JP4852137B2 - Catheter and manufacturing method thereof - Google Patents

Catheter and manufacturing method thereof Download PDF

Info

Publication number
JP4852137B2
JP4852137B2 JP2009258084A JP2009258084A JP4852137B2 JP 4852137 B2 JP4852137 B2 JP 4852137B2 JP 2009258084 A JP2009258084 A JP 2009258084A JP 2009258084 A JP2009258084 A JP 2009258084A JP 4852137 B2 JP4852137 B2 JP 4852137B2
Authority
JP
Japan
Prior art keywords
tube
circuit board
printed circuit
flexible printed
catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009258084A
Other languages
Japanese (ja)
Other versions
JP2010029713A (en
Inventor
正行 金戸
泰人 大脇
徹也 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2009258084A priority Critical patent/JP4852137B2/en
Publication of JP2010029713A publication Critical patent/JP2010029713A/en
Application granted granted Critical
Publication of JP4852137B2 publication Critical patent/JP4852137B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

本発明は電子部品をチューブ内に搭載したカテーテル及びその製造方法に関する。   The present invention relates to a catheter in which an electronic component is mounted in a tube and a manufacturing method thereof.

従来から、発熱抵抗体、圧力センサー、温度測定用サーミスタ等の電子部品をチューブの前端部または中間部内に搭載したカテーテルを、患者の体内に挿人し、前記電子部品が発生する電気信号を利用して種々の検査や治療が行われている。このような電子部品搭載型のカテーテルは、例えば、下記の特許文献1及び特許文献2に記載されている。   Conventionally, a catheter with electronic components such as a heating resistor, pressure sensor, and temperature measurement thermistor mounted in the front end or middle of the tube is inserted into the patient's body and the electrical signals generated by the electronic components are used. Various examinations and treatments are performed. Such electronic component mounting type catheters are described in, for example, Patent Document 1 and Patent Document 2 below.

前記「チューブの前端部」とは、カテーテル(チューブ)を患者の体内に挿入する際に、その挿入方向の先頭側とするチューブの長さ方向の一方側の端部のことであり、本明細書の以降の記載においても、「チューブの前端部」という場合、それは、カテーテル(チューブ)を患者の体内に挿入する際の、挿入方向の先頭側とするチューブの端部のことを指し、また、「チューブの後端部」という場合、それは、チューブの長さ方向における該挿入方向の先頭側にする端部とは反対側の端部のことを指すものとする。   The “front end portion of the tube” is an end portion on one side in the length direction of the tube, which is the leading side in the insertion direction when a catheter (tube) is inserted into the body of a patient. In the following description of the document, the term “front end of the tube” refers to the end of the tube that is the leading side in the insertion direction when the catheter (tube) is inserted into the patient's body. , “The rear end portion of the tube” refers to an end portion on the opposite side of the end portion on the leading side of the insertion direction in the length direction of the tube.

ところで、上記のようなチューブ内に電子部品を搭載したカテーテルでは、患者の体内に挿入したチューブの前端部または中間部内に在る電子部品から発生する電気信号は、患者の体外に出ているチューブの後端部に連結した測定器等で処理され、また、前記電子部品の動作制御を行う場合は、患者の体外に出ているチューブの後端部に連結した制御装置によって遠隔制御する。従って、電子部品搭載型のカテーテルのチューブ内には、電子部品と測定器や制御装置等との間で電気信号を伝送するための信号線を配設する必要があり、該信号線としては、従来、特許文献1及び特許文献2に記載のカテーテルのように、一般にフラットケーブル等の信号ケーブルが使用されてきた。ところが、近時、この種のカテーテルにおいては、チューブ内に配設する電子部品の高機能化に伴って信号線の多線化が求められており、信号線の多線化のために信号ケーブルの本数を増やすと、信号ケーブルを挿通するチューブを太くしなければならず、その結果、患者体内でのカテーテルの操作性が低下したり、カテーテルの操作時における患者の痛みが増すという問題が生じている。   By the way, in the catheter which mounted the electronic component in the above tubes, the electrical signal which generate | occur | produces from the electronic component which exists in the front-end part or intermediate part of the tube inserted in the patient's body is the tube which has come out of the patient's body. When the electronic component is controlled by a measuring instrument or the like connected to the rear end of the tube, it is remotely controlled by a control device connected to the rear end of the tube outside the patient's body. Therefore, it is necessary to arrange a signal line for transmitting an electrical signal between the electronic component and a measuring instrument, a control device, or the like in the tube of the electronic component mounting type catheter. Conventionally, a signal cable such as a flat cable has been generally used like the catheters described in Patent Document 1 and Patent Document 2. However, in recent years, in this type of catheter, there has been a demand for multi-line signal lines as the electronic components arranged in the tube become highly functional, and signal cables are used for multi-line signal lines. Increasing the number of wires requires a thicker tube through which the signal cable is inserted, resulting in problems such as reduced operability of the catheter within the patient and increased patient pain during catheter operation. ing.

特開平11−56794号公報Japanese Patent Laid-Open No. 11-56794 特開2001−170013号公報JP 2001-170013 A

上記事情に鑑み、本発明が解決しようとする課題は、電子部品搭載型のカテーテルにおいて、電子部品に接続する信号線の多線化に伴うチューブ太さの増大を軽減できるカテーテルを提供することであり、また、該カテーテルを効率良く製造できるカテーテルの製造方法を提供することである。   In view of the above circumstances, the problem to be solved by the present invention is to provide a catheter capable of reducing an increase in tube thickness associated with the increase in the number of signal lines connected to the electronic component in the electronic component mounting type catheter. In addition, another object of the present invention is to provide a catheter manufacturing method capable of efficiently manufacturing the catheter.

上記の課題を解決するために、本発明は以下の構成を採る。
すなわち、本発明は、
(1)チューブの前端部又は中間部内に電子部品が搭載され、該電子部品と電気的に接続する信号線が該電子部品の近傍から前記チューブ内を通って前記チューブの後端部へと配されたカテーテルであって、前記信号線が前記チューブ内に挿入したフレキシブル配線回路基板の配線パターンからなることを特徴とする、カテーテル、
(2)フレキシブル配線回路基板が金属支持板を有するものである、上記(1)記載のカテーテル、
(3)金属支持板の短手方向の幅がベース絶縁層の短手方向の幅よりも小さく、フレキシブル配線回路基板の短手方向の両端部に金属支持板が存在しないことを特徴とする、上記(2)記載のカテーテル、
(4)金属支持板の短手方向の幅が50〜2950μmであり、フレキシブル配線回路基板の短手方向の幅が100〜3000μmである、上記(3)記載のカテーテル、
(5)フレキシブル配線回路基板のベース絶縁層上の配線パターンに設けた端子部と近接する領域に電子部品が配設され、該電子部品の端子と前記配線パターンに設けた端子部とが金属溶接又は導電性接着剤によって接続され、該接続部が樹脂で封止されてなる、上記(1)〜(4)のいずれか一つに記載のカテーテル、
(6)チューブの前端部又は中間部の側壁に貫孔を設け、該チューブ内に、その長手方向の幅を該チューブの貫孔から後端部までの長さと同等若しくはそれ以上にしたフレキシブル配線回路基板を挿入する工程と、
前記フレキシブル配線回路基板のベース絶縁層上の配線パターンに設けた端子部と近接する領域に、前記チューブの側壁に設けた貫孔を通して、電子部品を載置する工程と、
前記電子部品の端子と前記配線パターンに設けた端子部とを金属溶接又は導電性接着剤によって接続した後、該接続部を樹脂で封止する工程とを含む、カテーテルの製造方法、及び
(7)チューブの前端部又は中間部の側壁に貫孔を設ける一方、その長手方向の幅が該チューブの貫孔から後端部までの長さと同等若しくはそれ以上にしたフレキシブル配線回路基板を用意する工程と、
前記フレキシブル配線回路基板のベース絶縁層上の配線パターンに設けた端子部と近接する領域に電子部品を載置し、該電子部品の端子と前記配線パターンに設けた端子部とを金属溶接又は導電性接着剤によって接続する工程と、
前記電子部品を付設したフレキシブル配線回路基板を前記チューブに挿入し、前記チューブの側壁に設けた貫孔を通して、前記電子部品の端子と配線パターンに設けた端子部との接続部を樹脂で封止する工程とを含む、カテーテルの製造方法、に関する。
In order to solve the above problems, the present invention adopts the following configuration.
That is, the present invention
(1) An electronic component is mounted in a front end portion or an intermediate portion of the tube, and a signal line electrically connected to the electronic component is routed from the vicinity of the electronic component to the rear end portion of the tube through the tube. A catheter, characterized in that the signal line comprises a wiring pattern of a flexible printed circuit board inserted into the tube,
(2) The catheter according to (1) above, wherein the flexible printed circuit board has a metal support plate,
(3) The width in the short direction of the metal support plate is smaller than the width in the short direction of the base insulating layer, and there is no metal support plate at both ends in the short direction of the flexible printed circuit board. The catheter according to (2) above,
(4) The catheter according to (3) above, wherein the width of the metal support plate in the short direction is 50 to 2950 μm, and the width of the flexible printed circuit board in the short direction is 100 to 3000 μm,
(5) An electronic component is disposed in a region close to the terminal portion provided on the wiring pattern on the base insulating layer of the flexible printed circuit board, and the terminal of the electronic component and the terminal portion provided on the wiring pattern are metal-welded. Or the catheter according to any one of (1) to (4), wherein the catheter is connected by a conductive adhesive, and the connection portion is sealed with a resin;
(6) Flexible wiring in which a through-hole is provided in the side wall of the front end portion or intermediate portion of the tube, and the width in the longitudinal direction is equal to or greater than the length from the through-hole to the rear end portion of the tube Inserting a circuit board;
Placing an electronic component through a through hole provided in a side wall of the tube in a region close to a terminal portion provided in a wiring pattern on a base insulating layer of the flexible printed circuit board; and
And (7) a method of manufacturing the catheter, comprising: connecting the terminal of the electronic component and the terminal portion provided on the wiring pattern by metal welding or a conductive adhesive, and then sealing the connection portion with resin. ) A step of preparing a flexible printed circuit board in which a through hole is provided in the side wall of the front end portion or the middle portion of the tube and the width in the longitudinal direction is equal to or greater than the length from the through hole to the rear end portion of the tube. When,
An electronic component is placed in a region adjacent to the terminal portion provided on the wiring pattern on the base insulating layer of the flexible printed circuit board, and the terminal of the electronic component and the terminal portion provided on the wiring pattern are metal welded or electrically conductive. Connecting with an adhesive, and
The flexible printed circuit board with the electronic components attached is inserted into the tube, and the connection portion between the terminal of the electronic component and the terminal portion provided in the wiring pattern is sealed with resin through a through hole provided in the side wall of the tube. And a method for manufacturing a catheter.

本発明のカテーテルにおいては、信号線を多線化する場合、チューブ内に挿入したフレキシブル配線回路基板の配線パターンの本数を増やせばよく、フレキシブル配線回路基板は自体のサイズを大きく変えずに配線パターンの本数を増やすことができるので、チューブの太さを大きく増大させる必要なく信号線の数を増やすことができる。従って、従来のカテーテルと信号線の本数が同じである場合、カテーテル(チューブ)の太さを小さくでき、信号線の多線化に伴ってチューブの太さが増大することによって生じていた患者体内でのカテーテルの操作性の低下やカテーテルの操作時における患者の痛みを解消若しくは軽減することができる。   In the catheter of the present invention, when the number of signal lines is increased, the number of wiring patterns of the flexible wiring circuit board inserted into the tube may be increased, and the flexible wiring circuit board does not greatly change its own size. Therefore, the number of signal lines can be increased without having to greatly increase the thickness of the tube. Therefore, when the number of signal lines is the same as that of a conventional catheter, the thickness of the catheter (tube) can be reduced, and the patient's body caused by the increase in the thickness of the tube as the number of signal lines increases. Thus, it is possible to eliminate or reduce the patient's pain at the time of catheter operation and the decrease in catheter operability.

また、上記フレキシブル配線回路基板として金属支持板を有するものを用いることで、フレキシブル配線回路基板の剛性が高まり、チューブ内へのフレキシブル配線回路基板の挿入作業が容易になる。また、カテーテルの不要な折れ曲がり等が起り難くなり、カテーテルを意図する方向へ進行させることが容易になって、患者体内でのカテーテルの操作性が一層向上する。   Further, by using the flexible wiring circuit board having the metal support plate, the rigidity of the flexible wiring circuit board is increased, and the work for inserting the flexible wiring circuit board into the tube is facilitated. In addition, unnecessary bending or the like of the catheter is unlikely to occur, and the catheter can be easily advanced in the intended direction, thereby further improving the operability of the catheter within the patient.

また、上記フレキシブル配線基板の金属支持板に、その短手方向の幅がベース絶縁層の短手方向の幅よりも小さい金属支持板を使用し、フレキシブル配線回路基板の短手方向の両端部に金属支持板が存在しない構成とすることで、フレキシブル配線回路基板をその短手方向の両端部を折り曲げた状態にしてチューブ内に挿入することができる。従って、チューブ内へのフレキシブル配線回路基板の挿入作業時におけるチューブ内壁の損傷を防止でき、また、チューブの太さをより小さくすることができる。   Moreover, the metal support plate of the said flexible wiring board uses the metal support plate whose width | variety of a short direction is smaller than the width | variety of the short direction of a base insulating layer, and is located in the both ends of the short direction of a flexible printed circuit board. By adopting a configuration in which the metal support plate does not exist, the flexible printed circuit board can be inserted into the tube with its both ends in the short direction folded. Therefore, damage to the inner wall of the tube during insertion of the flexible printed circuit board into the tube can be prevented, and the thickness of the tube can be further reduced.

また、上記フレキシブル配線回路基板のベース絶縁層上の配線パターンに設けた端子部と近接する領域に電子部品を配設し、該電子部品の端子と前記配線パターンに設けた端子部とを金属溶接又は導電性接着剤によって接続し、該接続部を樹脂で封止した構成とすることで、カテーテルの操作時にカテーテルが変形したり衝撃を受けても、電子部品と配線パターン(信号線)との電気的接続が安定に維持される、信頼性の高いカテーテルを実現できる。   In addition, an electronic component is disposed in a region adjacent to the terminal portion provided on the wiring pattern on the base insulating layer of the flexible printed circuit board, and the terminal of the electronic component and the terminal portion provided on the wiring pattern are metal-welded. Alternatively, by connecting with a conductive adhesive and sealing the connecting portion with resin, even if the catheter is deformed or receives an impact during the operation of the catheter, the electronic component and the wiring pattern (signal line) A highly reliable catheter in which the electrical connection is stably maintained can be realized.

また、本発明のカテーテルの製造方法によれば、従来のカテーテルに比べて、カテーテル(チューブ)の太さを小さくできる本発明のカテーテルを少ない作業工数で効率良く製造することができる。また、フレキシブル配線回路基板上に電子部品を実装することができるので、チューブ内での電子部品の位置決めを精度良く行うことができる。   Further, according to the catheter manufacturing method of the present invention, the catheter of the present invention that can reduce the thickness of the catheter (tube) can be efficiently manufactured with less work man-hours than the conventional catheter. In addition, since the electronic component can be mounted on the flexible printed circuit board, the electronic component can be accurately positioned in the tube.

本発明の一例によるカテーテルの軸線を含む平面で切った断面図(縦断面図)である。It is sectional drawing (longitudinal sectional view) cut by the plane containing the axis line of the catheter by an example of this invention. 本発明の一例によるカテーテルの軸線と直交する平面で切った断面図(横断面図)である。It is sectional drawing (cross-sectional view) cut by the plane orthogonal to the axis line of the catheter by an example of this invention. 図1及び図2中に示されたフレキシブル配線回路基板(本発明で使用されるフレキシブル配線回路基板の一例)の斜視図である。FIG. 3 is a perspective view of the flexible printed circuit board (an example of a flexible printed circuit board used in the present invention) shown in FIGS. 1 and 2. 本発明で使用されるフレキシブル配線回路基板の他の例の断面図である。It is sectional drawing of the other example of the flexible wiring circuit board used by this invention. 図4に示すフレキシブル配線回路基板をチューブ内に挿入したカテーテルの軸線と直交する平面で切った断面図(横断面図)である。FIG. 5 is a cross-sectional view (cross-sectional view) cut along a plane orthogonal to the axis of the catheter in which the flexible printed circuit board shown in FIG. 4 is inserted into the tube. 図6(a)〜図6(d)は本発明のカテーテルの製造方法の一例を示す工程別断面図である。FIG. 6A to FIG. 6D are cross-sectional views for each process showing an example of the catheter manufacturing method of the present invention. 図7(a)〜図7(d)は図6(a)〜図6(d)の工程後に引き続いて行われる工程を示す工程別断面図である。FIG. 7A to FIG. 7D are cross-sectional views showing processes performed subsequent to the processes of FIG. 6A to FIG. 6D. 図3中に示されたフレキシブル配線回路基板の端子部をその上方からみた平面図である。It is the top view which looked at the terminal part of the flexible wiring circuit board shown in FIG. 3 from the upper direction. 本発明で使用するフレキシブル配線回路基板の端子部の配列形態の他の例を示す平面図である。It is a top view which shows the other example of the arrangement | sequence form of the terminal part of the flexible wiring circuit board used by this invention. 本発明で使用するフレキシブル配線回路基板の端子部の露出形態の他の例を示す平面図である。It is a top view which shows the other example of the exposed form of the terminal part of the flexible printed circuit board used by this invention. 本発明のカテーテルのチューブ内に電子部品を内封した状態を示す要部断面図である。It is principal part sectional drawing which shows the state which enclosed the electronic component in the tube of the catheter of this invention.

以下、図面を参照して本発明をより詳しく説明する。
図1〜3は本発明の一例によるカテーテルを示し、図1はカテーテルの軸線を含む平面で切った断面図(縦断面図)、図2はカテーテルの軸線と直交する平面で切った断面図(横断面図)、図3は図1、2中に示されたフレキシブル配線回路基板の斜視図である。なお、図1はチューブ1の前端部1Aとこれに繋がる若干の長さ部分の断面のみを示しているが、フレキシブル配線回路基板10は、図示していないチューブ1の後端部まで繋がった長尺物である。
Hereinafter, the present invention will be described in more detail with reference to the drawings.
1 to 3 show a catheter according to an example of the present invention, FIG. 1 is a cross-sectional view (longitudinal cross-sectional view) cut along a plane including the axis of the catheter, and FIG. 2 is a cross-sectional view cut along a plane perpendicular to the axis of the catheter ( FIG. 3 is a perspective view of the flexible printed circuit board shown in FIGS. 1 shows only a cross section of the front end portion 1A of the tube 1 and a slight length portion connected to the front end portion 1A, the flexible printed circuit board 10 is connected to the rear end portion of the tube 1 (not shown). It is a scale.

該一例のカテーテル100に示されるように、本発明のカテーテルは、チューブ1内に電子部品2を搭載したカテーテルであり、チューブ1内に配設した電子部品2に電気的に接続される信号線を、チューブ1内に挿入したフレキシブル配線回路基板10の配線パターン4で構成したことを主たる特徴としている。   As shown in the example catheter 100, the catheter of the present invention is a catheter having an electronic component 2 mounted in a tube 1, and a signal line electrically connected to the electronic component 2 disposed in the tube 1. Is composed of the wiring pattern 4 of the flexible printed circuit board 10 inserted into the tube 1.

前述の背景技術の欄で説明したように、チューブ内に電子部品を搭載したカテーテルでは、通常、患者の体内にカテーテルを挿入後、チューブの前端部または中間部内に配設した電子部品から発生する電気信号を、患者の体外に出ているチューブの後端部に連結した測定器等で処理し、また、電子部品の動作制御を行う場合は、患者の体外に出ているチューブの後端部に連結した制御装置によって遠隔制御する。従って、該一例のカテーテル100においても、チューブ1内に挿入したフレキシブル配線回路基板10は、チューブ1内の電子部品2の配設位置の近傍から、チューブ1の図示しない後端部まで繋がっており、該チューブ1の後端部において、信号線である配線パターン4の端部が測定器や制御装置等(図示せず)に電気的に接続されている。   As described in the background section above, in a catheter in which an electronic component is mounted in a tube, the catheter is usually generated from the electronic component disposed in the front end portion or intermediate portion of the tube after the catheter is inserted into the patient's body. When the electrical signal is processed by a measuring instrument connected to the rear end of the tube outside the patient's body and the operation of the electronic components is controlled, the rear end of the tube going out of the patient's body Remotely controlled by a control device connected to. Accordingly, also in the catheter 100 of this example, the flexible printed circuit board 10 inserted into the tube 1 is connected from the vicinity of the arrangement position of the electronic component 2 in the tube 1 to the rear end portion (not shown) of the tube 1. At the rear end of the tube 1, the end of the wiring pattern 4 that is a signal line is electrically connected to a measuring instrument, a control device, etc. (not shown).

すなわち、本発明のカテーテルは、該一例のカテーテル100に示されるように、カテーテル本体となるチューブ1の前端部や中間部内の電子部品2の搭載部(配設部)の近傍からチューブ1の後端部へ至る信号線を、フレキシブル配線回路基板10の配線パターン4で構成しており、この構成によって、チューブ1の太さを大きく増大させる必要なく信号線の多線化を行えるようにしている。つまり、電子部品に接続する信号線として信号ケーブルを用いた従来のカテーテルの場合、信号線の多線化のために信号ケーブルの本数を増やすと、信号ケーブルの束が大きな容積を占めるため、複数本の信号ケーブルを挿通させるには、その分チューブの太さをかなり増大させなければならなかったのに対し、本発明のカテーテルでは、電子部品に電気的に接続する信号線がチューブ内に挿入したフレキシブル配線回路基板の配線パターンであり、フレキシブル配線回路基板は、自体のサイズを極端に大きくする必要なく配線パターンの本数を増やすことができるので、チューブの太さを大きく増大させる必要なく信号線の数を増やすことができる。   That is, as shown in the catheter 100 of the example, the catheter of the present invention has a rear end of the tube 1 from the vicinity of the front end portion of the tube 1 serving as the catheter body and the mounting portion (arrangement portion) of the electronic component 2 in the intermediate portion. The signal line that reaches the end is configured by the wiring pattern 4 of the flexible printed circuit board 10, and this configuration enables the signal line to be multi-lined without the need to greatly increase the thickness of the tube 1. . In other words, in the case of a conventional catheter using a signal cable as a signal line connected to an electronic component, if the number of signal cables is increased to increase the number of signal lines, the bundle of signal cables occupies a large volume. In order to allow the signal cable of the book to be inserted, the thickness of the tube has to be increased considerably. On the other hand, in the catheter of the present invention, the signal wire electrically connected to the electronic component is inserted into the tube. The flexible wiring circuit board can be increased in the number of wiring patterns without having to extremely increase the size of the flexible wiring circuit board. The number of can be increased.

本発明のカテーテルに用いるフレキシブル配線回路基板(FPC)は、前記一例のカテーテル100(図1〜図3)で使用しているフレキシブル配線回路基板10のように、ベース絶縁層3、配線パターン(配線パターン)4及びカバー絶縁層5がこの順に積層された積層構造を基本構成とする。ベース絶縁層3、配線パターン(配線パターン)4及びカバー絶縁層5の各材料は、従来からフレキシブル配線回路基板で使用されている公知の材料を適用すればよい。   The flexible printed circuit board (FPC) used for the catheter of the present invention is similar to the flexible printed circuit board 10 used in the catheter 100 (FIGS. 1 to 3) of the above-described example. A basic structure is a laminated structure in which the pattern) 4 and the insulating cover layer 5 are laminated in this order. As materials for the base insulating layer 3, the wiring pattern (wiring pattern) 4, and the cover insulating layer 5, known materials conventionally used in flexible wiring circuit boards may be applied.

ベース絶縁層3の材料としては、例えば、ポリイミド系樹脂、ポリエステル系樹脂、エポキシ系樹脂、ウレタン系樹脂、ポリスチレン系樹脂、ポリエチレン系樹脂、ポリアミド系樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)共重合体樹脂、ポリカーボネート系樹脂、シリコーン系樹脂、フッ素系樹脂等が挙げられる。これらの中でも、耐熱性、寸法安定性、耐薬品性等の点から、ポリイミド系樹脂が好ましい。また、ベース絶縁層3の厚みは、フレキシブル性や電気絶縁性の点から、5〜100μm程度が好ましく、より好ましくは8〜30μm程度である。   Examples of the material for the base insulating layer 3 include polyimide resins, polyester resins, epoxy resins, urethane resins, polystyrene resins, polyethylene resins, polyamide resins, and acrylonitrile-butadiene-styrene (ABS) copolymers. Examples thereof include resins, polycarbonate resins, silicone resins, and fluorine resins. Among these, polyimide resins are preferable from the viewpoints of heat resistance, dimensional stability, chemical resistance, and the like. Moreover, the thickness of the base insulating layer 3 is preferably about 5 to 100 μm, more preferably about 8 to 30 μm, from the viewpoint of flexibility and electrical insulation.

配線パターン4の材料としては、例えば、ステンレス、銅、銅合金、アルミニウム、銅−ベリリウム、リン青銅、42アロイ等が挙げられ、導電性や剛性の点から、銅、銅合金が好ましい。配線パターン4の厚みは、3〜50μmが好ましく、5〜20μmがより好ましい。配線パターン4の厚みが3μm未満では、屈曲などの機械的なストレス、局所的な圧力や磨耗等によって損傷を受けやすく、50μmより大きい場合は、微細ピッチの配線形成を行い難くなり、また、変形し難くなることから、好ましくない。また、配線パターン4の幅は5〜100μmが好ましく、また、複数本の配線パターン(配線パターン)4における隣接する配線間のスペースは、電気信号への不要ノイズの発生、金属イオンマイグレーションによるショート等の不具合が生じない範囲でできるだけ狭くするのが好ましく、一般的には5〜100μmの範囲内で選択される。また、配線パターン(配線パターン)4の一部(通常、終端部4A)はカバー絶縁層5で被覆せず、金属ワイヤ等の他の導体部材との電気的接続を行うための端子部40として使用される。なお、かかる端子部40には、必要により、ニッケル、金、はんだ、錫等の高導電性金属で被覆する。   Examples of the material of the wiring pattern 4 include stainless steel, copper, copper alloy, aluminum, copper-beryllium, phosphor bronze, 42 alloy and the like, and copper and copper alloy are preferable from the viewpoint of conductivity and rigidity. The thickness of the wiring pattern 4 is preferably 3 to 50 μm, and more preferably 5 to 20 μm. If the thickness of the wiring pattern 4 is less than 3 μm, it is easily damaged by mechanical stress such as bending, local pressure and wear, and if it is larger than 50 μm, it becomes difficult to form a fine pitch wiring, Since it becomes difficult to do, it is not preferable. Further, the width of the wiring pattern 4 is preferably 5 to 100 μm, and the space between adjacent wirings in the plurality of wiring patterns (wiring patterns) 4 is caused by generation of unnecessary noise to an electric signal, short circuit due to metal ion migration, etc. It is preferable to make it as narrow as possible within the range in which the above problem does not occur, and generally selected within the range of 5 to 100 μm. Further, a part of the wiring pattern (wiring pattern) 4 (usually the terminal end portion 4A) is not covered with the insulating cover layer 5, and serves as a terminal portion 40 for electrical connection with other conductor members such as metal wires. used. The terminal portion 40 is covered with a highly conductive metal such as nickel, gold, solder, or tin as necessary.

なお、図8は前記一例のカテーテル100のフレキシブル配線回路基板10における複数本の配線パターン4の終端部4A付近を示す平面図であり、当該フレキシブル配線回路基板10においては、複数本の配線パターン4の終端部4Aを揃えて、各配線パターンの端子部40を同一直線上に並べて配置しているが、本発明のカテーテルにおいて、フレキシブル配線回路基板の複数の配線パターン4に設ける端子部40は、図9に示すように、千鳥状に配置するようにしてもよい。複数の配線パターン4に設ける端子部40を千鳥状に配置することで、図9に示すように、各配線パターンの端子部40の面積を拡大でき、後述する金属ワイヤ等との接続が容易になるので、好ましい。また、前記一例のカテーテル100のフレキシブル配線回路基板10では、端子部40は、全面露出させているが、図10に示すように、カバー絶縁層5の開口部から、配線パターン4の一部を露出するように形成してもよい。   8 is a plan view showing the vicinity of the terminal portions 4A of the plurality of wiring patterns 4 in the flexible wiring circuit board 10 of the catheter 100 of the example. In the flexible wiring circuit board 10, a plurality of wiring patterns 4 are provided. In the catheter of the present invention, the terminal portions 40 provided on the plurality of wiring patterns 4 of the flexible printed circuit board are arranged as follows. As shown in FIG. 9, you may make it arrange | position in zigzag form. By arranging the terminal portions 40 provided in the plurality of wiring patterns 4 in a staggered manner, as shown in FIG. 9, the area of the terminal portions 40 of each wiring pattern can be enlarged, and connection with a metal wire or the like described later is easy. Therefore, it is preferable. Further, in the flexible printed circuit board 10 of the catheter 100 of the example, the terminal portion 40 is exposed entirely, but as shown in FIG. 10, a part of the wiring pattern 4 is formed from the opening of the insulating cover layer 5. You may form so that it may expose.

カバー絶縁層5の厚みは2〜50μmが好ましい。2μm未満では、厚みバラツキ、或いは、屈曲や摩耗によって部分的に絶縁不良箇所が生じやすく、50μmを超えるとフレキシブル性が低下する傾向がある。   The thickness of the cover insulating layer 5 is preferably 2 to 50 μm. If the thickness is less than 2 μm, a portion of poor insulation is likely to occur due to thickness variation or bending or wear, and if it exceeds 50 μm, the flexibility tends to decrease.

本発明で用いるフレキシブル配線回路基板(FPC)には、前記一例のカテーテル(図1〜3)で使用しているフレキシブル配線回路基板10のような、ベース絶縁層3の配線パターンとは反対側の面に金属支持板6を積層したものが好ましい。このような金属支持板6を有するフレキシブル配線回路基板の場合、金属支持板6によってフレキシブル配線回路基板全体の剛性が高まることから、チューブ内へのフレキシブル配線回路基板の挿入作業が容易になる。また、カテーテルの不要な折れ曲がり等が起り難くなり、カテーテルを体内へ挿入していく際にカテーテルを意図する方向へ進行させることが容易になる。従って、カテーテルを体内へ挿入していく際の操作性が向上する。   The flexible printed circuit board (FPC) used in the present invention is on the opposite side of the wiring pattern of the base insulating layer 3 as the flexible printed circuit board 10 used in the catheter of the above example (FIGS. 1 to 3). What laminated | stacked the metal support plate 6 on the surface is preferable. In the case of a flexible printed circuit board having such a metal support plate 6, the metal support plate 6 increases the rigidity of the entire flexible printed circuit board, so that the flexible printed circuit board can be easily inserted into the tube. In addition, unnecessary bending or the like of the catheter is unlikely to occur, and it is easy to advance the catheter in the intended direction when the catheter is inserted into the body. Therefore, the operability when the catheter is inserted into the body is improved.

該金属支持板6の材料としては、ステンレス、鋼、ニッケル、クロム、鉄、錫、鉛、アルミニウム等の金属元素の単体又はこれら金属から選ばれる2種以上の合金等が挙げられる。これらの中でも、弾惟率が高いという点で、ステンレスが好ましい。   Examples of the material of the metal support plate 6 include single elements of metal elements such as stainless steel, steel, nickel, chromium, iron, tin, lead, and aluminum, or two or more alloys selected from these metals. Among these, stainless steel is preferable in terms of a high impact rate.

金属支持板6の弾性率は、フレキシブル配線回路基板のチューブへの挿入性やカテーテルの操作性を考慮すると、50GPa以上が好ましく、100GPa以上がより好ましい。しかし、弾性率が大きすぎると、チューブへ挿入した後、曲げにくい、または、フレキシブル性が欠けるため、弾性率は400GPa以下であるのが好ましく、300GPa以下であるのがより好ましい。なお、ここでの「弾性率」とは、試験片幅20mm、チャック間100mm、引張り速度50mm/分の試験条件で測定したときの引張弾性率を意味する。   The elastic modulus of the metal support plate 6 is preferably 50 GPa or more, more preferably 100 GPa or more in consideration of the insertion property of the flexible printed circuit board into the tube and the operability of the catheter. However, if the elastic modulus is too large, the elastic modulus is preferably 400 GPa or less, more preferably 300 GPa or less because it is difficult to bend after insertion into the tube or lacks flexibility. Here, the “elastic modulus” means a tensile elastic modulus when measured under test conditions of a test piece width of 20 mm, a chuck interval of 100 mm, and a tensile speed of 50 mm / min.

また、金属支持板6の厚みは、一般に10〜200μm程度が好ましい(より好ましくは20〜50μmである)。金属支持板の厚みが10μm未満では、フレキシブル配線回路基板にカールやうねりを生じやすくなり、その結果、フレキシブル配線回路基板をチューブに挿入しにくくなることがあり、また、200μmより厚い場合は、フレキシブル配線回路基板のフレキシブル性が低下することから、フレキシブル配線回路基板をチューブに挿入しにくくなったり、ロール・トゥー・ロールの生産方式(すなわち、巻き出しロールから繰り出したフィルム(シート)を巻取りロールで巻き取るようにし、その間でフィルム(シート)を加工する方式)による生産が困難となる。   The thickness of the metal support plate 6 is generally preferably about 10 to 200 μm (more preferably 20 to 50 μm). If the thickness of the metal support plate is less than 10 μm, the flexible printed circuit board is likely to be curled or undulated. As a result, it may be difficult to insert the flexible printed circuit board into the tube. Since the flexibility of the printed circuit board is reduced, it becomes difficult to insert the flexible printed circuit board into the tube, or a roll-to-roll production system (that is, a film (sheet) fed from the unwinding roll is taken up) Production by a method of processing a film (sheet) in the meantime).

また、このような金属支持板6を有するフレキシブル配線回路基板において、金属支持板6は、必要により、所定のパターンに加工して、配線パターンとして利用することもできる。この場合、フレキシブル配線回路基板は、両面配線(回路)基板となり、ベース絶縁層の両面に形成された配線パターンを信号線として利用することができる。すなわち、このような両面配線構造のフレキシブル配線回路基板を使用することで、フレキシブル配線回路基板の表裏両面の双方の側に電子部品を配設したカテーテルを作製できる。かかる金属支持板を配線パターンとして使用する場合、一個の配線パターンの幅は10〜500μm程度とするのが好ましく、隣接する配線パターン間のスペースは10〜300μm程度とするのが好ましい。   Moreover, in the flexible printed circuit board having such a metal support plate 6, the metal support plate 6 can be processed into a predetermined pattern and used as a wiring pattern if necessary. In this case, the flexible printed circuit board becomes a double-sided wiring (circuit) board, and wiring patterns formed on both sides of the base insulating layer can be used as signal lines. That is, by using a flexible printed circuit board having such a double-sided wiring structure, a catheter having electronic components arranged on both the front and back sides of the flexible printed circuit board can be produced. When such a metal support plate is used as a wiring pattern, the width of one wiring pattern is preferably about 10 to 500 μm, and the space between adjacent wiring patterns is preferably about 10 to 300 μm.

本発明において、フレキシブル配線回路基板(金属支持板を有さない場合と金属支持板を有する場合の両方を含む)の総厚みは20〜300μmが好ましい(より好ましくは30〜100μmである。)。該総厚みが20μmより小さいと、ハンドリング性が悪くなるため、チューブへの挿入が困難となる。また、該総厚みが300μmより大きいと、カテーテルの柔軟性が低下し、カテーテルを体内へ挿入していく際の操作性が低下してしまう。   In the present invention, the total thickness of the flexible printed circuit board (including both the case without a metal support plate and the case with a metal support plate) is preferably 20 to 300 μm (more preferably 30 to 100 μm). When the total thickness is less than 20 μm, handling becomes worse and insertion into the tube becomes difficult. On the other hand, if the total thickness is larger than 300 μm, the flexibility of the catheter is lowered, and the operability when the catheter is inserted into the body is lowered.

また、フレキシブル配線回路基板の長手方向(軸線方向)の幅(図3中のD1)は、チューブ1の軸線方向における電子部品の搭載(配設)位置からチューブ1の後端部までの長さに応じて決定される。すなわち、チューブ1の軸線方向における電子部品の搭載(配設)位置からチューブ1の後端部までの長さと同等か若しくはそれ以上の長さにする必要があり、一般的には、50〜1000mmの範囲内である。   The width (D1 in FIG. 3) in the longitudinal direction (axial direction) of the flexible printed circuit board is the length from the mounting (arrangement) position of the electronic component in the axial direction of the tube 1 to the rear end portion of the tube 1. It is decided according to. That is, it is necessary to make the length equal to or longer than the length from the electronic component mounting (arrangement) position in the axial direction of the tube 1 to the rear end portion of the tube 1, and generally 50 to 1000 mm. Is within the range.

また、フレキシブル配繰回路基板の短手方向の幅(図3中のD2)は100〜3000μmが好ましい(より好ましくは200〜1500μm)。フレキシブル配線回路基板の短手方向の幅が100μmより小さい場合、フレキシブル配線回路基板の自己支持性が低下し、チューブへの挿入が困難になり、また、3000μmより大きい場合、フレキシブル配線回路基板を挿入するチューブの内径や外径が大きくなるため、好ましくない。また、チューブへの挿入を容易にするためには、チューブの内径よりも該短手方向の幅は50〜100μm程度小さいことが好ましい。   Further, the width (D2 in FIG. 3) in the short direction of the flexible circuit board is preferably 100 to 3000 μm (more preferably 200 to 1500 μm). If the width of the flexible printed circuit board in the short direction is smaller than 100 μm, the self-supporting property of the flexible printed circuit board will be reduced, making it difficult to insert into the tube, and if larger than 3000 μm, the flexible printed circuit board will be inserted. This is not preferable because the inner diameter and outer diameter of the tube to be increased. In order to facilitate insertion into the tube, the width in the short direction is preferably about 50 to 100 μm smaller than the inner diameter of the tube.

また、フレキシブル配線回路基板が金属支持板6を有する場合、金属支持板6の短手方向の幅は50〜2950μmが好ましい。   Moreover, when the flexible printed circuit board has the metal support plate 6, the width in the short direction of the metal support plate 6 is preferably 50 to 2950 μm.

前記一例のカテーテル100(図1〜図3)で使用しているフレキシブル配線回路基板10は、金属支持板6の短手方向の幅(図2中のD3)をフレキシブル配線回路基板10(ベース絶縁層3)の短手方向の幅(D2)と同じにしたものであるが、本発明で使用するフレキシブル配線回路基板は、図4に示すような、金属支持板6の短手方向の幅(D3)をベース絶縁層3の幅(D2)より小さくし、フレキシブル配線回路基板の短手方向の両端部に金属支持板6が存在しないレキシブル配線回路基板20にしてもよい。このような構造のフレキシブル配線回路基板を使用することで、図5に示すように、フレキシブル配線回路基板20のベース絶縁層3をその長手方向の全長に亘って短手方向の両端部を折り曲げた状態にしてチューブ1内に挿入することができ、チューブ1の太さをより小さくすることができる。また、フレキシブル配線回路基板のチューブ1への挿入作業において、チューブの内壁を傷つけることを防止できる。   The flexible printed circuit board 10 used in the catheter 100 (FIGS. 1 to 3) of the above example has the width (D3 in FIG. 2) of the metal support plate 6 in the short direction and the flexible printed circuit board 10 (base insulation). The width (D2) of the layer 3) is the same as the width (D2) in the short direction, but the flexible printed circuit board used in the present invention has a width (in the short direction) of the metal support plate 6 as shown in FIG. D3) may be made smaller than the width (D2) of the insulating base layer 3, and the flexible printed circuit board 20 may be configured such that the metal support plates 6 do not exist at both ends in the short direction of the flexible printed circuit board. By using the flexible printed circuit board having such a structure, as shown in FIG. 5, the base insulating layer 3 of the flexible printed circuit board 20 is bent at both ends in the short direction over the entire length in the longitudinal direction. The tube 1 can be inserted into the tube 1 in a state, and the thickness of the tube 1 can be further reduced. Further, it is possible to prevent the inner wall of the tube from being damaged in the operation of inserting the flexible printed circuit board into the tube 1.

このような、フレキシブル配線回路基板の短手方向の両端部に金属支持板6が存在しないフレキシブル配線回路基板20の場合、フレキシブル配線回路基板の短手方向の両端部の金属支持板6が存在しない部分の短手方向の幅(図4中のD4)は20〜1000μmが好ましい。該幅が20μm未満の場合、加工精度が僅かに低下しただけでも、部分的に金属支持板の両端が露出して、チューブの内壁を損傷させる場合があり、該幅が1000μmを超える場合、金属支持板によってフレキシブル配線回路基板を十分に保持できない場合がある。   In the case of such a flexible printed circuit board 20 in which the metal support plates 6 do not exist at both ends in the short direction of the flexible printed circuit board, the metal support plates 6 at both ends in the short direction of the flexible printed circuit board do not exist. The width of the portion in the short direction (D4 in FIG. 4) is preferably 20 to 1000 μm. If the width is less than 20 μm, even if the processing accuracy is slightly lowered, both ends of the metal support plate may be partially exposed to damage the inner wall of the tube, and if the width exceeds 1000 μm, the metal The flexible printed circuit board may not be sufficiently held by the support plate.

本発明のカテーテルにおいて、本体となるチューブ1の材質としては、ポリテトラフルオロエチレンなどのフッ素樹脂、シリコーン樹脂、高密度ポリエチレン樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリ塩化ビニルなどの絶縁樹脂材料が用いられる。柔軟性、耐熱性、耐薬品性、生体適合性、チューブ状への加工性等を考慮すると、これらの中でもフッ素樹脂が好ましい。   In the catheter of the present invention, as the material of the tube 1 serving as a main body, an insulating resin material such as a fluororesin such as polytetrafluoroethylene, a silicone resin, a high density polyethylene resin, a polyurethane resin, a polyester resin, or polyvinyl chloride is used. . In view of flexibility, heat resistance, chemical resistance, biocompatibility, processability into a tube shape, etc., among these, a fluororesin is preferable.

また、チューブ1の軸線と直交する平面で切った断面(横断面)の形状は特に限定されないが、円形、楕円形等の角部のない形状が好ましい(通常は円形である。)。円形の場合を例にすると、その内径は0.2〜3.5mm程度が好ましく、その外径は0.3〜4mm程度が好ましい。チューブの内径と外径がかかる好ましい範囲内にあることで、フレキシブル配線回路基板を挿入性及び患者体内でのカテーテルの操作性に優れ、しかも、患者体内でのカテーテル操作時に患者への痛みを生じにくい、カテーテルを実現できる。なお、チューブの肉厚が0.05〜1.0mmとなるように内径とが外径を決定するのが好ましい。   The shape of the cross section (transverse cross section) cut by a plane orthogonal to the axis of the tube 1 is not particularly limited, but a shape having no corners such as a circle and an ellipse is preferable (usually a circle). Taking a circular case as an example, the inner diameter is preferably about 0.2 to 3.5 mm, and the outer diameter is preferably about 0.3 to 4 mm. Because the inner diameter and outer diameter of the tube are within such a preferable range, the flexible printed circuit board is excellent in insertability and catheter operability in the patient, and causes pain to the patient during catheter operation in the patient. A difficult catheter can be realized. In addition, it is preferable that an inner diameter determines an outer diameter so that the thickness of a tube may be 0.05-1.0 mm.

断面形状が円形でないチューブを使用する場合は、断面の内周及び外周のそれぞれの最大径が上記の断面が円形の場合の内径及び外径の好ましい数値範囲内となるチューブを用いるのが好ましい。   When a tube having a non-circular cross-sectional shape is used, it is preferable to use a tube in which the maximum diameters of the inner and outer circumferences of the cross section are within the preferable numerical ranges of the inner diameter and the outer diameter when the cross section is circular.

本発明のカテーテルにおいて、チューブの長さ(軸線方向の長さ)は一般的には30mm以上、さらには100mm以上であり、上限は通常1000mm以下である。   In the catheter of the present invention, the length of the tube (length in the axial direction) is generally 30 mm or more, further 100 mm or more, and the upper limit is usually 1000 mm or less.

本発明のカテーテルにおいて、チューブ1内に搭載する電子部品2としては、従来から電子部品搭載型のカテーテルに使用されている電子部品を制限なく使用できる。具体的には、発熱抵抗体、圧力センサー、温度測定用サーミスタ、超音波発振子、圧電素子等が挙げられる。図1〜図3に示す一例のカテーテル100は電子部品2に圧力センサーを用いたものである。なお、圧力センサーを搭載したカテーテルを構成する場合、図1に示すように圧力センサー(電子部品2)はその感応面2Aがチューブ側壁に設けた貫孔Hから外部に露出するように配設する。   In the catheter of the present invention, as the electronic component 2 mounted in the tube 1, an electronic component conventionally used in an electronic component mounting type catheter can be used without limitation. Specific examples include a heating resistor, a pressure sensor, a temperature measurement thermistor, an ultrasonic oscillator, and a piezoelectric element. The example catheter 100 shown in FIGS. 1 to 3 uses a pressure sensor for the electronic component 2. When configuring a catheter equipped with a pressure sensor, as shown in FIG. 1, the pressure sensor (electronic component 2) is disposed such that its sensitive surface 2A is exposed to the outside from a through hole H provided in the side wall of the tube. .

本発明のカテーテルにおいて、電子部品とフレキシブル配線回路基板(配線パターン)との接続(電気的接続)は、例えば、図1に示すように、フレキシブル配線回路基板の配線パターン4に設けた端子部40と電子部品2の端子(図示せず)に、金属ワイヤ7の一端と他端をそれぞれボンディグする等の金属溶接技術を用いて行う方法や、配線パターンに設けた端子部40と電子部品の端子の両方を導電性接着剤層で被覆する方法等で行われる。なお、図1に示すように、配線パターン4の端子部40と電子部品2の端子との接続部は樹脂8で封止して保護するのが好ましい。かかる封止用の樹脂8としては、例えば、エポキシ樹脂、フッ素樹脂、シリコーン樹脂等が挙げられる。   In the catheter of the present invention, the connection (electrical connection) between the electronic component and the flexible printed circuit board (wiring pattern) is, for example, as shown in FIG. 1, the terminal portion 40 provided on the wiring pattern 4 of the flexible printed circuit board. And a method using a metal welding technique such as bonding one end and the other end of the metal wire 7 to a terminal (not shown) of the electronic component 2, a terminal portion 40 provided in the wiring pattern, and a terminal of the electronic component Both are performed by a method of covering both with a conductive adhesive layer. As shown in FIG. 1, it is preferable to protect the connection portion between the terminal portion 40 of the wiring pattern 4 and the terminal of the electronic component 2 by sealing with a resin 8. Examples of the sealing resin 8 include an epoxy resin, a fluororesin, and a silicone resin.

また、チューブ1内での電子部品2の固定は、図1〜図3に示す一例のカテーテル100のように、フレキシブル配線回路基板10のベース絶縁層3上の配線パターン4に設けた端子部40と近接する配線パターン非形成領域3Aに、電子部品2を実装(固定)するのが好ましい。こうすることで、配線パターン4と電子部品2とが共にフレキシブル配線回路基板10の動きに追従するため、これら両者間の接続部にかかる負荷が小さくなり、電子部品2の端子と配線パターン4の端子部40間の接続信頼性が向上する。また、ベース絶縁層3への電子部品2の実装(固定)は、例えば、図1に示すように、配線パターン4に設けた端子部40と電子部品2の端子との接続部を封止する樹脂8を使用し、電子部品2の側周の略全域に対して、該樹脂8を、電子部品2の周縁からベース絶縁層3の表面に跨るように塗布することで行うことができる。こうすることで、電子部品2の実装(固定)作業と、電子部品の端子と配線パターンとの接続作業を同時に行うことができ、効率的である。なお、電子部品2はベース絶縁層上の配線パターン4に設けた端子部40と近接する領域3Aに接着剤で固定してもよい。   Further, the electronic component 2 is fixed in the tube 1 by a terminal portion 40 provided on the wiring pattern 4 on the base insulating layer 3 of the flexible printed circuit board 10 as in the catheter 100 shown in FIGS. It is preferable to mount (fix) the electronic component 2 in the wiring pattern non-formation region 3 </ b> A that is close to. By doing so, both the wiring pattern 4 and the electronic component 2 follow the movement of the flexible printed circuit board 10, so the load applied to the connecting portion between the two is reduced, and the terminals of the electronic component 2 and the wiring pattern 4 Connection reliability between the terminal portions 40 is improved. For example, as shown in FIG. 1, the electronic component 2 is mounted (fixed) on the insulating base layer 3 by sealing a connection portion between the terminal portion 40 provided on the wiring pattern 4 and the terminal of the electronic component 2. This can be performed by using the resin 8 and applying the resin 8 across the entire periphery of the electronic component 2 from the periphery of the electronic component 2 to the surface of the base insulating layer 3. By doing so, the mounting (fixing) operation of the electronic component 2 and the connection operation between the terminals of the electronic component and the wiring pattern can be performed simultaneously, which is efficient. The electronic component 2 may be fixed with an adhesive to the region 3A adjacent to the terminal portion 40 provided on the wiring pattern 4 on the base insulating layer.

なお、図1〜図3に示す一例のカテーテル100のように、チューブ1の側壁に設けた貫孔Hから電子部品2の一部を露出させる態様のカテーテルを構成する場合、チューブ内をチューブの外部から確実に遮断するために、貫孔H周囲のチューブ壁の周縁と電子部品2の上面を被覆するようにシール用の樹脂9を塗布するのが好ましい。該シール用樹脂9としては、例えば、エポキシ樹脂、フッ素樹脂、シリコーン樹脂等が使用される。また、電子部品2が、例えば、温度センサーのような必ずしもその感受面をチューブ外へ露出する必要のない場合は、図11に示すように、チューブ壁に貫孔を形成せず、電子部品2はチューブ1に内封されていてもよい。この場合は、シール用樹脂は不要である。   In addition, like the catheter 100 of an example shown in FIGS. 1-3, when comprising the catheter of the aspect which exposes a part of electronic component 2 from the through-hole H provided in the side wall of the tube 1, the inside of a tube is the inside of a tube. In order to securely block from the outside, it is preferable to apply a sealing resin 9 so as to cover the periphery of the tube wall around the through hole H and the upper surface of the electronic component 2. As the sealing resin 9, for example, an epoxy resin, a fluororesin, a silicone resin or the like is used. If the electronic component 2 does not necessarily have its sensitive surface exposed to the outside of the tube, such as a temperature sensor, for example, as shown in FIG. May be enclosed in the tube 1. In this case, no sealing resin is required.

図1〜図3に示す一例のカテーテル100では、フレキシブル配線回路基板10は、導体層(配線パターン4)を一層設けたものであるが、フレキシブル配線回路基板として、複数の導体層をビアホールを介して接続した多層フレキシブル配線回路基板を用いてもよい。多層フレキシブル配線回路基板の場合、より多くの配線や端子を設置することが可能なので、より多くの電子部品を実装することができ、カテーテルの機能を向上させることができる。   In the example catheter 100 shown in FIGS. 1 to 3, the flexible printed circuit board 10 is provided with a single conductor layer (wiring pattern 4). As the flexible printed circuit board, a plurality of conductor layers are provided via via holes. A multi-layer flexible printed circuit board connected in this manner may be used. In the case of a multilayer flexible printed circuit board, more wires and terminals can be installed, so that more electronic components can be mounted and the function of the catheter can be improved.

本発明で用いるフレキシブル配線回路基板の製造方法は特に限定されず、従来からフレキシブル配線回路基板の製造に使用されている公知の膜(層)形成技術、膜(層)のパターニング技術、印刷等の配線形成技術及びフォトリソグラフィー技術等を適宜組み合わせて製造することができ、例えば、サブトラクティブ法、セミアディティブ法等の方法で作製することができる。   The manufacturing method of the flexible printed circuit board used in the present invention is not particularly limited, and a known film (layer) forming technique, film (layer) patterning technique, printing, and the like conventionally used for manufacturing a flexible printed circuit board are used. It can be manufactured by appropriately combining a wiring formation technique, a photolithography technique, and the like. For example, it can be manufactured by a method such as a subtractive method or a semi-additive method.

ベース絶縁層3及びカバー絶縁層5を所定パターンに形成する場合、例えば、感光性ポリイミド等の感光性樹脂を用いる方法(すなわち、感光性樹脂(前駆体)層に露光、現像及び加熱硬化処理等を施して所定パターンの絶縁性樹脂層を形成する方法)や、絶縁性樹脂層にレーザーやプラズマ等によるエッチング加工を施して所定パターンにパターニングする方法等が挙げられるが、作業性、位置決め精度等の点から、感光性樹脂を用いる方法が好ましい。   When the insulating base layer 3 and the insulating cover layer 5 are formed in a predetermined pattern, for example, a method using a photosensitive resin such as photosensitive polyimide (that is, exposure, development, heat curing treatment, etc. on the photosensitive resin (precursor) layer) A method of forming an insulating resin layer having a predetermined pattern by applying an etching process, and a method of patterning the insulating resin layer by etching with a laser or plasma to pattern the predetermined pattern. From this point, a method using a photosensitive resin is preferable.

金属支持板6を有するフレキシブル配線回路基板を作製する場合は、ベース絶縁層3、配線パターン4及びカバー絶縁層5をこの順に積層したフレキシブル配線回路基板を作製後、金属支持板6をベース絶縁層3に接着剤を用いて貼りつけてもよいし、あるいは、金属支持板6上にべ−ス絶縁層3、配線パターン4、カバー絶縁層5をこの順に積層するようにしてもよい。   When a flexible printed circuit board having the metal support plate 6 is manufactured, a flexible printed circuit board in which the base insulating layer 3, the wiring pattern 4, and the cover insulating layer 5 are laminated in this order is manufactured, and then the metal support plate 6 is used as the base insulating layer. The base insulating layer 3, the wiring pattern 4, and the cover insulating layer 5 may be laminated in this order on the metal support plate 6.

なお、金属支持板6を有するフレキシブル配線回路基板であって、基板の短手方向の両端部に金属支持板が存在しない態様のものや、金属支持板を配線パターンとして使用する態様のものを作製する場合、金属支持板6を含む積層構造体を作製後、金属支持板6に部分的にエッチングを施せばよい。   In addition, a flexible printed circuit board having a metal support plate 6 having an aspect in which no metal support plate exists at both ends in the short direction of the board or an aspect in which the metal support plate is used as a wiring pattern is prepared. In this case, after the laminated structure including the metal support plate 6 is manufactured, the metal support plate 6 may be partially etched.

本発明のカテーテルの製造方法は特に限定されないが、以下の方法で製造するのが好ましい。
例えば、図1〜図3に示す一例のカテーテル100の場合、その軸線方向における電子部品を搭載すべき位置(チューブの前端部や中間部)に対応させてその側壁に貫孔Hを形成したチューブ1と、その長手方向の幅をチューブ1の貫孔Hからチューブ1の後端部までの長さと同等か若しくはそれよりも長くしたフレキシブル配線回路基板10とを用意し、チューブ1内に、フレキシブル配線回路基板10を挿入する工程(第1工程)と、チューブ1の側壁に形成した貫孔Hを通して、フレキシブル配線回路基板10のベース絶縁層3上の配線パターン4に設けた端子部40と近接する領域(配線パターン非形成領域)3Aに、電子部品2を載置する工程(第2工程)と、電子部品2の端子と配線パターン4に設けた端子部4Aとを金属溶接又は導電性接着剤によって接続し、該接続部を樹脂で封止する(第3工程)とを含む方法によって作製することができる。
Although the manufacturing method of the catheter of this invention is not specifically limited, Manufacturing with the following method is preferable.
For example, in the case of the catheter 100 shown in FIGS. 1 to 3, a tube in which a through hole H is formed on the side wall corresponding to a position (front end or intermediate portion of the tube) where the electronic component is to be mounted in the axial direction. 1 and a flexible printed circuit board 10 whose longitudinal width is equal to or longer than the length from the through hole H of the tube 1 to the rear end of the tube 1, Proximity to the terminal portion 40 provided in the wiring pattern 4 on the base insulating layer 3 of the flexible printed circuit board 10 through the process of inserting the printed circuit board 10 (first process) and the through hole H formed in the side wall of the tube 1. The step (second step) of placing the electronic component 2 on the region 3A to be formed (wiring pattern non-formation region), and the terminal of the electronic component 2 and the terminal portion 4A provided on the wiring pattern 4 are metal-welded. It can is connected by a conductive adhesive, made by a method comprising the said connecting portion is sealed with resin (the third step).

また、先にフレキシブル配線回路基板10のベース絶縁層3上に電子部品を実装し、電子部品2の端子と配線パターン4に設けた端子部40とを金属溶接又は導電性接着剤によって接続してから、フレキシブル配線回路基板をチューブ1内に挿入し、チューブ1の側壁に形成した貫孔Hを通して、電子部品2の端子と配線パターン4に設けた端子部40との接続部を樹脂で封止するようにしてもよい。   Further, electronic components are first mounted on the base insulating layer 3 of the flexible printed circuit board 10, and the terminals of the electronic components 2 and the terminal portions 40 provided on the wiring pattern 4 are connected by metal welding or conductive adhesive. Then, the flexible printed circuit board is inserted into the tube 1, and the connection portion between the terminal of the electronic component 2 and the terminal portion 40 provided in the wiring pattern 4 is sealed with resin through the through hole H formed in the side wall of the tube 1. You may make it do.

なお、電子部品の一部をチューブの側壁から露出させないタイプのカテーテルを作製する場合、フレキシブル配線回路基板のベース絶縁層上に電子部品を実装し、電子部品の端子と配線パターンに設けた端子部とを接続し、該接続部を樹脂で封止してから、チューブ内にフレキシブル配線回路基板を挿入すればよい。   When producing a catheter that does not expose a part of the electronic component from the side wall of the tube, the electronic component is mounted on the base insulating layer of the flexible printed circuit board, and the terminal portion provided on the terminal and wiring pattern of the electronic component. And the connecting portion is sealed with resin, and then the flexible printed circuit board is inserted into the tube.

以下、実施例を示して本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

実施例1
本実施例は、ステンレス基板上にセミアディティブ法で5本の配線パターンを形成したフレキシブル配線回路基板を作製し、該フレキシブル配線回路基板をチューブに挿入してカテーテルを組立てる例である。なお、フレキシブル配線回路基板は図3に示したフレキシブル配線回路基板10と同構造のものである。
Example 1
In this example, a flexible printed circuit board having five wiring patterns formed on a stainless steel substrate by a semi-additive method is manufactured, and the catheter is assembled by inserting the flexible printed circuit board into a tube. The flexible printed circuit board has the same structure as the flexible printed circuit board 10 shown in FIG.

(フレキシブル配線回路基板の作製)
先ず、金属支持板6としてのステンレス基板(SUS304)(縦:300mm、横:300mm、厚み:200μm、弾性率:205GPa)の上に感光性ポリイミド前駆体3’を塗布し(図6(a))、露光、現像後、加熱して、短手方向の幅が500μm、長手方向の幅が200mm、厚みが10μmの帯状のポリイミドからなるベース絶縁層3を並列に複数形成した(図6(b))。
なお、図6は一つのベース絶縁層3とその周辺部のみを示している。
(Production of flexible printed circuit board)
First, a photosensitive polyimide precursor 3 ′ was applied on a stainless steel substrate (SUS304) (length: 300 mm, width: 300 mm, thickness: 200 μm, elastic modulus: 205 GPa) as the metal support plate 6 (FIG. 6A). ), Exposure, development, and heating to form a plurality of parallel base insulating layers 3 made of a strip-like polyimide having a width in the short direction of 500 μm, a width in the longitudinal direction of 200 mm, and a thickness of 10 μm (FIG. 6B). )).
FIG. 6 shows only one base insulating layer 3 and its peripheral part.

次に、連続スパッタリングにより、金属薄膜(クロム薄膜(厚み:100nm)/銅薄膜(厚み:100nm))4aを形成し(図6(c))、次に、フォトレジストにより、形成すべき配線パターンと逆パターンのめっき用マスク(すなわち、形成すべき配線パターンと同じパターンの開口領域を有するパターン)15を形成した。   Next, a metal thin film (chromium thin film (thickness: 100 nm) / copper thin film (thickness: 100 nm)) 4a is formed by continuous sputtering (FIG. 6C), and then a wiring pattern to be formed by photoresist. A plating mask having a reverse pattern (that is, a pattern having an opening region having the same pattern as the wiring pattern to be formed) 15 was formed.

次に、電解銅めっきによって、レジストがない部分(めっき用マスク15の開口部)に銅層(厚み:10μm)を成長させ、ベース絶縁層3の長手方向に沿って互いに平行に走る5本の配線パターン4を形成し(図6(d))、その後、めっき用マスク(レジスト)を剥離し、露出した金属薄膜4aをエッチング除去した(図7(a))。なお、銅配線パターン4の幅は20μm、長さ(軸線方向の長さ)は200mm、隣接するパターン間のスペースは20μmとした。   Next, by electrolytic copper plating, a copper layer (thickness: 10 μm) is grown on a portion where there is no resist (opening portion of the plating mask 15), and five pieces running parallel to each other along the longitudinal direction of the base insulating layer 3. A wiring pattern 4 was formed (FIG. 6D), and then the plating mask (resist) was removed, and the exposed metal thin film 4a was removed by etching (FIG. 7A). The width of the copper wiring pattern 4 was 20 μm, the length (length in the axial direction) was 200 mm, and the space between adjacent patterns was 20 μm.

次に、ベース絶縁層3と同様に、感光性ポリイミド前駆体の塗布、露光、現像、加熱を順次行って、銅配線パターン4の端子部とする終端部に開口部(ポリイミド層の非形成部)5aを設けた所定パターンのポリイミドからなるカバー絶縁層(厚み:5μm)5を形成し、カバー絶縁層5の開口部5aから露出した銅配線パターン4の終端部に、ニッケル(厚み:5μm)/金(厚み:0.2μm)のめっきを施して、端子部40を形成した(図7(b))。   Next, similarly to the base insulating layer 3, the photosensitive polyimide precursor is applied, exposed, developed, and heated in order, and an opening (a polyimide layer non-formation portion) is formed at the terminal portion of the copper wiring pattern 4. ) A cover insulating layer (thickness: 5 μm) 5 made of polyimide having a predetermined pattern provided with 5 a is formed, and nickel (thickness: 5 μm) is formed on the terminal portion of the copper wiring pattern 4 exposed from the opening 5 a of the cover insulating layer 5. / Gold (thickness: 0.2 μm) was plated to form the terminal portion 40 (FIG. 7B).

次に、ステンレス基板6のベース絶層層3の形成面とは反対側の面にフォトレジストパターン16を形成し(図7(c))、該フォトレジストパターン16をマスクにして、ステンレス基板6の幅方向の両端部をエッチング除去し、さらにフォトレジストパターン16を除去することで、ベース絶縁層3の幅方向の両端部をステンレス基板6の幅方向両端(終端)から50μm突出させた。こうして、金属支持板を有するが、短手方向の両端部には金属支持板が存在しないタイプのフレキシブル配線回路基板30(ベース絶縁層3の短手方向の幅:500μm、ベース絶縁層3の長手方向の幅:200mm)を完成させた(図7(d))。   Next, a photoresist pattern 16 is formed on the surface of the stainless steel substrate 6 opposite to the surface on which the base insulating layer 3 is formed (FIG. 7C), and the stainless steel substrate 6 is formed using the photoresist pattern 16 as a mask. Both end portions in the width direction were etched away, and the photoresist pattern 16 was further removed, so that both end portions in the width direction of the base insulating layer 3 protruded from the both ends (terminations) in the width direction of the stainless steel substrate 6 by 50 μm. Thus, a flexible printed circuit board 30 having a metal support plate but having no metal support plate at both ends in the short direction (width of the base insulating layer 3 in the short direction: 500 μm, length of the base insulating layer 3) Direction width: 200 mm) was completed (FIG. 7D).

なお、当該フレキシブル配線回路基板30は、図3に示した一例のフレキシブル配線回路基板10と同様に、その長手方向(軸線方向)の一方側の終端部はカバー絶縁層5で覆わず、露出したベース絶縁層3上の配線パターン3に設けた端子部4と近接領域を電子部品の実装領域(配設領域)にしている。   The flexible printed circuit board 30 is exposed without being covered with the insulating cover layer 5 at one end in the longitudinal direction (axial direction), like the flexible printed circuit board 10 of the example shown in FIG. The terminal portion 4 provided in the wiring pattern 3 on the base insulating layer 3 and the adjacent area are used as an electronic component mounting area (arrangement area).

(カテーテルの組立て)
軸線方向の一方の端部が閉じられ、他方の端部が開放した、内径が0.6mm、外径が0.8mm、長さ(軸線方向の長さ)が200mmのフッ素樹脂製チューブを用意し、チューブ側壁の前記一方の端部からチューブの軸線方向に5mm離れた位置に貫孔(孔の大きさ:2mm×0.4mm(四角形))を形成した。
(Assembly of the catheter)
A fluororesin tube with an inner diameter of 0.6 mm, an outer diameter of 0.8 mm, and a length (axial length) of 200 mm is prepared, with one end in the axial direction closed and the other end opened. Then, a through hole (hole size: 2 mm × 0.4 mm (square)) was formed at a position 5 mm away from the one end of the tube side wall in the axial direction of the tube.

次に、圧力センサー(センサーのサイズ(縦:3mm、横:0.5mm、厚み:250μm)、端子サイズ(80μm×80μm(四角形)))を、フレキシブル配線回路基板のベース絶縁層上の配線パターンに設けた端子部と近接する領域に載置し、圧力センサーの端子(電極)と配線パターンに設けた端子間を金ワイヤーを用いたワイヤボンディングによって接続した後、上記チューブの軸線方向の他方の端部から、フレキシブル配線回路基板を挿入し、チューブ側壁に形成した貫孔を通して、フレキシブル配線回路基板上の圧力センサーと配線パターンとの金ワイヤによる接続部をエポキシ樹脂で封止し、さらにチューブの貫孔周囲と電子部品の隙間にシール用シリコーン樹脂を塗布して、圧力センサー付カテーテルを作製した。   Next, the pressure sensor (sensor size (length: 3 mm, width: 0.5 mm, thickness: 250 μm), terminal size (80 μm × 80 μm (square))), wiring pattern on the base insulating layer of the flexible printed circuit board After connecting the terminal (electrode) of the pressure sensor and the terminal provided in the wiring pattern by wire bonding using a gold wire, the other side of the tube in the axial direction is placed. Insert the flexible printed circuit board from the end, and seal the gold wire connection between the pressure sensor and the wiring pattern on the flexible printed circuit board with epoxy resin through the through-hole formed in the side wall of the tube. A sealing silicone resin was applied to the gap between the through hole and the electronic component to produce a catheter with a pressure sensor.

こうして得られた圧力センサー付カテーテルは、5本の複数の配線パターンを有しながら、フレキシブル性が良好であり、被験者(モニター)の体内への操作性良く挿入することができた。また、被験者はかかるカテーテルの挿入作業中に痛みを訴えることはなかった。   The pressure sensor catheter thus obtained had good flexibility and was able to be inserted into the body of the subject (monitor) with good operability while having five wiring patterns. In addition, the subject did not complain of pain during the insertion of the catheter.

実施例2
フレキシブル配線回路基板として、上記実施例1で使用したフレキシブル配線回路基板からステンレス基板を全て除去したものを使用した以外は、実施例1と同様にして圧力センサー付カテーテルを作製した。かかる圧力センサー付カテーテルはその組み立て作業時、実施例1の圧力センサー付カテーテルに比べてフレキシブル配線回路基板のチューブへの挿入作業において作業性が低下したが、問題なく組み立てることができた。また、実施例1の圧力センサー付カテーテルに比べてモニターの体内への挿入作業時の操作性は若干低下したが、モニターはカテーテル挿入作業中に痛みを訴えることはなかった。
Example 2
A catheter with a pressure sensor was produced in the same manner as in Example 1, except that the flexible printed circuit board used was obtained by removing all the stainless steel substrate from the flexible printed circuit board used in Example 1 above. Such a catheter with a pressure sensor has been reduced in workability in inserting the flexible printed circuit board into the tube as compared with the catheter with the pressure sensor of Example 1, but could be assembled without any problems. In addition, the operability during the insertion of the monitor into the body was slightly lower than that of the catheter with the pressure sensor of Example 1, but the monitor did not complain of pain during the insertion of the catheter.

1 チューブ
2 電子部品
3 ベース絶縁層
4 配線パターン
5 カバー絶縁層
10 フレキシブル配線回路基板
100 カテーテル
DESCRIPTION OF SYMBOLS 1 Tube 2 Electronic component 3 Base insulating layer 4 Wiring pattern 5 Cover insulating layer 10 Flexible wiring circuit board 100 Catheter

Claims (2)

チューブの前端部又は中間部の側壁に貫孔を設け、該チューブ内に、その長手方向の幅を該チューブの貫孔から後端部までの長さと同等若しくはそれ以上にしたフレキシブル配線回路基板であって、金属支持板およびベース絶縁層を有し、金属支持板の短手方向の幅がベース絶縁層の短手方向の幅よりも小さく、その短手方向の両端部に金属支持板が存在しない構成としたフレキシブル配線回路基板その短手方向の両端部を折り曲げた状態にして挿入する工程と、
前記フレキシブル配線回路基板のベース絶縁層上の配線パターンに設けた端子部と近接する領域に、前記チューブの側壁に設けた貫孔を通して、電子部品を載置する工程と、
前記電子部品の端子と前記配線パターンに設けた端子部とを金属溶接又は導電性接着剤によって接続した後、該接続部を樹脂で封止する工程とを含む、カテーテルの製造方法。
A flexible printed circuit board in which a through hole is provided in the side wall of the front end portion or intermediate portion of the tube, and the longitudinal width of the tube is equal to or greater than the length from the through hole to the rear end portion of the tube. And having a metal support plate and a base insulating layer, the width of the metal support plate in the short direction is smaller than the width of the base insulating layer in the short direction, and there are metal support plates at both ends in the short direction A step of inserting a flexible printed circuit board having a configuration that is not folded into both ends in the short direction ; and
Placing an electronic component through a through hole provided in a side wall of the tube in a region close to a terminal portion provided in a wiring pattern on a base insulating layer of the flexible printed circuit board; and
A method of manufacturing a catheter, comprising: connecting a terminal of the electronic component and a terminal portion provided in the wiring pattern by metal welding or a conductive adhesive, and then sealing the connection portion with a resin.
チューブの前端部又は中間部の側壁に貫孔を設ける一方、その長手方向の幅が該チューブの貫孔から後端部までの長さと同等若しくはそれ以上にしたフレキシブル配線回路基板であって、金属支持板およびベース絶縁層を有し、金属支持板の短手方向の幅がベース絶縁層の短手方向の幅よりも小さく、その短手方向の両端部に金属支持板が存在しない構成としたフレキシブル配線回路基板を用意する工程と、
前記フレキシブル配線回路基板のベース絶縁層上の配線パターンに設けた端子部と近接する領域に電子部品を載置し、該電子部品の端子と前記配線パターンに設けた端子部とを金属溶接又は導電性接着剤によって接続する工程と、
前記電子部品を付設したフレキシブル配線回路基板をその短手方向の両端部を折り曲げた状態にして前記チューブに挿入し、前記チューブの側壁に設けた貫孔を通して、前記電子部品の端子と配線パターンに設けた端子部との接続部を樹脂で封止する工程とを含む、カテーテルの製造方法。
A flexible printed circuit board in which a through hole is provided in a side wall of a front end portion or an intermediate portion of a tube, and a width in a longitudinal direction thereof is equal to or longer than a length from the through hole to the rear end portion of the tube , It has a support plate and a base insulating layer, the width of the metal support plate in the short direction is smaller than the width of the base insulating layer in the short direction, and there is no metal support plate at both ends in the short direction. Preparing a flexible printed circuit board ;
An electronic component is placed in a region adjacent to the terminal portion provided on the wiring pattern on the base insulating layer of the flexible printed circuit board, and the terminal of the electronic component and the terminal portion provided on the wiring pattern are metal welded or electrically conductive. Connecting with an adhesive, and
The flexible printed circuit board provided with the electronic component is inserted into the tube with its both ends in the short direction being bent, and through the through-hole provided in the side wall of the tube, the terminal and wiring pattern of the electronic component are connected. And a step of sealing a connecting portion with the provided terminal portion with a resin.
JP2009258084A 2009-11-11 2009-11-11 Catheter and manufacturing method thereof Expired - Fee Related JP4852137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009258084A JP4852137B2 (en) 2009-11-11 2009-11-11 Catheter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258084A JP4852137B2 (en) 2009-11-11 2009-11-11 Catheter and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004363322A Division JP4426430B2 (en) 2004-12-15 2004-12-15 Catheter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010029713A JP2010029713A (en) 2010-02-12
JP4852137B2 true JP4852137B2 (en) 2012-01-11

Family

ID=41734868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258084A Expired - Fee Related JP4852137B2 (en) 2009-11-11 2009-11-11 Catheter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4852137B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3367886B1 (en) 2015-10-29 2021-05-19 Sintef TTO AS Sensor assembly
KR102539371B1 (en) * 2020-11-09 2023-06-08 아주대학교산학협력단 Assistance apparatus for sleeve gastrectomy
KR102596146B1 (en) * 2021-03-31 2023-11-02 아주대학교산학협력단 Assistance apparatus for sleeve gastrectomy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10267775A (en) * 1997-03-25 1998-10-09 Tokai Rika Co Ltd Pressure sensor
JP2000193546A (en) * 1998-12-25 2000-07-14 Tokai Rika Co Ltd Catheter with pressure detection mechanism
JP2000287944A (en) * 1999-04-06 2000-10-17 Tokai Rika Co Ltd Pressure sensor block for catheter

Also Published As

Publication number Publication date
JP2010029713A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP4426430B2 (en) Catheter and manufacturing method thereof
JP4648063B2 (en) Flexible wiring circuit board for catheter, catheter using the flexible wiring circuit board, and manufacturing method thereof
US8236186B2 (en) Production method of suspension board with circuit
JP4799902B2 (en) Wiring circuit board and method for manufacturing wiring circuit board
JP4607612B2 (en) Wiring circuit board and manufacturing method thereof
US7732900B2 (en) Wired circuit board
JP4611159B2 (en) Printed circuit board
JP2007165707A (en) Flexible wiring circuit board
US7471519B2 (en) Wired circuit board
JP4852137B2 (en) Catheter and manufacturing method thereof
JP2006269979A (en) Flexible rigid printed-wiring board and its manufacturing method
JP2011181621A (en) Flexible wiring board, and method of manufacturing the same
JP2009032731A (en) Method of manufacturing wiring circuit board
JP2017506090A (en) Method and apparatus for assembling an electrically stable connector
EP2012566B1 (en) Wired circuit board and producing method thereof
JP2009141129A (en) Flexible printed wiring board and method of manufacturing the same
JP2000196205A (en) Flexible printed board
JP4102675B2 (en) Flexible wiring board and liquid crystal display device
CN105976836B (en) Suspension board with circuit and method for manufacturing the same
JP2005197295A (en) Connector and its manufacturing method
JP5482465B2 (en) Manufacturing method of flexure substrate for suspension
JP2008034661A (en) Circuit board, manufacturing method thereof, and electronic apparatus employing the same
JP4745014B2 (en) Method for manufacturing printed circuit board having cable portion
JP2006041102A (en) Printed wiring board and its manufacturing method
JP2012119497A (en) Flexible printed wiring board, electronic circuit module, and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees