断力が分散してやはりピーク値が小さくなるからである。
外側に重ねるシートの端部が各内側のシートの端部を覆い、内側のシートの各端部と鋼部材の表面とに接着されるため、当該外側のシートの端部が上述のカバーシートの役目をも果たすことになる。そのため、このようにすればカバーシートを取り付ける必要がなくなるという効果ももたらされる。
なお、強化繊維シートにおける力の作用する方向の端部のうち、一方については端部が階段状に重なるように(たとえば図3(b2)のように)し、他方については外側のシートの端部が内側のシートの端からはみ出るように(たとえば図7(b)のように)して鋼部材の表面等に接着することとするのもよい。その場合は、重ねて使用する強化繊維シートの長さを一律にすることも可能になる。
Even when the end of the outer sheet protrudes from the end of the inner sheet and is adhered to the surface of the steel member, the effect of preventing the sheet from peeling off from the steel member can be obtained. This is because the ends of the sheets do not coincide with each other, so that the horizontal shearing force acting between the sheet and the steel member is dispersed and the peak value is also reduced.
Since the end of the sheet that overlaps the outside covers the end of each inner sheet and is bonded to each end of the inner sheet and the surface of the steel member, the end of the outer sheet is attached to the above-described cover sheet. It will also play a role. Therefore, if it does in this way, the effect that it becomes unnecessary to attach a cover sheet will also be brought about.
Of the ends of the reinforcing fiber sheet in the direction in which the force acts, one end is overlapped in a stepped manner (for example, as shown in FIG. 3 (b2)), and the other end is the end of the outer sheet. The part may stick to the surface of the steel member or the like so as to protrude from the end of the inner sheet (for example, as shown in FIG. 7B). In that case, it becomes possible to make the length of the reinforcing fiber sheet to be used repeatedly overlapped.

上記した補強方法については、とくに、
・ 強化繊維シートとして厚さが0.9mm以下のものを使用し、
・ 引張力の作用する方向における各強化繊維シートの端の位置を、引張力の作用する方向に1枚ごとに25mm以上ずらす
のが好ましい。各シートの端の位置のずらし方は、階段状に重なるようにずらすのであっても、外側のシートの端がはみ出るようにずらす(はみ出した端部を鋼部材の表面に接着する)のであってもよい。
Regarding the above-mentioned reinforcement method,
・ Use a reinforcing fiber sheet with a thickness of 0.9 mm or less,
-It is preferable that the position of the end of each reinforcing fiber sheet in the direction in which the tensile force acts is shifted by 25 mm or more in the direction in which the tensile force acts. The way of shifting the position of the end of each sheet is to shift so that the end of the outer sheet protrudes (adheres the protruding end to the surface of the steel member) Also good.

ヤング係数の高い強化繊維シートを補強材とする場合、板状の、またはそれに近い厚いシートを使用すると前記のとおりシートの端部に大きな水平せん断力が作用する。また、薄いシートを使う場合にも、何枚ものシートについて端を一致させるなら端部にやはり水平せん断力が集中しがちである。その点、上記のとおり強化繊維シートの厚さを0.9mm以下として、その1枚ごとに端を25mm以上ずらすようにした場合、発明者らの調査によれば、鋼部材と強化繊維シートとの間の通常の接着強度を上回るピークせん断力は発生しない。つまり、上記の条件では、強化繊維シートの剥離は極めて生じがたくなる。
なお、厚目の固いシートないし板を使用する場合に比べると、厚さが0.9mm以下と薄くて変形しやすいシートを使用する方が、運搬・カット・接着などの施工作業を行いやすく、しかも既設の(したがって使用にともなう振動等が発生する)鋼構造物鋼部材における鋼部材等に対して密に接着するのが容易である。
When a reinforcing fiber sheet having a high Young's modulus is used as a reinforcing material, a large horizontal shearing force acts on the end of the sheet as described above when a plate-like or a thick sheet close thereto is used. Even when thin sheets are used, horizontal shearing force tends to concentrate on the edges if the edges of many sheets are matched. In that respect, as described above, when the thickness of the reinforcing fiber sheet is 0.9 mm or less and the end is shifted by 25 mm or more for each sheet, according to the inventors' investigation, the steel member and the reinforcing fiber sheet There is no peak shear force that exceeds the normal bond strength between. That is, under the above conditions, peeling of the reinforcing fiber sheet hardly occurs.
Compared to the case of using a thick hard sheet or plate, it is easier to carry out construction work such as transportation, cutting, and adhesion by using a thin sheet with a thickness of 0.9 mm or less and being easy to deform, In addition, it is easy to closely adhere to a steel member or the like in an existing steel structure steel member (thus generating vibration or the like with use).

発明の補強方法に関しては、補強後の鋼構造物の弾性変形挙動を、強化繊維シートの断面積に同シートと鋼材とのヤング係数比を乗じた断面積をもつ鋼材が、元の鋼部材に一体化したものとして予測するのが適当である。上記のヤング係数比はすなわち、
ヤング係数比=強化繊維シートのヤング係数/鋼材のヤング係数
をさす。
Regarding the reinforcing method of the invention, the steel material having a cross-sectional area obtained by multiplying the cross-sectional area of the reinforcing fiber sheet by the Young's modulus ratio of the steel sheet and the steel structure is changed to the original steel member. It is appropriate to predict that they are integrated. The above Young's modulus ratio is
Young's modulus ratio = Young's modulus of reinforcing fiber sheet / Young's modulus of steel.

補強後の鋼構造物については、荷重を受けた場合の応力・ひずみ関係やシートの剥離発生に関する限界点などを予測する必要が当然ながら生じる。発明者らは、そうした予測に関し、上記のように、強化繊維シートの断面積をヤング係数比で換算した断面積(相当断面積)をもつ鋼材が元の鋼部材に一体化したと見ることにより、実際の変形に合致する正確な予測ができることを見出した。こうすることにより、鋼構造物にどの程度の断面積(または枚数)の強化繊維シートを接着すれば十分な補強ができるか、また補強後に荷重を受ける鋼構造物がその荷重によって強化繊維シートの剥離を起こさないかどうか等について、十分に正確な予測を行えることになる。   Naturally, it is necessary to predict the stress / strain relationship when a load is applied to the steel structure after reinforcement and the limit points regarding the occurrence of sheet peeling. As described above, the inventors considered that the steel material having a cross-sectional area (equivalent cross-sectional area) obtained by converting the cross-sectional area of the reinforcing fiber sheet into a Young's modulus ratio was integrated with the original steel member. They found that it was possible to accurately predict the actual deformation. In this way, how much cross-sectional area (or number) of reinforcing fiber sheets can be bonded to the steel structure to achieve sufficient reinforcement, and the steel structure that receives the load after reinforcement will be affected by the load of the reinforcing fiber sheet. A sufficiently accurate prediction can be made as to whether or not peeling will occur.

上記の補強方法に基づいて、たとえば、鋼部材に接着する強化繊維シートの合計断面積(引張力の作用する方向と直交する断面での断面積)は、
a) 当該合計断面積が、鋼材を一体化することにより上記鋼部材を補強する場合の必要鋼材断面積を上記のヤング係数比で除した値を超えるとともに、
b) 当該合計断面積に上記のヤング係数比を乗じた断面積の鋼材を一体化した場合の鋼部材に想定最大荷重(既設の鋼構造物を補強するのであるから通常は活荷重のみが想定される)が作用するとしたときの鋼部材のひずみが、接着後の強化繊維シートの剥離限界ひずみを超えないように
定めるのが適当である。
Based on the above reinforcing method, for example, the total cross-sectional area of the reinforcing fiber sheet bonded to the steel member (cross-sectional area in a cross section perpendicular to the direction in which the tensile force acts) is
a) The total cross-sectional area exceeds the value obtained by dividing the necessary steel cross-sectional area by reinforcing the steel member by integrating the steel materials by the Young's modulus ratio,
b) Estimated maximum load on steel members when the steel material with the cross-sectional area multiplied by the above Young's modulus ratio is integrated with the total cross-sectional area. It is appropriate to determine that the strain of the steel member when it is acted on does not exceed the separation limit strain of the reinforcing fiber sheet after bonding.

a)・b)を含むこの方法にしたがって強化繊維シートの合計断面積を定めると、適切な補強によって鋼構造物に所望の強度を付与できるとともに、補強後の使用中に強化繊維シートが剥離することが避けられる。上記のとおり、強化繊維シートの断面積をヤング係数比で換算した断面積をもつ鋼材が元の鋼部材に一体化したと見ることによって、補強後の鋼構造物の弾性変形挙動を正確に予測できるからである。   When the total cross-sectional area of the reinforcing fiber sheet is determined according to this method including a) and b), the desired strength can be imparted to the steel structure by appropriate reinforcement, and the reinforcing fiber sheet peels off during use after reinforcement. Can be avoided. As described above, the elastic deformation behavior of the steel structure after reinforcement can be accurately predicted by assuming that the steel material with the cross-sectional area converted from the Young's modulus ratio is integrated with the original steel member. Because it can.

発明の補強方法では、使用する上記の強化繊維シートとして、炭素繊維(PAN系あるいはピッチ系の炭素繊維)、金属繊維(ボロン繊維、チタン繊維あるいはスチール繊維など)、ガラス繊維(グラスファイバー繊維)もしくは有機繊維(アラミド、PBO(ポリパラフェニレンベンズビスオキサゾール)、ポリアミド、ポリアリレートあるいはポリエステルなど)が単独で、または複数種混入して配列されたシートを使用するとよい。
これらの強化繊維シートは、高い強度やヤング係数を有し、鋼部材の表面に複数枚接着されることにより当該鋼構造物の補強をなすからである。なお、いずれの強化繊維シートを使用する場合にも、含浸接着剤として、エポキシ系樹脂やアクリル系樹脂など種々のものを使用することができる。
In the reinforcing method of the invention, as the reinforcing fiber sheet to be used, carbon fiber (PAN-based or pitch-based carbon fiber), metal fiber (boron fiber, titanium fiber, steel fiber, etc.), glass fiber (glass fiber fiber) or It is preferable to use a sheet in which organic fibers (aramid, PBO (polyparaphenylene benzbisoxazole), polyamide, polyarylate, polyester, or the like) are singly or mixedly mixed.
This is because these reinforcing fiber sheets have high strength and Young's modulus, and the steel structure is reinforced by being bonded to the surface of the steel member. In addition, when using any reinforced fiber sheet, various things, such as an epoxy resin and an acrylic resin, can be used as an impregnation adhesive.

強化繊維シートの接着は、常温硬化型もしくは熱硬化型のエポキシ樹脂、アクリル樹脂、ビニールエステル樹脂、MMA樹脂、不飽和ポリエステル樹脂またはフェノール樹脂をシートの繊維間に含浸させることにより行うのが好ましい。
それによって、上述の強化繊維シートを鋼部材の表面に接着しシート同士をも接着するすることが適切に行えるからである。
The reinforcing fiber sheet is preferably bonded by impregnating between the fibers of the sheet with room temperature curable or thermosetting epoxy resin, acrylic resin, vinyl ester resin, MMA resin, unsaturated polyester resin or phenol resin.
Thereby, it is possible to appropriately bond the above-mentioned reinforcing fiber sheet to the surface of the steel member and bond the sheets together.

請求項に係る鋼構造物の補強構造(補強ずみ構造)は、上に記載した鋼構造物の補強方法によって、鋼部材の表面に複数枚の強化繊維シートが接着されていることを特徴とするものである。
このような補強構造によると、鋼部材の表面に剥離を起こしにくいように強化繊維シートが接着されているため、鋼構造物が安定的に補強されることになる。ボルト孔の加工や溶接の熱影響による強度低下のほか、重量的負担の増加がともなわないので、効率的な補強であるともいえる。
The steel structure reinforcing structure (reinforced structure) according to the claims is characterized in that a plurality of reinforcing fiber sheets are bonded to the surface of the steel member by the steel structure reinforcing method described above. Is.
According to such a reinforcing structure, the steel structure is stably reinforced because the reinforcing fiber sheet is bonded to the surface of the steel member so as not to easily peel off. It can be said that it is an effective reinforcement because it does not cause a decrease in strength due to the heat effect of the processing of the bolt holes or welding, and does not increase the weight burden.

請求項に記載した補強方法および補強構造は、鋼部材の表面に強化繊維シートを接着することによって鋼構造物を補強するものであるから、ボルト孔の加工や溶接の熱影響による鋼部材の強度低下を招かないほか、鋼構造物の重量的負担を増加させない、工事が簡単であるといったメリットを有する。とくに、補強材とする強化繊維シートが剥離を起こしにくく、適切な施工によれば想定荷重内での剥離を完全に防止できるという利点を有するため、安定した恒久的な補強を実現することができる。   Since the reinforcing method and the reinforcing structure described in the claims reinforce the steel structure by adhering a reinforcing fiber sheet to the surface of the steel member, the strength of the steel member due to the processing of bolt holes and the thermal effect of welding In addition to incurring a decrease, it does not increase the weight burden of the steel structure, and has the merit that the construction is simple. In particular, the reinforcing fiber sheet used as a reinforcing material is less likely to be peeled off and has the advantage of being able to completely prevent peeling within an assumed load according to appropriate construction, so that stable and permanent reinforcement can be realized. .

図1〜図6に基づいて発明の実施形態を説明する。図1は、鋼構造物(たとえば図3の鋼構造物)1の鋼部材2を、表面上に炭素繊維シート20を接着することにより補強する場合の要部を示す断面図である。図2は、補強前(無補強)および補強後の鋼構造物1における荷重とひずみとの関係、ならびに設計荷重が作用した場合の鋼部材2と炭素繊維シート20との間の剥離の発生について示す線図である。図3は先に説明したもので、橋梁等の鋼構造物1の側面図(図(a))と、そのb部詳細図(比較のための参考例を示す図(b1)と実施の形態である図(b2))、および図(a)のb部付近で接着面に作用する水平せん断力Hの分布を示す線図(図(c))である。また図4は、図(b)および図(c)のとおり鋼片の片面に炭素繊維シートを5層(5枚)接着した試験片について引張試験を行った場合の応力とひずみの関係を示す線図(図(a))である。さらに図5は、図4と同様の鋼片の片面に長さ200mmの炭素繊維シートを1層(1枚)のみ接着した試験片について引張試験を行った場合の、シートにおけるひずみの分布を示す線図。図6は、接着する炭素繊維シートの層数および端部のずらし量を変更してそれぞれ測定した、接着面での水平せん断力の分布を示す線図である。   Embodiments of the invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing a main part when a steel member 2 of a steel structure (for example, the steel structure of FIG. 3) is reinforced by adhering a carbon fiber sheet 20 on the surface. FIG. 2 shows the relationship between the load and strain in the steel structure 1 before reinforcement (no reinforcement) and after reinforcement, and the occurrence of separation between the steel member 2 and the carbon fiber sheet 20 when a design load is applied. FIG. FIG. 3 is a side view of the steel structure 1 such as a bridge (FIG. 3 (a)), a detailed view of a portion b (a diagram (b1) showing a reference example for comparison) and the embodiment. (B2)), and a diagram (figure (c)) showing the distribution of horizontal shearing force H acting on the bonding surface in the vicinity of part b in FIG. FIG. 4 shows the relationship between stress and strain when a tensile test is performed on a test piece in which five layers (five pieces) of carbon fiber sheets are bonded to one side of a steel piece as shown in FIGS. It is a diagram (figure (a)). Further, FIG. 5 shows the distribution of strain in the sheet when a tensile test is performed on a test piece in which only one layer (one sheet) of a carbon fiber sheet having a length of 200 mm is bonded to one side of a steel piece similar to FIG. Diagram. FIG. 6 is a diagram showing the distribution of horizontal shearing force on the bonding surface measured by changing the number of layers of carbon fiber sheets to be bonded and the amount of shift of the end portions.

まず図1には、鋼構造物1の鋼部材2に腐食等による欠損部3が存在する場合に、補修目的でその鋼部材2の補強を行う補強方法を示している。こうした補強は、つぎのような手順によって施工する。すなわち、
1) 補強しようとする鋼部材2について、欠損部3やその周辺にケレン作業を施すことによりサビや塗装の除去を行う。
2) 欠損部3に樹脂3aを充填したうえ、その表面を平坦にする。
First, FIG. 1 shows a reinforcing method for reinforcing a steel member 2 for repair purposes when the steel member 2 of the steel structure 1 has a defect 3 due to corrosion or the like. Such reinforcement is performed by the following procedure. That is,
1) Rust and paint are removed from the steel member 2 to be reinforced by performing a cleansing operation on the defect 3 and its periphery.
2) Fill the defect 3 with the resin 3a and flatten the surface.

3) 鋼部材2のうち補強しようとする部分の表面に樹脂接着剤を塗布する。その接着剤としては、エポキシ樹脂やアクリル樹脂等を成分とするもので、のちに重ねる炭素繊維シート20の炭素繊維間に十分に含浸する含浸接着剤を使用する。
4) 鋼部材2の表面に塗布した接着剤が固化しないうちに、その接着剤の上(外側。鋼部材2とは反対の側。以下も同様)に炭素繊維シート20(第1層のシート20-1)を重ねる。炭素繊維シート20は、長尺のカーボンファイバーを絡めて布状の薄い(厚さが約0.1mmの)シートにしたもので、アクリル繊維を炭化させたものや石炭ピッチを原料とするものなどから、所要強度等に応じ適宜選択して使用する。一般に、鋼の引張強度が400〜570N/mm2、ヤング係数が200kN/mm2であるのに対し、炭素繊維シート20としては、引張強度が1900〜3400N/mm2、ヤング係数が240〜650kN/mm2程度のものを使用する。
5) 上記3)で塗布した接着剤が固化しないうちに、炭素繊維シート20の上にさらに同様の含浸接着剤を塗布する。接着剤を炭素繊維シート20の繊維間に十分含浸させるとともに表面を平坦にするよう、接着剤の表面上にローラ等を当てるとよい。そうしたうえで接着剤を固化させる。4)の炭素繊維シート20と3)および5)で塗った接着剤とによって、CFRPのシートの1層を鋼部材2上に取り付けたことになる。
3) Apply resin adhesive to the surface of the steel member 2 to be reinforced. As the adhesive, an epoxy resin, an acrylic resin, or the like is used as a component, and an impregnation adhesive that is sufficiently impregnated between the carbon fibers of the carbon fiber sheet 20 to be stacked later is used.
4) Before the adhesive applied to the surface of the steel member 2 is solidified, the carbon fiber sheet 20 (the first layer sheet) is formed on the adhesive (outside, opposite to the steel member 2 and so on). 20-1). The carbon fiber sheet 20 is a cloth-like thin sheet (having a thickness of about 0.1 mm) entangled with long carbon fibers, such as a carbonized acrylic fiber or a material using coal pitch as a raw material. Therefore, it is selected and used according to the required strength. In general, the tensile strength of steel is 400 to 570 N / mm 2 and the Young's modulus is 200 kN / mm 2 , while the carbon fiber sheet 20 has a tensile strength of 1900 to 3400 N / mm 2 and a Young's modulus of 240 to 650 kN. / mm using two about things.
5) A similar impregnating adhesive is further applied on the carbon fiber sheet 20 before the adhesive applied in 3) is solidified. A roller or the like may be applied on the surface of the adhesive so that the adhesive is sufficiently impregnated between the fibers of the carbon fiber sheet 20 and the surface is flattened. Then, the adhesive is solidified. One layer of the CFRP sheet is attached onto the steel member 2 by the carbon fiber sheet 20 of 4) and the adhesive applied in 3) and 5).

6) 上記3)〜5)を繰り返すことによって、上記第1層の上に第2層〜第n層の炭素繊維シート20-2〜20-nおよび接着剤をそれぞれ重ね、複数層のCFRPシートを積層する。ただし炭素繊維シート20等の各層については、引張力の作用する方向におけるそれぞれの端部21(21-1、21-2、…、21-n)を図示のように階段状にずらす。
7) 炭素繊維シート20を含むCFRPシートを鋼部材2の上に所定の層数だけ接着すると、階段状に重なった上記の端部21に対してカバーシート26を取り付ける。それには、第一層の端部21-1の付近の鋼部材の表面と各炭素繊維シートの端部21(21-1、21-2、…、21-n)とに接着剤25を塗り、そうした接着剤25の上にカバーシート26を接合する。カバーシート26としては種々の樹脂シートを使用できるが、やはり炭素繊維シートを含むCFRPシートを用いると強度的に好ましい。
6) By repeating the above 3) to 5), the carbon fiber sheets 20-2 to 20-n of the second layer to the nth layer and the adhesive are respectively stacked on the first layer, so that a plurality of layers of CFRP sheets are obtained. Are laminated. However, for each layer such as the carbon fiber sheet 20, the respective end portions 21 (21-1, 21-2,..., 21-n) in the direction in which the tensile force acts are shifted stepwise as illustrated.
7) When the CFRP sheet including the carbon fiber sheet 20 is bonded to the steel member 2 by a predetermined number of layers, the cover sheet 26 is attached to the end portion 21 that overlaps in a stepped manner. For this purpose, an adhesive 25 is applied to the surface of the steel member near the end 21-1 of the first layer and the end 21 (21-1, 21-2, ..., 21-n) of each carbon fiber sheet. Then, the cover sheet 26 is bonded onto the adhesive 25. Although various resin sheets can be used as the cover sheet 26, it is preferable in terms of strength to use a CFRP sheet including a carbon fiber sheet.

図1に示す補強を行う前と補強後とでは、鋼構造物1における荷重とひずみとの関係は図2のように変わる。すなわち、補強前(無補強)の状態では図示の緩傾斜の直線にしたがって大きめにひずみが発生していたとしても、補強後には、高剛性の炭素繊維シート20のはたらきにより図示急傾斜の直線にしたがうこととなり、同じ荷重を受けてもひずみが小さくなる。   Before and after the reinforcement shown in FIG. 1, the relationship between the load and strain in the steel structure 1 changes as shown in FIG. 2. That is, even if a large strain is generated in accordance with the straight line of the gentle slope shown in the figure before reinforcement (no reinforcement), after the reinforcement, the straight line of the steep slope shown in the figure is caused by the function of the high-rigidity carbon fiber sheet 20. Therefore, even if the same load is applied, the strain is reduced.

図1にしたがって鋼部材2に炭素繊維シート20を接着したとき、両者間で剥離が発生する限度となるのは、発明者らの試験によれば鋼部材2のひずみが500μ前後に達したときである(図1および図3(b2)のように炭素繊維シート20の端部を階段状に重ねて水平せん断力Hの集中度を下げた場合)。そのため、図2のとおり補強後にひずみが小さくなる以上、設計強度において炭素繊維シート20の剥離が発生することを効果的に防止できることになる。   When the carbon fiber sheet 20 is bonded to the steel member 2 in accordance with FIG. 1, the limit of separation between the two is when the strain of the steel member 2 reaches about 500 μm according to the tests of the inventors. (When the concentration of the horizontal shearing force H is lowered by overlapping the ends of the carbon fiber sheets 20 stepwise as in FIGS. 1 and 3 (b2)). Therefore, as shown in FIG. 2, as the strain becomes smaller after reinforcement, it is possible to effectively prevent the carbon fiber sheet 20 from peeling off in the design strength.

発明者らは、炭素繊維シートを接着した鋼片を用いる引張試験により、補強後の鋼構造物の弾性変形挙動を予測するためのデータとして、図4(a)に示す結果を得ている。これは、図4(b)・(c)のとおり鋼片の片面に炭素繊維シート(CFRPシート)を5層(5枚)接着したうえ、長手方向中央部において鋼片と炭素繊維シートとにひずみゲージを貼付した試験片により、引張試験を行った場合の応力とひずみとの関係等を示すものである。   The inventors have obtained the results shown in FIG. 4A as data for predicting the elastic deformation behavior of the steel structure after reinforcement by a tensile test using a steel piece to which a carbon fiber sheet is bonded. As shown in FIGS. 4 (b) and 4 (c), five layers (5 sheets) of carbon fiber sheets (CFRP sheets) are bonded to one side of a steel piece, and the steel piece and the carbon fiber sheet are bonded to each other in the longitudinal center portion. The relationship between stress and strain when a tensile test is performed using a test piece with a strain gauge attached is shown.

図中、緩傾斜の直線xは、炭素繊維シートを接着していない無補強の鋼片を引っ張った場合の応力とひずみとの関係を示し、急傾斜の直線yは、炭素繊維シートを接着した補強ずみ鋼片を引っ張った場合の同様の関係を示している。無補強鋼片の場合の直線xは鋼片のヤング係数をそのまま使用して計算し図示したものだが、炭素繊維シートを接着された補強ずみ鋼片についての直線yは、ヤング係数を下記のとおり定めた場合の計算結果である。すなわち、
補強ずみ鋼片のヤング係数
={(鋼片のヤング係数×鋼片の断面積)
+(鋼片のヤング係数×炭素繊維シートの断面積×ヤング係数比)}
/(鋼片の断面積+炭素繊維シートの断面積)
ただし、
ヤング係数比=炭素繊維シートのヤング係数/鋼材のヤング係数
である。なお、「断面積」とは、引張力の作用する方向と直交する断面での断面積をさしている。
In the figure, a gently inclined straight line x indicates the relationship between stress and strain when an unreinforced steel piece to which the carbon fiber sheet is not bonded is pulled, and a steeply inclined straight line y indicates that the carbon fiber sheet is bonded. The same relationship is shown when the reinforced steel slab is pulled. The straight line x in the case of the unreinforced steel slab is calculated and illustrated using the Young's modulus of the steel slab as it is, but the straight line y for the reinforced steel slab bonded with the carbon fiber sheet has the Young's modulus as follows: It is a calculation result when it is determined. That is,
Reinforced steel slab Young's modulus = {(Young's modulus of steel slab x cross-sectional area of steel slab)
+ (Young's modulus of steel slab x cross-sectional area of carbon fiber sheet x Young's modulus ratio)}
/ (Cross section of steel slab + Cross section of carbon fiber sheet)
However,
Young's modulus ratio = Young's modulus of carbon fiber sheet / Young's modulus of steel material. Note that the “cross-sectional area” refers to a cross-sectional area in a cross section orthogonal to the direction in which the tensile force acts.

図4(a)によると、炭素繊維シートの剥離限界ひずみが500μ程度であることと、炭素繊維シートが剥離したのちの鋼片(つまり無補強の鋼片)が直線xにしたがって弾性変形することが確認されるほか、つぎの事実が明らかになる。すなわち、剥離を起こしていない補強ずみ鋼片について実測した応力−ひずみ関係が、上記の計算によって得た直線yにしたがって弾性変形していることである。このことは、炭素繊維シートの断面積に同シートと鋼片とのヤング係数比を乗じた断面積をもつ仮想的な鋼片が元の鋼部材に一体化したものと考えることにより、補強後(剥離前)の鋼構造物の弾性変形挙動を予測できることを意味している。   According to Fig.4 (a), the peeling limit strain of a carbon fiber sheet is about 500 micrometers, and the steel piece (namely, unreinforced steel piece) after a carbon fiber sheet peels is elastically deformed according to the straight line x. And the following facts become clear. That is, the stress-strain relationship measured for the reinforced steel slab that has not peeled is elastically deformed according to the straight line y obtained by the above calculation. This is because the virtual steel slab having a cross-sectional area obtained by multiplying the cross-sectional area of the carbon fiber sheet by the Young's modulus ratio of the sheet and the steel slab is integrated with the original steel member. This means that the elastic deformation behavior of the steel structure (before peeling) can be predicted.

したがって、たとえば図1または図3(a)の鋼構造物1において、腐食等による強度低下等を補うために鋼部材2に接着すべき炭素繊維シート20の合計断面積は、鋼材を一体化することにより上記鋼部材を補強する場合の必要鋼材断面積を上記のヤング係数比で除した値を超えるように定めるとよい。すなわち、鋼材を一体化することにより鋼部材2を補強する場合に必要な鋼材の断面積をAsとし、ヤング係数比をncfとすると、炭素繊維シートの合計必要断面積Acfは、
Acf=As/ncf
によって求められる。
Therefore, for example, in the steel structure 1 of FIG. 1 or FIG. 3A, the total cross-sectional area of the carbon fiber sheet 20 to be bonded to the steel member 2 in order to compensate for the strength decrease due to corrosion or the like is integrated with the steel material. Therefore, it is preferable that the necessary steel material cross-sectional area for reinforcing the steel member is determined so as to exceed the value obtained by dividing the Young's modulus ratio. That is, when the cross-sectional area of the steel material necessary for reinforcing the steel member 2 by integrating the steel material is As and the Young's modulus ratio is ncf, the total required cross-sectional area Acf of the carbon fiber sheet is
Acf = As / ncf
Sought by.

ただし、上述の剥離限界ひずみを超えると炭素繊維シート20は鋼部材2から剥離するので、炭素繊維シート20と一体化された鋼部材2に生じるひずみがこれを超えないように配慮する必要もある。具体的には、接着する炭素繊維シート20の合計断面積にヤング係数比を乗じて得られる断面積分の鋼材が一体化されることにより鋼部材2が補強されたとみなしたとき、設計荷重(想定最大荷重)が作用した場合にも鋼部材2のひずみが上記剥離限界ひずみを超えない、という条件が満たされることをチェックすべきである。   However, since the carbon fiber sheet 20 peels from the steel member 2 when the above-described peeling limit strain is exceeded, it is necessary to consider that the strain generated in the steel member 2 integrated with the carbon fiber sheet 20 does not exceed this. . Specifically, when it is considered that the steel member 2 is reinforced by integrating a steel material having a cross-sectional integral obtained by multiplying the total cross-sectional area of the carbon fiber sheet 20 to be bonded by the Young's modulus ratio, the design load (assumed It should be checked that the condition that the strain of the steel member 2 does not exceed the separation limit strain is satisfied even when the maximum load) is applied.

図1または図3(b2)のようにシート20の端部21を階段状にずらして接着する場合、各段(各層間)のずらし量(階段における各ステップの奥行きに相当する寸法)は25mm以上とするのがよい。それは、図5・図6に示す試験結果に基づき以下のように説明できる。   When the end portion 21 of the sheet 20 is shifted in a stepwise manner and bonded as shown in FIG. 1 or FIG. 3 (b2), the shift amount (a dimension corresponding to the depth of each step in the step) is 25 mm. It is good to be the above. This can be explained as follows based on the test results shown in FIGS.

まず図5は、鋼片の片面に長さ200mmの炭素繊維シート(CFRP)を1層接着した試験片(下段の図を参照)について行った引張試験の結果を示している。試験では、鋼片の降伏荷重Pyの2割・4割・6割・8割・10割の各引張荷重を試験片に作用させ、そのときの炭素繊維シートの各部のひずみ(μ)を計測した。図中、横軸は鋼片上の位置(中央部からの距離mm)を示し、縦軸はシートのひずみ(μ)を示す。これによれば、炭素繊維シートはその端から約25mmまでの範囲ではひずみが小さく、したがってその範囲では、中央部付近ほどには引張荷重を受け持っていないことが分かる。   First, FIG. 5 shows the results of a tensile test performed on a test piece (see the lower figure) in which one layer of a carbon fiber sheet (CFRP) having a length of 200 mm is bonded to one side of a steel piece. In the test, 20%, 40%, 60%, 80%, and 10% of the tensile load Py of the steel slab was applied to the test piece, and the strain (μ) of each part of the carbon fiber sheet at that time was measured. did. In the figure, the horizontal axis indicates the position on the steel piece (distance mm from the center), and the vertical axis indicates the sheet strain (μ). According to this, it can be seen that the carbon fiber sheet has a small strain in the range from about 25 mm from the end thereof, and therefore, in that range, the carbon fiber sheet is less responsible for the tensile load than the vicinity of the central portion.

また図6には、図5の結果を受けて行った別の調査結果を示す。ここでは、上記と同様の鋼片の片面に、長さ200mmの範囲で1層または3層の炭素繊維シートを接着し、3層の場合についてはシートの端部のずらし量を3種類設定したうえ、各ケースで鋼片を引っ張り、鋼片・シート間の接着面における水平せん断力を測定した。3層とした場合のシートのずらし量は、各層間で0mm・10mm・25mmとした(シートを3層接着するので、最下層と最上層との各シート間では端が0mm・20mm・50mm、それぞれずれることになる)。
図6の結果によると、ずらし量を0mmとしてシートを3層接着した場合には端部付近に大きな水平せん断力が発生するが、各層間のずらし量を25mmとした場合には、1層のみ接着した場合と同じ程度の小さな水平せん断力しか端部付近に発生しない。このように水平せん断力が緩和されるのは、各層間のずらし量を約25mm以上とする場合に共通に表れる。ただし、すらし量をあまり大きくすると、強化繊維シートによる鋼部材の補強範囲が狭くなるので、各層間のずらし量は25mm以上・300mm程度以下にするのが好ましい。
FIG. 6 shows another result of the investigation conducted in response to the result of FIG. Here, a single-layer or three-layer carbon fiber sheet was bonded to one side of a steel piece similar to the above in a range of 200 mm in length, and in the case of three layers, three types of shift amounts of the end of the sheet were set. In addition, the steel slab was pulled in each case, and the horizontal shearing force at the bonding surface between the steel slab and the sheet was measured. The shift amount of the sheet in the case of three layers was set to 0 mm, 10 mm, and 25 mm between the respective layers. Each will be offset).
According to the result of FIG. 6, a large horizontal shearing force is generated in the vicinity of the end when the sheet is bonded to three layers with the shift amount set to 0 mm. However, when the shift amount between the layers is set to 25 mm, only one layer is generated. Only a small horizontal shearing force is generated in the vicinity of the end as much as the case of bonding. The horizontal shearing force is alleviated in this way when the shift amount between the layers is about 25 mm or more. However, if the sliding amount is too large, the reinforcing range of the steel member by the reinforcing fiber sheet is narrowed. Therefore, it is preferable that the shift amount between each layer is 25 mm or more and about 300 mm or less.

図1または図3に示す鋼構造物1の鋼部材2に炭素繊維シート等の強化繊維シート20を接着するに関しては、図1や図3(b2)のようにシート20の端部を階段状にずらすのではなく、図7に示すようにシート20を重ねることもできる。すなわち図7(a)のように、鋼部材2の表面に先に接着する内側のシート20-1よりもその上(外側)に重ねるシート20-2を長くし、さらにその上に重ねるシート20-3はシート20-2よりも長くする。それらを図7(b)のように接合するときは、シート20-1の端部21-1からシート20-2の端部21-2がはみ出し、さらに外側のシート20-3の端部21-3がはみ出すが、各シート20の全長にわたって接着剤を使用するので、はみ出した各端部21はいずれも鋼部材2の表面に接着されることになる。   For bonding the reinforcing fiber sheet 20 such as a carbon fiber sheet to the steel member 2 of the steel structure 1 shown in FIG. 1 or FIG. 3, the end of the sheet 20 is stepped as shown in FIG. 1 or FIG. The sheets 20 can be stacked as shown in FIG. That is, as shown in FIG. 7A, the sheet 20-2 to be stacked on the outer side (outer side) is made longer than the inner sheet 20-1 to be bonded first to the surface of the steel member 2, and further the sheet 20 to be stacked thereon. -3 is longer than the sheet 20-2. When they are joined as shown in FIG. 7B, the end portion 21-2 of the sheet 20-2 protrudes from the end portion 21-1 of the sheet 20-1, and further, the end portion 21 of the outer sheet 20-3. -3 protrudes, but since the adhesive is used over the entire length of each sheet 20, each protruding end 21 is bonded to the surface of the steel member 2.

この図7のように強化繊維シート20を接着する場合にも、端部付近に発生する水平せん断力が分散され、したがってシート20の剥離が効果的に防止される。内側のシート20の端部21をすぐ外側のシート20の端部21が覆うので、図1に例示したカバーシートを省略しても、それを取り付けるのと同等の効果がもたらされる。   Even when the reinforcing fiber sheet 20 is bonded as shown in FIG. 7, the horizontal shearing force generated in the vicinity of the end portion is dispersed, so that the peeling of the sheet 20 is effectively prevented. Since the end 21 of the inner sheet 20 is covered with the end 21 of the outer sheet 20, even if the cover sheet illustrated in FIG. 1 is omitted, an effect equivalent to that of attaching the cover sheet is provided.

発明の実施形態を説明するもので、鋼構造物1の鋼部材2を、表面上に炭素繊維シート20を接着することにより補強する場合の要部を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view illustrating a main part in a case where a steel member 2 of a steel structure 1 is reinforced by adhering a carbon fiber sheet 20 on the surface, illustrating an embodiment of the invention. 無補強および補強後の鋼構造物1における荷重とひずみとの関係、ならびに設計荷重が作用した場合の炭素繊維シートの剥離の発生について示す線図である。It is a diagram which shows about generation | occurrence | production of the peeling of the carbon fiber sheet when the relationship between the load and distortion in the steel structure 1 after non-reinforcement and reinforcement and a design load acts. 補強材を接着した鋼構造物1の側面図(図3(a))と、そのb部の詳細図(図3(b1)および図3(b2))、ならびに図3(a)のb部付近で接着面に作用する水平せん断力Hの分布を示す線図(図3(c))である。Side view of the steel structure 1 to which the reinforcing material is bonded (FIG. 3 (a)), detailed views of the part b (FIGS. 3 (b1) and 3 (b2)), and part b of FIG. 3 (a) It is a diagram (Drawing 3 (c)) showing distribution of horizontal shearing force H which acts on an adhesion surface near. 図4(a)は、補強した鋼片の引張試験によって得た当該鋼片等の応力−ひずみ関係を示す線図である。また図4(b)および図4(c)のそれぞれは、その引張試験に使用した補強ずみ鋼片を示す側面図および平面図である。Fig.4 (a) is a diagram which shows the stress-strain relationship of the said steel piece etc. which were obtained by the tension test of the reinforced steel piece. Moreover, each of FIG.4 (b) and FIG.4 (c) is the side view and top view which show the reinforced steel piece used for the tension test. 図4と同様の鋼片について引張試験を行った場合の、シートにおけるひずみの分布を示す線図である。It is a diagram which shows distribution of the distortion | strain in a sheet | seat when a tensile test is done about the steel piece similar to FIG. 接着する炭素繊維シートの層数および端部のずらし量を変更した場合の、接着面での水平せん断力の分布を示す線図である。It is a diagram which shows distribution of the horizontal shear force in an adhesive surface at the time of changing the number of layers of the carbon fiber sheet to adhere | attach, and the shift amount of an edge part. 図7(a)・(b)は、鋼構造物1の鋼部材2の表面上に別の態様で強化繊維シート20を接着する場合の手順を示す断面図である。FIGS. 7A and 7B are cross-sectional views showing a procedure in the case where the reinforcing fiber sheet 20 is bonded in another manner on the surface of the steel member 2 of the steel structure 1. 鋼構造物に対する従来の補強形態を示す側面図および模式図である。It is the side view and schematic diagram which show the conventional reinforcement form with respect to a steel structure.

符号の説明Explanation of symbols

1 鋼構造物
2 鋼部材
3 欠損部
20(20-1、20-2、…、20-n) 強化繊維シート
21(21-1、21-2、…、21-n) 端部
26 カバーシート
DESCRIPTION OF SYMBOLS 1 Steel structure 2 Steel member 3 Defect part 20 (20-1, 20-2, ..., 20-n) Reinforcement fiber sheet 21 (21-1, 21-2, ..., 21-n) End part 26 Cover sheet

Claims (6)

鋼部材の表面に引張力がはたらく鋼構造物を補強するための補強方法であって、複数枚の強化繊維シートが、前記鋼部材の表面に重ねて接着されるとともに、前記引張力の作用する方向における前記強化繊維シートの端部がずれるようにされること、
補強後の鋼構造物の弾性変形挙動を、強化繊維シートの断面積に同シートと鋼材とのヤング係数比を乗じた断面積をもつ鋼材が無補強の鋼部材に一体化したものとして予測し、
鋼部材に接着する強化繊維シートの合計断面積を、
a) 当該合計断面積が、鋼材を一体化することにより上記鋼部材を補強する場合の必要鋼材断面積を上記のヤング係数比で除した値を超えるとともに、
b) 当該合計断面積に上記のヤング係数比を乗じた断面積の鋼材を一体化した場合の鋼部材に想定最大荷重が作用するとしたときの鋼部材のひずみが、接着後の強化繊維シートの剥離限界ひずみを超えないように定めること
を特徴とする鋼構造物の補強方法。
A reinforcing method for reinforcing a steel structure in which a tensile force acts on the surface of a steel member, wherein a plurality of reinforcing fiber sheets are bonded to each other on the surface of the steel member and the tensile force acts on the steel member. The end of the reinforcing fiber sheet in the direction being shifted,
The elastic deformation behavior of the steel structure after reinforcement is predicted as a steel material having a cross-sectional area obtained by multiplying the cross-sectional area of the reinforcing fiber sheet by the Young's modulus ratio of the steel sheet and the steel material integrated with an unreinforced steel member. ,
The total cross-sectional area of the reinforcing fiber sheet bonded to the steel member is
a) The total cross-sectional area exceeds the value obtained by dividing the necessary steel cross-sectional area by reinforcing the steel member by integrating the steel materials by the Young's modulus ratio,
b) When the assumed maximum load is applied to the steel member when the steel material of the cross-sectional area obtained by multiplying the total cross-sectional area by the Young's modulus ratio is integrated, the strain of the steel member is A method for reinforcing a steel structure, characterized in that it is determined so as not to exceed a peeling limit strain .
上記強化繊維シートの端部に対し、それを覆うカバーシートを、鋼部材の表面と強化繊維シートの端部とに接着することにより取り付けることを特徴とする請求項1に記載した鋼構造物の補強方法。 The steel structure according to claim 1, wherein a cover sheet for covering the end portion of the reinforcing fiber sheet is attached by adhering the cover sheet to the surface of the steel member and the end portion of the reinforcing fiber sheet. Reinforcement method. 強化繊維シートとして厚さが0.9mm以下のものを使用し、上記引張力の作用する方向における各強化繊維シートの端の位置を、引張力の作用する方向に1枚ごとに25mm以上ずらすことを特徴とする請求項1または2に記載した鋼構造物の補強方法。 Use a thickness less 0.9mm as the reinforcing fiber sheet, the position of the end of each reinforcing fiber sheet in the direction action of the tensile force, shifting more than 25mm per sheet in the direction of action of the tensile force The method for reinforcing a steel structure according to claim 1 or 2 . 強化繊維シートとして、炭素繊維、金属繊維、ガラス繊維もしくは有機繊維が単独で、または複数種混入して配列されたシートを使用することを特徴とする請求項1〜3のいずれかに記載した鋼構造物の補強方法。 The steel according to any one of claims 1 to 3 , wherein the reinforcing fiber sheet is a sheet in which carbon fibers, metal fibers, glass fibers, or organic fibers are singly or mixedly mixed. How to reinforce a structure. 強化繊維シートの接着を、常温硬化型もしくは熱硬化型のエポキシ樹脂、アクリル樹脂、ビニールエステル樹脂、MMA樹脂、不飽和ポリエステル樹脂またはフェノール樹脂をシートの繊維間に含浸させることにより行うことを特徴とする請求項1〜4のいずれかに記載した鋼構造物の補強方法。 The bonding of the reinforcing fiber sheet is performed by impregnating between the fibers of the sheet with room temperature curing type or thermosetting type epoxy resin, acrylic resin, vinyl ester resin, MMA resin, unsaturated polyester resin or phenol resin. The method for reinforcing a steel structure according to any one of claims 1 to 4 . 請求項1〜5のいずれかに記載した鋼構造物の補強方法によって、鋼部材の表面に複数枚の強化繊維シートが接着されていることを特徴とする鋼構造物の補強構造。 A reinforcing structure for a steel structure, wherein a plurality of reinforcing fiber sheets are bonded to the surface of a steel member by the method for reinforcing a steel structure according to any one of claims 1 to 5 .
JP2006166104A 2006-06-15 2006-06-15 Steel structure reinforcing method and reinforcing structure Active JP4857032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166104A JP4857032B2 (en) 2006-06-15 2006-06-15 Steel structure reinforcing method and reinforcing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166104A JP4857032B2 (en) 2006-06-15 2006-06-15 Steel structure reinforcing method and reinforcing structure

Publications (2)

Publication Number Publication Date
JP2007332674A JP2007332674A (en) 2007-12-27
JP4857032B2 true JP4857032B2 (en) 2012-01-18

Family

ID=38932405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166104A Active JP4857032B2 (en) 2006-06-15 2006-06-15 Steel structure reinforcing method and reinforcing structure

Country Status (1)

Country Link
JP (1) JP4857032B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143365A1 (en) 2009-06-10 2010-12-16 川崎重工業株式会社 Method for reinforcing structure for railway rolling stock and structure for railway rolling stock
JP5788837B2 (en) * 2011-07-26 2015-10-07 新日鐵住金株式会社 Steel structure reinforcement method using carbon fiber material
JP5942497B2 (en) * 2012-03-13 2016-06-29 Jfeスチール株式会社 Steel structure reinforcement method
JP6227989B2 (en) * 2012-12-13 2017-11-08 国立大学法人豊橋技術科学大学 Steel repair structure and repair method
JP6327634B2 (en) * 2013-12-26 2018-05-23 国立大学法人長岡技術科学大学 Repair and reinforcement method for steel structures
US20200070429A1 (en) * 2017-04-25 2020-03-05 Toray Industries, Inc. Bond construction and bonding method of frp material to structure
CN108035911A (en) * 2017-12-15 2018-05-15 惠阳航空螺旋桨有限责任公司 A kind of blade tip carbon fiber structural

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0967941A (en) * 1995-09-01 1997-03-11 Kumagai Gumi Co Ltd Reinforcing construction for concrete structure
JP4277069B2 (en) * 1999-11-19 2009-06-10 智深 呉 Concrete reinforcement method using tensioned multilayer reinforcing fiber sheet
JP3776287B2 (en) * 2000-04-12 2006-05-17 ショーボンド建設株式会社 Reinforcement and repair methods for concrete structures
JP4554845B2 (en) * 2001-05-30 2010-09-29 智深 呉 Structure reinforcement method
JP2003193425A (en) * 2001-12-26 2003-07-09 Yachiyo Engineering Co Ltd Reinforcing method of bridge
JP3776384B2 (en) * 2002-07-16 2006-05-17 ショーボンド建設株式会社 Repair and reinforcement methods for concrete structures
JP4004436B2 (en) * 2003-05-15 2007-11-07 首都高速道路公団 Road deck reinforcement method
JP4072908B2 (en) * 2003-08-28 2008-04-09 川崎重工業株式会社 Repair method of steel structure
JP4918280B2 (en) * 2006-05-16 2012-04-18 株式会社安部日鋼工業 Strengthening structure

Also Published As

Publication number Publication date
JP2007332674A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP4857032B2 (en) Steel structure reinforcing method and reinforcing structure
WO2007094546A1 (en) Shear strength reinforcing system for structure using eye bolt and wire rope
EP2048357A2 (en) Wind tower and method of assembling the same
JP2010095849A (en) Method for reinforcing steel floor slab
JP2009235730A (en) Reinforcing structure for construction
JP4016517B2 (en) Reinforcing existing structures
KR101790166B1 (en) Composite Plate Eeinforcement Structure and Construction Method thereof
JP2010032030A (en) Bonded structure, and method of manufacturing the same
JP4277069B2 (en) Concrete reinforcement method using tensioned multilayer reinforcing fiber sheet
KR20160102051A (en) A pre-stressing device, and a method for reinforcing a structural member
JP5779003B2 (en) Method for reinforcing steel structure and laminated material for reinforcing steel structure
JP6012951B2 (en) End coating method for reinforcing fiber sheets of structures
JPH04285247A (en) Member for introducing prestress and method of introducing prestress
JP6436428B2 (en) Steel bridge repair and reinforcement method and reinforcement structure
JP4918280B2 (en) Strengthening structure
JP6552837B2 (en) Method for reinforcing steel structure and laminated material for reinforcing steel structure
JP6210673B2 (en) Reinforced structure of perforated beams
JP2005105697A (en) Reinforced fiber resin plate and reinforcing method of structure using the same
JP3148345U (en) Fiber reinforced plastic strip for reinforcement of wooden parts
JP4893328B2 (en) FRP reinforcing method for structure and reinforcing structure for structure
JP4739032B2 (en) Slab reinforcement structure in existing buildings
CN113846868A (en) Reinforcing device and reinforcing method based on multi-layer fiber cloth prestress application
JP2002115403A (en) Reinforcing structure of concrete member
JP2010261239A (en) Reinforcing structure for column-beam joining part
JP2009233254A (en) Top board for x-ray diagnostic apparatus and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090319

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20101021

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4857032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250