JP4854589B2 - Polarized bandpass filter - Google Patents

Polarized bandpass filter Download PDF

Info

Publication number
JP4854589B2
JP4854589B2 JP2007125914A JP2007125914A JP4854589B2 JP 4854589 B2 JP4854589 B2 JP 4854589B2 JP 2007125914 A JP2007125914 A JP 2007125914A JP 2007125914 A JP2007125914 A JP 2007125914A JP 4854589 B2 JP4854589 B2 JP 4854589B2
Authority
JP
Japan
Prior art keywords
attenuation
main
circuit
band
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007125914A
Other languages
Japanese (ja)
Other versions
JP2008283478A (en
Inventor
英夫 大井
Original Assignee
サイトウ共聴特殊機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サイトウ共聴特殊機器株式会社 filed Critical サイトウ共聴特殊機器株式会社
Priority to JP2007125914A priority Critical patent/JP4854589B2/en
Publication of JP2008283478A publication Critical patent/JP2008283478A/en
Application granted granted Critical
Publication of JP4854589B2 publication Critical patent/JP4854589B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To offer a polarity type band pass filter which can effectively prevent receiving disturbance from adjacent channel waves under an overcrowded frequency usage condition by a simple and low cost construction. <P>SOLUTION: A main circuit A is prepared, which is provided with a main parallel resonant unit in which a first dielectric resonator CV2 and a main resonant capacitor VC2 are connected in parallel resonant coupling on a signal transmission path 86, and forms a second attenuation pole; and a main series resonance unit which has a series resonant coupling element C2 which comprises a capacitor or an inductor which carries out series resonance with the main parallel resonant circuit. Moreover, a trap circuit B is prepared in which a second dielectric resonator CV1 of an inductor and a resonant capacitor VC1 for a trap are connected as parallel resonant coupling in a form of branching from the signal transmission path 86 to the ground, and which forms a first attenuation pole in a position where it overlaps with a series resonant pass-through peak of the main series resonant unit. Furthermore, a base attenuation amount adjustment circuit C is prepared which has capacitors for attenuation adjustment C3, C4, and adjusts a base attenuation amount of a blocking area adjacent in a low area side and a high area side of the pass band. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

この発明は、有極型帯域通過フィルタに関する。   The present invention relates to a polarized bandpass filter.

特開2006−67522号公報JP 2006-67522 A

テレビ放送などの受信機においては、アンテナからの受信信号を同軸ケーブルなどの信号ケーブルを介して受信回路に入力するようにしている。周知の課題として、受信信号には、ノイズや電波干渉などの様々な要因により妨害波が重畳し、受信障害を生ずることがある。このような妨害波は、受信機が設置される地域や周辺環境によって程度も周波数帯も異なるため、必要な帯域をカバーするフィルタを受信機に外付けして解決を図ることが多い。   In a receiver such as a television broadcast, a received signal from an antenna is input to a receiving circuit via a signal cable such as a coaxial cable. As a well-known problem, there are cases where interference is superimposed on a received signal due to various factors such as noise and radio wave interference, resulting in reception failure. Such interference waves have different degrees and frequency bands depending on the area where the receiver is installed and the surrounding environment, and therefore, a filter that covers a necessary band is often externally attached to the receiver.

近年、電波放送の形態は非常に多様化しており、多チャンネル化の傾向も著しいので、干渉・妨害に対する対策はより切実なものとなっている。例えば地上波放送のUHF帯の場合、アナログ放送のチャンネルが設定されていることに加え、最近になって同じUHF帯で地上波デジタル放送も開始された。地上波デジタル放送は将来的には現行のアナログ地上波放送を完全に置き換えるべく計画されているが、受信機普及なども考慮して2011年まではアナログ/デジタルのサイマル放送が行われることになっている。そのためUHF帯域の周波数使用状況は大幅に過密となり、隣接チャンネル波や同一チャンネル波による受信障害の問題が深刻化している。これらは、高調波的な妨害波などと異なり、希望波の受信周波数に非常に近接して現われるため、その除去に際しては使用するフィルタの狭帯域化が必要となる(特許文献1)。   In recent years, the form of radio broadcasting has become very diversified, and the tendency to increase the number of channels has been remarkable, so countermeasures against interference and interference have become more urgent. For example, in the case of the UHF band for terrestrial broadcasting, in addition to the setting of an analog broadcasting channel, terrestrial digital broadcasting has recently started in the same UHF band. Terrestrial digital broadcasting is planned to completely replace the existing analog terrestrial broadcasting in the future, but analog / digital simultaneous broadcasting will be performed until 2011 in consideration of the spread of receivers. ing. Therefore, the frequency usage situation of the UHF band is greatly overcrowded, and the problem of reception failure due to the adjacent channel wave and the same channel wave has become serious. Unlike harmonic interference waves and the like, these appear very close to the reception frequency of the desired wave, and therefore, it is necessary to narrow the band of the filter used for the removal (Patent Document 1).

上記のようなUHF帯でのサイマル放送の場合、周波数使用状況が過密になるため、隣接チャンネル波や同一チャンネル波による受信障害がより発生しやすくなり、例えば、小電力送信のデジタルテレビ地域放送における弱中電界受信に際しては、その受信品質の劣化が大きな問題となる。デジタル放送はアナログ放送と異なり、受信レベルがある閾レベルまで低下すると、ブロックノイズ等による映像品質の劣化が非常に急峻に生じるので、小電力送信放送では映像品質を保証するための受信C/N比マージンがどうしても小さくなる。特に、大電力送信の広域デジタル放送チャンネル群とアナログ放送チャンネル群との間に、小電力送信の地域放送チャンネルが近接した形で挟まっている場合、それら広域デジタル放送チャンネル群と高レベルのアナログ放送チャンネル群の高受信電力がもたらす非線形歪の影響を受けて、該地域放送チャンネルの映像品質劣化がとりわけ生じやすい。   In the case of simulcasting in the UHF band as described above, the frequency usage situation becomes overcrowded, so that reception failures due to adjacent channel waves and the same channel wave are more likely to occur. For example, in digital television regional broadcasting of low power transmission When receiving a weak and medium electric field, the deterioration of the reception quality becomes a big problem. Digital broadcasting differs from analog broadcasting in that when the reception level falls to a certain threshold level, image quality deterioration due to block noise or the like occurs very sharply. Therefore, in low-power transmission broadcasting, reception C / N for guaranteeing image quality The ratio margin is inevitably reduced. In particular, when regional broadcast channels with low power transmission are sandwiched between high-power transmission wide-area digital broadcast channels and analog broadcast channels, these wide-area digital broadcast channels and high-level analog broadcasts Under the influence of non-linear distortion caused by the high received power of the channel group, the video quality deterioration of the regional broadcast channel is particularly likely to occur.

本発明の課題は、簡便で安価な構成によりつつも、過密な周波数使用状況下において、隣接チャンネル波による受信障害を効果的に防止でき、特に、大電力送信放送群の周波数帯の隙間をぬって地域放送チャンネル等の小電力送信放送がなされている場合においても、それら大電力送信放送群からの非線形歪の影響を効果的に回避でき、かつ、それら大電力送信放送群の信号を過度に減衰させることなく、小電力送信放送の受信品質を大幅に向上できる有極型帯域通過フィルタを提供することにある。   The problem of the present invention is that it is possible to effectively prevent reception interference due to adjacent channel waves in an overcrowded frequency usage situation with a simple and inexpensive configuration, and in particular, it eliminates the gap in the frequency band of the high power transmission broadcast group. Even when low-power transmission broadcasts such as regional broadcast channels are made, the effects of nonlinear distortion from these high-power transmission broadcast groups can be effectively avoided, and the signals of these high-power transmission broadcast groups are excessively transmitted. It is an object of the present invention to provide a polarized bandpass filter that can greatly improve the reception quality of a low-power transmission broadcast without attenuation.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、通過域の両端に低域側の第一減衰極と高域側の第二減衰極とを有する有極型帯域通過フィルタに係り、上記課題を解決するために、
一端が入力部とされ他端が出力部とされた信号伝送路と、
信号伝送路上においてインダクタをなす主誘電体共振器と主共振キャパシタとが並列共振結合され、第二減衰極を形成するための並列共振減衰ピークを生じさせる主並列共振部と、当該主並列共振回路と直列共振結合するキャパシタ又はインダクタからなる直列共振結合素子を有するとともに第一減衰極に対応した位置に直列共振通過ピークを有する主直列共振部とを有した主回路と、
信号伝送路から接地側に分岐する形で設けられ、インダクタをなすトラップ用誘電体共振器と並列共振結合キャパシタとを並列共振結合したトラップ用並列共振部と、当該トラップ用並列共振部と直列共振結合するキャパシタ又はインダクタからなる直列共振結合素子を有するとともに、主直列共振部の直列共振通過ピークに隣接する位置に第一減衰極を形成するための直列共振減衰ピークを生じさせるトラップ回路と、
前記信号伝送路から接地側に分岐する形で設けられた減衰調整用キャパシタを有し、通過域の低域側又は高域側に隣接する阻止域の基底減衰量を調整する基底減衰量調整回路とを備えたことを特徴とする。
The present invention relates to a polarized bandpass filter having a low-frequency side first attenuation pole and a high-frequency side second attenuation pole at both ends of the passband.
A signal transmission line in which one end is an input unit and the other end is an output unit;
A main dielectric resonator that forms an inductor on the signal transmission line and a main resonance capacitor are coupled in parallel resonance to generate a parallel resonance attenuation peak for forming a second attenuation pole, and the main parallel resonance circuit A main circuit having a series resonance coupling element having a series resonance coupling element including a capacitor or an inductor that is coupled in series resonance with the main resonance section having a series resonance passing peak at a position corresponding to the first attenuation pole;
A parallel resonance part for traps, which is provided in a form branched from the signal transmission line to the ground side, and in which a dielectric resonator for traps forming an inductor and a parallel resonance coupling capacitor are coupled in parallel resonance, and series resonance with the parallel resonance part for traps A trap circuit having a series resonant coupling element including a capacitor or an inductor to be coupled, and generating a series resonant attenuation peak for forming a first attenuation pole at a position adjacent to the series resonant passing peak of the main series resonant unit;
A base attenuation adjustment circuit having an attenuation adjustment capacitor provided so as to branch from the signal transmission path to the ground side, and adjusting the base attenuation of the stop band adjacent to the low band side or the high band side of the pass band It is characterized by comprising.

上記本発明の有極型帯域通過フィルタにおいて、通過域の基本形状を定めるのは主回路であり、Q値の大きい誘電体共振器が組み込まれた主並列共振部に、キャパシタ又はインダクタからなる直列共振結合素子を有する主直列共振部を直結した構造をなす。その通過特性は、高域側阻止域か低域側阻止域の一方をなす第一基底レベルから、直列共振点に由来した極大値に向けて緩やかに増大して直列共振通過ピークを形成した後、第二減衰極をなす並列共振点レベルに向けて急峻に減少し、高域側か低域側の他方をなす第二基底レベルに向けてやや緩やかに復帰することにより、上記直列共振通過ピークと対になる並列共振減衰ピークを形成する。そして、その直列共振通過ピークに隣接する位置に直列共振減衰ピークを生じさせるトラップ回路を追加することにより、極両側が急峻な減衰特性となるトラップ回路特有の狭く深い第一減衰極が形成される。   In the polarized bandpass filter of the present invention, it is the main circuit that determines the basic shape of the passband, and a series of capacitors or inductors is connected to the main parallel resonance part in which the dielectric resonator having a large Q value is incorporated. It has a structure in which the main series resonance part having the resonance coupling element is directly connected. Its pass characteristics gradually increase from the first base level, which is either the high-frequency stopband or the low-frequency stopband, toward the local maximum derived from the series resonance point to form a series resonance pass peak. The series resonance passing peak decreases by sharply decreasing toward the parallel resonance point level forming the second attenuation pole, and returning to the second base level forming the other of the high frequency side or the low frequency side. Form a parallel resonance attenuation peak paired with. Then, by adding a trap circuit that generates a series resonance attenuation peak at a position adjacent to the series resonance passing peak, a narrow and deep first attenuation pole peculiar to the trap circuit having a steep attenuation characteristic on both sides of the pole is formed. .

小電力送信となる選択希望チャンネルの帯域を上記のような通過域に合わせ込んだとき、この第一減衰極をなす減衰ピークは、該選択希望チャンネルの信号を、当該第一減衰極側に隣接する大電力送信チャンネルの信号からピンポイントで切り出しつつ通過させることができる。そして、本発明においては、通過域の低域側及び高域側に隣接する阻止域の基底減衰量(すなわち、上記第一ないし第二基底レベル)を調整する基底減衰量調整回路を設けたことで、大電力送信チャンネルの信号の通過レベルも適正化することができる。その結果、大電力送信放送群の周波数帯の隙間をぬって小電力送信放送がなされている場合においても、小電力送信放送の受信信号レベルにそれほど影響を与えることなく、隣接する大電力送信放送群の信号レベルを適度に減衰させることができる。その結果、小電力送信放送の受信信号への非線形歪の影響を効果的に回避でき、かつ、大電力送信放送群の信号を過度に減衰させることなく、小電力送信放送の受信品質を大幅に向上できる。すなわち、簡便で安価な構成によりつつも、過密な周波数使用状況下において、隣接チャンネル波による受信障害を効果的に防止できるようになる。   When the band of the selected desired channel for low power transmission is adjusted to the pass band as described above, the attenuation peak forming this first attenuation pole is adjacent to the signal of the selected desired channel on the first attenuation pole side. It is possible to pass through a signal of a high power transmission channel that is pinpointed out. In the present invention, a base attenuation adjustment circuit for adjusting the base attenuation of the stop band adjacent to the low band side and the high band side of the pass band (that is, the first or second base level) is provided. Thus, the signal passing level of the high power transmission channel can be optimized. As a result, even when a low-power transmission broadcast is made through a gap in the frequency band of the high-power transmission broadcast group, the adjacent high-power transmission broadcast does not significantly affect the received signal level of the low-power transmission broadcast. The signal level of the group can be attenuated appropriately. As a result, it is possible to effectively avoid the influence of non-linear distortion on the received signal of the low-power transmission broadcast, and greatly reduce the reception quality of the low-power transmission broadcast without excessively attenuating the signals of the high-power transmission broadcast group. It can be improved. That is, it is possible to effectively prevent a reception failure due to an adjacent channel wave in an overcrowded frequency usage situation while having a simple and inexpensive configuration.

基底減衰量調整回路は、主回路の前段側及び後段側にて接地側にそれぞれ分岐する形で設けられた1対の減衰調整用キャパシタを有する高低域π形フィルタ回路として構成することができる。このような高低域π形フィルタ回路は、減衰調整用キャパシタの静電容量設定値に応じて、低域側及び高域側の各阻止域の基底減衰量を独立かつ容易に調整できる。   The base attenuation adjustment circuit can be configured as a high / low band π-type filter circuit having a pair of attenuation adjustment capacitors provided so as to branch to the ground side on the front side and the rear side of the main circuit. Such a high-low-pass π-type filter circuit can independently and easily adjust the base attenuation amount of each of the low-frequency and high-frequency stop bands according to the capacitance setting value of the attenuation adjustment capacitor.

トラップ回路の直列共振減衰ピークに由来した第一減衰極と、主回路の並列共振減衰ピークに由来した第二減衰極とのいずれが高域側減衰極となり、いずれが低域側減衰極となるかは、主回路及びトラップ回路の各直列共振結合素子としてキャパシタとインダクタとのいずれを選択するかに応じて、自由に変更できる。具体的には、主回路及びトラップ回路の各直列共振結合素子をキャパシタで構成した場合、第一減衰極が低域側減衰極となり、第二減衰極が高域側減衰極となる。また、主回路及びトラップ回路の各直列共振結合素子をインダクタで構成した場合、第一減衰極が高域側減衰極となり、第二減衰極が低域側減衰極となる。   Which of the first attenuation pole derived from the series resonance attenuation peak of the trap circuit and the second attenuation pole derived from the parallel resonance attenuation peak of the main circuit is the high-frequency attenuation pole, and which is the low-frequency attenuation pole? This can be freely changed according to which one of the capacitor and the inductor is selected as each series resonance coupling element of the main circuit and the trap circuit. Specifically, when each series resonance coupling element of the main circuit and the trap circuit is configured by a capacitor, the first attenuation pole becomes a low-frequency attenuation pole, and the second attenuation pole becomes a high-frequency attenuation pole. Further, when each series resonance coupling element of the main circuit and the trap circuit is configured by an inductor, the first attenuation pole becomes a high-frequency attenuation pole, and the second attenuation pole becomes a low-frequency attenuation pole.

すなわち、主回路及びトラップ回路の各直列共振結合素子がキャパシタで構成される場合、主回路に基づく第一減衰極が主並列共振回路に基づく高域側に位置し、第一減衰極の減衰ピーク幅が第二減衰極の減衰ピーク幅よりも狭くなる形で形成される。通過希望周波数帯の低域側直近に隣接して阻止(あるいは通過抑制)希望周波数帯が存在する場合は、近接周波数帯の切り分けに好適なピーク幅の狭い第一減衰極が、当該低域側に現われるよう直列共振結合素子をキャパシタで構成するのが好適であるといえる。減衰ピーク幅は、該減衰ピークに隣接する阻止域の通過曲線をベースラインとしてみたときのピーク半値幅により定量化できる。なお、直列共振結合素子と並列にダンプ抵抗を挿入しておくと、ダンプ抵抗の値に応じて第一減衰極の減衰深さを縮小することができる。   That is, when each series resonant coupling element of the main circuit and the trap circuit is configured by a capacitor, the first attenuation pole based on the main circuit is located on the high frequency side based on the main parallel resonance circuit, and the attenuation peak of the first attenuation pole is The width is formed to be narrower than the attenuation peak width of the second attenuation pole. If there is a desired frequency band to be blocked (or suppressed) immediately adjacent to the low frequency side of the desired frequency band, the first attenuation pole with a narrow peak width suitable for the separation of the adjacent frequency band is the low frequency side. It can be said that the series resonant coupling element is preferably composed of a capacitor as shown in FIG. The attenuation peak width can be quantified by the peak half-value width when the pass curve of the stop band adjacent to the attenuation peak is regarded as a baseline. If a dump resistor is inserted in parallel with the series resonant coupling element, the attenuation depth of the first attenuation pole can be reduced according to the value of the dump resistor.

特に、通過域の低域側に隣接する大電力送信放送群の信号を、放送受信品質は十分確保され、かつ通過域を通すべき小電力送信放送の信号への悪影響は十分軽減されるよう、適度に減衰させるためには、基底減衰量調整回路を、通過域の高域側に隣接する阻止域の基底減衰量が低域側に隣接する阻止域の基底減衰量よりも大きくなるように調整しておくことが望ましい。例えば、基底減衰量調整回路として前述の高低域π形フィルタ回路を使用する場合、主回路の前段側(入力側)の減衰調整用キャパシタの静電容量設定値により低域側阻止域の基底減衰量を調整でき、同じくの後段側(出力側)の減衰調整用キャパシタの静電容量設定値により高域側阻止域の基底減衰量を調整できる(この場合、静電容量の設定値が大きいほど、基底減衰量も大きくなる)。   In particular, the signal of the large power transmission broadcast group adjacent to the low band side of the pass band, the broadcast reception quality is sufficiently secured, and the adverse effect on the signal of the low power transmission broadcast that should pass through the pass band is sufficiently reduced, To moderately attenuate, adjust the base attenuation adjustment circuit so that the base attenuation of the stopband adjacent to the high band side of the passband is larger than the base attenuation of the stopband adjacent to the low band side. It is desirable to keep it. For example, when the above-described high / low-band π-type filter circuit is used as the base attenuation adjustment circuit, the base attenuation in the low-band stop band is determined by the capacitance setting value of the capacitor for attenuation adjustment on the front stage side (input side) of the main circuit. The amount of attenuation can be adjusted, and the base attenuation of the high-frequency stop band can be adjusted by the capacitance setting value of the capacitor for attenuation adjustment on the rear stage (output side) (in this case, the larger the capacitance setting value, The base attenuation also increases.)

上記の態様が特に適合する用途として、我国におけるUHF帯を使用した現行の地上波デジタルテレビ放送を例示できる。具体的には、地上波デジタルテレビ広域放送チャンネル系列の高域側に、それら広域放送チャンネ系列よりも送信電力レベルが小さい地上波デジタルテレビ地域放送チャンネルが隣接設定されることがある。該地上波デジタルテレビ地域放送チャンネルのさらに高域側には、地上波デジタルテレビ広域放送チャンネル系列側よりも広いチャンネル間周波数帯域を隔てた形で、地上波デジタルテレビ地域放送チャンネルよりも送信電力レベルが大きい地上波アナログ放送チャンネル系列が設定される。この場合、本発明の有極型帯域通過フィルタは、その通過域を地上波デジタルテレビ地域放送チャンネルの周波数帯と一致するように設定し、低域側阻止域が地上波デジタルテレビ広域放送チャンネル系列の周波数帯と一致するように設定し、高側阻止域が地上波アナログ放送チャンネル系列周波数帯と一致するように設定することで、地上波デジタルテレビ地域放送チャンネルの受信信号に対する、それら地上波デジタルテレビ広域放送チャンネル系列と地上波アナログ放送チャンネル系列の高受信電力がもたらす非線形歪の影響を効果的に抑制でき、該地域放送チャンネルの映像品質を向上することができる。   As an application in which the above aspect is particularly suitable, a current terrestrial digital television broadcast using the UHF band in Japan can be exemplified. Specifically, a terrestrial digital television regional broadcast channel having a transmission power level lower than that of the wide-area broadcast channel sequence may be set adjacent to the high frequency side of the terrestrial digital television wide-area broadcast channel sequence. The higher power side of the terrestrial digital television regional broadcast channel has a transmission power level higher than that of the terrestrial digital television regional broadcast channel, with a wider frequency band between channels than the terrestrial digital television wide-area broadcast channel series side. A terrestrial analog broadcast channel series having a large is set. In this case, the polarized bandpass filter of the present invention sets its passband to match the frequency band of the terrestrial digital TV regional broadcast channel, and the low-frequency stopband is the terrestrial digital TV wideband broadcast channel series. By setting the high side stopband to match the terrestrial analog broadcast channel sequence frequency band, the terrestrial digital TV broadcast signals received from the terrestrial digital television regional broadcast channel can be received. It is possible to effectively suppress the influence of nonlinear distortion caused by the high reception power of the television wide-area broadcast channel sequence and the terrestrial analog broadcast channel sequence, and the video quality of the regional broadcast channel can be improved.

前述のごとく、デジタル放送は、受信信号のC/N比劣化に伴い、映像品質がある閾値にて急峻に劣化する特性を有しており、映像品質を担保しつつ受信レベルを広帯域に渡って平坦に減衰させる必要がある。つまり、地上波デジタルテレビ地域放送チャンネルに対しデジタル側(つまり、低域側)に、(アナログ放送よりも狭間隔で)隣接するデジタル広域放送チャンネルのみを急峻に減衰させ、そのさらに低域側に連なるデジタル広域放送チャンネルは、視聴に支障のない受信レベルを平坦に確保するために、地上波デジタルテレビ地域放送チャンネルの低域側直近に隣接するチャンネルの周波数帯内に第一減衰極を位置させることが望ましい。一方、アナログ放送は、受信信号レベルの低下に伴う映像品質劣化の影響がデジタル放送と比較してはるかに緩やかであり、通過希望チャンネルの高域側に隣接するチャンネルの減衰をより優先させる観点から、地上波デジタルテレビ地域放送チャンネルの高域側直近に隣接するチャンネルの周波数帯内に(よりブロードな)第二減衰極が位置するように、各減衰極の位置を調整しておくことが望ましい。この場合、第一減衰極の減衰深さは、隣接広域デジタル放送の受信信号に呈する減衰量を必要最小限とする観点から、第二減衰極の減衰深さよりも小さく設定されていることが望ましい。   As described above, digital broadcasting has a characteristic that the video quality deteriorates sharply at a certain threshold as the C / N ratio of the received signal deteriorates, and the reception level extends over a wide band while ensuring the video quality. It is necessary to attenuate it flatly. In other words, only the digital wide-area broadcast channel that is adjacent to the terrestrial digital television regional broadcast channel on the digital side (that is, at a low frequency side) (at a narrower interval than analog broadcast) is sharply attenuated, and further to the low-frequency side. In order to ensure a flat reception level that does not hinder viewing, continuous digital wide-area broadcast channels have a first attenuation pole located in the frequency band of the channel adjacent to the low frequency side of the terrestrial digital TV regional broadcast channel. It is desirable. On the other hand, in analog broadcasting, the effect of video quality degradation due to a decrease in the received signal level is much more gradual than digital broadcasting, and from the viewpoint of giving priority to the attenuation of the channel adjacent to the high frequency side of the desired passage channel. It is desirable to adjust the position of each attenuation pole so that the second attenuation pole (broader) is located in the frequency band of the adjacent channel closest to the high frequency side of the terrestrial digital TV regional broadcasting channel. . In this case, the attenuation depth of the first attenuation pole is preferably set to be smaller than the attenuation depth of the second attenuation pole from the viewpoint of minimizing the amount of attenuation presented to the reception signal of the adjacent wide area digital broadcast. .

また、低域側阻止域の減衰レベルが12dB以上18dB以下とするのがよい。低域側阻止域の減衰レベルが12dB未満では地上波デジタルテレビ広域放送チャンネル系列からの非線形歪の影響軽減効果が不十分となり、18dBを超えると該広域放送チャンネルの受信信号レベルが不足して該チャンネルの映像品質を確保できなくなる。高域側阻止域の減衰レベルは、該アナログ放送チャンネル電波による非線形歪の影響を十分に低減できるように、16dB以上20dB以下の範囲にて、低域側阻止域の減衰レベルよりも1dB以上大きく設定しておくことが望ましい。他方、地上波デジタルテレビ地域放送チャンネルの受信映像品質を良好に確保するために、通過域における通過損失は5dB以下であることが望ましい。   Moreover, it is preferable that the attenuation level of the low-frequency stop band is 12 dB or more and 18 dB or less. If the attenuation level of the low-frequency stop band is less than 12 dB, the effect of reducing the influence of nonlinear distortion from the terrestrial digital television wide-area broadcast channel sequence is insufficient, and if it exceeds 18 dB, the received signal level of the wide-area broadcast channel is insufficient. The video quality of the channel cannot be ensured. The attenuation level of the high-frequency stop band is 1 dB or more larger than the attenuation level of the low-frequency stop band in the range of 16 dB to 20 dB so that the influence of nonlinear distortion due to the analog broadcast channel radio wave can be sufficiently reduced. It is desirable to set it. On the other hand, it is desirable that the pass loss in the pass band is 5 dB or less in order to ensure the received video quality of the terrestrial digital television regional broadcast channel.

一方、主回路及びトラップ回路の各直列共振結合素子がインダクタで構成される場合、主回路に基づく第一減衰極が主並列共振回路に基づく第二減衰極に対し高域側に位置し、第一減衰極の減衰ピーク幅が第二減衰極の減衰ピーク幅よりも狭くなる形で形成される。通過希望周波数帯の高域側直近に隣接して阻止(あるいは通過抑制)希望周波数帯が存在する場合は、近接周波数帯の切り分けに好適なピーク幅の狭い第一減衰極が、当該高域側に現われるよう直列共振結合素子をインダクタで構成するのが好適であるといえる。   On the other hand, when each series resonant coupling element of the main circuit and the trap circuit is configured by an inductor, the first attenuation pole based on the main circuit is located on the high frequency side with respect to the second attenuation pole based on the main parallel resonance circuit, and The attenuation peak width of one attenuation pole is formed to be narrower than the attenuation peak width of the second attenuation pole. If there is a desired frequency band to be blocked (or suppressed) immediately adjacent to the high frequency side of the desired frequency band, the first attenuation pole with a narrow peak width suitable for separation of the adjacent frequency band is the high frequency side. It can be said that it is preferable that the series resonant coupling element is composed of an inductor as shown in FIG.

なお、第二減衰極の減衰深さを軽減するためには、信号伝送路上にて主回路に対し並列挿入される形で、ダンプ抵抗を設けておくことが望ましい。   In order to reduce the attenuation depth of the second attenuation pole, it is desirable to provide a dump resistor so as to be inserted in parallel with the main circuit on the signal transmission path.

次に、本発明においては、主並列列共振部において主共振キャパシタに対して直列に、かつ誘電体共振器に対して並列となるように、通過域の高域端側又は低域端側の通過特性を急峻化するための分布定数線路部を設けることができる。これにより、よりシャープな通過特性を有した通過域を形成することができる。   Next, in the present invention, the high-band end side or the low-band end side of the pass band is arranged in series with the main resonance capacitor and in parallel with the dielectric resonator in the main parallel column resonance unit. A distributed constant line portion for steepening the pass characteristic can be provided. Thereby, a pass band having sharper pass characteristics can be formed.

基底減衰量調整回路は、減衰調整用キャパシタと直列接続される分布定数線路部を有するものとして構成できる。主回路にこのような分布定数線路を並列接続することで、図3に示す直列共振点と並列共振点との間の傾斜をより急峻化することができる。   The base attenuation adjustment circuit can be configured to have a distributed constant line portion connected in series with an attenuation adjustment capacitor. By connecting such distributed constant lines in parallel to the main circuit, the slope between the series resonance point and the parallel resonance point shown in FIG. 3 can be made steeper.

この場合、主並列共振回路に組み込まれた誘電体共振器として、誘電体筐体表面が、信号伝送路の入力側に導通接続された金属被覆層により覆われたものを使用できる。また、有極型帯域通過フィルタの構成部品が実装されるとともに接地導体箔により被覆された基板の実装面に、金属被覆層を有する誘電体共振器が実装面との間に所定の隙間を生じさせた形で実装することができ、該金属被覆層は減衰調整用キャパシタを介して接地導体箔に導通接続することができる。これにより、金属被覆層と接地導体箔とにより上記分布定数線路部を形成することができ、帯域通過型フィルタの通過特性をさらに急峻化することができる。   In this case, as the dielectric resonator incorporated in the main parallel resonant circuit, a dielectric housing whose surface is covered with a metal coating layer that is conductively connected to the input side of the signal transmission path can be used. In addition, a dielectric resonator having a metal coating layer creates a predetermined gap between the mounting surface of the substrate on which the components of the polarized bandpass filter are mounted and covered with the ground conductor foil. The metal cover layer can be conductively connected to the ground conductor foil through the attenuation adjusting capacitor. Thus, the distributed constant line portion can be formed by the metal coating layer and the ground conductor foil, and the pass characteristics of the band-pass filter can be further steepened.

また、信号伝送路上にて複数の主回路をカスケード接続することができる。主並列共振回路をカスケード接続することで、通過域の端部形状をより急峻化することができる。   A plurality of main circuits can be cascade-connected on the signal transmission path. By cascading the main parallel resonant circuits, the end shape of the passband can be made steeper.

以下、本発明の実施の形態を添付の図面に基づいて説明する。図1は、本発明の有極型帯域通過フィルタの回路構成例を示すものである。また、図2は、その通過特性(上)と反射特性(下)との代表的な実測例を、異なる周波数スケールにて示すものである。この有極型帯域通過フィルタ1は、UHFテレビ放送受信用のものであり、図2に示すように、通過域PBの両端に第一減衰極PPと第二減衰極SPとを有する。図1に示すように、該回路は、一端が入力部PT1とされ他端がPT2とされた信号伝送路86と、主回路A、トラップ回路B及び基底減衰量調整回路Cとを備える。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a circuit configuration example of a polarized bandpass filter of the present invention. FIG. 2 shows typical measurement examples of the transmission characteristics (upper) and reflection characteristics (lower) on different frequency scales. This polarized bandpass filter 1 is for UHF television broadcast reception, and has a first attenuation pole PP and a second attenuation pole SP at both ends of the passband PB as shown in FIG. As shown in FIG. 1, the circuit includes a signal transmission path 86 having one end serving as an input unit PT1 and the other end serving as PT2, a main circuit A, a trap circuit B, and a base attenuation adjustment circuit C.

主回路Aは、図3に示すように、信号伝送路86上においてインダクタをなす主誘電体共振器CV1と主共振キャパシタVC2とが並列共振結合され、第二減衰極SP(図17)を形成するための並列共振減衰ピークを生じさせる主並列共振部と、当該主並列共振回路と直列共振結合するキャパシタ(直列共振結合素子)C2を有し、第一減衰極PP(図2)に対応した位置(正確には、第一減衰極PPよりも1〜4MHz高域側にシフトした位置である)に直列共振通過ピークを有する主直列共振部とを有する。第二減衰極SPの位置は、トリマコンデンサにて構成された主共振キャパシタVC2の静電容量に応じて可変設定できる。   In the main circuit A, as shown in FIG. 3, the main dielectric resonator CV1 and the main resonance capacitor VC2 forming an inductor on the signal transmission line 86 are coupled in parallel resonance to form a second attenuation pole SP (FIG. 17). And a capacitor (series resonance coupling element) C2 coupled in series resonance with the main parallel resonance circuit, and corresponding to the first attenuation pole PP (FIG. 2). And a main series resonance part having a series resonance pass peak at a position (more precisely, a position shifted to a higher frequency range of 1 to 4 MHz than the first attenuation pole PP). The position of the second attenuation pole SP can be variably set according to the capacitance of the main resonance capacitor VC2 formed of a trimmer capacitor.

また、トラップ回路Bは、図4に示すように、信号伝送路86から接地側に分岐する形で設けられ、インダクタをなすトラップ用誘電体共振器CV1と並列共振結合キャパシタVC1とを並列共振結合したトラップ用並列共振部と、当該トラップ用並列共振部と直列共振結合する直列共振結合素子をなすキャパシタC1とを有し、主直列共振部の直列共振通過ピークと隣接する位置(正確には、主直列共振部の直列共振点よりも1〜4MHz低域側にシフトした位置である)に第一減衰極PP(図2)を形成するための直列共振減衰ピークを生じさせるものである。第一減衰極PPの位置は、トリマコンデンサにて構成された並列共振結合キャパシタVC1の静電容量に応じて可変設定できる。なお、信号伝送路86上にて主回路Aに対し並列挿入される形で、第二減衰極SPの減衰深さを軽減するためのダンプ抵抗R2が設けられている。   Further, as shown in FIG. 4, the trap circuit B is provided so as to branch from the signal transmission path 86 to the ground side, and the parallel dielectric coupling capacitor C1 and the parallel resonant coupling capacitor VC1 that form the inductor are connected in parallel. And a capacitor C1 that forms a series resonance coupling element that is in series resonance coupling with the trap parallel resonance portion, and a position adjacent to the series resonance passing peak of the main series resonance portion (more precisely, A series resonance attenuation peak for forming the first attenuation pole PP (FIG. 2) is generated at a position shifted to a lower frequency range of 1 to 4 MHz than the series resonance point of the main series resonance unit. The position of the first attenuation pole PP can be variably set according to the capacitance of the parallel resonant coupling capacitor VC1 configured by a trimmer capacitor. A dump resistor R2 for reducing the attenuation depth of the second attenuation pole SP is provided so as to be inserted in parallel with the main circuit A on the signal transmission path 86.

基底減衰量調整回路Cは、通過域PBの低域側及び高域側に隣接する阻止域LEB,HEBの基底減衰量を調整するためのものであり、図1に示すように、信号伝送路86から接地側に分岐する形で設けられた減衰調整用キャパシタC3,C4を有する。基底減衰量調整回路Cは、主回路Aの前段側及び後段側にて接地側にそれぞれ分岐する形で設けられた1対の減衰調整用キャパシタC3,C4を有する高低域π形フィルタ回路である。   The base attenuation adjustment circuit C is for adjusting the base attenuation of the stop bands LEB and HEB adjacent to the low band side and the high band side of the pass band PB. As shown in FIG. Attenuation adjustment capacitors C3 and C4 are provided so as to branch from 86 to the ground side. The base attenuation adjustment circuit C is a high / low-pass π-type filter circuit having a pair of attenuation adjustment capacitors C3 and C4 provided so as to branch to the ground side on the front side and the rear side of the main circuit A, respectively. .

図7に示すように、該有極型帯域通過フィルタ1は、テレビ受信用の屋内ケーブル上に取り付けて使用されるフィルタ内蔵型ケーブルコネクタユニットとして構成され、ケーブル接続用ベース42に、上記回路の各部品を実装した基板70を組み付け、その外側を円筒状のカバー2で覆った構成を有する。該ケーブルコネクタユニットの基本構成は特許文献1等により公知であり、詳細な説明は省略する。本発明の他の回路図と同様、図1の回路図は、後述のフィルタ特性評価用のシミュレーションソフト((株)エム・イー・エル社製の高周波・マイクロ波EDAツール:S−NAP/Pro)上にて作成したものであり、各部品の回路定数は、シミュレーションを行なう上での入力設定値として、図1内に個別の値が示されている。   As shown in FIG. 7, the polarized bandpass filter 1 is configured as a filter built-in type cable connector unit that is used by being mounted on an indoor cable for television reception. A substrate 70 on which each component is mounted is assembled, and the outside thereof is covered with a cylindrical cover 2. The basic configuration of the cable connector unit is known from Patent Document 1 and the like, and detailed description thereof is omitted. Like the other circuit diagrams of the present invention, the circuit diagram of FIG. 1 is a simulation software for evaluating filter characteristics described later (a high-frequency / microwave EDA tool manufactured by MEL, Inc .: S-NAP / Pro). The circuit constants of each component are shown in FIG. 1 as input set values for performing simulation.

キャパシタ(C:C1,C2,VC1,VC2‥:VCは可変コンデンサ(ここでは、トリマコンデンサ)であることを示す)については、静電容量の値を単位Fにて、そのQ値(対象周波数Fは単位Hz)とともに示している(例えば、「1p」と記載されていれば、静電容量の値が1pFであることを示す)。抵抗(R:R1,‥)については、直流電気抵抗の値を単位Ωにて示している。誘電体共振器(CV:CV1,CV2)については、共振周波数fsの値を単位Hzにて(例えば、「575MEG」と記載されていれば、共振周波数fsが575MHzであることを示す)にて、Q値とともに示している。また、Erは比誘電率である。また、dは、正方形断面を有する誘電体共振器の断面辺長であり(単位:mm)、aは誘電体共振器の円筒空洞の内径である(単位mm)。また、図1には表れないが、インダクタ(L:L1,L2)についてはインダクタンスの値を単位Hにて、分布定数線路部(MSL,MSL1,MSL2)については、線路長(L:La,Lb)を単位mmにて、特性インピーダンスZ(:Za,Zb,‥)の値を単位Ωにて表わしている。また、Aは線路減衰量(単位:dB/m)である。   For capacitors (C: C1, C2, VC1, VC2,..., VC is a variable capacitor (in this case, a trimmer capacitor)), the capacitance value is expressed in unit F and the Q value (target frequency). F is a unit Hz) (for example, “1p” indicates that the capacitance value is 1 pF). As for the resistance (R: R1,...), The value of the direct current electric resistance is shown in the unit Ω. With respect to the dielectric resonator (CV: CV1, CV2), the value of the resonance frequency fs is in units of Hz (for example, “575 MEG” indicates that the resonance frequency fs is 575 MHz). , Together with the Q value. Er is a relative dielectric constant. Further, d is the cross-sectional side length of the dielectric resonator having a square cross section (unit: mm), and a is the inner diameter of the cylindrical cavity of the dielectric resonator (unit mm). Although not shown in FIG. 1, the inductance value of the inductors (L: L1, L2) is in units of H, and the distributed constant line portions (MSL, MSL1, MSL2) are of line length (L: La, Lb) is expressed in units of mm, and the characteristic impedance Z (: Za, Zb,...) Is expressed in units of Ω. A is the line attenuation (unit: dB / m).

上記本発明の有極型帯域通過フィルタ1において、通過域PBの基本形状を定めるのは主回路A及びトラップ回路Bであり、Q値の大きい誘電体共振器が組み込まれた主並列共振部に、キャパシタ又はインダクタからなる直列共振結合素子C2を有する主直列共振部を直結した構造をなす。図3(シミュレーション:通過特性(太線)、反射特性(細線))、以下同じ)に示すように、その通過特性は、高域側阻止域HEBか低域側阻止域HEBの一方をなす第一基底レベルから、直列共振点に由来した極大値に向けて緩やかに増大して直列共振通過ピークを形成した後、第二減衰極SPをなす並列共振点レベルに向けて急峻に減少し、高域側か低域側の他方をなす第二基底レベルに向けてやや緩やかに復帰することにより、上記直列共振通過ピークと対になる並列共振減衰ピークを形成する。そして、その直列共振通過ピークに隣接する位置に直列共振減衰ピークを生じさせる図4のトラップ回路Bを追加することにより、図5(シミュレーション)に示すように、極両側が急峻な減衰特性となるトラップ回路B特有の狭く深い第一減衰極PPが形成される。小電力送信となる選択希望チャンネルの帯域を上記のような通過域PBに合わせ込んだとき、この第一減衰極PPをなす減衰ピークは、該選択希望チャンネルの信号を、当該第一減衰極PP側に隣接する大電力送信チャンネルの信号からピンポイントで切り出しつつ通過させることができる。   In the polarized bandpass filter 1 according to the present invention, the basic shape of the passband PB is determined by the main circuit A and the trap circuit B, and the main parallel resonance section in which the dielectric resonator having a large Q value is incorporated. The main series resonance part having the series resonance coupling element C2 made of a capacitor or an inductor is directly connected. As shown in FIG. 3 (simulation: pass characteristic (thick line), reflection characteristic (thin line)), the same applies hereinafter), the pass characteristic is the first that forms either the high-frequency stop band HEB or the low-frequency stop band HEB. After gradually increasing from the base level toward the local maximum derived from the series resonance point to form a series resonance passing peak, it rapidly decreases toward the parallel resonance point level forming the second attenuation pole SP, By gradually returning toward the second base level that is the other of the side and the low band side, a parallel resonance attenuation peak that is paired with the series resonance passing peak is formed. Then, by adding the trap circuit B of FIG. 4 that generates a series resonance attenuation peak at a position adjacent to the series resonance pass peak, as shown in FIG. 5 (simulation), both sides have steep attenuation characteristics. A narrow and deep first attenuation pole PP peculiar to the trap circuit B is formed. When the band of the selected desired channel for low power transmission is adjusted to the pass band PB as described above, the attenuation peak forming the first attenuation pole PP indicates the signal of the selected desired channel as the first attenuation pole PP. The signal can be passed while being pinpointed from the signal of the large power transmission channel adjacent to the side.

他方、図1に示すように、有極型帯域通過フィルタ1には、高低域π形フィルタ回路として構成された基底減衰量調整回路Cが設けられている。図6(シミュレーション)に示すように、高低域π形フィルタ回路を追加することにより、減衰調整用キャパシタC3,C4の静電容量設定値に応じて、低域側及び高域側の各阻止域LEB,HEBの基底減衰量を独立かつ容易に調整できる。   On the other hand, as shown in FIG. 1, the polarized bandpass filter 1 is provided with a base attenuation adjustment circuit C configured as a high and low band π filter circuit. As shown in FIG. 6 (simulation), by adding a high and low band π-type filter circuit, each of the low band side and high band side stop bands according to the capacitance setting values of the attenuation adjustment capacitors C3 and C4. The base attenuation of LEB and HEB can be adjusted independently and easily.

ここでは、主回路およびトラップ回路の直列共振結合素子がキャパシタC2,C1で構成されており、主回路Aに基づく第一減衰極PPが、主並列共振回路に基づく第二減衰極SPに対し低域側において、減衰ピーク幅が第二減衰極SPの減衰ピーク幅よりも狭くなる形で形成される。例えば、通過域PBの低域側に隣接する大電力送信放送群の信号を、放送受信品質は十分確保され、かつ通過域PBを通すべき小電力送信放送の信号への悪影響は十分軽減されるよう適度に減衰させることを考える。この場合、基底減衰量調整回路Cは、通過域PBの高域側に隣接する阻止域HEBの基底減衰量が低域側に隣接する阻止域LEBの基底減衰量よりも大きくなるように調整される。具体的には、高低域π形フィルタ回路からなる基底減衰量調整回路Cにおいて、主回路Aの前段側(入力側)の減衰調整用キャパシタC3の静電容量設定値により低域側阻止域LEBの基底減衰量を調整できる。また、後段側(出力側)の減衰調整用キャパシタC4の静電容量設定値により高域側阻止域HEBの基底減衰量を調整できる(静電容量の設定値が大きいほど、基底減衰量も大きくなる)。   Here, the series resonance coupling element of the main circuit and the trap circuit is configured by capacitors C2 and C1, and the first attenuation pole PP based on the main circuit A is lower than the second attenuation pole SP based on the main parallel resonance circuit. On the band side, the attenuation peak width is narrower than the attenuation peak width of the second attenuation pole SP. For example, for the signals of the large power transmission broadcast group adjacent to the low frequency side of the pass band PB, the broadcast reception quality is sufficiently secured, and the adverse effect on the signals of the low power transmission broadcast that should pass through the pass band PB is sufficiently reduced. Consider moderate attenuation. In this case, the base attenuation adjustment circuit C is adjusted so that the base attenuation of the stop band HEB adjacent to the high band side of the pass band PB is larger than the base attenuation of the stop band LEB adjacent to the low band side. The Specifically, in the base attenuation adjustment circuit C composed of a high and low-pass π-type filter circuit, the low-frequency side stop band LEB is determined by the capacitance setting value of the attenuation adjustment capacitor C3 on the front stage side (input side) of the main circuit A. Can be adjusted. Further, the base attenuation amount of the high-frequency stop band HEB can be adjusted by the capacitance setting value of the attenuation adjustment capacitor C4 on the downstream side (output side) (the larger the capacitance setting value, the larger the base attenuation amount). Become).

図1の回路においては、第二減衰極SPの減衰深さを軽減するために、信号伝送路86上にて主回路Aに対し並列挿入される形で、ダンプ抵抗R1が挿入されている。この場合、図8に示すように、基底減衰量調整回路Cの前段側の減衰調整用キャパシタC3を、トラップ回路の前段側に移動させることで、フィルタの通過特性及び反射特性をより向上させることができる。なお、この場合の通過特性及び反射特性の実測例を合わせて示している。   In the circuit of FIG. 1, in order to reduce the attenuation depth of the second attenuation pole SP, a dump resistor R1 is inserted so as to be inserted in parallel with the main circuit A on the signal transmission path 86. In this case, as shown in FIG. 8, by moving the attenuation adjustment capacitor C3 on the front stage side of the base attenuation adjustment circuit C to the front stage side of the trap circuit, the pass characteristics and reflection characteristics of the filter can be further improved. Can do. In addition, the measurement example of the transmission characteristic and reflection characteristic in this case is shown together.

また、図9は、図8の回路において、主並列共振部において主共振キャパシタVC2に対して直列となり、第一の誘電体共振器CV2に対して並列となるように、通過域PBの高域端側又は低域端側の通過特性を急峻化するための分布定数線路部MSL2を設けた例を示している。これにより、よりシャープな通過特性を有した通過域PBを形成することができる。図9中には、その通過特性(太線)と反射特性(細線)を、分布定数線路部MSL2がある場合(実線)と、同じくない場合(破線)とを、異なる周波数スケールにて対比して示している。   Further, FIG. 9 is a circuit diagram of FIG. 8, in which the high frequency band of the passband PB is connected in series with the main resonant capacitor VC2 in the main parallel resonator and in parallel with the first dielectric resonator CV2. An example is shown in which a distributed constant line portion MSL2 for steepening the pass characteristic on the end side or the low band end side is provided. Thereby, the pass band PB having sharper pass characteristics can be formed. In FIG. 9, the transmission characteristic (thick line) and reflection characteristic (thin line) are compared with the case where the distributed constant line portion MSL2 is present (solid line) and the case where it is not the same (dashed line) at different frequency scales. Show.

図10及び図11は、基板70上における分布定数線路部MSL2の形成例を示すものであり、図11に示すごとく、線路パターンLPを基板70の第一面に形成する一方、図10に示すように、基板70の第二面の対応する位置に面導体MP2を形成することで、分布定数線路部をマイクロストリップラインとして形成している。   10 and 11 show examples of the formation of the distributed constant line portion MSL2 on the substrate 70. As shown in FIG. 11, the line pattern LP is formed on the first surface of the substrate 70, as shown in FIG. Thus, by forming the surface conductor MP2 at a corresponding position on the second surface of the substrate 70, the distributed constant line portion is formed as a microstrip line.

例えば、図12に示すように、地上波デジタルテレビ広域放送チャンネル系列(ここでは、U13〜U22ch)の高域側に、それら広域放送チャンネ系列よりも送信電力レベルが小さい地上波デジタルテレビ地域放送チャンネル(U23ch)が隣接設定されている場合を考える。該地上波デジタルテレビ地域放送チャンネルのさらに高域側には、地上波デジタルテレビ広域放送チャンネル系列側よりも広いチャンネル間周波数帯域を隔てた形で(ここでは、U24chを空きとした形で)、地上波デジタルテレビ地域放送チャンネルよりも送信電力レベルが大きい地上波アナログ放送チャンネル系列(U25ch,U35ch)が設定されている。   For example, as shown in FIG. 12, a terrestrial digital television regional broadcast channel having a transmission power level lower than those of the wide-area broadcast channel sequence on the high frequency side of the terrestrial digital television wide-area broadcast channel sequence (here, U13 to U22ch). Consider a case where (U23ch) is set adjacently. The higher frequency side of the terrestrial digital TV regional broadcast channel is separated from the wider frequency band between channels than the terrestrial digital TV wide-area broadcast channel sequence side (here, U24ch is left empty) A terrestrial analog broadcast channel series (U25ch, U35ch) having a transmission power level larger than that of the terrestrial digital television regional broadcast channel is set.

図1(ないし図5)の有極型帯域通過フィルタ1は、その通過域PBを地上波デジタルテレビ地域放送チャンネルの周波数帯と一致するように設定し、低域側阻止域LEBが地上波デジタルテレビ広域放送チャンネル系列の周波数帯と一致するように設定し、高側阻止域HEBが地上波アナログ放送チャンネル系列周波数帯と一致するように設定する。これにより、地上波デジタルテレビ地域放送チャンネル(U23ch)の受信信号に対する、地上波デジタルテレビ広域放送チャンネル系列(U13ch〜U22ch)と地上波アナログ放送チャンネル系列(U25ch,U35ch)の高受信電力がもたらす非線形歪の影響を効果的に抑制でき、該地域放送チャンネルの映像品質を向上することができる。   The polarized bandpass filter 1 of FIG. 1 (or FIG. 5) sets its passband PB to match the frequency band of the terrestrial digital television regional broadcast channel, and the low-band stopband LEB is terrestrial digital. It is set so as to coincide with the frequency band of the television wide-area broadcast channel sequence, and is set so that the high-side stop band HEB coincides with the terrestrial analog broadcast channel sequence frequency band. As a result, non-linearity caused by the high received power of the terrestrial digital television wide-area broadcast channel sequence (U13ch to U22ch) and the terrestrial analog broadcast channel sequence (U25ch, U35ch) with respect to the reception signal of the terrestrial digital television regional broadcast channel (U23ch). The effect of distortion can be effectively suppressed, and the video quality of the regional broadcast channel can be improved.

図13は、図9の回路を地上波デジタルテレビ地域放送チャンネル(U23ch)の低域側直近に隣接する阻止チャンネル(U22ch)の周波数帯内に第一減衰極PPを位置させるように、各回路定数を適正化した例である。デジタル放送は、受信信号のC/N比劣化に伴い、映像品質がある閾値にて急峻に劣化する特性を有しており、映像品質を担保しつつ受信レベルを広帯域に渡って平坦に減衰させる必要がある。一方、アナログ放送は、受信信号レベルの低下に伴う映像品質劣化の影響がデジタル放送と比較してはるかに緩やかであり、通過希望チャンネルの高域側に隣接するチャンネルの減衰をより優先させることが可能である。図13のように設定を行なうことで、地上波デジタルテレビ地域放送チャンネル(U23ch)に対し低域側では、(アナログ放送よりも狭間隔で)隣接するデジタル広域放送チャンネル(U22ch)のみを急峻に減衰させ、そのさらに低域側に連なるデジタル広域放送チャンネル(U13ch〜U21ch)は、視聴に支障のない受信レベルを平坦に確保できていることがわかる。なお、低域側阻止域LEBの減衰レベルは12dB以上18dB以下であり、高域側阻止域HEBの減衰レベルは、16dB以上20dB以下の範囲にて、低域側阻止域LEBの減衰レベルよりも1dB以上大きく設定される。さらに、通過域PBにおける通過損失は5dB以下に設定される。   FIG. 13 shows each circuit so that the first attenuation pole PP is positioned in the frequency band of the blocking channel (U22ch) adjacent to the low frequency side of the terrestrial digital television regional broadcasting channel (U23ch) in the circuit of FIG. This is an example in which constants are optimized. Digital broadcasting has a characteristic that the video quality sharply deteriorates at a certain threshold as the C / N ratio of the received signal deteriorates, and the reception level is flatly attenuated over a wide band while ensuring the video quality. There is a need. On the other hand, in analog broadcasting, the effect of video quality degradation due to a decrease in the received signal level is much more gradual than in digital broadcasting, and the attenuation of the channel adjacent to the high frequency side of the desired channel may be prioritized. Is possible. By performing the setting as shown in FIG. 13, only the adjacent digital wide-area broadcast channel (U22ch) is sharpened (at a narrower interval than analog broadcast) on the low-frequency side with respect to the terrestrial digital television regional broadcast channel (U23ch). It can be seen that the digital wide-area broadcast channels (U13ch to U21ch) that are attenuated and continue to the lower frequency side can ensure a flat reception level that does not hinder viewing. The attenuation level of the low-frequency stopband LEB is 12 dB or more and 18 dB or less, and the attenuation level of the high-frequency stopband HEB is within the range of 16 dB or more and 20 dB or less than the attenuation level of the low-frequency stopband LEB. It is set larger by 1 dB or more. Furthermore, the passage loss in the passband PB is set to 5 dB or less.

図13の回路構成の有極型帯域通過フィルタを、上記のような地上波デジタルテレビ地域放送チャンネル(U23ch)及びその周辺の受信に適用した場合の、効果を確認する実験を以下のようにして行なった。図14は、その実験に用いたシステムのブロック図である。まず、地上波デジタルテレビ広域放送チャンネル(U13、18〜22ch)の電波は市販のUHFアンテナを介して受信し、デジタルテレビヘッドエンド及び第一可変減衰器を介して第二ミキサに入力した。また、地上波デジタルテレビ地域放送チャンネル(U23ch)を想定した模擬信号をデジタルテレビ信号ジェネレータ(LG3802)により発生し第二ミキサに入力した。さらに、地上波アナログテレビ放送チャンネル(U25ch、U35ch)を想定した模擬信号を、前者については減衰器(15dB)を介して、後者については直接、それぞれ第一ミキサに入力し、その混合出力を、第二可変減衰器を介して第二ミキサに入力した。各チャンネルの入力信号レベルは図12に示す各値に設定した。   An experiment for confirming the effect when the polarized band-pass filter having the circuit configuration of FIG. 13 is applied to the reception of the terrestrial digital television regional broadcasting channel (U23ch) and its surroundings as described above is as follows. I did it. FIG. 14 is a block diagram of the system used for the experiment. First, radio waves of a terrestrial digital television wide-area broadcast channel (U13, 18-22ch) were received via a commercially available UHF antenna and input to a second mixer via a digital television head end and a first variable attenuator. Also, a simulated signal assuming a terrestrial digital television regional broadcast channel (U23ch) was generated by a digital television signal generator (LG3802) and input to the second mixer. Furthermore, a simulated signal assuming a terrestrial analog television broadcast channel (U25ch, U35ch) is input to the first mixer through the attenuator (15 dB) for the former and directly to the first mixer for the latter, and the mixed output is The signal was input to the second mixer via the second variable attenuator. The input signal level of each channel was set to each value shown in FIG.

そして、第二ミキサの出力を、図13に示す本発明の有極型帯域通過フィルタを設けたケーブルを介し、ホームブースタを経てデジタルシグナルアナライザ(Anritus社製、MS8901A)に入力し、デジタルテレビのU21ch、U22ch(広域放送チャンネル、74dB)及びU23ch(地域放送チャンネル、44dB)の変調エラー率MER(変調方式は64QAM(直交振幅変調))と、受信C/N比とを測定した。なお、比較のため、本発明の有極型帯域通過フィルタに代え、図15に示す通過/反射特性を示す市販のバンドエリミネートフィルタ(BEF)とハイパスフィルタ(HPF)とを用いた場合、及びフィルタを用いなかった場合についても同様の測定を行なった。以上の結果を表1に示す。   Then, the output of the second mixer is input to a digital signal analyzer (Anritus, MS8901A) via a home booster via a cable provided with the polarized bandpass filter of the present invention shown in FIG. The modulation error rate MER (modulation method is 64QAM (quadrature amplitude modulation)) and the reception C / N ratio of U21ch, U22ch (wide area broadcast channel, 74 dB) and U23ch (regional broadcast channel, 44 dB) were measured. For comparison, in place of the polarized bandpass filter of the present invention, a commercially available band-eliminated filter (BEF) and highpass filter (HPF) showing the pass / reflection characteristics shown in FIG. The same measurement was also performed when no was used. The results are shown in Table 1.

まず、フィルタを用いなかった(1)について見ると、デジタル地域放送チャンネル(U23ch)の変調エラー率及びC/N比は、デジタル広域放送チャンネルであるU21ch及びU22chと比較して15dB以上の開きがあることがわかる。これは、地域放送チャンネルの信号状態に対して、低域側の複数のデジタル広域放送チャンネルから重畳的に作用する非線形歪の影響がことのほか大きいことを意味している。一般に、C/N比におけるデジタルテレビの受信限界は20.1dBと言われているのに対し、U23chのC/N比は14.9と該限界を大きく割り込んでおり、正常な受信が非常に困難であることがわかる。   First, looking at (1) where no filter is used, the modulation error rate and C / N ratio of the digital regional broadcast channel (U23ch) are more than 15 dB wider than the digital wideband broadcast channels U21ch and U22ch. I know that there is. This means that the influence of nonlinear distortion acting in a superimposed manner from a plurality of digital wide-area broadcast channels on the low frequency side is great in addition to the signal state of the regional broadcast channel. In general, the reception limit of a digital television in the C / N ratio is said to be 20.1 dB, whereas the C / N ratio of U23ch is greatly reduced to 14.9, which is very normal reception. It turns out to be difficult.

他方、フィルタを用いた場合は、市販のバンドエリミネートフィルタ(BEF)とハイパスフィルタ(HPF)とを用いた(2)、(3)については、U23chのC/N比が確かに向上してはいるものの、受信限界である20.1dBを超えるには至っていない。これに対し、本発明のフィルタを用いた(2)においては、U23chのC/N比が、受信限界を大きく上回り、問題なく受信できるレベルにまで高められていることがわかる。   On the other hand, when a filter is used, the C / N ratio of U23ch is certainly improved for (2) and (3) using a commercially available band-eliminated filter (BEF) and high-pass filter (HPF). However, it does not exceed the reception limit of 20.1 dB. On the other hand, in (2) using the filter of the present invention, it can be seen that the C / N ratio of U23ch greatly exceeds the reception limit and has been raised to a level at which it can be received without problems.

以下、本発明の有極型帯域通過フィルタの、種々の変形例について説明する。
図16は、図13の回路において、低域側基底減衰量に対し高域側基底減衰量を1dB差まで接近するように、各回路定数を最適化した(特に、減衰調整用キャパシタC4をゼロとした)例である。通過チャンネル(U23ch)の両側の隣接チャンネル(U22ch、U24ch)を阻止可能となっている。
Hereinafter, various modifications of the polarized bandpass filter of the present invention will be described.
In FIG. 16, in the circuit of FIG. 13, each circuit constant is optimized so that the high-frequency side base attenuation amount approaches 1 dB with respect to the low-frequency side base attenuation amount (particularly, the attenuation adjustment capacitor C4 is set to zero). Example). Adjacent channels (U22ch, U24ch) on both sides of the passage channel (U23ch) can be blocked.

また、図17では、トラップ回路には、トラップ用共振キャパシタC1と並列にダンプ抵抗R1を挿入することができる。図18に示すように、ダンプ抵抗R1を接続することにより、その抵抗値に応じて第一減衰極PPの減衰深さを縮小することができる。   In FIG. 17, a dump resistor R1 can be inserted in parallel with the trap resonance capacitor C1 in the trap circuit. As shown in FIG. 18, by connecting the dump resistor R1, the attenuation depth of the first attenuation pole PP can be reduced according to the resistance value.

また、図19に示すように、主回路及びトラップ回路の各直列共振結合素子をインダクタL1,L2で構成することもできる。この場合、主回路に基づく第一減衰極PPは、主並列共振回路に基づく第二減衰極SPに対し高域側において、減衰ピーク幅が第二減衰極SPの減衰ピーク幅よりも狭くなる形で形成される。近接周波数帯の切り分けに好適なピーク幅の狭い第一減衰極PPが高域側に現われるので、通過希望周波数帯の高域側直近に隣接して阻止(あるいは通過抑制)希望周波数帯が存在する場合に好適である。   Further, as shown in FIG. 19, the series resonant coupling elements of the main circuit and the trap circuit can be configured by inductors L1 and L2. In this case, the first attenuation pole PP based on the main circuit has a shape in which the attenuation peak width is narrower than the attenuation peak width of the second attenuation pole SP on the higher frequency side than the second attenuation pole SP based on the main parallel resonance circuit. Formed with. Since the first attenuation pole PP having a narrow peak width suitable for the separation of the adjacent frequency band appears on the high frequency side, there is a desired frequency band to be blocked (or suppressed) adjacent to the high frequency side of the desired frequency band. It is suitable for the case.

次に、図20の回路構成では、信号伝送路86上にて、誘電体共振器CV3、主共振キャパシタVC1及び直列共振結合素子をなすキャパシタC1からなる第一主回路と、同じく主誘電体共振器CV2、主共振キャパシタVC2及び直列共振結合素子をなすキャパシタC2からなる第二主回路とがカスケード接続されている。基底減衰量調整回路Cは、3つの減衰調整用キャパシタC11,C12,C3からなり、このうち減衰調整用キャパシタC11,C12には、これらと各々直列接続される分布定数線路部MSL3及びMSL4が設けられている。また、トラップ回路は、トラップ用共振キャパシタC1、トラップ用誘電体共振器CV1及び並列共振結合キャパシタC4からなる。なお、第二主回路の後段にあるインダクタL1は、キャパシタC2のリード線長に由来した等価インダクタンスであり、そのインダクタL1の後段から第一主回路の前段に戻る形で、高域側の基底減衰阻止域HEBを形成するための並列抵抗R1が設けられている。   Next, in the circuit configuration of FIG. 20, on the signal transmission path 86, the first main circuit including the dielectric resonator CV3, the main resonance capacitor VC1, and the capacitor C1 forming a series resonance coupling element is also used. The capacitor CV2, the main resonance capacitor VC2, and the second main circuit including the capacitor C2 forming the series resonance coupling element are cascade-connected. The base attenuation adjustment circuit C includes three attenuation adjustment capacitors C11, C12, and C3. Of these, the attenuation adjustment capacitors C11 and C12 are provided with distributed constant line portions MSL3 and MSL4 that are respectively connected in series. It has been. The trap circuit includes a trap resonance capacitor C1, a trap dielectric resonator CV1, and a parallel resonance coupling capacitor C4. The inductor L1 in the subsequent stage of the second main circuit is an equivalent inductance derived from the lead wire length of the capacitor C2, and returns to the previous stage of the first main circuit from the subsequent stage of the inductor L1, so A parallel resistor R1 is provided for forming the attenuation inhibition zone HEB.

主並列共振回路に組み込まれる誘電体共振器は、図21Aに示すように、誘電体筐体表面が、各々信号伝送路86の入力側に導通接続された金属被覆層MFにより覆われたものが使用される。また、有極型帯域通過フィルタ1の構成部品が実装されるとともに接地導体箔90により被覆された基板の実装面には、金属被覆層MFを有する誘電体共振器CV2,CV3が、実装面との間に所定の隙間hを生じさせた形で実装されている。そして、金属被覆層MFは減衰調整用キャパシタC12を介して接地導体箔90に導通接続されている。これにより、金属被覆層MFと接地導体箔90とにより分布定数線路部MSL3,MSL4が形成される。なお、図21Bは、図21Aの実装回路の等価回路を示したものである。   As shown in FIG. 21A, the dielectric resonator incorporated in the main parallel resonant circuit has a dielectric housing surface covered with a metal coating layer MF that is conductively connected to the input side of each signal transmission path 86. used. In addition, dielectric resonators CV2 and CV3 having a metal coating layer MF are mounted on the mounting surface of the substrate on which the components of the polarized bandpass filter 1 are mounted and covered with the ground conductor foil 90, and the mounting surface. It is mounted with a predetermined gap h between them. The metal coating layer MF is conductively connected to the ground conductor foil 90 via the attenuation adjustment capacitor C12. As a result, the distributed constant line portions MSL3 and MSL4 are formed by the metal coating layer MF and the ground conductor foil 90. FIG. 21B shows an equivalent circuit of the mounting circuit of FIG. 21A.

図22は、その通過特性(上)と反射特性(下)との実測例を、異なる周波数スケールにて示すものである。2つの主回路がカスケード接続され、かつ、上記分定数線路部MSL3及びMSL4を設けたことで、通過域PBの端部形状がより急峻化できていることがわかる。なお、高域側基底減衰量と低域側基底減衰量とは、減衰調整用キャパシタC12の静電容量により調整することができる。   FIG. 22 shows measurement examples of the transmission characteristic (upper) and the reflection characteristic (lower) on different frequency scales. It can be seen that the end shape of the passband PB can be made steeper by providing the two main circuits in cascade and providing the above-described fractional line portions MSL3 and MSL4. Note that the high-frequency base attenuation and the low-frequency base attenuation can be adjusted by the capacitance of the attenuation adjustment capacitor C12.

本発明の有極型帯域通過フィルタの回路構成例を示す図。The figure which shows the circuit structural example of the polarized bandpass filter of this invention. その通過特性(上)と反射特性(下)との代表的な実測例を、異なる周波数スケールにて示す図。The figure which shows the typical measurement example of the transmission characteristic (upper) and reflection characteristic (lower) in a different frequency scale. 主回路の通過/反射特性を示すシミュレーション図。The simulation figure which shows the passage / reflection characteristic of a main circuit. トラップ回路の通過/反射特性を示すシミュレーション図。The simulation figure which shows the passage / reflection characteristic of a trap circuit. 主回路とトラップ回路とを組み合わせた場合の通過/反射特性を示すシミュレーション図。The simulation figure which shows the passage / reflection characteristic at the time of combining a main circuit and a trap circuit. 基底減衰量調整回路をさらに追加した場合の通過/反射特性を示すシミュレーション図。The simulation figure which shows the passage / reflection characteristic at the time of adding a base attenuation amount adjustment circuit further. フィルタ内蔵型ケーブルコネクタユニットとして構成した場合の実例を分解状態で示す斜視図。The perspective view which shows the example at the time of comprising as a filter built-in type cable connector unit in an exploded state. 基底減衰量調整回路の前段側の減衰調整用キャパシタを、トラップ回路の前段側に移動させ場合の通過特性及び反射特性の実測例。An example of actual measurement of pass characteristics and reflection characteristics when the attenuation adjustment capacitor on the front stage side of the base attenuation adjustment circuit is moved to the front stage side of the trap circuit. 主直列共振部に分布定数線路部MSL2を設けた場合の回路と、その通過/反射特性のシミュレーション結果とを示す図。The figure which shows the circuit at the time of providing the distributed constant line part MSL2 in the main series resonance part, and the simulation result of the passage / reflection characteristic. 分布定数線路部の形成例を示す基板のパターン図(表面側)。The board | substrate pattern figure (surface side) which shows the example of formation of a distributed constant track part. 分布定数線路部の形成例を示す基板のパターン図(裏面側)。The pattern figure (back side) of the board | substrate which shows the example of formation of a distributed constant track part. 地上波テレビ放送のチャンネル割当状況の一例を示す図。The figure which shows an example of the channel allocation condition of terrestrial television broadcasting. 図9の回路を地上波デジタルテレビ地域放送チャンネル(U23ch)の低域側直近に隣接する阻止チャンネル(U22ch)の周波数帯内に第一減衰極を位置させるように、各回路定数を適正化した例を示す図。Each circuit constant is optimized so that the first attenuation pole is located in the frequency band of the blocking channel (U22ch) adjacent to the low frequency side of the terrestrial digital television regional broadcasting channel (U23ch) in the circuit of FIG. The figure which shows an example. 実験に用いたシステムのブロック図。The block diagram of the system used for experiment. 実験に用いた市販のバンドエリミネートフィルタ(BEF)とハイパスフィルタ(HPF)の特性図。The characteristic view of the commercially available band elimination filter (BEF) and high pass filter (HPF) used for experiment. 図13の回路において、各回路定数を変更することにより、低域側基底減衰量に対し高域側基底減衰量を1dB差まで接近させた例を示す図。FIG. 14 is a diagram illustrating an example in which, in the circuit of FIG. 13, the high-frequency side base attenuation amount is approximated to a 1 dB difference with respect to the low-frequency side base attenuation amount by changing each circuit constant. トラップ回路において、結合キャパシタと並列にダンプ抵抗を挿入した例を示す図。The figure which shows the example which inserted the dump resistor in parallel with the coupling capacitor in the trap circuit. その通過/反射特性を示す実測図。The actual measurement figure which shows the transmission / reflection characteristic. 主直列共振部の直列共振結合素子をインダクタで構成した例を示す図。The figure which shows the example which comprised the series resonance coupling element of the main series resonance part with the inductor. 2つの主回路をカスケード接続した構成例を示す図。The figure which shows the structural example which cascade-connected two main circuits. 図20の回路の基板への部品実装状態を示す斜視図。The perspective view which shows the component mounting state to the board | substrate of the circuit of FIG. 図21Aの等価回路図。The equivalent circuit schematic of FIG. 21A. 図20の回路の通過/反射特性を示す実測図。FIG. 21 is an actual measurement diagram showing pass / reflection characteristics of the circuit of FIG. 20.

符号の説明Explanation of symbols

1 有極型帯域通過フィルタ
86 信号伝送路
A 主回路
CV1 主誘電体共振器
VC2 共振キャパシタ
C2,L1 直列共振結合素子
R2 ダンプ抵抗
MSL2 分布定数線路部
B トラップ回路
CV1 トラップ用誘電体共振器
C1 トラップ用共振キャパシタ
VC1 並列共振結合キャパシタ
L2 直列インダクタ
R1 ダンプ抵抗
C 基底減衰量調整回路
C3,C4 減衰調整用キャパシタ
MSL3,MSL4 分布定数線路部
PB 通過域
PP 第一減衰極
SP 第二減衰極
1 Polarized Band Pass Filter 86 Signal Transmission Line A Main Circuit CV1 Main Dielectric Resonator VC2 Resonant Capacitor C2, L1 Series Resonant Coupling Element R2 Dump Resistor MSL2 Distributed Constant Line Section B Trap Circuit CV1 Trapping Dielectric Resonator C1 Trap Resonant capacitor VC1 Parallel resonant coupling capacitor L2 Series inductor R1 Dump resistor C Base attenuation adjustment circuit C3, C4 Attenuation adjustment capacitor MSL3, MSL4 Distributed constant line part PB Passband PP First attenuation pole SP Second attenuation pole

Claims (13)

通過域の両端に第一減衰極と第二減衰極とを有する有極型帯域通過フィルタであって、
一端が入力部とされ他端が出力部とされた信号伝送路と、
前記信号伝送路上においてインダクタをなす主誘電体共振器と主共振キャパシタとが並列共振結合され、前記第二減衰極を形成するための並列共振減衰ピークを生じさせる主並列共振部と、当該主並列共振回路と直列共振結合するキャパシタからなる直列共振結合素子を有するとともに前記第一減衰極に対応した位置に直列共振通過ピークを有する主直列共振部とを有した主回路と、
前記信号伝送路から接地側に分岐する形で設けられ、インダクタをなすトラップ用誘電体共振器と並列共振結合キャパシタとを並列共振結合したトラップ用並列共振部と、当該トラップ用並列共振部と直列共振結合するキャパシタからなる直列共振結合素子を有するとともに、前記主直列共振部の前記直列共振通過ピークに隣接する位置に前記第一減衰極を形成するための直列共振減衰ピークを生じさせるトラップ回路と、
前記信号伝送路から接地側に分岐する形で設けられた減衰調整用キャパシタを有し、前記通過域の低域側及び高域側に隣接する阻止域の基底減衰量を調整する基底減衰量調整回路とを備え
前記トラップ回路において、前記直列共振結合素子と並列にダンプ抵抗が挿入されていることを特徴とする有極型帯域通過フィルタ。
A polarized bandpass filter having a first attenuation pole and a second attenuation pole at both ends of the passband,
A signal transmission line in which one end is an input unit and the other end is an output unit;
A main dielectric resonator that forms an inductor on the signal transmission line and a main resonance capacitor are coupled in parallel resonance, and a main parallel resonance unit that generates a parallel resonance attenuation peak for forming the second attenuation pole, and the main parallel resonance unit a main circuit having a main series resonance portion having a series resonance passage peak at a position corresponding to the first attenuation pole and has a Capacity data or Ranaru series resonant coupling element resonant circuit and the series resonant coupling,
A trap parallel resonance part, which is provided so as to branch from the signal transmission line to the ground side, and in which a trap dielectric resonator forming an inductor and a parallel resonance coupling capacitor are coupled in parallel resonance, and the trap parallel resonance part in series and has a Capacity data or Ranaru series resonant coupling element resonant coupling, causing a series resonance damping peak for forming the first attenuation pole at a position adjacent to said series resonant passage peak of the main series resonance portion trap Circuit,
A base attenuation adjustment for adjusting the base attenuation of the stop band adjacent to the low band side and the high band side of the pass band, having an attenuation adjustment capacitor provided so as to branch from the signal transmission path to the ground side With circuit ,
The polarized band pass filter according to claim 1 , wherein a dump resistor is inserted in parallel with the series resonant coupling element in the trap circuit .
通過域の両端に第一減衰極と第二減衰極とを有する有極型帯域通過フィルタであって、
一端が入力部とされ他端が出力部とされた信号伝送路と、
前記信号伝送路上においてインダクタをなす主誘電体共振器と主共振キャパシタとが並列共振結合され、前記第二減衰極を形成するための並列共振減衰ピークを生じさせる主並列共振部と、当該主並列共振回路と直列共振結合するインダクタからなる直列共振結合素子を有するとともに前記第一減衰極に対応した位置に直列共振通過ピークを有する主直列共振部とを有した主回路と、
前記信号伝送路から接地側に分岐する形で設けられ、インダクタをなすトラップ用誘電体共振器と並列共振結合キャパシタとを並列共振結合したトラップ用並列共振部と、当該トラップ用並列共振部と直列共振結合するインダクタからなる直列共振結合素子を有するとともに、前記主直列共振部の前記直列共振通過ピークに隣接する位置に前記第一減衰極を形成するための直列共振減衰ピークを生じさせるトラップ回路と、
前記信号伝送路から接地側に分岐する形で設けられた減衰調整用キャパシタを有し、前記通過域の低域側及び高域側に隣接する阻止域の基底減衰量を調整する基底減衰量調整回路とを備え、
前記トラップ回路において、前記直列共振結合素子と並列にダンプ抵抗が挿入されていることを特徴とする有極型帯域通過フィルタ。
A polarized bandpass filter having a first attenuation pole and a second attenuation pole at both ends of the passband,
A signal transmission line in which one end is an input unit and the other end is an output unit;
A main dielectric resonator that forms an inductor on the signal transmission line and a main resonance capacitor are coupled in parallel resonance, and a main parallel resonance unit that generates a parallel resonance attenuation peak for forming the second attenuation pole, and the main parallel resonance unit A main circuit having a series resonance coupling element including an inductor coupled in series resonance with the resonance circuit and having a main series resonance part having a series resonance passing peak at a position corresponding to the first attenuation pole;
A trap parallel resonance part, which is provided so as to branch from the signal transmission line to the ground side, and in which a trap dielectric resonator forming an inductor and a parallel resonance coupling capacitor are coupled in parallel resonance, and the trap parallel resonance part in series A trap circuit having a series resonant coupling element including a resonantly coupled inductor and generating a series resonant attenuation peak for forming the first attenuation pole at a position adjacent to the series resonant passing peak of the main series resonant unit; ,
A base attenuation adjustment for adjusting the base attenuation of the stop band adjacent to the low band side and the high band side of the pass band, having an attenuation adjustment capacitor provided so as to branch from the signal transmission path to the ground side With circuit,
The polarized band pass filter according to claim 1 , wherein a dump resistor is inserted in parallel with the series resonant coupling element in the trap circuit .
前記基底減衰量調整回路は、前記主回路の前段側及び後段側にて接地側にそれぞれ分岐する形で設けられた1対の減衰調整用キャパシタを有する高低域π形フィルタ回路である請求項1又は請求項2に記載の有極型帯域通過フィルタ。 2. The base attenuation adjustment circuit is a high / low-pass π-type filter circuit having a pair of attenuation adjustment capacitors provided so as to branch to the ground side on the front side and the rear side of the main circuit, respectively. Alternatively, a polarized bandpass filter according to claim 2. 前記主回路に基づく前記第一減衰極が、前記主並列共振回路に基づく前記第二減衰極に対し低域側において、減衰ピーク幅が前記第二減衰極の減衰ピーク幅よりも狭くなる形で形成される請求項1に記載の有極型帯域通過フィルタ。 The first attenuation pole based on the main circuit is configured such that the attenuation peak width is narrower than the attenuation peak width of the second attenuation pole on the lower side than the second attenuation pole based on the main parallel resonant circuit. The polarized bandpass filter according to claim 1, which is formed . 前記基底減衰量調整回路は、通過域の高域側に隣接する阻止域の基底減衰量が低域側に隣接する阻止域の基底減衰量よりも大きくなるように調整するものである請求項4記載の有極型帯域通過フィルタ。 5. The base attenuation adjustment circuit adjusts the base attenuation of a stop band adjacent to the high band side of the pass band to be larger than the base attenuation of the stop band adjacent to the low band side. The described polarized bandpass filter. 地上波デジタルテレビ広域放送チャンネル系列の高域側に、それら広域放送チャンネ系列よりも送信電力レベルが小さい地上波デジタルテレビ地域放送チャンネルが隣接設定されるとともに、該地上波デジタルテレビ地域放送チャンネルのさらに高域側に、地上波デジタルテレビ広域放送チャンネル系列側よりも広いチャンネル間周波数帯域を隔てた形で、前記地上波デジタルテレビ地域放送チャンネルよりも送信電力レベルが大きい地上波アナログ放送チャンネル系列が設定されてなり、
通過域が前記地上波デジタルテレビ地域放送チャンネルの周波数帯と一致するように設定され、低域側阻止域が前記地上波デジタルテレビ広域放送チャンネル系列の周波数帯と一致するように設定され、高域側阻止域が前記地上波アナログ放送チャンネル系列周波数帯と一致するように設定されてなる請求項1、請求項4、請求項5のいずれか1項に記載の有極型帯域通過フィルタ。
A terrestrial digital television regional broadcast channel having a transmission power level smaller than those of the wide-area broadcast channel series is set adjacent to the high frequency side of the terrestrial digital television wide-area broadcast channel sequence, A terrestrial analog broadcast channel sequence with a higher transmission power level than the terrestrial digital television regional broadcast channel is set on the high frequency side, with a wider frequency band between channels than the terrestrial digital television wide-area broadcast channel sequence side set. Being
The passband is set to coincide with the frequency band of the terrestrial digital television regional broadcast channel, the low band side stopband is set to coincide with the frequency band of the terrestrial digital television wideband broadcast channel series, The polarized bandpass filter according to any one of claims 1, 4, and 5, wherein a side stop band is set to coincide with the terrestrial analog broadcast channel sequence frequency band.
前記地上波デジタルテレビ地域放送チャンネルの低域側直近に隣接するチャンネルの周波数帯内に前記第一減衰極が位置し、同じく高域側直近に隣接するチャンネルの周波数帯内に前記第二減衰極が位置するように、各減衰極の位置が調整されてなる請求項6記載の有極型帯域通過フィルタ。   The first attenuation pole is located in a frequency band of a channel adjacent to the terrestrial digital television area broadcasting channel and adjacent to the low frequency side, and the second attenuation pole is also positioned in a frequency band of the channel adjacent to the high frequency side. The polarized bandpass filter according to claim 6, wherein the position of each attenuation pole is adjusted so that is positioned. 記主回路に基づく前記第一減衰極が前記主並列共振回路に基づく前記第二減衰極に対し高域側に位置し、前記第一減衰極の減衰ピーク幅が前記第二減衰極の減衰ピーク幅よりも狭くなる形で形成される請求項2記載の有極型帯域通過フィルタ。 Wherein the first attenuation pole based on prior Symbol main circuit located in the high frequency side relative to the second attenuation pole based on the main parallel resonant circuit, the attenuation attenuation peak width of the first attenuation pole of the second attenuation pole The polarized bandpass filter according to claim 2 , wherein the polarized bandpass filter is formed to be narrower than a peak width. 前記信号伝送路上にて前記主回路に対し並列挿入される形で、前記第二減衰極の減衰深さを軽減するためのダンプ抵抗が設けられてなる請求項1ないし請求項8のいずれか1項に記載の有極型帯域通過フィルタ。   The dump resistor for reducing the attenuation depth of the second attenuation pole is provided so as to be inserted in parallel with the main circuit on the signal transmission line. The polarized bandpass filter according to item. 前記主並列共振部において前記主共振キャパシタに対して直列に、かつ前記誘電体共振器に対して並列となるように、前記通過域の高域端側又は低域端側の通過特性を急峻化するための分布定数線路部が設けられている請求項1ないし請求項9のいずれか1項に記載の有極型帯域通過フィルタ。   The pass characteristics on the high band end side or low band end side of the pass band are sharpened so that the main parallel resonance unit is in series with the main resonance capacitor and in parallel with the dielectric resonator. The polarized bandpass filter according to any one of claims 1 to 9, wherein a distributed constant line portion is provided. 前記基底減衰量調整回路は、前記減衰調整用キャパシタと直列接続される分布定数線路部を有する請求項1又は請求項2に記載の有極型帯域通過フィルタ。 3. The polarized bandpass filter according to claim 1, wherein the base attenuation adjustment circuit includes a distributed constant line portion connected in series with the attenuation adjustment capacitor. 前記主並列共振回路に組み込まれた前記誘電体共振器は、誘電体筐体表面が、前記信号伝送路の入力側に導通接続された金属被覆層により覆われてなり、
前記有極型帯域通過フィルタの構成部品が実装されるとともに接地導体箔により被覆された基板の実装面に、前記金属被覆層を有する前記誘電体共振器が前記実装面との間に所定の隙間を生じさせた形で実装されてなり、該金属被覆層が前記減衰調整用キャパシタを介して前記接地導体箔に導通接続されてなり、
前記金属被覆層と前記接地導体箔とが前記分布定数線路部を形成してなる請求項11記載の有極型帯域通過フィルタ。
The dielectric resonator incorporated in the main parallel resonant circuit has a dielectric housing surface covered with a metal coating layer that is conductively connected to the input side of the signal transmission path,
The dielectric resonator having the metal coating layer is mounted on the mounting surface of the substrate on which the component parts of the polarized bandpass filter are mounted and covered with the ground conductor foil. And the metal coating layer is conductively connected to the ground conductor foil via the attenuation adjustment capacitor,
The polarized bandpass filter according to claim 11, wherein the metal coating layer and the ground conductor foil form the distributed constant line portion.
前記信号伝送路上にて、複数の前記主回路がカスケード接続されてなり、
前記基底減衰量調整回路は、前記減衰調整用キャパシタと前記分布定数線路部との組が各前記主並列共振回路に個別に随伴して設けられている請求項12記載の有極型帯域通過フィルタ。
A plurality of the main circuits are cascade-connected on the signal transmission path,
13. The polarized band-pass filter according to claim 12, wherein the base attenuation adjustment circuit includes a set of the attenuation adjustment capacitor and the distributed constant line section, each associated with each main parallel resonance circuit. .
JP2007125914A 2007-05-10 2007-05-10 Polarized bandpass filter Expired - Fee Related JP4854589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007125914A JP4854589B2 (en) 2007-05-10 2007-05-10 Polarized bandpass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007125914A JP4854589B2 (en) 2007-05-10 2007-05-10 Polarized bandpass filter

Publications (2)

Publication Number Publication Date
JP2008283478A JP2008283478A (en) 2008-11-20
JP4854589B2 true JP4854589B2 (en) 2012-01-18

Family

ID=40143919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007125914A Expired - Fee Related JP4854589B2 (en) 2007-05-10 2007-05-10 Polarized bandpass filter

Country Status (1)

Country Link
JP (1) JP4854589B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948430B (en) * 2020-07-06 2023-01-10 中国电力科学研究院有限公司 Method and system for determining parameters of wave trapper of test line segment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615023A (en) * 1984-06-18 1986-01-10 Yasutake Hichi Low-caloric drink and food
JPH04114505A (en) * 1990-09-04 1992-04-15 Ikeda Takeshi Resonance filter
JP2587880B2 (en) * 1990-12-26 1997-03-05 宇部興産株式会社 Dielectric low-pass filter
JPH10126102A (en) * 1996-10-18 1998-05-15 Rikagaku Kenkyusho Filter circuit
JP2000201003A (en) * 1999-01-06 2000-07-18 Hitachi Metals Ltd Dielectric resonator and dielectric filter

Also Published As

Publication number Publication date
JP2008283478A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
US10284163B2 (en) Frequency-variable LC filter and high-frequency front end circuit
US20100291946A1 (en) High-frequency filter
US20170302243A1 (en) Filter circuit, rf front end circuit, and communication apparatus
DE19960299A1 (en) Duplexer with improved transmission / reception band separation
US10476535B2 (en) High-frequency front end circuit and communication apparatus
US10439582B2 (en) Variable-frequency LC filter, high-frequency frontend module, and communication apparatus
JP4910586B2 (en) Transmission / reception device and electronic apparatus using the same
WO2017170071A1 (en) Variable-frequency filter, rf front end circuit, and communication terminal
US10566950B2 (en) Variable frequency filter and high-frequency front end circuit
CA2044501A1 (en) Linear phase low pass filter
US10547337B2 (en) Radio frequency front-end circuit and communication device
WO2015128006A1 (en) Combined impedance adjustment and hf filter circuit
US20180241367A1 (en) High-frequency front end circuit and spurious-wave suppressing method
JP4854589B2 (en) Polarized bandpass filter
WO2020004340A1 (en) Multiplexer
JP4917058B2 (en) Antenna mixer
JP5940880B2 (en) Band stop filter
JP4713331B2 (en) Constant attenuation filter
EP1277336A2 (en) Sharply tuned bandpass filter
JP2007267344A (en) Polar band-reject filter
US10522889B2 (en) Tunable passive enhance Q microwave notch filter
JP2018107688A (en) Communication apparatus
US8089006B2 (en) High performance resonant element
Horlbeck et al. Direct Sampling Receiver with an Adjustable Bandpass Filter for Use in Passive Radar with FM Radio
JP4584664B2 (en) Booster for television receiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees