JP4852737B2 - Method for producing recycled Fe-Al composite material - Google Patents

Method for producing recycled Fe-Al composite material Download PDF

Info

Publication number
JP4852737B2
JP4852737B2 JP2004280144A JP2004280144A JP4852737B2 JP 4852737 B2 JP4852737 B2 JP 4852737B2 JP 2004280144 A JP2004280144 A JP 2004280144A JP 2004280144 A JP2004280144 A JP 2004280144A JP 4852737 B2 JP4852737 B2 JP 4852737B2
Authority
JP
Japan
Prior art keywords
composite material
waste material
waste
material containing
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004280144A
Other languages
Japanese (ja)
Other versions
JP2006089838A (en
Inventor
貴臣 糸井
暁 峰田
光治 広橋
享祐 吉見
修治 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2004280144A priority Critical patent/JP4852737B2/en
Publication of JP2006089838A publication Critical patent/JP2006089838A/en
Application granted granted Critical
Publication of JP4852737B2 publication Critical patent/JP4852737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、鉄を含む廃材とアルミニウムを含む廃材とを溶解して複合材料を製造する方法に関する。   The present invention relates to a method for producing a composite material by melting a waste material containing iron and a waste material containing aluminum.

鉄やアルミニウムは我々の生活に必要不可欠な金属であり、精錬により製造される。これら金属の精錬において、既に製品として市場に流通した金属をリサイクルする場合(これを「二次精錬」という。)に要するエネルギーは、鉱石からバージン材を精錬する場合(これを「一次精錬」という)に要するエネルギーに比べて非常に少ないと見積もられている。また、金属資源についても採掘される資源である限り枯渇が懸念されている。したがって二次精錬は、エネルギー消費や環境負荷軽減という観点から必須な検討事項である。 Iron and aluminum are indispensable metals for our lives and are manufactured by refining. In refining these metals, the energy required to recycle the metal that has already been distributed to the market as a product (this is called “secondary refining”) is the energy required for refining virgin material from ore (this is called “primary refining”). It is estimated that it is much less than the energy required for As for metal resources, as long as they are mined resources, there is concern about depletion. Therefore, secondary refining is an essential consideration from the viewpoint of energy consumption and environmental load reduction.

しかし、現状の二次精錬では一次精錬よりも多くのエネルギーを必要としてしまう場合が多い。これは、金属の選別回収の困難さや金属を用いる製品の軽薄短小化に伴う複雑なパッケージングの問題等により廃材の低品位化が起こっている一方、このような低品位な廃材から金属を精錬する技術が確立されておらず、二次精錬を行う前にまず鉄やアルミニウムを含む廃材を高品位な状態、例えばバージン材もしくはそれに近い状態へと戻す必要があるためである。この結果、二次精錬の方が却ってコスト高となってしまう。 However, current secondary refining often requires more energy than primary refining. This is due to the difficulty in sorting and collecting metals and the complex packaging problems associated with the reduction in the size and weight of products that use metals, while reducing the quality of waste materials, while refining metals from such low-quality waste materials. This is because the technology to do this has not been established, and it is necessary to return the waste material containing iron and aluminum to a high quality state, for example, a virgin material or a state close thereto, before performing secondary refining. As a result, the cost of secondary refining is rather high.

二次精錬の技術は上記のとおり現代社会において必要不可欠な技術であるものの、コスト高は工業的な観点から二次精錬普及の障害となっている。従って二次精錬の普及を推進するためにはコストを低減する即ち低品位な廃材から金属を精錬する技術を確立する必要がある。 Although secondary refining technology is an indispensable technology in modern society as described above, the high cost is an obstacle to the spread of secondary refining from an industrial viewpoint. Therefore, in order to promote the popularization of secondary refining, it is necessary to establish a technology for refining metals from low-grade waste materials that reduces costs.

これに関する技術として、高炭素クロム鋼の研削スラッジと廃アルミニウム缶材を用いてリサイクル型Fe−Al複合材料を製造する技術が下記非特許文献1に示唆されている。
2003年第132回日本金属学会春季大会講演概要集258頁
Non-Patent Document 1 below suggests a technique for manufacturing a recycled Fe—Al composite material using high carbon chrome steel grinding sludge and waste aluminum can material.
258th Annual Meeting of the 132nd Annual Meeting of the Japan Institute of Metals

上記非特許文献1に記載された発明は、低品位な廃材である研削スラッジと廃アルミニウム缶材を用いてリサイクル型Fe−Al複合材料を製造することができる上で有用であるが、耐摩耗性において更に改良することが望まれる。   The invention described in Non-Patent Document 1 is useful in that it is possible to produce a recycled Fe-Al composite material using grinding sludge, which is a low-grade waste material, and a waste aluminum can material. It is desirable to further improve the properties.

そこで、本発明は上記課題に着目し、耐摩耗性をより向上させたリサイクル型Fe−Al複合材料を製造する方法を提供することを目的とする。   Then, this invention pays attention to the said subject, and it aims at providing the method of manufacturing the recycle type Fe-Al composite material which improved abrasion resistance more.

上記目的を達成するため、具体的に本発明は以下の手段を採用する。
第一の手段として、鉄を含む廃材と、アルミニウムを含む廃材と、IVA族元素、VA族元素、VIA族元素又はVIIA族元素の少なくともいずれか(以下単に「炭化物形成元素」という)と、を溶解して複合材料を製造する方法とする。
本発明者らは、鉄を含む廃材とアルミニウムを含む廃材とを混合してFe−Al複合材料を製造する際、廃材一般に含まれている炭素に着目した。この場合炭素はFeAlのマトリックス中にFeAlC0.5という形で含有されており、これを何らかの形で他の炭化物として機械的性質向上に寄与させることができないかと考えた。そしてこの炭素を利用すべく炭化物形成元素を添加させて一緒に溶解させたところ、非常に耐摩耗性が向上することが実験的に確かめられた。しかもこれによって、たとえ低品位な廃材であったとしても、むしろこれを積極的に利用して機械的性能が向上した複合材料を得ることができるようになったのである。なお、溶解時に炭化物形成元素を添加する事で、一回の溶解でミクロンオーダーの炭化物が分散した複合材料を簡便に作製することができる。
In order to achieve the above object, the present invention specifically adopts the following means.
As a first means, a waste material containing iron, a waste material containing aluminum, and at least one of group IVA element, group VA element, group VIA element or group VIIA element (hereinafter simply referred to as “carbide-forming element”), It is set as the method of manufacturing a composite material by melt | dissolving.
The inventors focused on carbon contained in waste materials in general when a waste material containing iron and a waste material containing aluminum are mixed to produce a Fe-Al composite material. In this case, carbon was contained in the form of Fe 3 AlC 0.5 in the Fe 3 Al matrix, and it was thought that this could be contributed to the improvement of mechanical properties as another carbide in some form. It was experimentally confirmed that when this carbon was used and a carbide forming element was added and dissolved together, the wear resistance was greatly improved. In addition, even if it is a low-grade waste material, it is possible to obtain a composite material with improved mechanical performance by actively utilizing this. Note that by adding a carbide-forming element at the time of dissolution, a composite material in which micron-order carbides are dispersed by a single dissolution can be easily produced.

なおここで「廃材」とは、1mm以下の粉末形状、または5cm以下の小片形状のものをいい、廃材としては例えば、スクラップ状のものや粉末形状など形状的に低品位な物が該当する。なお廃材である限りにおいて高品位であっても本手段の効果を奏することはできるが、廃材が低品位である場合には本手段による効果はより一層顕著となる。
また、鉄を含む廃材としては、研削スラッジ粉末、廃自動車部品が該当し、アルミニウムを含む廃材としては、廃アルミニウム缶、廃スチール缶(蓋の部分がアルミニウム)、廃建材アルミニウム部材等が該当する。
Here, the “waste material” means a powder shape of 1 mm or less or a small piece shape of 5 cm or less, and examples of the waste material include low-quality items such as scrap-like materials and powder shapes. The effect of this means can be obtained even if it is high quality as long as it is waste material, but the effect of this means becomes even more remarkable when the waste material is low quality.
In addition, scrap materials containing iron correspond to ground sludge powder and scrap automobile parts, and scrap materials including aluminum include scrap aluminum cans, scrap steel cans (the lid part is aluminum), scrap building material aluminum members, etc. .

また本手段において、溶解する方法は廃材を溶解することができる限りにおいて様々採用することができ、例えばいわゆる高周波炉を用いる方法、電気炉を用いる方法等が採用可能である。また、この溶解する際の雰囲気としては大気(空気)や不活性ガス(Ar、N等)を用いることができる。大気の場合は、廃材をそのまま大気下の炉で溶解させることができるためコストの上で非常に有利であり、不活性ガスの場合は廃材中の鉄の酸化を防ぐことができるためより性能を向上させた複合材料を得ることができる点で有利である。 In this means, various melting methods can be employed as long as the waste material can be melted. For example, a method using a so-called high-frequency furnace, a method using an electric furnace, or the like can be employed. As the atmosphere in which the solubility can be used air (air) or an inert gas (Ar, N 2, etc.). In the case of the atmosphere, the waste material can be dissolved as it is in a furnace under the atmosphere, which is very advantageous in terms of cost. In the case of an inert gas, the oxidation of iron in the waste material can be prevented, so that the performance is improved. This is advantageous in that an improved composite material can be obtained.

また本手段において「IVA族元素、VA族元素、VIA族元素又はVIIA族元素」即ち「炭化物形成元素」とは、元素の周期表における遷移元素であって、例えばTi、V、Cr、Mn、Zr、Nb、Mo、Tc、Hf、Ta、W、Re等が該当する。これら元素は廃材中に存在する炭素(C)と炭化物を形成することができるものであれば特段に制限はない。   Further, in this means, “Group IVA element, Group VA element, Group VIA element or Group VIIA element”, that is, “carbide forming element” is a transition element in the periodic table of elements, for example, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re, etc. are applicable. These elements are not particularly limited as long as they can form carbon (C) and carbides in the waste material.

また本手段において、鉄を含む廃材又はアルミニウムを含む廃材は前記複合材料全体に対し5at%以下の炭素を含有し、炭化物形成元素は、前記複合材料全体に対し5at%以下含有するよう溶解されることも望ましい。これは炭化物が複合材料に及ぼす耐摩擦性向上に寄与するのに適する量であって、炭素が微量でも含まれていれば耐摩擦性を向上させることができる。しかし一方で、5at%を超えてしまうと、複合材料がもろくなり機械的強度の低下を招いてしまう場合がある。またこの場合において炭化物元素と炭素との量は1:1であることも望ましい。   Further, in this means, the waste material containing iron or the waste material containing aluminum contains 5 at% or less of carbon with respect to the entire composite material, and the carbide forming element is dissolved so as to contain 5 at% or less with respect to the entire composite material. It is also desirable. This is an amount suitable for contributing to the improvement of the friction resistance that the carbide exerts on the composite material, and if the carbon is contained even in a trace amount, the friction resistance can be improved. On the other hand, if it exceeds 5 at%, the composite material may be fragile and mechanical strength may be reduced. In this case, it is also desirable that the amount of carbide element and carbon is 1: 1.

また本手段において、鉄を含む廃材:アルミニウムを含む廃材は65〜74at%:35〜26at%の範囲であることも望ましい。これはFeAlを形成させるのに必要な範囲であることに起因する。FeAlは硬く、また室温から高温域までの降伏強度も高く、更に耐酸化特性に優れている事が知られているためである。また、複合材料はFeAl/TiCであることも発明を明確にする上で望ましい。 Moreover, in this means, it is also desirable that the waste material containing iron: the waste material containing aluminum is in the range of 65 to 74 at%: 35 to 26 at%. This is due to the fact that the range is necessary for forming Fe 3 Al. This is because Fe 3 Al is hard, has high yield strength from room temperature to high temperature, and is further known to have excellent oxidation resistance. It is also desirable for clarifying the invention that the composite material is Fe 3 Al / TiC.

また本手段において、溶解を大気雰囲気中で行うことは低コスト化において非常に有用であり、溶解を不活性ガス雰囲気中で行うことは複合材料の性質向上を目指す上で有用である。   Further, in this means, it is very useful to reduce the cost to perform the dissolution in an air atmosphere, and it is useful to improve the properties of the composite material to perform the dissolution in an inert gas atmosphere.

また本手段において、複合材料は、電車又は自動車の部品に用いられるものとすることも望ましい。特に、本複合材料は耐摩擦性に優れるため特にエンジン部内のブレークディスク等の耐摩擦性が望まれる材料に使用すると効果的である。   In this means, it is also desirable that the composite material be used for train or automobile parts. In particular, since this composite material is excellent in friction resistance, it is particularly effective when used for a material for which friction resistance is desired, such as a break disk in an engine section.

以上、より耐摩耗性を向上させたリサイクル型Fe−Al複合材料の製造方法を提供することができる。   As mentioned above, the manufacturing method of the recycle type Fe-Al composite material which improved the abrasion resistance more can be provided.

以下、本発明を実施の形態について実施例を用いて説明する。   Hereinafter, the present invention will be described with reference to embodiments.

本実施例では、鉄を含む廃材として、1μm〜1mm程度の径を有する粉末形状のSUJ2研削スラッジ(図1(A)参照)を採用し、アルミニウムを含む廃材として、1mm〜30mm程度の径を有するスクラップ(小片)形状のAlペレット(図1(B)参照)を、「IVA族元素、VA族元素、VIA族元素又はVIIA族元素」の例として、Tiを用いた。なおSUJ2研削スラッジの化学成分を下記表1に、Alペレットの化学成分を下記表2にそれぞれ示す。なお表1、表2において「Bal.」は残部であることを示す。
In this embodiment, powdery SUJ2 grinding sludge (see FIG. 1 (A)) having a diameter of about 1 μm to 1 mm is used as the waste material containing iron, and the diameter of about 1 mm to 30 mm is used as the waste material containing aluminum. The scrap (small piece) -shaped Al pellet (see FIG. 1B) having Ti was used as an example of “IVA group element, VA group element, VIA group element or VIIA group element”. The chemical components of SUJ2 grinding sludge are shown in Table 1 below, and the chemical components of Al pellets are shown in Table 2 below. In Tables 1 and 2, “Bal.” Indicates the balance.

また本実施例においては、鉄を含む廃材とアルミニウムを含む廃材の配合量を変えた試料を複数作成した。下記表3に配合量等を示す。なお表3においてFeのat%、Alのat%は、それぞれ廃材において炭素を除いた他の元素の量を含めて表記している。
In this example, a plurality of samples were prepared in which the blending amount of the waste material containing iron and the waste material containing aluminum was changed. Table 3 below shows blending amounts and the like. In Table 3, at% of Fe and at% of Al are shown including the amounts of other elements in the waste material excluding carbon.

本実施例では、溶解する方法として、一般に市販されている高周波炉(大亜真空社製)を用いた。図2にその外観を示す。またこの溶解の際の雰囲気としてはArガスを用いた。溶解は鉄を含む廃材とアルミニウムを含む廃材とを1800度で十分に溶解した後、Tiを加えて1800度で更に溶解した。そして十分溶解させた後、鋳型に鋳造する事で25度まで冷却し、φ12mm×285mmの棒状に鋳込んで複合材料を得た。図3に試料番号2について得た複合材料の写真を示す。   In this example, a commercially available high frequency furnace (manufactured by Daia Vacuum) was used as a melting method. The external appearance is shown in FIG. Further, Ar gas was used as the atmosphere during the dissolution. The melting was performed by sufficiently dissolving the waste material containing iron and the waste material containing aluminum at 1800 degrees, and then adding Ti to further dissolve at 1800 degrees. And after making it fully melt | dissolve, it cooled to 25 degree | times by casting to a casting_mold | template, and it casted in the rod shape of (phi) 12mmx285mm, and obtained the composite material. FIG. 3 shows a photograph of the composite material obtained for sample number 2.

そしてこれら作成した試料に対し、その組織の観察を種々行った。図4に、試料番号2の複合材料の組織についてのSEM写真を示す。図4に示すように、本複合材料では2〜5μm程度の炭化物1(TiC)が、母相であるFeAl中に分散されていた。つまりTiの添加により炭化物を形成させることができた。 And the structure | tissue was observed variously with respect to these created samples. In FIG. 4, the SEM photograph about the structure | tissue of the composite material of the sample number 2 is shown. As shown in FIG. 4, in this composite material, about 1 to 5 μm of carbide 1 (TiC) was dispersed in Fe 3 Al as a parent phase. That is, carbides could be formed by adding Ti.

また、図5に本複合材料の組織についての透過型顕微鏡写真を示す。図5で示すとおり、方形のTiCと推察できる部分が確認できた。   FIG. 5 shows a transmission micrograph of the structure of the composite material. As shown in FIG. 5, a portion that could be inferred as square TiC was confirmed.

また、図6に本複合試料について、図5の方形のTiCと推察される部分に行った電子線回折の結果についても示す。図6で示すとおり、本複合材料は、NaCl型のTiCであると結論付けることができた。   In addition, FIG. 6 also shows the results of electron diffraction performed on the portion of the composite sample inferred as the square TiC in FIG. As shown in FIG. 6, it was concluded that this composite material was NaCl-type TiC.

なお上記試料番号1〜4についても同様の解析を行ったが、いずれも同様な結果を示した(図示せず)。   In addition, although the same analysis was performed also about the said sample numbers 1-4, all showed the same result (not shown).

一方、試料番号5について同様の解析を行ったが、試料番号1〜4のような結果を得ることはできなかった。図7に試料番号5の組織についてのSEM写真を示す。なお図7中棒状に見えるものはFeAlC0.5である。 On the other hand, the same analysis was performed for sample number 5, but results such as sample numbers 1 to 4 could not be obtained. FIG. 7 shows an SEM photograph of the sample No. 5 tissue. In addition, what looks like a rod shape in FIG. 7 is Fe 3 AlC 0.5 .

次に、これら試料に対する磨耗量の測定を行った。
測定において実験試料は、図3で示す複合材料からφ8mm×25mmに切り出し、Pin on Disk方式により行った。図8(A)にPin試験片を、図8(b)にDisk試験片を、図8(c)にPin on Disk式摩擦摩耗試験機の概略を示す。なおDisk試験片は1260Hv10のAlを用いている。
Next, the amount of wear on these samples was measured.
In the measurement, an experimental sample was cut into φ8 mm × 25 mm from the composite material shown in FIG. 3 and performed by the Pin on Disk method. FIG. 8A shows a Pin test piece, FIG. 8B shows a Disk test piece, and FIG. 8C shows an outline of a Pin on Disk friction and wear tester. The disk test piece uses 1260Hv10 Al 2 O 3 .

そしてこの摩擦摩耗試験の結果を図9に示す。図中、Re−FeAl/TiCは本実施例にかかる複合材料の結果(そのうちの試料番号2の結果)を示し、Re−FeAlは試料番号6のTiを添加していない場合の結果を、FeAlは純鉄及び純アルミニウムから作成したFeAlの結果を、SUJ2はSUJ2の結果を、FC200はFC200(鋳鉄)の結果をそれぞれ示す。なおこの試験条件としては、すべり速度は0.42m/s、すべり距離は754m、加重は49N、98N、147N、196Nとした。また、それぞれのPin試験片における複合材料の硬さは以下の表4のとおりであった。本実施例にかかる複合材料の硬さはFeAlやSUJ2などよりも十分硬いことが確認できた。もちろん試料番号1〜4については同様の結果を示していた(同様であったため図省略)。
The results of this friction and wear test are shown in FIG. In the figure, Re-Fe 3 Al / TiC shows the result of the composite material according to the present example (the result of sample number 2), and Re-Fe 3 Al shows the case where Ti of sample number 6 is not added. the results, the Fe 3 Al as a result of Fe 3 Al created from pure iron and pure aluminum, SUJ2 is a result of the SUJ2, FC200 denotes a result of FC200 (cast iron). As test conditions, the sliding speed was 0.42 m / s, the sliding distance was 754 m, and the load was 49 N, 98 N, 147 N, and 196 N. Moreover, the hardness of the composite material in each Pin test piece was as shown in Table 4 below. It was confirmed that the composite material according to this example was sufficiently harder than Fe 3 Al, SUJ2, or the like. Of course, the same results were shown for sample numbers 1 to 4 (the figure was omitted because it was the same).

図9の結果によると、本実施例にかかる複合材料は、他の例に比べて摩擦量が減少していることを示している。特に加重を大きくしても摩擦量の増加は他の材料に比べ小さく、しかも他の材料との差が顕著となっていることが確認できた。   According to the result of FIG. 9, the composite material according to the present example shows that the friction amount is reduced as compared with the other examples. In particular, even when the load was increased, the increase in the amount of friction was small compared to other materials, and it was confirmed that the difference from other materials was significant.

以上、廃材を用いて、廃材に含まれる不純物を持て余すことなく有効活用し、簡便に鉄アルミナイド基複合材料が製造できた。また、作製したリサイクルの複合材料が優れた耐摩耗特性を有していることが確認できた。   As described above, the iron aluminide-based composite material can be easily produced by using the waste material and effectively utilizing the impurities contained in the waste material. It was also confirmed that the produced recycled composite material had excellent wear resistance characteristics.

実施例で用いた鉄を含む廃材及びアルミニウムを含む廃材を示す図The figure which shows the waste material containing iron and the waste material containing aluminum used in the Example 実施例で用いた高周波炉を示す図。The figure which shows the high frequency furnace used in the Example. 実施例で製造した棒状の複合材料を示す図。The figure which shows the rod-shaped composite material manufactured in the Example. 実施例における複合材料の組織のSEM写真。The SEM photograph of the structure | tissue of the composite material in an Example. 実施例における複合材料の組織のTEM写真。The TEM photograph of the structure | tissue of the composite material in an Example. 実施例における複合材料の電子線回折の結果を示す図。The figure which shows the result of the electron beam diffraction of the composite material in an Example. 比較例(試料番号5)としての複合材料の組織のSEM写真SEM photograph of composite material structure as a comparative example (Sample No. 5) Pin試験片、Disk試験片、Pin on Disk試験装置の概略を示す図。The figure which shows the outline of a Pin test piece, a Disk test piece, and a Pin on Disk test apparatus. Pin on Diskの試験結果を示す図。The figure which shows the test result of Pin on Disk.

Claims (5)

鉄及び炭素を含む1mm以下の切削スラッジ粉末形状の廃材と、アルミニウムを含む廃材を高周波炉によって溶解し、
前記溶解後、Ti、Zr、V、Nbの少なくともいずれかを含む炭化物形成元素を加えて更に溶解して、全体に対して炭素が5at%以下の範囲となるよう炭化物を含む複合材料を製造する方法であって、
前記鉄及び炭素を含む廃材:前記アルミニウムを含む廃材は65〜74at%:35〜26at%の範囲である複合材料を製造する方法。
1 mm or less of waste material in the form of cutting sludge powder containing iron and carbon and waste material containing aluminum are melted by a high frequency furnace,
After the dissolution, a carbide-forming element containing at least one of Ti, Zr, V, and Nb is added and further dissolved to produce a composite material containing carbide so that the carbon content is within a range of 5 at% or less. A method ,
Waste material containing iron and carbon: A method for producing a composite material in which the waste material containing aluminum is in the range of 65 to 74 at%: 35 to 26 at%.
前記複合材料はFeAl/TiCであることを特徴とする請求項1に記載の複合材料を製造する方法。 The method of manufacturing a composite material according to claim 1, wherein the composite material is Fe 3 Al / TiC. 前記溶解は、大気雰囲気中で行われることを特徴とする請求項1記載の複合材料を製造する方法。   The method for producing a composite material according to claim 1, wherein the melting is performed in an air atmosphere. 前記溶解は、不活性ガス雰囲気中で行われることを特徴とする請求項1記載の複合材料を製造する方法。   The method for producing a composite material according to claim 1, wherein the dissolution is performed in an inert gas atmosphere. 前記複合材料は、電車又は自動車の部品に用いられることを特徴とする請求項1記載の複合材料の製造方法。
The method for producing a composite material according to claim 1, wherein the composite material is used for parts of a train or an automobile.
JP2004280144A 2004-09-27 2004-09-27 Method for producing recycled Fe-Al composite material Active JP4852737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004280144A JP4852737B2 (en) 2004-09-27 2004-09-27 Method for producing recycled Fe-Al composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004280144A JP4852737B2 (en) 2004-09-27 2004-09-27 Method for producing recycled Fe-Al composite material

Publications (2)

Publication Number Publication Date
JP2006089838A JP2006089838A (en) 2006-04-06
JP4852737B2 true JP4852737B2 (en) 2012-01-11

Family

ID=36231090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004280144A Active JP4852737B2 (en) 2004-09-27 2004-09-27 Method for producing recycled Fe-Al composite material

Country Status (1)

Country Link
JP (1) JP4852737B2 (en)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666819B1 (en) * 1990-09-19 1994-09-23 Inst Aluminievoi Magnievoi METHOD AND DEVICE FOR MANUFACTURING A COMPOSITE MATERIAL FROM A BASE METAL.
JPH0641657A (en) * 1992-05-29 1994-02-15 Kobe Steel Ltd Production of al or al alloy composite
JP3568568B2 (en) * 1994-01-17 2004-09-22 本田技研工業株式会社 Recycling method of aluminum alloy product scraps for automobiles
JPH07300634A (en) * 1994-05-02 1995-11-14 Kobe Steel Ltd Production of aluminum or aluminum alloy composite material
JPH08100243A (en) * 1994-08-05 1996-04-16 Toyota Motor Corp Highly heat resistant iron-bas alloy
JP3176560B2 (en) * 1997-02-13 2001-06-18 中小企業総合事業団 Method for removing low melting point metals from cast iron raw materials
CA2319507A1 (en) * 1998-02-02 1999-08-05 Seetharama C. Deevi Iron aluminide composite and method of manufacture thereof
JP2001003112A (en) * 1999-06-17 2001-01-09 Nippon Sanso Corp Method for melting metal
JP2001064737A (en) * 1999-08-25 2001-03-13 Harumatsu Miura Method for separating and recovering aluminum or aluminum alloy and iron or iron alloy member from composite waste containing aluminum or aluminum alloy member and iron or iron alloy member
JP2001240918A (en) * 1999-12-24 2001-09-04 Mettsu Corporation:Kk Method for recovering aluminum from used beverage can
JP2002022367A (en) * 2000-07-11 2002-01-23 Nkk Corp Method and facility for melting cold iron source
JP2003311250A (en) * 2002-02-20 2003-11-05 Nippon Steel Corp Method for recycling combined waste
JP3947452B2 (en) * 2002-10-28 2007-07-18 三建産業株式会社 Non-ferrous metal scrap melting furnace

Also Published As

Publication number Publication date
JP2006089838A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
Vinod et al. Fabrication and characterization of organic and in-organic reinforced A356 aluminium matrix hybrid composite by improved double-stir casting
Khraisat et al. Strengthening aluminum scrap by alloying with iron
Sharifitabar et al. Microstructure and wear resistance of in-situ TiC–Al2O3 particles reinforced Fe-based coatings produced by gas tungsten arc cladding
MX2012009049A (en) Hard metal materials.
JP2010514917A (en) Hard alloy with dry composition
JP4900806B2 (en) Cylinder for molding machine
Bobić et al. Microstructure and strength of ZA-27-based composites reinforced with Al2O3 particles
CN105339587A (en) ring tool
Poddar et al. The microstructure and mechanical properties of SiC reinforced magnesium based composites by rheocasting process
Tęcza et al. Microstructure of cast high-manganese steel containing titanium
JP3449110B2 (en) Iron-based mixed powder for powder metallurgy and method for producing sintered body using the same
CN105925918B (en) A kind of preparation method of alumina carbon SiClx whisker reinforcement cold working die steel material
Zengin et al. Tensile and wear properties of as-cast and as-extruded ZK60 magnesium alloys containing minor Nd additions
US9233418B2 (en) Cast-in cemented carbide components
Parray et al. Fabrication and characterization of magnesium based surface composites with hybrid reinforcements by friction stir processing: a review
Sang-Hoon et al. Fabrication of cast carbon steel with ultrafine TiC particles
Kuffner et al. Evaluation of the milling efficiency increase of AISI 52100 steel using niobium carbide addition through high energy ball milling
JP4852737B2 (en) Method for producing recycled Fe-Al composite material
Cabeza et al. Development of a high wear resistance aluminium matrix nanoreinforced composite
Park et al. Microstructural modulations enhance the mechanical properties in Al–Cu–(Si, Ga) ultrafine composites
Rominiyi et al. Spark plasma sintering of discontinuously reinforced titanium matrix composites: densification, microstructure and mechanical properties—a review
CN103228803A (en) Improved aluminum alloy power metal with transition elements
JP2012036465A (en) Spheroidal graphite cast iron product excellent in wear resistance
Rogal et al. Effect of in-situ formed MgO on the microstructure of thixomolded AZ91 magnesium alloy
Alizadeh et al. Effects of Mechanical Milling Time and Boron Carbide Reinforcement Content on Powder and Hot Extruded Al–2wt.% Cu–B 4 C Nanocomposites: Microstructural, Mechanical and Fracture Characterization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150