JP4852709B2 - Method for producing aldehydes - Google Patents

Method for producing aldehydes Download PDF

Info

Publication number
JP4852709B2
JP4852709B2 JP2008500506A JP2008500506A JP4852709B2 JP 4852709 B2 JP4852709 B2 JP 4852709B2 JP 2008500506 A JP2008500506 A JP 2008500506A JP 2008500506 A JP2008500506 A JP 2008500506A JP 4852709 B2 JP4852709 B2 JP 4852709B2
Authority
JP
Japan
Prior art keywords
autoclave
carbon dioxide
reaction
nitrogen dioxide
dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008500506A
Other languages
Japanese (ja)
Other versions
JPWO2007094327A1 (en
Inventor
真昭 葭田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utsunomiya University
Original Assignee
Utsunomiya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utsunomiya University filed Critical Utsunomiya University
Priority to JP2008500506A priority Critical patent/JP4852709B2/en
Publication of JPWO2007094327A1 publication Critical patent/JPWO2007094327A1/en
Application granted granted Critical
Publication of JP4852709B2 publication Critical patent/JP4852709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

[PROBLEMS] To provide a method of stably isolating an aldehyde and a method accompanied by the generation of waste in a reduced amount in the process of producing an aldehyde by oxidizing the corresponding primary alcohol or its alkyl ether. [MEANS FOR SOLVING PROBLEMS] A method of producing an aldehyde characterized by comprising conducting a reaction by adding nitrogen dioxide or dinitrogen tetroxide together with carbon dioxide in the gaseous, liquid or supercritical state to a primary alcohol or its alkyl ester. In a preferable embodiment, nitrogen dioxide or dinitrogen tetroxide remaining after the completion of the reaction as described above and reduced compounds thereof are purged with carbon dioxide to thereby give an aldehyde at a high purity.

Description

本発明は、アルデヒド類の製造方法に関し、詳しくは、一級アルコールまたはそのアルキルエーテルを酸化する反応から生成物の単離まで有機溶媒も水も用いず、廃棄物が少なく効率のよいアルデヒド類の製造方法に関する。   The present invention relates to a method for producing aldehydes, and more specifically, from the reaction of oxidizing a primary alcohol or an alkyl ether thereof to the isolation of the product, using organic solvents and water, and efficiently producing aldehydes with little waste. Regarding the method.

持続可能な発展を目指す21世紀の社会において、有用化合物を生産する場合には、グリーンケミストリーといわれるような総合的に環境調和型の製造方法であることが求められている(例えば、非特許文献1参照)。   In the 21st century society aiming for sustainable development, when producing useful compounds, it is required to be a comprehensive environmentally friendly manufacturing method called green chemistry (for example, non-patent literature) 1).

アルデヒド類は、医薬品、農薬、染料、香料およびその他の有機合成原料として有用な化合物であるが、酸化されやすいために取扱が難しく、アルデヒド類は数多くの合成法が提案されている。   Aldehydes are useful compounds as pharmaceuticals, agricultural chemicals, dyes, fragrances and other organic synthetic raw materials, but are difficult to handle because they are easily oxidized, and many synthetic methods have been proposed for aldehydes.

一級アルコールを酸化して対応するアルデヒド類を合成する方法としては、例えばクロムやマンガンなどの酸化剤による酸化、Oppennauer酸化、DMSO酸化、Dess−Martin酸化、TEMPO酸化、ルテニウムなどの遷移金属触媒による酸化などが知られている(非特許文献2)。   Examples of the method for synthesizing corresponding aldehydes by oxidizing primary alcohol include oxidation with an oxidizing agent such as chromium and manganese, Oppenueruer oxidation, DMSO oxidation, Dess-Martin oxidation, TEMPO oxidation, oxidation with a transition metal catalyst such as ruthenium. Are known (Non-Patent Document 2).

またハロゲン酸化物を酸化剤とする方法も開発されているが(特許文献1)、これらは高価な触媒であったり、反応終了後、残留する有害な金属化合物を処理する必要があったり、多量の廃棄物が発生してE-ファクター(生成物に対する廃棄物の割合:非特許文献3)の大きな製造方法となっていて、環境的にも経済的にも好ましい製造方法ではない。   In addition, a method using halogen oxide as an oxidizing agent has been developed (Patent Document 1). However, these are expensive catalysts, and it is necessary to treat a harmful metal compound remaining after the reaction is completed. This is a manufacturing method with a large E-factor (ratio of waste to product: Non-Patent Document 3), which is not a preferable manufacturing method in terms of environment and economy.

二酸化窒素は硝酸の原料であることから、酸素についで安価な酸化剤である。しかし、二酸化窒素は酸化力が強いので有機溶媒で希釈し、一級アルコールを酸化してアルデヒドを得る経済的な方法がある(例えば特許文献2、3、非特許文献4)。   Since nitrogen dioxide is a raw material for nitric acid, it is an inexpensive oxidant after oxygen. However, since nitrogen dioxide has a strong oxidizing power, there is an economical method in which an aldehyde is obtained by diluting with an organic solvent and oxidizing a primary alcohol (for example, Patent Documents 2 and 3 and Non-Patent Document 4).

酸化反応の反応媒体はこれまで有機溶媒が用いられてきたが、酸化剤は基質ばかりでなく有機溶媒の一部も酸化してしまうこともあり、酸化剤が無駄になるばかりか、時として反応の暴走を起こすこともある。このため、二酸化窒素のような酸化力の大きな酸化剤を用いるときには、四塩化炭素やクロロホルム、1,2-ジクロロエタンのような酸化剤に不活性な溶媒が用いられてきた。しかし、このような塩素系溶媒は毒性や廃棄処理に問題が多く、必ずしも好ましい反応媒体でない。   Until now, organic solvents have been used as the reaction medium for the oxidation reaction. However, the oxidizing agent can oxidize not only the substrate but also part of the organic solvent. May run out of control. For this reason, when an oxidizing agent having a large oxidizing power such as nitrogen dioxide is used, a solvent inert to the oxidizing agent such as carbon tetrachloride, chloroform, and 1,2-dichloroethane has been used. However, such a chlorinated solvent has many problems in toxicity and disposal, and is not necessarily a preferable reaction medium.

また、従来アルデヒド合成反応後には、水洗などのワークアップや溶媒の濃縮、アルデヒドの蒸留などをしていたが、アルデヒドは酸化されやすく、これらの処理中に一部がカルボン酸となって、アルデヒドの収率や純度の低下をきたすことがあった。
特開2004−43317号公報 特開2002−179607号公報 特許第3371544号公報 「Green Chemistry:Theory and Practice」、Oxford UniversityPress,1998 日本化学会編、実験化学講座、有機化合物の合成III−アルデヒド・ケトン・キノンー、第5版、丸善(株)、2003、15巻、9−44頁 R.A.Sheldon,Chem.Ind., 7,903(1992) B.0.Field,J.Grundy,J.Chem.Soc.,1955,1110−1112.
Also, conventionally, after aldehyde synthesis reaction, work-up such as water washing, solvent concentration, aldehyde distillation, etc., aldehydes are easily oxidized, and during these treatments, some of them become carboxylic acids, and aldehydes In some cases, the yield and purity of the product decreased.
JP 2004-43317 A JP 2002-179607 A Japanese Patent No. 3371544 “Green Chemistry: Theory and Practice”, Oxford University Press, 1998 The Chemical Society of Japan, Experimental Chemistry Course, Synthesis of Organic Compounds III-Aldehyde / Ketone / Quinone, 5th Edition, Maruzen Co., Ltd., 2003, Volume 15, pages 9-44 R. A. Sheldon, Chem. Ind., 7, 903 (1992) B. 0. Field, J. Grundy, J.A. Chem. Soc. , 1955, 1110-1112.

そこで、本発明の課題は、酸化反応における安全性の配慮ができ、単離精製においては酸化されやすいアルデヒドの収率や純度の低下をもたらさない、かつ、経済的で廃棄物の少ない、総合的な環境調和型アルデヒド製造方法を提供することにある。   Therefore, the object of the present invention is to consider the safety in the oxidation reaction, and does not cause a decrease in the yield and purity of aldehydes that are easily oxidized in the isolation and purification. It is to provide an environmentally friendly aldehyde production method.

また本発明の他の課題は、以下の記載によって明らかとなる。   Other problems of the present invention will become apparent from the following description.

本発明者は、総合的な環境調和型アルデヒド製造方法について鋭意検討した結果、以下の各発明を完成するに至った。   As a result of intensive studies on a comprehensive environmentally friendly aldehyde production method, the present inventors have completed the following inventions.

請求項1記載の発明は、一級アルコールまたはそのアルキルエーテルに、液体状態の二酸化炭素とともに、二酸化窒素あるいは四酸化二窒素を加えて反応させることを特徴とするアルデヒド類の製造方法である。 First aspect of the present invention, the primary alcohol or its alkyl ether, with carbon dioxide in a liquid-like state, a method for producing aldehydes which comprises reacting the addition of nitrogen or dinitrogen tetroxide dioxide.

請求項2記載の発明は、反応後、残留する二酸化窒素あるいは四酸化二窒素およびそれらの元体を二酸化炭素で除去することで、高純度のアルデヒドを得ることを特徴とする請求項1に記載のアルデヒド類の製造方法である。 According to a second aspect of the invention, after the reaction, nitrogen dioxide remaining or dinitrogen tetroxide and their changing Motokarada by removing carbon dioxide, in claim 1, characterized in that to obtain a high purity aldehyde It is a manufacturing method of described aldehydes.

本発明によると、酸化反応における安全性の配慮ができ、単離精製においては酸化されやすいアルデヒドの収率や純度の低下をもたらさない、かつ、経済的で廃棄物の少ない、総合的な環境調和型アルデヒド製造方法を提供することができる。   According to the present invention, safety in the oxidation reaction can be considered, and the yield and purity of aldehydes that are easily oxidized are not reduced in isolation and purification. A type aldehyde production method can be provided.

二酸化炭素の二酸化窒素に対する混合割合と4-メチルベンズアルデヒドの収率との関係を示すグラフGraph showing the relationship between the mixing ratio of carbon dioxide to nitrogen dioxide and the yield of 4-methylbenzaldehyde

本発明に用いられる一級アルコールとしては、アルコール残基が芳香環や複素環にヒドロキシメチル基として結合した化合物や、脂肪族骨格に水酸基として結合したものが挙げられる。   Examples of the primary alcohol used in the present invention include compounds in which an alcohol residue is bonded to an aromatic ring or a heterocyclic ring as a hydroxymethyl group, and those in which an alcohol residue is bonded to an aliphatic skeleton as a hydroxyl group.

芳香族一級アルコールの具体例としては、芳香環や複素環にヒドロキシメチル基が1個もしくは複数付いた化合物で、例えばベンジルアルコール、ヒドロキシメチルナフタレン、フルフリルアルコール、ヒドロキシメチルピリジン、ヒドロキシメチルキノリン、ベンゼンジメタノール、ジヒドロキシメチルビフェニルなどで、その芳香環や複素環の水素はアルキル基やシクロアルキル基、アリール基、アルケニル基、アルキニル基、アラルキル基、水酸基、ハロゲン、ニトロ基、アミノ基、アルコキシ基、アルキルアミノ基、ホルミル基、アシル基、カルボキシル基、アルコキシカルボニル基などで置換されていることもある。   Specific examples of the aromatic primary alcohol include compounds having one or more hydroxymethyl groups on an aromatic ring or heterocyclic ring, such as benzyl alcohol, hydroxymethylnaphthalene, furfuryl alcohol, hydroxymethylpyridine, hydroxymethylquinoline, and benzene. In dimethanol, dihydroxymethylbiphenyl, etc., the hydrogen of the aromatic ring or heterocyclic ring is alkyl group, cycloalkyl group, aryl group, alkenyl group, alkynyl group, aralkyl group, hydroxyl group, halogen, nitro group, amino group, alkoxy group, It may be substituted with an alkylamino group, formyl group, acyl group, carboxyl group, alkoxycarbonyl group or the like.

また、脂肪族一級アルコールとしては、エタノール、プロパノール、2-メチルプロパノール、ブタノール、ヘキサノール、ヘプタノール、オクタノール、2-エチルへキサノール、デカノール、ドデカノール、ステアリルアルコール等の一価アルコール類、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール、ジペンタエリスリトール、グルコース、ソルビトール、デンプン、ポリビニルアルコール等の多価アルコールを挙げることができる。   Examples of aliphatic primary alcohols include monohydric alcohols such as ethanol, propanol, 2-methylpropanol, butanol, hexanol, heptanol, octanol, 2-ethylhexanol, decanol, dodecanol, stearyl alcohol, ethylene glycol, propylene glycol And polyhydric alcohols such as neopentyl glycol, glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, dipentaerythritol, glucose, sorbitol, starch, and polyvinyl alcohol.

一級アルコールのアルキルエーテルとしては、上記一級アルコールの水酸基の水素をアルキル基(炭素数1〜4)で置換したものである。   The alkyl ether of the primary alcohol is obtained by replacing the hydrogen of the hydroxyl group of the primary alcohol with an alkyl group (C1-4).

本発明ではおもに二酸化炭素と二酸化窒素の混合割合と反応温度を調節することにより、アルデヒドが効率よくかつ選択的に得られる反応条件を選択することができる。   In the present invention, mainly by adjusting the mixing ratio of carbon dioxide and nitrogen dioxide and the reaction temperature, it is possible to select the reaction conditions under which the aldehyde can be obtained efficiently and selectively.

二酸化窒素の使用量は、アルコール残基あるいはそのアルキルエーテル残基1個の基質1モルに対して0.1〜10モル、好ましくは0.8〜3モル、さらに好ましくは1.0〜1.3モル程度である。   The amount of nitrogen dioxide to be used is about 0.1 to 10 mol, preferably 0.8 to 3 mol, more preferably about 1.0 to 1.3 mol, per mol of the substrate of one alcohol residue or one alkyl ether residue thereof.

反応性の高い二酸化窒素は二酸化炭素で希釈すると反応速度が制御でき取り扱いやすくなる。   When highly reactive nitrogen dioxide is diluted with carbon dioxide, the reaction rate can be controlled and handling becomes easier.

二酸化窒素は四酸化二窒素と平衡の関係にある。温度を上げるとより反応性の高い二酸化窒素側に平衡が傾くが、圧力をかけるとより穏やかな反応性の四酸化二窒素側に傾けることができ、二酸化炭素で圧力を制御することで、平衡がコントロールでき二酸化窒素の反応性を制御できる。   Nitrogen dioxide is in equilibrium with dinitrogen tetroxide. Increasing the temperature tilts the equilibrium to the more reactive nitrogen dioxide side, but if pressure is applied, it can tilt to the milder reactive nitrous oxide side, and by controlling the pressure with carbon dioxide, the equilibrium Can control the reactivity of nitrogen dioxide.

Figure 0004852709
Figure 0004852709




二酸化炭素の二酸化窒素に対する混合割合は、基質の種類などに応じて適宜選択でき、例えば1〜1000倍、好ましくは10〜200倍、さらに好ましくは30〜100倍程度である。   The mixing ratio of carbon dioxide to nitrogen dioxide can be appropriately selected according to the type of substrate, and is, for example, 1 to 1000 times, preferably 10 to 200 times, and more preferably about 30 to 100 times.

反応温度は、基質の種類などに応じて適宜選択でき、例えば-50〜150℃、好ましくは-20〜120℃、さらに好ましくは0〜50℃程度である。温度が高すぎると、酸化がさらに進行して相当するカルボン酸が生成しやすくなる。   The reaction temperature can be appropriately selected depending on the type of the substrate, and is, for example, about -50 to 150 ° C, preferably -20 to 120 ° C, and more preferably about 0 to 50 ° C. When the temperature is too high, the oxidation further proceeds and the corresponding carboxylic acid is easily generated.

二酸化窒素あるいは四酸化二窒素およびそれらの元体も二酸化炭素も常温常圧では気体であるので、反応後は密閉容器のバルブを開ければ、容易に生成物と分離できる。 Because it is gaseous at nitrogen dioxide or dinitrogen tetroxide and their place Motokarada also carbon dioxide ambient temperature and pressure, after the reaction I open the valve of the closed container, can be separated easily product.

液体状あるいは超臨界状態の二酸化炭素に対して、二酸化窒素は非常によく溶解する。従って、反応後に存在する過剰な二酸化窒素あるいは四酸化二窒素およびそれらの元体などは、反応容器のバルブを開けるときに二酸化炭素とともに除去できる。さらに、二酸化炭素を反応容器に流通させることでも、抽出除去が容易である。 Nitrogen dioxide dissolves very well in liquid or supercritical carbon dioxide. Therefore, such excessive nitrogen dioxide or dinitrogen tetroxide and their place Motokarada present after the reaction, can be removed together with the carbon dioxide when opening the valve of the reaction vessel. Furthermore, extraction and removal are also easy by circulating carbon dioxide in the reaction vessel.

また、反応後に生成する一酸化窒素などの元体は、酸素で酸化して二酸化窒素に容易に再生できる。従って、用いる二酸化炭素と共に循環使用することもできる。 Further, instead Motokarada such nitric oxide formed after the reaction can be readily reproduced nitrogen dioxide is oxidized with oxygen. Therefore, it can be recycled with the carbon dioxide used.

以下、本発明の実施例について説明するが、かかる実施例によって本発明が限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

実施例1
50 mlステンレス製オートクレーブに二酸化窒素を0.15 g(3.3 mmol)室温で量り取り、続いて液化二酸化炭素を10.01 g室温で加えて良く混合する。
Example 1
Weigh out 0.15 g (3.3 mmol) of nitrogen dioxide in a 50 ml stainless steel autoclave at room temperature, then add liquefied carbon dioxide at 10.01 g at room temperature and mix well.

圧力計の付いた別の50 mlステンレス製オートクレーブに、4-メチルベンジルアルコール(0.37 g,3.0 mmol)を量り取り、二酸化炭素でこのオートクレーブを置換した後よく冷却し、二酸化窒素の入った先のオートクレーブと連結する。   In a separate 50 ml stainless steel autoclave with a pressure gauge, weigh 4-methylbenzyl alcohol (0.37 g, 3.0 mmol), replace the autoclave with carbon dioxide, cool well, Connect with autoclave.

バルブを操作して内容物を4-メチルベンジルアルコールの入ったオートクレーブに移す。   Move the contents to an autoclave containing 4-methylbenzyl alcohol by operating the valve.

このオートクレーブを40 ℃の水浴に入れると、圧力は5.6 MPaとなった。マグネチックスタラーで1時間撹拌反応した。   When this autoclave was placed in a 40 ° C. water bath, the pressure became 5.6 MPa. The reaction was stirred for 1 hour with a magnetic stirrer.

反応後オートクレーブを氷冷し減圧した後、残留する二酸化窒素あるいは四酸化二窒素およびそれらの元体を二酸化炭素で除去する。内容物を、デカンを内部標準としてガスクロマトグラフィーで反応混合物を分析した。 After the reaction, the autoclave was cooled with ice under reduced pressure, nitrogen dioxide residual or dinitrogen tetroxide and their place Motokarada removed with carbon dioxide. The contents were analyzed by gas chromatography using decane as an internal standard.

その結果、4-メチルベンズアルデヒドが0.36g(収率100%)得られ、純度は99.2%であった。   As a result, 0.36 g (yield 100%) of 4-methylbenzaldehyde was obtained, and the purity was 99.2%.

実施例2 〈二酸化炭素の二酸化窒素に対する混合割合の検討〉
50 mlステンレス製オートクレーブに二酸化窒素を0.19g(4.1mol)室温で量り取り、続いて液化二酸化炭素を所定量、室温で加えて良く混合する。
Example 2 <Examination of mixing ratio of carbon dioxide to nitrogen dioxide>
Weigh out 0.19 g (4.1 mol) of nitrogen dioxide in a 50 ml stainless steel autoclave at room temperature, then add liquefied carbon dioxide at room temperature and mix well.

圧力計の付いた別の50 mlステンレス製オートクレーブに、4-メチルベンジルアルコール(0.37 g,3.0 mmol)を量り取り、二酸化炭素でこのオートクレーブを置換した後よく冷却し、二酸化窒素の入った先のオートクレーブと連結する。   In a separate 50 ml stainless steel autoclave with a pressure gauge, weigh 4-methylbenzyl alcohol (0.37 g, 3.0 mmol), replace the autoclave with carbon dioxide, cool well, Connect with autoclave.

バルブを操作して内容物を4-メチルベンジルアルコールの入ったオートクレーブに移す。このオートクレーブを25 ℃の水浴に入れ、マグネチックスタラーで1時間撹拌反応した。   Move the contents to an autoclave containing 4-methylbenzyl alcohol by operating the valve. The autoclave was placed in a 25 ° C. water bath and stirred for 1 hour with a magnetic stirrer.

反応後オートクレーブを氷冷し減圧した後、残留する二酸化窒素あるいは四酸化二窒素およびそれらの元体を二酸化炭素で除去する。反応容器を開け、ガスクロマトグラフィーで4−メチルベンズアルデヒドの収量を定量した。 After the reaction, the autoclave was cooled with ice under reduced pressure, nitrogen dioxide residual or dinitrogen tetroxide and their place Motokarada removed with carbon dioxide. The reaction vessel was opened and the yield of 4-methylbenzaldehyde was quantified by gas chromatography.

加える二酸化炭素量を変えて、同様な操作を行うことで二酸化炭素の二酸化窒素に対する混合割合と4-メチルベンズアルデヒドの収率との関係を調べた。この結果を図1に示す。   The relationship between the mixing ratio of carbon dioxide to nitrogen dioxide and the yield of 4-methylbenzaldehyde was examined by changing the amount of carbon dioxide to be added and performing the same operation. The results are shown in FIG.

実施例3
50 mlステンレス製オートクレーブに二酸化窒素を0.22 g(4.8 mmol)室温で量り取り、続いて液化二酸化炭素を9.92 g室温で加えて良く混合する。
Example 3
Weigh 0.22 g (4.8 mmol) of nitrogen dioxide in a 50 ml stainless steel autoclave at room temperature, then add liquefied carbon dioxide at 9.92 g at room temperature and mix well.

圧力計の付いた別の50 mlステンレス製オートクレーブに、4-メトキシベンジルアルコール(0.44 g,3.4 mmol)を量り取り、二酸化炭素でこのオートクレーブを置換した後よく冷却し、二酸化窒素の入った先のオートクレーブと連結する。   In a separate 50 ml stainless steel autoclave equipped with a pressure gauge, weigh 4-methoxybenzyl alcohol (0.44 g, 3.4 mmol), replace the autoclave with carbon dioxide, cool well, and add nitrogen dioxide. Connect with autoclave.

バルブを操作して内容物を4-メトキシベンジルアルコールの入ったオートクレーブに移す。   Move the contents to an autoclave containing 4-methoxybenzyl alcohol by operating the valve.

このオートクレーブを25 ℃の水浴に入れると、圧力は5.2 MPaとなった。マグネチックスタラーで1時間撹拌反応した。   When this autoclave was placed in a 25 ° C. water bath, the pressure became 5.2 MPa. The reaction was stirred for 1 hour with a magnetic stirrer.

反応後オートクレーブを氷冷し減圧した後、残留する二酸化窒素あるいは四酸化二窒素およびそれらの元体を二酸化炭素で除去する。内容物を、クマリンを内部標準として1H NMRで反応混合物を分析した。 After the reaction, the autoclave was cooled with ice under reduced pressure, nitrogen dioxide residual or dinitrogen tetroxide and their place Motokarada removed with carbon dioxide. The contents and the reaction mixture were analyzed by 1 H NMR using coumarin as an internal standard.

その結果、4-メトキシベンズアルデヒドが0.43 g(収率100%)得られた。   As a result, 0.43 g (yield 100%) of 4-methoxybenzaldehyde was obtained.

比較例1
アルゴンで空気を置換し冷却した50 mlステンレス製オートクレーブに、二酸化窒素を0.18 g(3.9 mmol)と4-メトキシベンジルアルコール(0.47 g,3.4 mmol)を量り取る。
Comparative Example 1
Nitrogen dioxide (0.18 g, 3.9 mmol) and 4-methoxybenzyl alcohol (0.47 g, 3.4 mmol) are weighed into a 50 ml stainless steel autoclave that has been cooled by replacing air with argon.

このオートクレーブを25 ℃の水浴に入れ、マグネチックスタラーで1時間撹拌反応した。   The autoclave was placed in a 25 ° C. water bath and stirred for 1 hour with a magnetic stirrer.

反応後オートクレーブを氷冷した後、残留する二酸化窒素あるいは四酸化二窒素およびそれらの元体を二酸化炭素で除去する。内容物を、クマリンを内部標準として1H NMRで反応混合物を分析した。 The reaction after autoclaving was cooled with ice, nitrogen dioxide residual or dinitrogen tetroxide and their place Motokarada removed with carbon dioxide. The contents and the reaction mixture were analyzed by 1 H NMR using coumarin as an internal standard.

その結果、4-メトキシベンズアルデヒドが0.42g(収率91%)と4-メトキシ安息香酸が0.2 g(収率3%)得られた。   As a result, 0.42 g (yield 91%) of 4-methoxybenzaldehyde and 0.2 g (yield 3%) of 4-methoxybenzoic acid were obtained.

実施例4
50 mlステンレス製オートクレーブに二酸化窒素を0.17g(3.7 mmol)室温で量り取り、続いて液化二酸化炭素を9.43 g室温で加えて良く混合する。
Example 4
Weigh out 0.17 g (3.7 mmol) of nitrogen dioxide in a 50 ml stainless steel autoclave at room temperature, then add liquefied carbon dioxide at 9.43 g at room temperature and mix well.

圧力計の付いた別の50 mlステンレス製オートクレーブに、ベンジルアルコール(0.32 g,3.0 mmol)を量り取り、二酸化炭素でこのオートクレーブを置換した後よく冷却し、二酸化窒素の入った先のオートクレーブと連結する。   Weigh benzyl alcohol (0.32 g, 3.0 mmol) into another 50 ml stainless steel autoclave equipped with a pressure gauge, replace this autoclave with carbon dioxide, cool well, and connect with the autoclave containing nitrogen dioxide. To do.

バルブを操作して内容物をベンジルアルコールの入ったオートクレーブに移す。このオートクレーブを35 ℃の水浴に入れると圧力は5.2 MPaとなった。マグネチックスタラーで1時間撹拌反応した。   Move the contents to an autoclave containing benzyl alcohol by operating the valve. When this autoclave was placed in a 35 ° C. water bath, the pressure became 5.2 MPa. The reaction was stirred for 1 hour with a magnetic stirrer.

反応後オートクレーブを氷冷し減圧した後、残留する二酸化窒素あるいは四酸化二窒素およびそれらの元体を二酸化炭素で除去する。反応容器を開け、デカンを内部標準としてガスクロマトグラフィーで反応混合物を分析した。 After the reaction, the autoclave was cooled with ice under reduced pressure, nitrogen dioxide residual or dinitrogen tetroxide and their place Motokarada removed with carbon dioxide. The reaction vessel was opened and the reaction mixture was analyzed by gas chromatography using decane as an internal standard.

その結果、べンズアルデヒドが0.31 g(収率98%)得られた。   As a result, 0.31 g (98% yield) of benzaldehyde was obtained.

実施例5
50 mlステンレス製オートクレーブに二酸化窒素を0.16 g(3.5 mmol)室温で量り取り、続いて液化二酸化炭素を9.87 g室温で加えて良く混合する。
Example 5
Weigh 0.12 g (3.5 mmol) of nitrogen dioxide in a 50 ml stainless steel autoclave at room temperature, then add liquefied carbon dioxide at 9.87 g at room temperature and mix well.

圧力計の付いた別の50 mlステンレス製オートクレーブに、3-ニトロベンジルアルコール(0.46 g,3.0 mmol)を量り取り、二酸化炭素でこのオートクレーブを置換した後よく冷却し、二酸化窒素の入った先のオートクレーブと連結する。   In a separate 50 ml stainless steel autoclave equipped with a pressure gauge, weigh 3-nitrobenzyl alcohol (0.46 g, 3.0 mmol), replace the autoclave with carbon dioxide, cool well, and add nitrogen dioxide. Connect with autoclave.

バルブを操作して内容物を3-ニトロベンジルアルコールの入ったオートクレーブに移す。このオートクレーブを40 ℃の水浴に入れると圧力は5.1 MPaとなった。マグネチックスタラーで2時間撹拌反応した。   Move the contents to an autoclave containing 3-nitrobenzyl alcohol by operating the valve. When this autoclave was placed in a 40 ° C. water bath, the pressure became 5.1 MPa. The reaction was stirred with a magnetic stirrer for 2 hours.

反応後オートクレーブを氷冷し減圧した後、残留する二酸化窒素あるいは四酸化二窒素およびそれらの元体を二酸化炭素で除去する。反応容器を開け、デカンを内部標準としてガスクロマトグラフィーで反応混合物を分析した。 After the reaction, the autoclave was cooled with ice under reduced pressure, nitrogen dioxide residual or dinitrogen tetroxide and their place Motokarada removed with carbon dioxide. The reaction vessel was opened and the reaction mixture was analyzed by gas chromatography using decane as an internal standard.

その結果、3-ニトロべンズアルデヒドが0.45 g(収率99%)得られた。   As a result, 0.45 g (99% yield) of 3-nitrobenzaldehyde was obtained.

実施例6
50 mlステンレス製オートクレーブに二酸化窒素を0.16 g(3.5 mmol)室温で量り取り、続いて液化二酸化炭素を5.50 g室温で加えて良く混合する。
Example 6
Weigh out 0.16 g (3.5 mmol) of nitrogen dioxide in a 50 ml stainless steel autoclave at room temperature, then add 5.50 g of liquefied carbon dioxide at room temperature and mix well.

圧力計の付いた別の50 mlステンレス製オートクレーブに、4-クロロベンジルアルコール(0.435 g,3.1 mmol)を量り取り、二酸化炭素でこのオートクレーブを置換した後よく冷却し、二酸化窒素の入った先のオートクレーブと連結する。   In a separate 50 ml stainless steel autoclave equipped with a pressure gauge, weigh 4-chlorobenzyl alcohol (0.435 g, 3.1 mmol), replace the autoclave with carbon dioxide, cool well, and then add nitrogen dioxide. Connect with autoclave.

バルブを操作して内容物を4−クロロベンジルアルコールの入ったオートクレーブに移す。このオートクレーブを40 ℃の水浴に入れると圧力は3.9 MPaとなった。マグネチックスタラーで2時間撹拌反応した。   Operate the valve and transfer the contents to an autoclave containing 4-chlorobenzyl alcohol. When this autoclave was placed in a 40 ° C. water bath, the pressure became 3.9 MPa. The reaction was stirred with a magnetic stirrer for 2 hours.

反応後オートクレーブを氷冷し減圧した後、残留する二酸化窒素あるいは四酸化二窒素およびそれらの元体を二酸化炭素で除去する。反応容器を開け、デカンを内部標準としてガスクロマトグラフィーで反応混合物を分析した。 After the reaction, the autoclave was cooled with ice under reduced pressure, nitrogen dioxide residual or dinitrogen tetroxide and their place Motokarada removed with carbon dioxide. The reaction vessel was opened and the reaction mixture was analyzed by gas chromatography using decane as an internal standard.

その結果、4−クロロベンズアルデヒドが0.42 g(収率98%)得られた。   As a result, 0.42 g (yield 98%) of 4-chlorobenzaldehyde was obtained.

実施例7
50 mlステンレス製オートクレーブに二酸化窒素を0.33 g(7.2 mmol)室温で量り取り、続いて液化二酸化炭素を10.71 g室温で加えて良く混合する。
Example 7
Weigh out nitrogen dioxide in a 50 ml stainless steel autoclave at 0.33 g (7.2 mmol) at room temperature, then add liquefied carbon dioxide at 10.71 g at room temperature and mix well.

圧力計の付いた別の50 mlステンレス製オートクレーブに、ベンジルメチルエーテル(0.35 g,3.1 mmol)を量り取り、二酸化炭素でこのオートクレーブを置換した後よく冷却し、二酸化窒素の入った先のオートクレーブと連結する。   In a separate 50 ml stainless steel autoclave equipped with a pressure gauge, weigh benzyl methyl ether (0.35 g, 3.1 mmol), replace the autoclave with carbon dioxide, cool well, and reconstitute the previous autoclave containing nitrogen dioxide. Link.

バルブを操作して内容物をベンジルメチルエーテルの入ったオートクレーブに移す。   Operate the valve and transfer the contents to an autoclave containing benzyl methyl ether.

このオートクレーブを45 ℃の水浴に入れると、圧力は5.9 MPaとなった。マグネチックスタラーで1時間撹拌反応した。   When this autoclave was placed in a 45 ° C. water bath, the pressure became 5.9 MPa. The reaction was stirred for 1 hour with a magnetic stirrer.

反応後オートクレーブを氷冷し減圧した後、残留する二酸化窒素あるいは四酸化二窒素およびそれらの元体を二酸化炭素で除去する。内容物を、デカンを内部標準としてガスクロマトグラフィーで反応混合物を分析した。 After the reaction, the autoclave was cooled with ice under reduced pressure, nitrogen dioxide residual or dinitrogen tetroxide and their place Motokarada removed with carbon dioxide. The contents were analyzed by gas chromatography using decane as an internal standard.

その結果、ベンズアルデヒドが0.32g(収率98%)得られた。   As a result, 0.32 g (98% yield) of benzaldehyde was obtained.

実施例8
50 mlステンレス製オートクレーブに二酸化窒素を0.18 g(3.9 mmol)室温で量り取り、続いて液化二酸化炭素を8.85 g室温で加えて良く混合する。
Example 8
Weigh 0.12 g (3.9 mmol) of nitrogen dioxide in a 50 ml stainless steel autoclave at room temperature, then add liquefied carbon dioxide at 8.85 g at room temperature and mix well.

圧力計の付いた別の50 mlステンレス製オートクレーブに、3-メチルベンジルアルコール(0.38 g,3.1 mmol)を量り取り、二酸化炭素でこのオートクレーブを置換した後よく冷却し、二酸化窒素の入った先のオートクレーブと連結する。   In a separate 50 ml stainless steel autoclave equipped with a pressure gauge, weigh 3-methylbenzyl alcohol (0.38 g, 3.1 mmol), replace the autoclave with carbon dioxide, cool well, and add nitrogen dioxide. Connect with autoclave.

バルブを操作して内容物を3-メチルベンジルアルコールの入ったオートクレーブに移す。   Operate the valve to transfer the contents to an autoclave containing 3-methylbenzyl alcohol.

このオートクレーブを25 ℃の水浴に入れると、圧力は4.8 MPaとなった。マグネチックスタラーで1時間撹拌反応した。   When this autoclave was placed in a 25 ° C. water bath, the pressure became 4.8 MPa. The reaction was stirred for 1 hour with a magnetic stirrer.

反応後オートクレーブを氷冷し減圧した後、残留する二酸化窒素あるいは四酸化二窒素およびそれらの元体を二酸化炭素で除去する。内容物を、デカンを内部標準としてガスクロマトグラフィーで反応混合物を分析した。 After the reaction, the autoclave was cooled with ice under reduced pressure, nitrogen dioxide residual or dinitrogen tetroxide and their place Motokarada removed with carbon dioxide. The contents were analyzed by gas chromatography using decane as an internal standard.

その結果、3-メチルベンズアルデヒドが0.37g(収率99%)得られた。   As a result, 0.37 g (99% yield) of 3-methylbenzaldehyde was obtained.

実施例9
50 mlステンレス製オートクレーブに二酸化窒素を0.31 g(6.7 mmol)室温で量り取り、続いて液化二酸化炭素を10.25 g室温で加えて良く混合する。
Example 9
Weigh out nitrogen dioxide in a 50 ml stainless steel autoclave at 0.31 g (6.7 mmol) at room temperature, then add liquefied carbon dioxide at 10.25 g at room temperature and mix well.

圧力計の付いた別の50 mlステンレス製オートクレーブに、2-メチルベンジルアルコール(0.37 g,3.0 mmol)を量り取り、二酸化炭素でこのオートクレーブを置換した後よく冷却し、二酸化窒素の入った先のオートクレーブと連結する。   In a separate 50 ml stainless steel autoclave equipped with a pressure gauge, weigh 2-methylbenzyl alcohol (0.37 g, 3.0 mmol), replace the autoclave with carbon dioxide, cool well, and add nitrogen dioxide. Connect with autoclave.

バルブを操作して内容物を2-メチルベンジルアルコールの入ったオートクレーブに移す。   Move the contents to an autoclave containing 2-methylbenzyl alcohol by operating the valve.

このオートクレーブを25 ℃の水浴に入れると、圧力は5.2 MPaとなった。マグネチックスタラーで1時間撹拌反応した。   When this autoclave was placed in a 25 ° C. water bath, the pressure became 5.2 MPa. The reaction was stirred for 1 hour with a magnetic stirrer.

反応後オートクレーブを氷冷し減圧した後、残留する二酸化窒素あるいは四酸化二窒素およびそれらの元体を二酸化炭素で除去する。内容物を、デカンを内部標準としてガスクロマトグラフィーで反応混合物を分析した。 After the reaction, the autoclave was cooled with ice under reduced pressure, nitrogen dioxide residual or dinitrogen tetroxide and their place Motokarada removed with carbon dioxide. The contents were analyzed by gas chromatography using decane as an internal standard.

その結果、2-メチルベンズアルデヒドが0.36g(収率98%)得られた。   As a result, 0.36 g (98% yield) of 2-methylbenzaldehyde was obtained.

実施例10
50 mlステンレス製オートクレーブに二酸化窒素を0.18 g(3.9 mmol)室温で量り取り、続いて液化二酸化炭素を5.62 g室温で加えて良く混合する。
Example 10
Weigh 0.12 g (3.9 mmol) of nitrogen dioxide in a 50 ml stainless steel autoclave at room temperature, then add liquefied carbon dioxide at 5.62 g at room temperature and mix well.

圧力計の付いた別の50 mlステンレス製オートクレーブに、3-ブロモベンジルアルコール(0.58 g,3.1 mmol)を量り取り、二酸化炭素でこのオートクレーブを置換した後よく冷却し、二酸化窒素の入った先のオートクレーブと連結する。   In another 50 ml stainless steel autoclave equipped with a pressure gauge, weigh 3-bromobenzyl alcohol (0.58 g, 3.1 mmol), replace the autoclave with carbon dioxide, cool well, and then add nitrogen dioxide. Connect with autoclave.

バルブを操作して内容物を3-ブロモベンジルアルコールの入ったオートクレーブに移す。   Operate the valve to transfer the contents to an autoclave containing 3-bromobenzyl alcohol.

このオートクレーブを40 ℃の水浴に入れると、圧力は3.8 MPaとなった。マグネチックスタラーで3時間撹拌反応した。   When this autoclave was placed in a 40 ° C. water bath, the pressure became 3.8 MPa. The reaction was stirred with a magnetic stirrer for 3 hours.

反応後オートクレーブを氷冷し減圧した後、残留する二酸化窒素あるいは四酸化二窒素およびそれらの元体を二酸化炭素で除去する。内容物を、デカンを内部標準としてガスクロマトグラフィーで反応混合物を分析した。 After the reaction, the autoclave was cooled with ice under reduced pressure, nitrogen dioxide residual or dinitrogen tetroxide and their place Motokarada removed with carbon dioxide. The contents were analyzed by gas chromatography using decane as an internal standard.

その結果、3-ブロモベンズアルデヒドが0.57g(収率99%)得られた。   As a result, 0.57 g (99% yield) of 3-bromobenzaldehyde was obtained.

実施例11
50 mlステンレス製オートクレーブに二酸化窒素を0.15 g(3.3 mmol)室温で量り取り、続いて液化二酸化炭素を6.16 g室温で加えて良く混合する。
Example 11
Weigh 0.15 g (3.3 mmol) of nitrogen dioxide in a 50 ml stainless steel autoclave at room temperature, then add 6.16 g of liquefied carbon dioxide at room temperature and mix well.

圧力計の付いた別の50 mlステンレス製オートクレーブに、1,4-ベンゼンジメタノール(0.21 g,1.5 mmol)を量り取り、二酸化炭素でこのオートクレーブを置換した後よく冷却し、二酸化窒素の入った先のオートクレーブと連結する。   In a separate 50 ml stainless steel autoclave with a pressure gauge, weigh 1,4-benzenedimethanol (0.21 g, 1.5 mmol), replace the autoclave with carbon dioxide, cool well, and contain nitrogen dioxide. Connect with the previous autoclave.

バルブを操作して内容物を1,4-ベンゼンジメタノールの入ったオートクレーブに移す。   Move the contents to an autoclave containing 1,4-benzenedimethanol by operating the valve.

このオートクレーブを25 ℃の水浴に入れると、圧力は3.9 MPaとなった。マグネチクスタラーで1時間撹拌反応した。   When this autoclave was placed in a 25 ° C. water bath, the pressure was 3.9 MPa. The reaction was stirred for 1 hour with a magnetic stirrer.

反応後オートクレーブを氷冷し減圧した後、残留する二酸化窒素あるいは四酸化二窒素およびそれらの元体を二酸化炭素で除去する。内容物を、クマリンを内部標準として1H NMRで反応混合物を分析定量し、ガスクロマトグラフィーで純度を確認した。 After the reaction, the autoclave was cooled with ice under reduced pressure, nitrogen dioxide residual or dinitrogen tetroxide and their place Motokarada removed with carbon dioxide. The contents were analyzed and quantified by 1 H NMR using coumarin as an internal standard, and the purity was confirmed by gas chromatography.

その結果、1,4-ベンゼンジアルデヒドが0.20g(収率98%, 純度99.8%)得られた。   As a result, 0.20 g (yield 98%, purity 99.8%) of 1,4-benzenedialdehyde was obtained.

Claims (2)

芳香族一級アルコール及び脂肪族一級アルコールから選ばれる一級アルコールまたはそのアルキルエーテルに、液体状態の二酸化炭素とともに、二酸化窒素あるいは四酸化二窒素を加えて反応させ、酸化される前記芳香族一級アルコール及び脂肪族一級アルコールから選ばれる一級アルコールまたはそのアルキルエーテルに対応するアルデヒドを得ることを特徴とするアルデヒド類の製造方法。A primary alcohol or its alkyl ether is selected from aromatic primary alcohols and aliphatic primary alcohols, with carbon dioxide in a liquid-like state, the aromatic primary alcohols reacted by adding nitrogen or nitrogen tetroxide dioxide is oxidized and primary alcohols or manufacturing method of aldehydes, characterized in Rukoto give the corresponding aldehyde to the alkyl ether selected from aliphatic primary alcohols. 反応後、残留する二酸化窒素あるいは四酸化二窒素およびそれらの元体を二酸化炭素で除去することで、高純度のアルデヒドを得ることを特徴とする請求項1に記載のアルデヒド類の製造方法。After the reaction, nitrogen dioxide remaining or dinitrogen tetroxide and their changing Motokarada by removing carbon dioxide, the production method of aldehydes according to claim 1, characterized in that to obtain a high purity aldehyde.
JP2008500506A 2006-02-13 2007-02-13 Method for producing aldehydes Active JP4852709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008500506A JP4852709B2 (en) 2006-02-13 2007-02-13 Method for producing aldehydes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006035394 2006-02-13
JP2006035394 2006-02-13
JP2008500506A JP4852709B2 (en) 2006-02-13 2007-02-13 Method for producing aldehydes
PCT/JP2007/052533 WO2007094327A1 (en) 2006-02-13 2007-02-13 Method of producing aldehyde

Publications (2)

Publication Number Publication Date
JPWO2007094327A1 JPWO2007094327A1 (en) 2009-07-09
JP4852709B2 true JP4852709B2 (en) 2012-01-11

Family

ID=38371506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008500506A Active JP4852709B2 (en) 2006-02-13 2007-02-13 Method for producing aldehydes

Country Status (2)

Country Link
JP (1) JP4852709B2 (en)
WO (1) WO2007094327A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135511A (en) * 1997-07-22 1999-02-09 Ube Ind Ltd Production of aromatic aldehyde
JPH11315036A (en) * 1998-03-04 1999-11-16 Daicel Chem Ind Ltd Oxidation of ether, and production of acetal compound or carbonyl compound
JP2000016959A (en) * 1998-07-01 2000-01-18 Mitsui Chemicals Inc Production of methacrolein
JP2002179607A (en) * 2000-12-14 2002-06-26 Daicel Chem Ind Ltd Method for producing phthalaldehyde
JP2002212334A (en) * 2000-10-31 2002-07-31 Masaaki Yoshida Method for decomposing polymer substance and method for chemical raw material production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371544B2 (en) * 1994-06-10 2003-01-27 宇部興産株式会社 Method for producing aromatic aldehyde
US5831116A (en) * 1996-12-18 1998-11-03 Northeastern University Catalytic process for making ethers, aldehydes esters and acids from alcohols using a supercritical fluid mobile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135511A (en) * 1997-07-22 1999-02-09 Ube Ind Ltd Production of aromatic aldehyde
JPH11315036A (en) * 1998-03-04 1999-11-16 Daicel Chem Ind Ltd Oxidation of ether, and production of acetal compound or carbonyl compound
JP2000016959A (en) * 1998-07-01 2000-01-18 Mitsui Chemicals Inc Production of methacrolein
JP2002212334A (en) * 2000-10-31 2002-07-31 Masaaki Yoshida Method for decomposing polymer substance and method for chemical raw material production
JP2002179607A (en) * 2000-12-14 2002-06-26 Daicel Chem Ind Ltd Method for producing phthalaldehyde

Also Published As

Publication number Publication date
JPWO2007094327A1 (en) 2009-07-09
WO2007094327A1 (en) 2007-08-23

Similar Documents

Publication Publication Date Title
Wang et al. Acceptorless dehydrogenation and aerobic oxidation of alcohols with a reusable binuclear rhodium (II) catalyst in water
Miao et al. TEMPO and Carboxylic Acid Functionalized Imidazolium Salts/Sodium Nitrite: An Efficient, Reusable, Transition Metal‐Free Catalytic System for Aerobic Oxidation of Alcohols
Wang et al. Aerobic oxidation of secondary benzylic alcohols and direct oxidative amidation of aryl aldehydes promoted by sodium hydride
Nielsen et al. Direct aerobic oxidation of primary alcohols to methyl esters catalyzed by a heterogeneous gold catalyst
EP1674440B1 (en) Process for transition metal free catalytic aerobic oxidation of alcohols under mild conditions using stable free nitroxyl radicals
Miao et al. Tert-butyl nitrite: a metal-free radical initiator for aerobic cleavage of benzylic C [double bond, length as m-dash] C bonds in compressed carbon dioxide
Shen et al. Selective aerobic oxidation of allylic and benzylic alcohols catalyzed by N-hydroxyindole and copper (I) chloride
Naik et al. An efficient sonochemical oxidation of benzyl alcohols into benzaldehydes by FeCl3/HNO3 in acetone
Hu et al. NHPI/tert-butyl nitrite: A highly efficient metal-free catalytic system for aerobic oxidation of alcohols to carbonyl compounds using molecular oxygen as the terminal oxidant
Jiang et al. Practical Cu (OAc) 2/TEMPO-catalyzed selective aerobic alcohol oxidation under ambient conditions in aqueous acetonitrile
Guan et al. Practical organic solvent-free Cu (OAc) 2/DMAP/TEMPO-catalyzed aldehyde and imine formation from alcohols under air atmosphere
Ou et al. Highly efficient oxidative cleavage of olefins with O 2 under catalyst-, initiator-and additive-free conditions
Sugai et al. Aerobic oxidation under visible light irradiation of a fluorescent lamp with a combination of carbon tetrabromide and triphenyl phosphine
Ma et al. Aerobic oxidation of secondary alcohols in water with ABNO/tert-butyl nitrite/KPF6 catalytic system
Zuo et al. Liquid phase oxidation of p-xylene to terephthalic acid at medium-high temperatures: multiple benefits of CO 2-expanded liquids
Yu et al. N-Heterocyclic carbene-catalyzed aerobic oxidation of aryl alkyl alcohols to carboxylic acids
Jiang et al. Efficient Co (OAc) 2-catalyzed aerobic oxidation of EWG-substituted 4-cresols to access 4-hydroxybenzaldehydes
Heropoulos et al. A clean, palladium-catalyzed oxidative esterification of aldehydes using benzyl chloride
Wang et al. [Ru (bpy) 3] Cl2-catalyzed aerobic oxidative cleavage β-diketones to carboxylic acids under visible light irradiation
Weerasiri et al. Cu (II) 2-quinoxalinol salen catalyzed oxidation of propargylic, benzylic, and allylic alcohols using tert-butyl hydroperoxide in aqueous solutions
JP4852709B2 (en) Method for producing aldehydes
Wang et al. Polyethylene glycol radical-initiated oxidation of benzylic alcohols in compressed carbon dioxide
Khaksar et al. Transition metal-free oxidation of activated alcohols to aldehydes and ketones in 1, 1, 1, 3, 3, 3-hexafluoro-2-propanol
Hu et al. Efficient and convenient oxidation of aldehydes and ketones to carboxylic acids and esters with H 2 O 2 catalyzed by Co 4 HP 2 Mo 15 V 3 O 62 in ionic liquid [TEBSA][BF 4]
Zhu et al. A green process for the oxidative lactonization of 1, 2-benzenedimethanol by tungstic acid with aqueous H 2 O 2

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150