JP4851669B2 - Alloy and watch exterior parts - Google Patents

Alloy and watch exterior parts Download PDF

Info

Publication number
JP4851669B2
JP4851669B2 JP2001284213A JP2001284213A JP4851669B2 JP 4851669 B2 JP4851669 B2 JP 4851669B2 JP 2001284213 A JP2001284213 A JP 2001284213A JP 2001284213 A JP2001284213 A JP 2001284213A JP 4851669 B2 JP4851669 B2 JP 4851669B2
Authority
JP
Japan
Prior art keywords
atomic
alloy
composition
crystalline bulk
surface modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001284213A
Other languages
Japanese (ja)
Other versions
JP2002180217A (en
Inventor
義継 渋谷
誠一 廣江
惇司 佐藤
雅浩 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2001284213A priority Critical patent/JP4851669B2/en
Publication of JP2002180217A publication Critical patent/JP2002180217A/en
Application granted granted Critical
Publication of JP4851669B2 publication Critical patent/JP4851669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はFe−Ti−Ni−Zr合金、Fe−Nb−Ni−Zr合金、Fe−Co−Ni−Ti合金、Fe−Nb−Mo合金またはFe−Nb−Mo−Zr合金を主成分とする合金とその製造方法および時計外装部品とその製造方法に関するものである。
【0002】
【従来の技術】
従来、Feを含有する合金は耐蝕性が乏しく、簡単に腐蝕が発生するという欠点があった。
【0003】
合金の耐蝕性の改善を計るには、合金表面に耐蝕性のよい被膜を被覆形成する方法が広く採用されていて、湿式メッキ、イオンプレ−ティングなどの手法があげられる。湿式メッキにはニッケルリンメッキ、硬質クロムメッキなどがあり、イオンプレ−ティングには硬質カ−ボン膜や窒化チタン膜などを被覆形成する手法があるが、熱膨張係数の違いなどから密着性に難点があり合金と被膜の界面で剥離が発生しやすく、膜剥離問題に対しては完全に解決するまでには至っていない。
【0004】
また剥離が発生した場合には、結晶性合金そのものが露出してしまい、この部分で腐蝕が発生し部品としての使用が不可能となってしまう。
【0005】
【発明が解決しようとする課題】
本発明の目的は、Fe−Ti−Ni−Zr合金、Fe−Nb−Ni−Zr合金、Fe−Co−Ni−Ti合金、Fe−Nb−Mo合金またはFe−Nb−Mo−Zr合金を主成分とし、高硬度で耐蝕性のよい合金とその製造方法および時計外装部品を提供することにある。
【0006】
【課題を解決するための手段】
本発明において上記課題を解決するために、合金の組成とその製造方法を種々検討した結果、以下に記す手法を採用することにより、高硬度で耐蝕性のよいアモルファス合金を効果的に形成させることを見出した。
【0007】
具体的にはFeを7〜15原子%、Tiを10〜20原子%、Niを18〜40原子%、Zrを40〜60原子%含有するFe−Ti−Ni−Zr合金、Feを10〜25原子%、Nbを2〜15原子%、Niを18〜25原子%、Zrを50〜68原子%含有するFe−Nb−Ni−Zr合金、Feを5〜15原子%、Coを5〜15原子%、Niを5〜15原子%、Tiを65〜74原子%含有するFe−Co−Ni−Ti合金、Feを30〜40原子%、Nbを25〜40原子%、Moを25〜40原子%含有するFe−Nb−Mo合金またはFeを30〜55原子%、Nbを5〜25原子%、Moを5〜20原子%、Zrを20〜40原子%含有するFe−Nb−Mo−Zr合金からなる結晶性バルク合金を、内部が結晶質のまま表面をアモルファス合金からなる表面改質層に表面改質処理させることで高硬度、高耐蝕性、高鏡面性を備えたアモルファス合金が得られるのである。
【0008】
また具体的なアモルファス合金の製造方法は、真空装置内に所望の形状に形成され任意の元素から構成された合金を配置する工程と、不活性ガスを導入した雰囲気中でレ−ザ−光または電子ビ−ムを合金の表面に照射する工程とを有する合金の製造方法を採用することである。
【0009】
また同様に、上記組成の結晶性バルク合金からなる時計外装部品の表面にレ−ザ−光または電子ビ−ムを照射して、これら時計外装部品の内部は結晶性バルク合金の状態でありながら、時計外装部品の表面のみをアモルファス合金からなる表面改質層に表面改質処理させることで高硬度、高耐蝕性、高鏡面性を備えたアモルファス合金からなる表面改質層を有する時計外装部品が得られる。
【0010】
(作用)
具体的には、これらFe−Ti−Ni−Zr合金、Fe−Nb−Ni−Zr合金、Fe−Co−Ni−Ti合金、Fe−Nb−Mo合金またはFe−Nb−Mo−Zr合金を主成分とする結晶性バルク合金をア−ク溶解または高周波溶解により所望の形状に作製後、その表面にレ−ザ−光または電子ビ−ムを照射し、合金の内部は結晶性バルク合金の状態でありながら、合金の表面から深さ25μm以内をアモルファス合金からなる表面改質層に表面改質処理させるのである。このような表面改質処理を行うと結晶性バルク合金が、多結晶相〜アモルファス相と傾斜構造化するため、表面改質層の脱離・剥離などが発生しない。また表面がアモルファス合金化しているため高硬度、高耐蝕性、高鏡面の合金材料および時計外装部品が達成されるのである。本発明はこれらの特徴を活かして上記課題を解決させたものである。
【0011】
時計外装部品上にFe、Co、Ni元素を多量に含有したアモルファス合金をからなる表面改質層を形成した場合、Fe、Co、Niは軟磁性を示すので磁化させなければ耐磁性構造が付加される。つまり時計外装部品にアモルファス合金からなる表面改質層を形成した場合、高硬度、高耐蝕性、高鏡面性に新たな機能として耐磁性が付与されるため、従来は時計モジュ−ル内部に配設されていた耐磁板が不要となるという利点がある。
【0012】
【発明の実施の形態】
Fe−Ti−Ni−Zr合金、Fe−Nb−Ni−Zr合金、Fe−Co−Ni−Ti合金、Fe−Nb−Mo合金またはFe−Nb−Mo−Zr合金を主成分とする結晶性バルク合金または結晶性バルク合金からなる時計外装部品を所望の形状に作製後、その表面にレ−ザ−光または電子ビ−ムを照射し、合金の内部は結晶性バルク合金の状態でありながら、結晶性バルク合金の表面から深さ25μm以内をアモルファス合金からなる表面改質層に表面改質処理させた。このような表面改質処理を行うことにより、多結晶相〜アモルファス相と傾斜構造化し、高硬度、高耐蝕性、高鏡面および耐磁性を有する合金材料および時計外装部品が達成される。本発明の詳細を以下の実施例で説明する。
【0013】
(第1の実施形態)
図面を用いて本発明の第1の実施形態を説明する。本実施形態では任意の組成の結晶性バルク合金を作製し、不活性ガスを導入して任意の圧力に調整した雰囲気中で、結晶性バルク合金を溶融させた後に急冷させて、薄帯状のアモルファス合金を作製した。
【0014】
図1は単ロ−ル式液体急冷凝固装置における各種合金の薄帯の作製方法を示す模式図である。まずア−ク溶解法により所望の組成とした結晶性バルク合金2を作製する。銅製ロ−ル10に近接させた状態で先端に小孔6を有する石英管4と石英管4中に入れた結晶性バルク合金2を溶解させるための高周波コイル8が配置してある。高周波コイル8に高周波電界を印可し、石英管4中の結晶性バルク合金2を溶融させた後、石英管4の鉛直上方から任意の圧力に調整した不活性ガスを流し、所望の回転数に調整した銅製ロ−ル10上に石英管4中で溶融した状態の結晶性バルク合金2を小孔6から噴出させ、急冷凝固させて任意の厚みを有する薄帯12を作製した。
【0015】
(実施例1−18)
本実施形態では、実施例1−3としてFe−Ti−Ni−Zr合金、実施例4−6としてFe−Nb−Ni−Zr合金、実施例7−9としてFe−Co−Ni−Ti合金、実施例10−14としてFe−Nb−Mo合金、実施例15−18としてFe−Nb−Mo−Zr合金の組成を任意に変化させ各種組成の薄帯を作製した。薄帯作製時に銅製ロ−ルの回転数を調整して、薄帯の厚みが25μmになるようにした。
【0016】
(比較例1−37)
本発明の第1の実施形態の比較例として、実施例1−18と同様にあらかじめア−ク溶解法により所望の組成とした結晶性バルク合金を作製し、石英管に結晶性バルク合金を入れて溶融させた後、石英管の上方から任意の圧力に調整した不活性ガスを流し、所望の回転数に調整した銅製ロ−ル上に石英管中で溶融した状態の結晶性バルク合金を噴出させ、急冷凝固させて25μmの厚みを有する薄帯を作製した。比較例1−8がFe−Ti−Ni−Zr合金、比較例9−16がFe−Nb−Ni−Zr合金、比較例17−24がFe−Co−Ni−Ti合金、比較例25−29がFe−Nb−Mo合金、比較例30−37がFe−Nb−Mo−Zr合金からなる薄帯である。
【0017】
評価試験は厚み25μmの薄帯で結晶性、硬度、耐蝕性の評価を行った。薄帯の組成はICP発光分析を行い特定した。結晶性はX線回折(θ−2θ法)により行いアモルファス合金特有なブロ−ドなピ−クを示したものを、アモルファス合金として合格とし、結晶ピ−クが観察されたものは結晶質と判定し不合格とした。硬度はビッカ−ス硬度計により測定し負荷荷重100gfでビッカ−ス硬度Hv=500以上を合格とした。耐蝕性はCASS試験溶液に48時間浸漬を行い腐蝕が全く発生しないものを合格とした。これら3項目の全てを合格したものを総合評価で合格とした。これらの結果を表1−表3に示す。表1が実施例、表2と表3が比較例である。
【0018】
【表1】

Figure 0004851669
【0019】
【表2】
Figure 0004851669
【0020】
【表3】
Figure 0004851669
【0021】
表1から明らかなように、実施例1−18であるFe7原子%−Ti16原子%−Ni18原子%−Zr59原子%組成、Fe12原子%−Ti12原子%−Ni28原子%−Zr48原子%組成、Fe10原子%−Ti10原子%−Ni30原子%−Zr50原子%組成、Fe21原子%−Nb2原子%−Ni18原子%−Zr59原子%組成、Fe12原子%−Nb12原子%−Ni18原子%−Zr58原子%組成、Fe10原子%−Nb15原子%−Ni25原子%−Zr50原子%組成、Fe5原子%−Co10原子%−Ni10原子%−Ti75原子%組成、Fe15原子%−Co5原子%−Ni15原子%−Ti65原子%組成、Fe10原子%−Co15原子%−Ni5原子%−Ti70原子%組成、Fe30原子%−Nb40原子%−Mo30原子%組成、Fe30原子%−Nb30原子%−Mo40原子%組成、Fe35原子%−Nb30原子%−Mo35原子%組成、Fe40原子%−Nb25原子%−Mo35原子%組成、Fe40原子%−Nb35原子%−Mo25原子%組成、Fe30原子%−Nb25原子%−Mo5原子%−Zr40原子%組成、Fe35原子%−Nb20原子%−Mo10原子%−Zr35原子%組成、Fe45原子%−Nb20原子%−Mo10原子%−Zr25原子%組成、Fe55原子%−Nb5原子%−Mo20原子%−Zr20原子%組成の18組成の薄帯の全てが、X線回折の結果から結晶性はアモルファス特有のブロ−ドなピ−クを示し(X線回折のピ−クは図示しない)アモルファスであった。硬度はビッカ−ス硬度がHv=550以上、耐蝕性の評価でもCASS試験後に腐蝕は発生せず、総合評価は合格であった。
【0022】
これらに対し比較例1−37は、表2と表3から明らかなように、硬度はビッカ−ス硬度がHv=530以上で合格であったが、結晶性の評価では全ての組成で結晶質であった。また耐蝕性の評価ではCASS試験後にFe−Co−Ni−Ti合金のCo含有量が高いものに腐蝕が発生した。結晶性の評価が不合格であるため、比較例1−37の全てが総合評価は不合格であった。
【0023】
以上から、本発明における合金の組成はFeを7〜15原子%、Tiを10〜20原子%、Niを18〜40原子%、Zrを40〜60原子%含有するFe−Ti−Ni−Zr合金、Feを10〜25原子%、Nbを2〜15原子%、Niを18〜25原子%、Zrを50〜68原子%含有するFe−Nb−Ni−Zr合金、Feを5〜15原子%、Coを5〜15原子%、Niを5〜15原子%、Tiを65〜74原子%含有するFe−Co−Ni−Ti合金、Feを30〜40原子%、Nbを25〜40原子%、Moを25〜40原子%含有するFe−Nb−Mo合金またはFeを30〜55原子%、Nbを5〜25原子%、Moを5〜20原子%、Zrを20〜40原子%含有するFe−Nb−Mo−Zr合金であることが好ましい。
【0024】
(第2の実施形態)
本発明の第2の実施形態を図2および図3を用いて説明する。本実施形態では任意の組成の結晶性バルク合金を作製し、不活性ガスを導入して任意の圧力に調整した雰囲気中で結晶性バルク合金の表面にレ−ザ−光を照射し、結晶性バルク合金の表面がアモルファス合金となるように表面改質処理を行った。
【0025】
図2は内部が結晶性バルク合金2のまま、表面をアモルファス合金を主体とする表面改質層14に改質処理した結晶性バルク合金2の構造を示す断面模式図であり、図3は結晶性バルク合金2の表面をアモルファス合金からなる表面改質層14に表面改質処理するための装置構成を示す模式図である。ガス導入口18とガス排気口20を備えた真空装置16の内部に水冷機構を有するホルダ−26を配置し、このホルダ−26上に結晶性バルク合金2を載置し、不活性ガスを導入して任意の圧力に調整した。ついでレ−ザ−光源22からのレ−ザ−光を発生させ、光学系を使用して石英からなる窓24を通して真空装置16の内部に導入し、結晶性バルク合金2の表面に照射し、結晶性バルク合金2の表面がアモルファス合金からなる表面改質層となるように表面改質処理を行った。
【0026】
(実施例19−36)
本実施形態では結晶性バルク合金2として、実施例19−21ではFe−Ti−Ni−Zr合金、実施例22−24ではFe−Nb−Ni−Zr合金、実施例25−27ではFe−Co−Ni−Ti合金、実施例28−32ではFe−Nb−Mo合金、実施例33−36ではFe−Nb−Mo−Zr合金を使用した。不活性ガスにはHeを使用した。レ−ザ−光源には波長1.06μmのYAGレ−ザ−を使用した。YAGレ−ザ−の照射条件は平均出力3〜200W、パルス幅1〜20ms、パルス繰り返し数1〜100ppsの範囲内で任意に調整した。
【0027】
実施例19−36では、結晶性バルク合金に到達したレ−ザ−エネルギ−を即座に熱エネルギ−に変換して結晶性バルク合金の表面を加熱活性化し表面だけを溶融させるが、このときに出力、パルス幅、パルス繰り返し数を任意の値に調整した。次いで、溶融させた表面へのレ−ザ−照射を停止し、表面を急冷凝固させてアモルファス合金からなる表面改質層となるように表面改質処理を行った。この際、結晶性バルク合金全体が溶融しないように結晶性バルク合金を水冷するとともに、表面の温度が上がりすぎないようにレ−ザ−出力、パルス幅、パルス繰り返し数を任意に調整したので、加熱され溶融する領域は表面近傍に限られ、さらにパルス照射のために結晶性バルク合金としての温度はほとんど上昇せずバルク材料としての特性はほとんど影響を受けずに表面改質処理が可能であった。
【0028】
実施例19−36で得られた結晶性バルク合金の表面をアモルファス合金からなる表面改質層に表面改質処理した後の結晶性、硬度、耐蝕性を評価した。合金の組成はICP発光分析を行い特定した。評価試験の評価方法は第1の実施形態と全く同様な評価基準で行った。これらの評価試験結果を表4に示す。
【0029】
【表4】
Figure 0004851669
【0030】
表4から明らかなように、実施例19−36であるFe7原子%−Ti16原子%−Ni18原子%−Zr59原子%組成、Fe12原子%−Ti12原子%−Ni28原子%−Zr48原子%組成、Fe10原子%−Ti10原子%−Ni30原子%−Zr50原子%組成、Fe21原子%−Nb2原子%−Ni18原子%−Zr59原子%組成、Fe12原子%−Nb12原子%−Ni18原子%−Zr58原子%組成、Fe10原子%−Nb15原子%−Ni25原子%−Zr50原子%組成、Fe5原子%−Co10原子%−Ni10原子%−Ti75原子%組成、Fe15原子%−Co5原子%−Ni15原子%−Ti65原子%組成、Fe10原子%−Co15原子%−Ni5原子%−Ti70原子%組成、Fe30原子%−Nb40原子%−Mo30原子%組成、Fe30原子%−Nb30原子%−Mo40原子%組成、Fe35原子%−Nb30原子%−Mo35原子%組成、Fe40原子%−Nb25原子%−Mo35原子%組成、Fe40原子%−Nb35原子%−Mo25原子%組成、Fe30原子%−Nb25原子%−Mo5原子%−Zr40原子%組成、Fe35原子%−Nb20原子%−Mo10原子%−Zr35原子%組成、Fe45原子%−Nb20原子%−Mo10原子%−Zr25原子%組成、Fe55原子%−Nb5原子%−Mo20原子%−Zr20原子%組成の18組成の合金の全てが、X線回折の結果から結晶性はアモルファス特有のブロ−ドなピ−クを示し(X線回折のピ−クは図示しない)アモルファスであった。硬度はビッカ−ス硬度がHv=580以上、耐蝕性の評価でもCASS試験後に腐蝕は発生せず、総合評価は合格であった。
【0031】
(第3の実施形態)
本発明の第3の実施形態を説明する。第1の実施形態と同様に単ロ−ル式液体急冷凝固装置を使用し薄帯を作製した。まずア−ク溶解法により所望の組成とした結晶性バルク合金を作製し、石英管に結晶性バルク合金を入れて溶融させた後、石英管の上方から任意の圧力に調整した不活性ガスを流し、所望の回転数に調整した銅製ロ−ル上に石英管中で溶融した状態の結晶性バルク合金を噴出させ、急冷凝固させて任意の厚みを有する薄帯を作製した。
【0032】
(実施例37−41)
実施例37としてFe10原子%−Ti10原子%−Ni30原子%−Zr50原子%組成のFe−Ti−Ni−Zr合金、実施例38としてFe21原子%−Nb2原子%−Ni18原子%−Zr59原子%組成のFe−Nb−Ni−Zr合金、実施例39としてFe10原子%−Co15原子%−Ni5原子%−Ti70原子%組成のFe−Co−Ni−Ti合金、実施例40としてFe35原子%−Nb30原子%−Mo35原子%組成のFe−Nb−Mo合金、実施例41としてFe35原子%−Nb20原子%−Mo10原子%−Zr35原子%組成のFe−Nb−Mo−Zr合金の5組成の薄帯を作製した。銅製ロ−ルの回転数を調整して、薄帯の厚みが25μmとなるようにした。
【0033】
(比較例38−47)
比較例38と比較例43としてFe10原子%−Ti10原子%−Ni30原子%−Zr50原子%組成のFe−Ti−Ni−Zr合金、比較例39と比較例44としてFe21原子%−Nb2原子%−Ni18原子%−Zr59原子%組成のFe−Nb−Ni−Zr合金、比較例40と比較例45としてFe10原子%−Co15原子%−Ni5原子%−Ti70原子%組成のFe−Co−Ni−Ti合金比較例41と比較例46としてFe35原子%−Nb30原子%−Mo35原子%組成のFe−Nb−Mo合金、比較例42と比較例47としてFe35原子%−Nb20原子%−Mo10原子%−Zr35原子%組成のFe−Nb−Mo−Zr合金の5組成の薄帯を作製した。銅製ロ−ルの回転数を調整し、薄帯の厚みを制御した。薄帯の厚みは比較例38−42が30μm、比較例43−47が40μmである。
【0034】
評価試験は薄帯での結晶性の評価のみを行った。薄帯の組成はICP発光分析を行い特定した。結晶性は第1の実施形態および第2の実施形態と同様に、X線回折(θ−2θ法)により行いアモルファス合金特有なブロ−ドなピ−クを示したものを、アモルファス合金として合格とし、結晶ピ−クが観察されたものは結晶質と判定し不合格とした。これらの評価結果を表5に示す。
【0035】
【表5】
Figure 0004851669
【0036】
表5から明らかなように、実施例37−41の厚み25μmの薄帯ではFe10原子%−Ti10原子%−Ni30原子%−Zr50原子%組成、Fe21原子%−Nb2原子%−Ni18原子%−Zr59原子%組成、Fe10原子%−Co15原子%−Ni5原子%−Ti70原子%組成、Fe35原子%−Nb30原子%−Mo35原子%組成、Fe35原子%−Nb20原子%−Mo10原子%−Zr35原子%組成の各組成が、X線回折の結果から結晶性はアモルファス特有のブロ−ドなピ−クを示し(X線回折のピ−クは図示しない)アモルファスであった。
【0037】
これらに対し、比較例38−42の厚み30μmの薄帯と、比較例43−47の厚み40μmの薄帯では結晶性が全て結晶質であった。厚み30μmの組成では、一部でアモルファス特有のピ−クに結晶性ピ−クが重畳されたピ−ク観察されたが、結晶性ピ−クがわずかでも確認されたものは結晶質と判定した。従って、比較例38−47の評価結果は全て不合格であった。
【0038】
以上の結果から、Feを7〜15原子%、Tiを10〜20原子%、Niを18〜40原子%、Zrを40〜60原子%含有するFe−Ti−Ni−Zr合金、Feを10〜25原子%、Nbを2〜15原子%、Niを18〜25原子%、Zrを50〜68原子%含有するFe−Nb−Ni−Zr合金、Feを5〜15原子%、Coを5〜15原子%、Niを5〜15原子%、Tiを65〜74原子%含有するFe−Co−Ni−Ti合金、Feを30〜40原子%、Nbを25〜40原子%、Moを25〜40原子%含有するFe−Nb−Mo合金またはFeを30〜55原子%、Nbを5〜25原子%、Moを5〜20原子%、Zrを20〜40原子%含有するFe−Nb−Mo−Zr合金においては、薄帯の厚みが25μm以下であるものが、アモルファス合金となることが明らかとなった。
【0039】
(第4の実施形態)
次に本発明の第4の実施形態を示す。本実施形態も第2の実施形態と同様に任意の組成の結晶性バルク合金を作製し、ガス導入口とガス排気口を備えた真空装置の内部に水冷機構を有するホルダ−を配置し、このホルダ−上に結晶性バルク合金を載置し、不活性ガスを導入して任意の圧力に調整した雰囲気中で、結晶性バルク合金の表面にレ−ザ−光を照射し、結晶性バルク合金の表面がアモルファス合金となるように表面改質処理を行った。
【0040】
(実施例42)
本実施例42では結晶性バルク合金には、Fe12原子%−Ti12原子%−Ni28原子%−Zr48原子%組成からなり、具体的な部品として成型された金型を使用した。不活性ガスにはHeを使用した。レ−ザ−光源には波長1.06μmのYAGレ−ザ−を使用した。YAGレ−ザ−の照射条件は平均出力3〜200W、パルス幅1〜20ms、パルス繰り返し数1〜100ppsの範囲内で任意に調整した。
【0041】
(第5の実施形態)
次に本発明の第5の実施形態を示す。本実施形態も第2の実施形態および第4の実施形態と同様に任意の組成の結晶性バルク合金を作製し、ガス導入口とガス排気口を備えた真空装置の内部に水冷機構を有するホルダ−を配置し、このホルダ−上に結晶性バルク合金を載置し、不活性ガスを導入して任意の圧力に調整した雰囲気中で、結晶性バルク合金の表面にレ−ザ−光を照射し、結晶性バルク合金の表面がアモルファス合金となるように表面改質処理を行った。
【0042】
(実施例43)
本実施例43では結晶性バルク合金には、Fe7原子%−Ti16原子%−Ni18原子%−Zr59原子%組成からなり、具体的な部品として成型された金型を使用した。レ−ザ−光源には波長193nmのArFエキシマレ−ザ−を使用した。ArFエキシマレ−ザ−の照射条件は平均出力20〜100W、パルス幅10〜20ns、パルス繰り返し数10〜200ppsの範囲内で任意に調整した。不活性ガスにはHeを使用した。
【0043】
第4の実施形態における実施例42、第5の実施形態における実施例43で結晶性バルク合金からなる金型に到達したレ−ザ−エネルギ−を即座に熱エネルギ−に変換して金型表面を加熱活性化し表面だけを溶融させるが、このときに出力、パルス幅、パルス繰り返し数を任意の値に調整した。次いで、溶融させた表面へのレ−ザ−照射を停止し、表面を急冷凝固させてアモルファス合金からなる表面改質層となるように表面改質処理を行った。この際、金型全体が溶融状態になると金型形状を維持できなくなるので、全体が溶融しないように金型を水冷するとともに、表面の温度が上がりすぎないようにレ−ザ−出力、パルス幅、パルス繰り返し数を任意に調整したので、加熱され溶融する領域は表面近傍に限られ、さらにパルス照射のために結晶性バルク合金としての金型の温度はほとんど上昇せずバルク材料としての特性はほとんど影響を受けずに表面改質処理が可能であった。
【0044】
実施例42と実施例43で得られたFe−Ti−Ni−Zr系の結晶性バルク合金であるFe12原子%−Ti12原子%−Ni28原子%−Zr48原子%組成とFe7原子%−Ti16原子%−Ni18原子%−Zr59原子%組成からなる金型の表面をアモルファス合金からなる表面改質層に表面改質処理した後の結晶性、硬度、耐蝕性、平均表面粗さRaを評価した。アモルファス合金の組成はICP発光分析を行い特定した。
【0045】
結晶性はX線回折(薄膜X線回折法)により行った。このときX線の入射角を調整し、X線の入射深さを表面から25μm以内の範囲に限定して測定を行いアモルファス特有のブロ−ドなピ−クを示したものを、アモルファス合金からなる表面改質層が形成されたものとして合格とし、結晶ピ−クが観察されたものはアモルファス合金からなる表面改質層が形成されていない結晶質と判定し不合格とした。硬度はビッカ−ス硬度計により測定し、負荷荷重100gfでビッカ−ス硬度Hv=500以上を合格とした。耐蝕性はCASS試験溶液に48時間浸漬を行い腐蝕が全く発生しない場合を合格とした。平均表面粗さRaは表面粗さ計で測定を行いRa=0.1μm以下であるものを合格とした。これら4項目の全てを合格したものを総合評価で合格とした。これらの結果を表6に示す。
【0046】
【表6】
Figure 0004851669
【0047】
表6から明らかなように、実施例42のFe12原子%−Ti12原子%−Ni28原子%−Zr48原子%組成、実施例43のFe7原子%−Ti16原子%−Ni18原子%−Zr59原子%組成からなる金型の表面をアモルファス合金に表面改質処理した後、X線回折の結果から結晶性はアモルファス特有のブロ−ドなピ−クを示し(X線回折のピ−クは図示しない)表面はアモルファス合金からなる表面改質層に表面改質処理されていることが認められた。硬度はビッカ−ス硬度がHv=600と610で合格、耐蝕性の評価でもCASS試験後に腐蝕は発生していない。また、表面粗さはRa=0.08μm以下の高鏡面となっていることが明らかとなり合格で、従って総合評価結果はともに合格であった。
【0048】
実施例42と実施例43では、不活性ガスとしてHeを用いたがAr、Ne、Krなどでもよく、重要なことは結晶性バルク合金を構成する元素が酸化することを防止することであり、不活性ガス雰囲気に限らず真空雰囲気でもよい。実施例43のエキシマレ−ザ−はArFに限らず、KrFエキシマレ−ザ−でもよい。また、一定の面積を有したレ−ザ−照射時には通常、面内にエネルギ−分布を有するためにビ−ムホモジナイザ−などにより照射面内のエネルギ−均一化が有効であり、これにより一連のレ−ザ−照射による二次元処理が可能となる。さらに、部品を3次元的に動かすことにより立体形状物への表面改質処理が可能である。
【0049】
(第6の実施形態)
本発明の第6の実施形態を図4を用いて説明する。図4は第2の実施形態、第4の実施形態およびと第5の実施形態とは異なった方法により表面改質処理するための装置構成を示す模式図である。ガス導入口32とガス排気口34を備えた真空装置30の内部に水冷機構を有するホルダ−40を配置し、このホルダ−40上に結晶性バルク合金からなる部品28を載置し、不活性ガスを導入して任意の圧力に調整した。ついで電子ビ−ム発生装置38により生成された電子ビ−ムを石英からなる窓36を通して真空装置30内部に導入し、結晶性バルク合金からなる部品28に照射し、結晶性バルク合金からなる部品28の表面がアモルファス合金からなる表面改質層となるように表面改質処理を行った。
【0050】
(実施例44)
本実施例44では結晶性バルク合金からなる部品には、Fe21原子%−Nb2原子%−Ni18原子%−Zr59原子%組成からなる金型を使用した。不活性ガスにはHeを使用した。電子ビ−ムの照射条件はエネルギ−20〜100keV、パルス幅10〜200nsの範囲内で任意に調整した。
【0051】
第4の実施形態および第5の実施形態と同様に本実施形態でも、結晶性バルク合金からなる金型に到達した電子ビ−ムエネルギ−を直ちに熱エネルギ−に変換して金型表面を加熱活性化し表面だけを溶融させるが、このときにビ−ムエネルギ−、パルス幅を任意の値に調整した。次いで、溶融させた表面への電子ビ−ム照射を停止し、表面を急冷凝固させてアモルファス合金からなる表面改質層となるように表面改質処理を行った。この際、金型全体が溶融状態になると金型形状を維持できなくなるので、全体が溶融しないように金型を水冷するとともに、表面の温度が上がりすぎないように電子ビ−ムのエネルギ−、パルス幅を任意に調整したので、加熱され溶融する領域は表面近傍に限られ、さらにパルス照射のために結晶性バルク合金としての金型の温度はほとんど上昇せずバルク材料としての特性はほとんど影響を受けずに表面改質処理が可能であった。
【0052】
実施例44で得られたFe−Nb−Ni−Zr系の結晶性バルク合金であるFe21原子%−Nb2原子%−Ni18原子%−Zr59原子%組成からなる金型の表面をアモルファス合金からなる表面改質層となるように表面改質処理した後の結晶性、硬度、耐蝕性、平均表面粗さRaを評価した。アモルファス合金の組成はICP発光分析を行い特定した。評価試験の評価方法は第4の実施形態および第5の実施形態と全く同様な評価基準で行った。これらの評価試験結果を表7に示す。
【0053】
【表7】
Figure 0004851669
【0054】
表7から明らかなように、Fe21原子%−Nb2原子%−Ni18原子%−Zr59原子%組成からなる金型の表面をアモルファス合金からなる表面改質層となるように表面改質処理した後、X線回折の結果から結晶性はアモルファス特有のブロ−ドなピ−クを示し(X線回折のピ−クは図示しない)表面はアモルファス合金からなる表面改質層に表面改質処理されていることが認められた。硬度はビッカ−ス硬度がHv=730で合格、耐蝕性の評価でもCASS試験後に腐蝕は発生していない。また、表面粗さはRa=0.09μmの高鏡面となっていることが明らかとなり合格。従って総合評価結果は合格であった。
【0055】
(第7の実施形態)
次に本発明の第7の実施形態を示す。本実施形態では第2の実施形態および第4の実施形態と同様に不活性ガスを導入して任意の圧力に調整した雰囲気中で、結晶性バルク合金からなる部品の表面にYAGレ−ザ−を照射して結晶性バルク合金からなる部品の表面がアモルファス合金からなる表面改質層となるように表面改質処理を行った。結晶性バルク合金からなる部品として時計外装部品を使用した。
【0056】
(実施例45−46)
図面を参照して本発明の実施例45と実施例46を説明する。図5は時計外装部品である時計ケ−スの断面模式図である。予め研磨加工を施し高鏡面に仕上げておいた結晶性バルク合金からなる時計ケ−ス42を、ガス導入口とガス排気口を備えた真空装置内部の水冷機構を有するホルダ−上に載置し、Heガスを導入して任意の圧力に調整した雰囲気中で、結晶性バルク合金からなる時計ケ−ス42に、波長1.06μmのYAGレ−ザ−光を照射し、結晶性バルク合金からなる時計ケ−ス42の内部は結晶性バルク合金のままで、その表面がアモルファス合金からなる表面改質層14となるように表面改質処理を行った。YAGレ−ザ−光の照射条件は平均出力3〜200W、パルス幅1〜20ms、パルス繰り返し数1〜100ppsの範囲内で任意に調整した。結晶性バルク合金からなる時計ケ−ス42の合金組成は、実施例45ではFe10原子%−Ti10原子%−Ni30原子%−Zr50原子%組成、実施例46ではFe30原子%−Nb30原子%−Mo40原子%組成であるものを使用した。アモルファス合金からなる表面改質層14への表面改質処理後に、時計モジュ−ル部品を組み込んで時計の完成体にした。
【0057】
(第8の実施形態)
次に本発明の第8の実施形態を示す。本実施形態では第5の実施形態と同様に不活性ガスを導入して任意の圧力に調整した雰囲気中で、結晶性バルク合金からなる部品の表面にArFエキシマレ−ザ−を照射して結晶性バルク合金からなる部品の表面がアモルファス合金からなる表面改質層となるように表面改質処理を行った。結晶性バルク合金からなる部品として時計外装部品を使用した。
【0058】
(実施例47−48)
ガス導入口とガス排気口を備えた真空装置内部の水冷機構を有するホルダ−を配置し、ホルダ−上に予め研磨加工を施し高鏡面に仕上げておいた結晶性バルク合金からなる時計ケ−スを載置し、Heガスを導入して任意の圧力に調整した雰囲気中で、結晶性バルク合金からなる時計ケ−スに、波長193nmのArFエキシマレ−ザ−光を照射し、結晶性バルク合金からなる時計ケ−スの内部は結晶性バルク合金のままで、その表面がアモルファス合金からなる表面改質層となるように表面改質処理を行った。ArFエキシマレ−ザ−光の照射条件は平均出力20〜100W、パルス幅10〜20ns、パルス繰り返し数10〜200ppsの範囲内で任意に調整した。結晶性バルク合金からなる時計ケ−スの合金組成は、実施例47ではFe12原子%−Nb12原子%−Ni18原子%−Zr58原子%組成、実施例48ではFe30原子%−Nb25原子%−Mo5原子%−Zr40原子%組成であるものを使用した。アモルファス合金からなる表面改質層への表面改質処理後に、時計モジュ−ル部品を組み込んで時計の完成体にした。
【0059】
(第9の実施形態)
次に本発明の第9の実施形態を示す。本実施形態では第6の実施形態と同様に不活性ガスを導入して任意の圧力に調整した雰囲気中で、結晶性バルク合金からなる部品の表面に電子ビ−ムを照射して結晶性バルク合金からなる部品の表面がアモルファス合金からなる表面改質層となるように表面改質処理を行った。結晶性バルク合金からなる部品として時計外装部品を使用した。
【0060】
(実施例49−50)
ガス導入口とガス排気口を備えた真空装置内部の水冷機構を有するホルダ−を配置し、ホルダ−上に予め研磨加工を施し高鏡面に仕上げておいた結晶性バルク合金からなる時計ケ−スを載置し、Heガスを導入して任意の圧力に調整した雰囲気中で、結晶性バルク合金からなる時計ケ−スに、電子ビ−ムを照射し、結晶性バルク合金からなる時計ケ−スの内部は結晶性バルク合金のままで、その表面のみがアモルファス合金からなる表面改質層となるように表面改質処理を行った。電子ビ−ムの照射条件はエネルギ−20〜100keV、パルス幅10〜200nsの範囲内で任意に調整した。結晶性バルク合金からなる時計ケ−スの合金組成は、実施例49ではFe10原子%−Co15原子%−Ni5原子%−Ti70原子%組成、実施例50ではFe30原子%−Nb40原子%−Mo30原子%組成であるものを使用した。アモルファス合金からなる表面改質層への表面改質処理後に、時計モジュ−ル部品を組み込んで時計の完成体にした。
【0061】
第7の実施形態における実施例45−46、第8の実施形態における実施例47−48および第9の実施例における実施例49−50で得られた各種組成の結晶性バルク合金からなる時計ケ−スの表面をアモルファス合金からなる表面改質層となるように表面改質処理した後の結晶性、硬度、耐蝕性、平均表面粗さRaと時計モジュール部品を組み込んだ後の耐磁性を評価した。アモルファス合金の組成はICP発光分析を行い特定した。
【0062】
結晶性はX線回折(薄膜X線回折法)により行った。このときX線の入射角を調整し、X線の入射深さを表面から25μm以内の範囲に限定して測定を行いアモルファス特有のブロ−ドなピ−クを示したものを、アモルファス合金を主体とする表面改質層が形成されたものとして合格とし、結晶ピ−クが観察されたものは表面改質層が形成されていない結晶質と判定し不合格とした。硬度はビッカ−ス硬度計により測定し、負荷荷重100gfでビッカ−ス硬度Hv=500以上を合格とした。耐蝕性はCASS試験溶液に48時間浸漬を行い腐蝕が全く発生しない場合を合格とした。平均表面粗さRaは表面粗さ計で測定を行いRa=0.1μm以下であるものを合格とした。耐磁性は60ガウスの磁場中に時計を5分間置き、時計の時針、分針、秒針のいずれもが遅れたり、停止したりしない場合を合格とした。これら5項目全てを合格したものを総合評価で合格とした。これらの評価結果を表8に示す
【0063】
【表8】
Figure 0004851669
【0064】
表8から明らかなように、実施例45であるFe10原子%−Ti10原子%−Ni30原子%−Zr50原子%組成、実施例46であるFe30原子%−Nb30原子%−Mo40原子%組成、実施例47であるFe12原子%−Nb12原子%−Ni18原子%−Zr58原子%組成、実施例48であるFe30原子%−Nb25原子%−Mo5原子%−Zr40原子%組成、実施例49であるFe10原子%−Co15原子%−Ni5原子%−Ti70原子%組成、実施例50であるFe30原子%−Nb40原子%−Mo30原子%組成の6組成からなる時計ケ−スの表面をアモルファス合金からなる表面改質層に改質処理した後の結晶性はアモルファス特有のブロ−ドなピ−クを示し(X線回折のピ−クは図示しない)、表面がアモルファス合金からなる表面改質層に表面改質処理されていることが認められた。硬度はビッカ−ス硬度がHv=570以上で合格、耐蝕性の評価でもCASS試験後に腐蝕は発生していない。表面粗さはRa=0.09μm以下の高鏡面となっていることが明らかとなり合格。また、時計モジュ−ル部品組み込み後の時計での耐磁性の評価では、時計の時針、分針、秒針の全てが60ガウスの磁場の影響を受けず正常に動作した。従って総合評価結果は合格であった。
【0065】
実施例45−50で結晶性バルク合金からなる時計ケ−スに到達したレ−ザ−エネルギ−または電子ビ−ムエネルギ−を即座に熱エネルギ−に変換して時計ケ−ス表面を加熱活性化し表面だけを溶融させるが、このときにレ−ザ−出力、電子ビ−ムエネルギ−、パルス幅、パルス繰り返し数を任意の値に調整した。次いで、溶融させた表面へのレ−ザ−または電子ビ−ム照射を停止し、表面を急冷凝固させてアモルファス合金となるように表面改質処理を行った。この際、時計ケ−ス全体が溶融状態になると時計ケ−スとしての形状を維持できなくなるので、全体が溶融しないように時計ケ−スを水冷するとともに、表面の温度が上がりすぎないようにレ−ザ−出力、電子ビ−ムエネルギ−、パルス幅、パルス繰り返し数を任意に調整したので、加熱され溶融する領域は表面近傍に限られ、さらにパルス照射のために結晶性バルク合金としての時計ケ−スの温度はほとんど上昇せずバルク材料としての特性はほとんど影響を受けずに表面改質処理が可能であった。
【0066】
実施例45−50では不活性ガスとしてHeを用いたがAr、Ne、Krなどでもよく、重要なことは合金を構成する元素が酸化、窒化、炭化することを防止することであり、不活性ガス雰囲気に限らず真空雰囲気でもよい。実施例7のエキシマレ−ザ−はArFに限らず、KrFエキシマレ−ザ−でもよい。また、一定の面積を有したレ−ザ−照射時には通常、面内にエネルギ−分布を有するためにビ−ムホモジナイザ−などにより照射面内のエネルギ−均一化が有効であり、これにより一連のレ−ザ−照射による二次元処理が可能となる。さらに、部品を3次元的に動かすことにより立体形状物の表面改質処理が可能である。
【0067】
結晶性バルク合金または結晶性バルク合金からなる部品の表面をアモルファス合金からなる表面改質層に表面改質処理するための条件として、第2の実施形態における実施例19−36、第4の実施形態における実施例42および第7の実施形態における実施例45−46では波長1.06μmのYAGレ−ザ−を使用し、YAGレ−ザ−の照射条件は平均出力3〜200W、パルス幅1〜20ms、パルス繰り返し数1〜100ppsの範囲内で任意に調整したが、この範囲の条件であればいずれのレ−ザ−照射条件でよい。第5の実施形態における実施例43および第7の実施形態における実施例47−48では波長193nmのArFエキシマレ−ザ−を使用し、ArFエキシマレ−ザ−の照射条件は平均出力20〜100W、パルス幅10〜20ns、パルス繰り返し数10〜200ppsの範囲内で任意に調整したが、この範囲の条件であればいずれのレ−ザ−照射条件でよい。また第6の実施形態における実施例44および第7の実施形態における実施例49−50では電子ビ−ムを使用し、電子ビ−ムの照射条件はエネルギ−20〜100keV、パルス幅10〜200nsの範囲内で任意に調整したが、この範囲の条件であればいずれのレ−ザ−照射条件でよい。重要なことは表面温度が上がりすぎて全体が溶融しないように、加熱し溶融する領域を表面近傍に限定することであり、このために結晶性バルク合金を水冷するとともに、レ−ザ−出力、電子ビ−ムエネルギ−、パルス幅、パルス繰り返し数を上記範囲内で任意に調整する必要がある。
【0068】
第7の実施形態、第8の実施形態、第9の実施形態では具体的な時計外装部品として、各種合金組成の結晶性バルク合金からなる時計ケ−スを具体例にあげて説明したが、時計外装部品は時計ケ−スに限らず時計バンド、べゼル、中留、リュ−ズなど時計外装に使用されるいずれの部品でもよい。すなわち、いずれの結晶性バルク合金からなる時計外装部品であっても、その表面のみがアモルファス合金からなる表面改質層への表面改質処理が可能である。
【0069】
表面改質層の厚みであるが、第3実施形態で説明したように薄帯ではアモルファスとなるのは厚みが25μm以下であることから、表面改質処理によりアモルファスになる厚みは25μm以下であることはいうまでもない。
【0070】
【発明の効果】
以上述べてきたように本発明によれば、Fe−Ti−Ni−Zr合金、Fe−Nb−Ni−Zr合金、Fe−Co−Ni−Ti合金、Fe−Nb−Mo合金またはFe−Nb−Mo−Zr合金を主成分とする結晶性バルク合金または結晶性バルク合金からなる時計外装部品を所望の形状に作製後、その表面にレ−ザ−光または電子ビ−ムを照射し、結晶性バルク合金または結晶性バルク合金からなる時計外装部品の表面から深さ25μm以内をアモルファス合金からなる表面改質層に表面改質させた。このような表面改質処理を行うことにより結晶性バルク合金または結晶性バルク合金からなる時計外装部品が、多結晶相〜アモルファス相と傾斜構造化し、高硬度、高耐蝕性、高鏡面のアモルファス合金、および高硬度、高耐蝕性、高鏡面、耐磁性を有する時計外装部品が達成される。また予め結晶性バルク合金または結晶性バルク合金からなる時計外装部品の表面に鏡面研磨加工処理を施しておけばアモルファス合金からなる表面改質層に表面改質処理後も高鏡面が維持されるので装飾性能が高く、また耐磁性が付加されるため実用域の時計外装部品の提供が可能となるなど、時計外装部品に対する表面処理法として格別の効果がある。
【図面の簡単な説明】
【図1】本発明の合金の製造方法における一実施例である単ロ−ル式液体急冷凝固装置における各種合金の薄帯の作製方法を示す模式図である。
【図2】本発明の合金における一実施例である結晶性バルク合金の内部は結晶性バルク合金のままで、その表面のみアモルファス合金からなる表面改質層に表面改質処理させた表面改質層の構造を示す断面模式図である。
【図3】本発明の合金の製造方法における一実施例である表面改質処理を行うための装置構成を示す模式図である。
【図4】本発明の合金の製造方法における一実施例である表面改質処理を行うための装置構成を示す模式図である。
【図5】本発明の時計外装部品における一実施例である結晶性バルク合金からなる時計ケ−スで、内部は結晶性バルク合金のままで、その表面のみをアモルファス合金からなる表面改質層に表面改質処理させた表面改質層の構造を示す断面模式図である。
【符号の説明】
2 結晶性バルク合金
4 石英管
6 小孔
8 高周波コイル
10 銅ロ−ル
12 薄帯
14 アモルファス合金からなる表面改質層
16 真空装置
18 ガス導入口
20 ガス排気口
22 レ−ザ−光源
24 窓
26 ホルダ−
28 結晶性バルク合金からなる部品
30 真空装置
32 ガス導入口
34 ガス排気口
36 窓
38 電子ビ−ム発生装置
40 ホルダ−
42 結晶性バルク合金からなる時計ケ−ス[0001]
BACKGROUND OF THE INVENTION
The present invention is mainly composed of Fe-Ti-Ni-Zr alloy, Fe-Nb-Ni-Zr alloy, Fe-Co-Ni-Ti alloy, Fe-Nb-Mo alloy or Fe-Nb-Mo-Zr alloy. The present invention relates to an alloy and a manufacturing method thereof, and a watch exterior part and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, Fe-containing alloys have a drawback that corrosion resistance is poor and corrosion easily occurs.
[0003]
In order to improve the corrosion resistance of the alloy, a method of forming a coating with good corrosion resistance on the alloy surface is widely adopted, and examples thereof include wet plating and ion plating. Wet plating includes nickel phosphorous plating and hard chrome plating. Ion plating has a method of coating hard carbon film and titanium nitride film, but there are difficulties in adhesion due to differences in thermal expansion coefficient. Therefore, peeling is likely to occur at the interface between the alloy and the coating, and the film peeling problem has not been completely solved.
[0004]
Further, when peeling occurs, the crystalline alloy itself is exposed, and corrosion occurs in this portion, making it impossible to use as a part.
[0005]
[Problems to be solved by the invention]
The object of the present invention is mainly Fe-Ti-Ni-Zr alloy, Fe-Nb-Ni-Zr alloy, Fe-Co-Ni-Ti alloy, Fe-Nb-Mo alloy or Fe-Nb-Mo-Zr alloy. An object of the present invention is to provide an alloy having high hardness and good corrosion resistance, a manufacturing method thereof, and a watch exterior part.
[0006]
[Means for Solving the Problems]
In order to solve the above problems in the present invention, as a result of various studies on the composition of the alloy and the manufacturing method thereof, an amorphous alloy having high hardness and good corrosion resistance can be effectively formed by adopting the method described below. I found.
[0007]
Specifically, an Fe—Ti—Ni—Zr alloy containing 7 to 15 atomic% Fe, 10 to 20 atomic% Ti, 18 to 40 atomic% Ni, and 40 to 60 atomic% Zr, Fe-Nb-Ni-Zr alloy containing 25 atomic%, 2-15 atomic% Nb, 18-25 atomic% Ni, 50-68 atomic% Zr, 5-15 atomic% Fe, 5-5 Co Fe-Co-Ni-Ti alloy containing 15 atomic%, Ni 5-15 atomic%, Ti 65-74 atomic%, Fe 30-40 atomic%, Nb 25-40 atomic%, Mo 25- Fe-Nb-Mo alloy containing 40 atomic percent or Fe-Nb-Mo containing 30 to 55 atomic percent Fe, 5 to 25 atomic percent Nb, 5 to 20 atomic percent Mo, and 20 to 40 atomic percent Zr -A crystalline bulk alloy made of -Zr alloy The is the high hardness by causing the surface modification treatment on the surface modification layer made of amorphous alloy, high corrosion resistance, amorphous alloys having a high specularity obtained.
[0008]
In addition, a specific method for producing an amorphous alloy includes a step of placing an alloy formed in a desired shape in a vacuum apparatus and composed of an arbitrary element, and laser light or an atmosphere in which an inert gas is introduced. And adopting a method for producing an alloy having a step of irradiating the surface of the alloy with an electron beam.
[0009]
Similarly, the surface of a watch exterior component made of a crystalline bulk alloy having the above composition is irradiated with a laser beam or an electron beam, and the interior of these watch exterior components is in a crystalline bulk alloy state. A watch exterior part having a surface modified layer made of an amorphous alloy having high hardness, high corrosion resistance, and high specularity by subjecting only the surface of the watch exterior part to a surface modified layer made of an amorphous alloy. Is obtained.
[0010]
(Function)
Specifically, these Fe-Ti-Ni-Zr alloys, Fe-Nb-Ni-Zr alloys, Fe-Co-Ni-Ti alloys, Fe-Nb-Mo alloys or Fe-Nb-Mo-Zr alloys are mainly used. After preparing the crystalline bulk alloy as a component into a desired shape by arc melting or high frequency melting, the surface of the alloy is irradiated with laser light or electron beam, and the inside of the alloy is in the state of crystalline bulk alloy However, the surface modification layer made of an amorphous alloy is subjected to surface modification treatment within a depth of 25 μm from the surface of the alloy. When such a surface modification treatment is performed, the crystalline bulk alloy forms a gradient structure with a polycrystalline phase to an amorphous phase, so that the surface modification layer is not detached or peeled off. Further, since the surface is made of an amorphous alloy, a high hardness, high corrosion resistance, high mirror surface alloy material and watch exterior parts are achieved. The present invention solves the above problems by utilizing these characteristics.
[0011]
When a surface modification layer made of an amorphous alloy containing a large amount of Fe, Co, or Ni elements is formed on the watch exterior part, Fe, Co, and Ni exhibit soft magnetism, so if they are not magnetized, a magnetic resistance structure is added. Is done. In other words, when a surface modification layer made of an amorphous alloy is formed on a watch exterior part, magnetic resistance is added as a new function to high hardness, high corrosion resistance, and high specularity. There is an advantage that the magnetic-resistant plate provided is unnecessary.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Crystalline bulk mainly composed of Fe-Ti-Ni-Zr alloy, Fe-Nb-Ni-Zr alloy, Fe-Co-Ni-Ti alloy, Fe-Nb-Mo alloy or Fe-Nb-Mo-Zr alloy A watch exterior part made of an alloy or a crystalline bulk alloy is fabricated into a desired shape, and then laser light or an electron beam is irradiated on the surface, while the inside of the alloy is in a crystalline bulk alloy state. The surface modification layer made of an amorphous alloy was surface-modified within a depth of 25 μm from the surface of the crystalline bulk alloy. By performing such surface modification treatment, an alloy material and a watch exterior part having a gradient structure with a polycrystalline phase to an amorphous phase and having high hardness, high corrosion resistance, high mirror surface, and magnetic resistance are achieved. Details of the invention are illustrated in the following examples.
[0013]
(First embodiment)
A first embodiment of the present invention will be described with reference to the drawings. In this embodiment, a crystalline bulk alloy having an arbitrary composition is prepared, and the crystalline bulk alloy is melted and rapidly cooled in an atmosphere adjusted to an arbitrary pressure by introducing an inert gas. An alloy was made.
[0014]
FIG. 1 is a schematic view showing a method for producing ribbons of various alloys in a single roll type liquid rapid solidification apparatus. First, a crystalline bulk alloy 2 having a desired composition is prepared by an arc melting method. A quartz tube 4 having a small hole 6 at the tip and a high-frequency coil 8 for dissolving the crystalline bulk alloy 2 placed in the quartz tube 4 are arranged in the state of being close to the copper roll 10. After applying a high-frequency electric field to the high-frequency coil 8 and melting the crystalline bulk alloy 2 in the quartz tube 4, an inert gas adjusted to an arbitrary pressure is flowed from above the quartz tube 4 to a desired rotational speed. The crystalline bulk alloy 2 in a molten state in the quartz tube 4 was ejected from the small hole 6 on the adjusted copper roll 10 and rapidly solidified to produce a ribbon 12 having an arbitrary thickness.
[0015]
(Example 1-18)
In this embodiment, Fe-Ti-Ni-Zr alloy as Example 1-3, Fe-Nb-Ni-Zr alloy as Example 4-6, Fe-Co-Ni-Ti alloy as Example 7-9, The ribbons of various compositions were prepared by arbitrarily changing the composition of the Fe—Nb—Mo alloy as Example 10-14 and the composition of the Fe—Nb—Mo—Zr alloy as Example 15-18. The thickness of the ribbon was adjusted to 25 μm by adjusting the number of rotations of the copper roll during the production of the ribbon.
[0016]
(Comparative Example 1-37)
As a comparative example of the first embodiment of the present invention, a crystalline bulk alloy having a desired composition is prepared in advance by an arc melting method in the same manner as in Example 1-18, and the crystalline bulk alloy is placed in a quartz tube. After melting, the inert gas adjusted to an arbitrary pressure is flowed from above the quartz tube, and the crystalline bulk alloy melted in the quartz tube is ejected onto the copper roll adjusted to the desired rotational speed. And rapidly solidified to produce a ribbon having a thickness of 25 μm. Comparative Example 1-8 is Fe-Ti-Ni-Zr alloy, Comparative Example 9-16 is Fe-Nb-Ni-Zr alloy, Comparative Example 17-24 is Fe-Co-Ni-Ti alloy, Comparative Example 25-29 Is an Fe—Nb—Mo alloy, and Comparative Example 30-37 is a ribbon made of an Fe—Nb—Mo—Zr alloy.
[0017]
In the evaluation test, the crystallinity, hardness, and corrosion resistance were evaluated with a thin strip having a thickness of 25 μm. The composition of the ribbon was specified by ICP emission analysis. The crystallinity was determined by X-ray diffraction (θ-2θ method), and the one showing a broad peak peculiar to an amorphous alloy was accepted as an amorphous alloy, and the crystal peak was observed as crystalline. Judged and rejected. The hardness was measured with a Vickers hardness meter, and a Vickers hardness Hv = 500 or more was regarded as acceptable at an applied load of 100 gf. Corrosion resistance was determined to be acceptable when immersed in a CASS test solution for 48 hours and no corrosion occurred. What passed all of these three items was regarded as acceptable in the overall evaluation. These results are shown in Tables 1 to 3. Table 1 is an example and Tables 2 and 3 are comparative examples.
[0018]
[Table 1]
Figure 0004851669
[0019]
[Table 2]
Figure 0004851669
[0020]
[Table 3]
Figure 0004851669
[0021]
As is apparent from Table 1, the Fe 7 atom% -Ti 16 atom% -Ni 18 atom% -Zr 59 atom% composition, Fe12 atom% -Ti 12 atom% -Ni 28 atom% -Zr 48 atom% composition, Fe10 which is Example 1-18 Atomic% -Ti 10 atomic% -Ni 30 atomic% -Zr 50 atomic% composition, Fe 21 atomic% -Nb 2 atomic% -Ni 18 atomic% -Zr 59 atomic% composition, Fe12 atomic% -Nb 12 atomic% -Ni 18 atomic% -Zr 58 atomic% composition, Fe 10 atomic% -Nb 15 atomic% -Ni 25 atomic% -Zr 50 atomic% composition, Fe 5 atomic% -Co 10 atomic% -Ni 10 atomic% -Ti 75 atomic% composition, Fe 15 atomic% -Co 5 atomic% -Ni 15 atomic% -Ti 65 atomic% composition Fe 10 atomic% -Co 15 atomic% -Ni 5 atomic% -Ti 70 atomic% composition, Fe 30 atomic% -Nb 0 atomic% -Mo 30 atomic% composition, Fe 30 atomic% -Nb 30 atomic% -Mo 40 atomic% composition, Fe 35 atomic% -Nb 30 atomic% -Mo 35 atomic% composition, Fe 40 atomic% -Nb 25 atomic% -Mo 35 atomic% composition, Fe 40 atomic % -Nb 35 atomic% -Mo 25 atomic% composition, Fe 30 atomic% -Nb 25 atomic% -Mo 5 atomic% -Zr 40 atomic% composition, Fe 35 atomic% -Nb 20 atomic% -Mo 10 atomic% -Zr 35 atomic% composition, Fe 45 atomic% -Nb 20 From the X-ray diffraction results, all of the 18 strips of atomic% -Mo 10 atomic% -Zr 25 atomic% composition, Fe 55 atomic% -Nb 5 atomic% -Mo 20 atomic% -Zr 20 atomic% composition are characteristic of amorphous. It showed a broad peak (X-ray diffraction peak not shown) and was amorphous. The Vickers hardness was Hv = 550 or higher, and corrosion was not evaluated after the CASS test even in the corrosion resistance evaluation, and the overall evaluation was acceptable.
[0022]
On the other hand, as is clear from Tables 2 and 3, Comparative Example 1-37 passed the Vickers hardness of Hv = 530 or higher, but the crystallinity was evaluated in all compositions. Met. In the evaluation of corrosion resistance, corrosion occurred in the Fe—Co—Ni—Ti alloy having a high Co content after the CASS test. Since the evaluation of crystallinity failed, all of Comparative Examples 1-37 failed the overall evaluation.
[0023]
From the above, the composition of the alloy in the present invention is Fe-Ti-Ni-Zr containing 7-15 atomic% Fe, 10-20 atomic% Ti, 18-40 atomic% Ni, and 40-60 atomic% Zr. Alloy, Fe-Nb-Ni-Zr alloy containing 10-25 atomic% Fe, 2-15 atomic% Nb, 18-25 atomic% Ni, 50-68 atomic% Zr, 5-15 atomic Fe Fe-Co-Ni-Ti alloy containing 5 to 15 atomic%, Co 5 to 15 atomic%, Ni 5 to 15 atomic%, and Ti 65 to 74 atomic%, Fe 30 to 40 atomic%, Nb 25 to 40 atoms Fe, Nb-Mo alloy containing 25 to 40 atomic percent of Mo or 30 to 55 atomic percent of Fe, 5 to 25 atomic percent of Nb, 5 to 20 atomic percent of Mo, and 20 to 40 atomic percent of Zr The Fe—Nb—Mo—Zr alloy is preferable.
[0024]
(Second Embodiment)
A second embodiment of the present invention will be described with reference to FIGS. In the present embodiment, a crystalline bulk alloy having an arbitrary composition is prepared, and laser light is irradiated to the surface of the crystalline bulk alloy in an atmosphere adjusted to an arbitrary pressure by introducing an inert gas. Surface modification treatment was performed so that the surface of the bulk alloy became an amorphous alloy.
[0025]
FIG. 2 is a schematic cross-sectional view showing the structure of the crystalline bulk alloy 2 in which the inside is the crystalline bulk alloy 2 and the surface is modified with the surface modified layer 14 mainly composed of an amorphous alloy. FIG. It is a schematic diagram which shows the apparatus structure for carrying out the surface modification process to the surface modification layer 14 which consists of an amorphous alloy on the surface of the conductive bulk alloy 2. A holder 26 having a water cooling mechanism is disposed inside a vacuum apparatus 16 having a gas inlet 18 and a gas outlet 20, and the crystalline bulk alloy 2 is placed on the holder 26 to introduce an inert gas. And adjusted to an arbitrary pressure. Then, laser light from the laser light source 22 is generated, introduced into the vacuum device 16 through the window 24 made of quartz using an optical system, and irradiated on the surface of the crystalline bulk alloy 2. The surface modification treatment was performed so that the surface of the crystalline bulk alloy 2 became a surface modification layer made of an amorphous alloy.
[0026]
(Examples 19-36)
In this embodiment, the crystalline bulk alloy 2 is Fe-Ti-Ni-Zr alloy in Examples 19-21, Fe-Nb-Ni-Zr alloy in Examples 22-24, and Fe-Co in Examples 25-27. -Ni-Ti alloy, Fe-Nb-Mo alloy in Examples 28-32, and Fe-Nb-Mo-Zr alloy in Examples 33-36. He was used as the inert gas. As the laser light source, a YAG laser having a wavelength of 1.06 μm was used. The irradiation conditions of the YAG laser were arbitrarily adjusted within the range of an average output of 3 to 200 W, a pulse width of 1 to 20 ms, and a pulse repetition rate of 1 to 100 pps.
[0027]
In Examples 19-36, the laser energy reaching the crystalline bulk alloy is immediately converted into thermal energy to heat activate the surface of the crystalline bulk alloy and melt only the surface. The output, pulse width, and pulse repetition number were adjusted to arbitrary values. Next, laser irradiation on the melted surface was stopped, and the surface was subjected to surface modification treatment so that the surface was rapidly solidified to form a surface modified layer made of an amorphous alloy. At this time, the crystalline bulk alloy was water-cooled so that the entire crystalline bulk alloy was not melted, and the laser output, pulse width, and pulse repetition number were arbitrarily adjusted so that the surface temperature did not rise too much. The area to be heated and melted is limited to the vicinity of the surface, and because of the pulse irradiation, the temperature as a crystalline bulk alloy hardly rises and the properties as a bulk material are hardly affected, and surface modification treatment is possible. It was.
[0028]
Crystallinity, hardness, and corrosion resistance after the surface modification treatment of the surface of the crystalline bulk alloy obtained in Examples 19-36 to the surface modification layer made of an amorphous alloy were evaluated. The alloy composition was determined by ICP emission analysis. The evaluation method of the evaluation test was performed based on the same evaluation criteria as in the first embodiment. Table 4 shows the results of these evaluation tests.
[0029]
[Table 4]
Figure 0004851669
[0030]
As is apparent from Table 4, Fe 19 atom% -Ti 16 atom% -Ni 18 atom% -Zr 59 atom% composition, Fe12 atom% -Ti 12 atom% -Ni 28 atom% -Zr 48 atom% composition, Fe10 which are Examples 19-36. Atomic% -Ti 10 atomic% -Ni 30 atomic% -Zr 50 atomic% composition, Fe 21 atomic% -Nb 2 atomic% -Ni 18 atomic% -Zr 59 atomic% composition, Fe12 atomic% -Nb 12 atomic% -Ni 18 atomic% -Zr 58 atomic% composition, Fe 10 atomic% -Nb 15 atomic% -Ni 25 atomic% -Zr 50 atomic% composition, Fe 5 atomic% -Co 10 atomic% -Ni 10 atomic% -Ti 75 atomic% composition, Fe 15 atomic% -Co 5 atomic% -Ni 15 atomic% -Ti 65 atomic% composition Fe 10 atomic% -Co 15 atomic% -Ni 5 atomic% -Ti 70 atomic% composition, Fe 30 atomic% -N 40 atomic% -Mo 30 atomic% composition, Fe 30 atomic% -Nb 30 atomic% -Mo 40 atomic% composition, Fe 35 atomic% -Nb 30 atomic% -Mo 35 atomic% composition, Fe 40 atomic% -Nb 25 atomic% -Mo 35 atomic% composition, Fe 40 atomic % -Nb 35 atomic% -Mo 25 atomic% composition, Fe 30 atomic% -Nb 25 atomic% -Mo 5 atomic% -Zr 40 atomic% composition, Fe 35 atomic% -Nb 20 atomic% -Mo 10 atomic% -Zr 35 atomic% composition, Fe 45 atomic% -Nb 20 From the results of X-ray diffraction, all of the alloys of 18 composition of atomic% -Mo 10 atomic% -Zr 25 atomic% composition, Fe 55 atomic% -Nb 5 atomic% -Mo 20 atomic% -Zr 20 atomic% composition, -It showed a dead peak (X-ray diffraction peak is not shown) and was amorphous. The Vickers hardness was Hv = 580 or higher, and even in the corrosion resistance evaluation, no corrosion occurred after the CASS test, and the overall evaluation was acceptable.
[0031]
(Third embodiment)
A third embodiment of the present invention will be described. As in the first embodiment, a single roll type liquid rapid solidification apparatus was used to produce a ribbon. First, a crystalline bulk alloy having a desired composition is prepared by an arc melting method. After the crystalline bulk alloy is melted in a quartz tube, an inert gas adjusted to an arbitrary pressure from above the quartz tube is added. A crystalline bulk alloy melted in a quartz tube was jetted onto a copper roll adjusted to a desired rotational speed and rapidly solidified to produce a ribbon having an arbitrary thickness.
[0032]
(Examples 37-41)
Example 37 Fe-Ti-Ni-Zr alloy having a composition of Fe 10 atomic% -Ti 10 atomic% -Ni 30 atomic% -Zr 50 atomic%, and Example 38 Fe21 atomic% -Nb2 atomic% -Ni 18 atomic% -Zr 59 atomic% composition Fe-Nb-Ni-Zr alloy, Fe-Co-Ni-Ti alloy having a composition of Fe 10 atomic% -Co 15 atomic% -Ni 5 atomic% -Ti 70 atomic% as Example 39, Fe 35 atomic% -Nb 30 atoms as Example 40 Fe-Nb-Mo alloy having a composition of% -Mo35 atomic%, a thin strip of 5 compositions of an Fe-Nb-Mo-Zr alloy having a composition of Fe35 atomic% -Nb 20 atomic% -Mo 10 atomic% -Zr 35 atomic% as Example 41 Produced. The rotational speed of the copper roll was adjusted so that the thickness of the ribbon was 25 μm.
[0033]
(Comparative Example 38-47)
Fe-Ti-Ni-Zr alloy having a composition of Fe 10 atomic% -Ti 10 atomic% -Ni 30 atomic% -Zr 50 atomic% as Comparative Example 38 and Comparative Example 43, and Fe 21 atomic% -Nb 2 atomic%-as Comparative Example 39 and Comparative Example 44- Fe-Nb-Ni-Zr alloy having a composition of Ni 18 atomic% -Zr 59 atomic%, Fe-Co-Ni-Ti having a composition of Fe 10 atomic% -Co 15 atomic% -Ni 5 atomic% -Ti 70 atomic% as Comparative Example 40 and Comparative Example 45 As an alloy comparative example 41 and comparative example 46, an Fe-Nb-Mo alloy having a composition of Fe35 atomic% -Nb 30 atomic% -Mo 35 atomic%, and as comparative example 42 and comparative example 47, Fe 35 atomic% -Nb 20 atomic% -Mo 10 atomic% -Zr35 A five-component ribbon of an Fe-Nb-Mo-Zr alloy having an atomic% composition was produced. The rotational speed of the copper roll was adjusted to control the thickness of the ribbon. The thickness of the ribbon is 30 μm in Comparative Example 38-42 and 40 μm in Comparative Example 43-47.
[0034]
In the evaluation test, only the crystallinity of the ribbon was evaluated. The composition of the ribbon was specified by ICP emission analysis. As in the first and second embodiments, the crystallinity is obtained by X-ray diffraction (θ-2θ method) and exhibits a broad peak peculiar to an amorphous alloy. In the case where a crystal peak was observed, the crystal was judged to be crystalline and rejected. These evaluation results are shown in Table 5.
[0035]
[Table 5]
Figure 0004851669
[0036]
As is apparent from Table 5, in the ribbon of Example 37-41 having a thickness of 25 μm, the composition of Fe 10 atomic% -Ti 10 atomic% -Ni 30 atomic% -Zr 50 atomic%, Fe 21 atomic% -Nb 2 atomic% -Ni 18 atomic% -Zr59 Atomic% composition, Fe 10 atomic% -Co 15 atomic% -Ni 5 atomic% -Ti 70 atomic% composition, Fe 35 atomic% -Nb 30 atomic% -Mo 35 atomic% composition, Fe 35 atomic% -Nb 20 atomic% -Mo 10 atomic% -Zr 35 atomic% composition From the result of X-ray diffraction, each of the compositions showed a broad peak characteristic of amorphous (the X-ray diffraction peak is not shown).
[0037]
On the other hand, the crystallinity of the ribbon of Comparative Example 38-42 with a thickness of 30 μm and the ribbon of Comparative Example 43-47 with a thickness of 40 μm were all crystalline. In the composition with a thickness of 30 μm, a peak in which a crystalline peak was superimposed on a part of a peak peculiar to amorphous was observed, but it was determined that a crystalline peak was confirmed even if it was slightly observed. did. Therefore, all the evaluation results of Comparative Examples 38 to 47 were unacceptable.
[0038]
From the above results, Fe-Ti-Ni-Zr alloy containing 7-15 atomic% Fe, 10-20 atomic% Ti, 18-40 atomic% Ni, 40-60 atomic% Zr, 10 Fe Fe-Nb-Ni-Zr alloy containing -25 atomic%, Nb 2-15 atomic%, Ni 18-25 atomic%, Zr 50-68 atomic%, Fe 5-15 atomic%, Co 5 Fe—Co—Ni—Ti alloy containing 15 to 15 atomic%, Ni 5 to 15 atomic% and Ti 65 to 74 atomic%, Fe 30 to 40 atomic%, Nb 25 to 40 atomic%, Mo 25 Fe—Nb—Mo alloy containing ˜40 atomic% or Fe—Nb— containing 30 to 55 atomic% of Fe, 5 to 25 atomic% of Nb, 5 to 20 atomic% of Mo, and 20 to 40 atomic% of Zr In the Mo-Zr alloy, the thickness of the ribbon is 25 μm or less The is, it became clear that the amorphous alloy.
[0039]
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described. In the present embodiment, a crystalline bulk alloy having an arbitrary composition is prepared as in the second embodiment, and a holder having a water cooling mechanism is arranged inside a vacuum apparatus having a gas inlet and a gas outlet. A crystalline bulk alloy is placed on a holder and irradiated with laser light on the surface of the crystalline bulk alloy in an atmosphere adjusted to an arbitrary pressure by introducing an inert gas. Surface modification treatment was performed so that the surface of the film became an amorphous alloy.
[0040]
(Example 42)
In Example 42, a die having a composition of Fe 12 atomic% -Ti 12 atomic% -Ni 28 atomic% -Zr 48 atomic% and molded as a specific part was used for the crystalline bulk alloy. He was used as the inert gas. As the laser light source, a YAG laser having a wavelength of 1.06 μm was used. The irradiation conditions of the YAG laser were arbitrarily adjusted within the range of an average output of 3 to 200 W, a pulse width of 1 to 20 ms, and a pulse repetition rate of 1 to 100 pps.
[0041]
(Fifth embodiment)
Next, a fifth embodiment of the present invention will be described. In the present embodiment, a crystalline bulk alloy having an arbitrary composition is produced as in the second and fourth embodiments, and a holder having a water cooling mechanism inside a vacuum apparatus having a gas inlet and a gas outlet. -Place the crystalline bulk alloy on this holder and irradiate the surface of the crystalline bulk alloy with laser light in an atmosphere adjusted to an arbitrary pressure by introducing an inert gas. Then, the surface modification treatment was performed so that the surface of the crystalline bulk alloy became an amorphous alloy.
[0042]
(Example 43)
In Example 43, a die having a composition of Fe 7 atomic% -Ti 16 atomic% -Ni 18 atomic% -Zr 59 atomic% and molded as a specific part was used for the crystalline bulk alloy. An ArF excimer laser with a wavelength of 193 nm was used as the laser light source. The irradiation conditions of the ArF excimer laser were arbitrarily adjusted within the range of an average output of 20 to 100 W, a pulse width of 10 to 20 ns, and a pulse repetition rate of 10 to 200 pps. He was used as the inert gas.
[0043]
In Example 42 in the fourth embodiment and Example 43 in the fifth embodiment, the laser energy that has reached the mold made of the crystalline bulk alloy is immediately converted into thermal energy to obtain a mold surface. In this case, the output, pulse width, and pulse repetition number were adjusted to arbitrary values. Next, laser irradiation on the melted surface was stopped, and the surface was subjected to surface modification treatment so that the surface was rapidly solidified to form a surface modified layer made of an amorphous alloy. At this time, since the mold shape cannot be maintained when the entire mold is melted, the mold is cooled with water so that the entire mold does not melt, and the laser output and pulse width are set so that the surface temperature does not rise too much. Since the number of pulse repetitions was arbitrarily adjusted, the heated and melted area was limited to the vicinity of the surface, and the temperature of the mold as a crystalline bulk alloy did not rise substantially due to pulse irradiation, and the characteristics as a bulk material were Surface modification treatment was possible with almost no effect.
[0044]
Fe-Ti-Ni-Zr-based crystalline bulk alloy obtained in Example 42 and Example 43 Fe12 atomic% -Ti 12 atomic% -Ni 28 atomic% -Zr 48 atomic% composition and Fe 7 atomic% -Ti 16 atomic% The crystallinity, hardness, corrosion resistance, and average surface roughness Ra after the surface modification of the surface of the mold having a composition of -Ni18 atomic% -Zr 59 atomic% to an amorphous alloy surface modified layer were evaluated. The composition of the amorphous alloy was identified by ICP emission analysis.
[0045]
Crystallinity was determined by X-ray diffraction (thin film X-ray diffraction method). At this time, the X-ray incident angle was adjusted, and the X-ray incident depth was limited to a range within 25 μm from the surface. The surface modification layer was formed as a pass and the crystal peak was observed, and it was determined that the surface modification layer made of an amorphous alloy was not formed. The hardness was measured with a Vickers hardness meter, and a Vickers hardness Hv = 500 or more was accepted at an applied load of 100 gf. Corrosion resistance was determined to be acceptable when immersed in a CASS test solution for 48 hours and no corrosion occurred. The average surface roughness Ra was measured with a surface roughness meter, and Ra = 0.1 μm or less was accepted. What passed all of these 4 items was set as the pass in comprehensive evaluation. These results are shown in Table 6.
[0046]
[Table 6]
Figure 0004851669
[0047]
As is apparent from Table 6, from the composition of Fe 12 atomic% -Ti 12 atomic% -Ni 28 atomic% -Zr 48 atomic% in Example 42, Fe 7 atomic% -Ti 16 atomic% -Ni 18 atomic% -Zr 59 atomic% in Example 43. After the surface of the mold is surface-modified to an amorphous alloy, the crystallinity shows a broad peak specific to amorphous from the X-ray diffraction results (the X-ray diffraction peak is not shown) It was confirmed that the surface modification layer made of an amorphous alloy was surface-modified. The hardness is Vickers hardness of Hv = 600 and 610, and the corrosion resistance is not evaluated after the CASS test. Moreover, it became clear that the surface roughness was a high mirror surface with Ra = 0.08 μm or less, and the results were acceptable. Therefore, the overall evaluation results were both acceptable.
[0048]
In Example 42 and Example 43, He was used as an inert gas, but Ar, Ne, Kr, etc. may be used, and the important thing is to prevent the elements constituting the crystalline bulk alloy from being oxidized, Not only the inert gas atmosphere but also a vacuum atmosphere may be used. The excimer laser of Example 43 is not limited to ArF but may be a KrF excimer laser. In addition, when irradiating a laser having a certain area, the energy distribution in the surface is usually uniform by using a beam homogenizer or the like because of the energy distribution in the surface. Two-dimensional processing by laser irradiation becomes possible. Furthermore, the surface modification process to a three-dimensionally shaped object is possible by moving the part three-dimensionally.
[0049]
(Sixth embodiment)
A sixth embodiment of the present invention will be described with reference to FIG. FIG. 4 is a schematic diagram showing an apparatus configuration for performing surface modification treatment by a method different from that of the second embodiment, the fourth embodiment, and the fifth embodiment. A holder 40 having a water cooling mechanism is arranged inside a vacuum apparatus 30 having a gas inlet 32 and a gas outlet 34, and a component 28 made of a crystalline bulk alloy is placed on the holder 40 to be inert. Gas was introduced and adjusted to an arbitrary pressure. Next, the electron beam generated by the electron beam generator 38 is introduced into the vacuum device 30 through the window 36 made of quartz, and irradiated to the component 28 made of a crystalline bulk alloy, so that the component made of the crystalline bulk alloy is irradiated. The surface modification treatment was performed so that the surface of 28 became a surface modification layer made of an amorphous alloy.
[0050]
(Example 44)
In Example 44, a die having a composition of Fe 21 atomic% -Nb 2 atomic% -Ni 18 atomic% -Zr 59 atomic% was used for a part made of a crystalline bulk alloy. He was used as the inert gas. The irradiation condition of the electron beam was arbitrarily adjusted within the range of energy -20 to 100 keV and pulse width 10 to 200 ns.
[0051]
As in the fourth and fifth embodiments, in this embodiment as well, the electron beam energy that has reached the mold made of a crystalline bulk alloy is immediately converted into thermal energy to heat the mold surface. In this case, the beam energy and the pulse width were adjusted to arbitrary values. Next, the electron beam irradiation to the melted surface was stopped, and the surface was rapidly solidified by a surface modification treatment so as to form a surface modified layer made of an amorphous alloy. At this time, since the mold shape cannot be maintained when the entire mold is melted, the mold is water-cooled so that the entire mold does not melt, and the energy of the electron beam is prevented so that the surface temperature does not rise too much. Since the pulse width was arbitrarily adjusted, the area to be heated and melted was limited to the vicinity of the surface, and the temperature of the mold as a crystalline bulk alloy hardly increased due to pulse irradiation, and the characteristics as a bulk material were hardly affected. Surface modification treatment was possible without being subjected to this.
[0052]
The surface of a mold having the composition of Fe 21 atomic% -Nb 2 atomic% -Ni 18 atomic% -Zr 59 atomic%, which is the Fe-Nb-Ni-Zr-based crystalline bulk alloy obtained in Example 44, is made of an amorphous alloy. The crystallinity, hardness, corrosion resistance, and average surface roughness Ra after the surface modification treatment so as to be a modified layer were evaluated. The composition of the amorphous alloy was identified by ICP emission analysis. The evaluation method of the evaluation test was performed based on the same evaluation criteria as those in the fourth embodiment and the fifth embodiment. The evaluation test results are shown in Table 7.
[0053]
[Table 7]
Figure 0004851669
[0054]
As apparent from Table 7, after the surface modification treatment was performed so that the surface of the mold having the composition of Fe 21 atomic% -Nb 2 atomic% -Ni 18 atomic% -Zr 59 atomic% becomes a surface modified layer made of an amorphous alloy, From the result of X-ray diffraction, the crystallinity shows a broad peak peculiar to amorphous (the peak of X-ray diffraction is not shown). The surface is surface-modified to a surface-modified layer made of an amorphous alloy. It was recognized that Hardness is Vickers hardness of Hv = 730, and no corrosion occurs after the CASS test even in the evaluation of corrosion resistance. In addition, it became clear that the surface roughness was a high mirror surface with Ra = 0.09 μm. Therefore, the comprehensive evaluation result was acceptable.
[0055]
(Seventh embodiment)
Next, a seventh embodiment of the present invention will be described. In this embodiment, as in the second and fourth embodiments, a YAG laser is applied to the surface of a component made of a crystalline bulk alloy in an atmosphere adjusted to an arbitrary pressure by introducing an inert gas. Was subjected to surface modification treatment so that the surface of the part made of the crystalline bulk alloy became a surface modified layer made of the amorphous alloy. A watch exterior part was used as a part made of a crystalline bulk alloy.
[0056]
(Examples 45-46)
Embodiments 45 and 46 of the present invention will be described with reference to the drawings. FIG. 5 is a schematic sectional view of a watch case which is a watch exterior part. A watch case 42 made of a crystalline bulk alloy that has been polished and finished to a high mirror surface is placed on a holder having a water cooling mechanism inside a vacuum apparatus having a gas inlet and a gas outlet. The watchcase 42 made of a crystalline bulk alloy was irradiated with YAG laser light having a wavelength of 1.06 μm in an atmosphere adjusted to an arbitrary pressure by introducing He gas. The inside of the watch case 42 is a crystalline bulk alloy, and the surface modification treatment is performed so that the surface thereof becomes the surface modification layer 14 made of an amorphous alloy. The irradiation conditions of the YAG laser light were arbitrarily adjusted within the range of an average output of 3 to 200 W, a pulse width of 1 to 20 ms, and a pulse repetition rate of 1 to 100 pps. The alloy composition of the watch case 42 made of a crystalline bulk alloy is as follows: in Example 45, Fe 10 atomic% -Ti 10 atomic% -Ni 30 atomic% -Zr 50 atomic%, and in Example 46, Fe 30 atomic% -Nb 30 atomic% -Mo 40. Those having an atomic% composition were used. After the surface modification treatment to the surface modification layer 14 made of an amorphous alloy, a timepiece module component was incorporated into a finished timepiece.
[0057]
(Eighth embodiment)
Next, an eighth embodiment of the present invention will be described. In this embodiment, similarly to the fifth embodiment, ArF excimer laser is irradiated to the surface of a part made of a crystalline bulk alloy in an atmosphere adjusted to an arbitrary pressure by introducing an inert gas. The surface modification treatment was performed so that the surface of the part made of the bulk alloy became the surface modification layer made of the amorphous alloy. A watch exterior part was used as a part made of a crystalline bulk alloy.
[0058]
(Examples 47-48)
A watch case made of a crystalline bulk alloy in which a holder having a water cooling mechanism inside a vacuum apparatus provided with a gas inlet and a gas outlet is disposed and polished to a high mirror surface on the holder in advance. Is irradiated with ArF excimer laser light with a wavelength of 193 nm in an atmosphere adjusted to an arbitrary pressure by introducing He gas, and the crystalline bulk alloy is irradiated with ArF excimer laser light having a wavelength of 193 nm. The inside of the watch case made of was kept a crystalline bulk alloy, and the surface modification treatment was performed so that the surface thereof became a surface modification layer made of an amorphous alloy. ArF excimer laser light irradiation conditions were arbitrarily adjusted within an average output of 20 to 100 W, a pulse width of 10 to 20 ns, and a pulse repetition rate of 10 to 200 pps. The alloy composition of the watch case made of a crystalline bulk alloy is as follows: Example 47 Fe12 atomic% -Nb 12 atomic% -Ni 18 atomic% -Zr 58 atomic% composition, and Example 48 Fe30 atomic% -Nb 25 atomic% -Mo5 atom. A composition having a% -Zr of 40 atomic% composition was used. After the surface modification treatment of the surface modification layer made of an amorphous alloy, a watch module component was incorporated into a finished watch.
[0059]
(Ninth embodiment)
Next, a ninth embodiment of the present invention will be described. In the present embodiment, in the same manner as in the sixth embodiment, the surface of a part made of a crystalline bulk alloy is irradiated with an electron beam in an atmosphere adjusted to an arbitrary pressure by introducing an inert gas. Surface modification treatment was performed so that the surface of the part made of an alloy became a surface modified layer made of an amorphous alloy. A watch exterior part was used as a part made of a crystalline bulk alloy.
[0060]
(Examples 49-50)
A watch case made of a crystalline bulk alloy in which a holder having a water cooling mechanism inside a vacuum apparatus provided with a gas inlet and a gas outlet is disposed and polished to a high mirror surface on the holder in advance. In an atmosphere adjusted to an arbitrary pressure by introducing He gas, a watch case made of a crystalline bulk alloy was irradiated with an electron beam to irradiate the watch case made of a crystalline bulk alloy. Surface modification treatment was performed so that the inside of the cell remained a crystalline bulk alloy and only the surface thereof became a surface modification layer made of an amorphous alloy. The irradiation condition of the electron beam was arbitrarily adjusted within the range of energy -20 to 100 keV and pulse width 10 to 200 ns. The alloy composition of the watch case made of a crystalline bulk alloy is as follows: Example 49, Fe 10 atomic% -Co 15 atomic% -Ni 5 atomic% -Ti 70 atomic%, and Example 50 Fe 30 atomic% -Nb 40 atomic% -Mo 30 atomic. % Composition was used. After the surface modification treatment of the surface modification layer made of an amorphous alloy, a watch module component was incorporated into a finished watch.
[0061]
A watch case made of crystalline bulk alloys of various compositions obtained in Examples 45-46 in the seventh embodiment, Examples 47-48 in the eighth embodiment and Examples 49-50 in the ninth example. -Evaluation of crystallinity, hardness, corrosion resistance, average surface roughness Ra and magnetic resistance after incorporation of watch module parts after surface modification treatment to form a surface modification layer made of an amorphous alloy. did. The composition of the amorphous alloy was identified by ICP emission analysis.
[0062]
Crystallinity was determined by X-ray diffraction (thin film X-ray diffraction method). At this time, the incident angle of X-rays was adjusted, and the X-ray incident depth was limited to a range within 25 μm from the surface. A case where a surface modified layer as a main component was formed was accepted, and a case where a crystal peak was observed was judged as a crystalline material where no surface modified layer was formed, and was rejected. The hardness was measured with a Vickers hardness meter, and a Vickers hardness Hv = 500 or more was accepted at an applied load of 100 gf. Corrosion resistance was determined to be acceptable when immersed in a CASS test solution for 48 hours and no corrosion occurred. The average surface roughness Ra was measured with a surface roughness meter, and Ra = 0.1 μm or less was accepted. For anti-magnetic properties, a watch was placed in a magnetic field of 60 gauss for 5 minutes, and the case where none of the hour hand, minute hand, and second hand of the watch was delayed or stopped was regarded as acceptable. What passed all these 5 items was set as the pass by comprehensive evaluation. These evaluation results are shown in Table 8.
[0063]
[Table 8]
Figure 0004851669
[0064]
As is apparent from Table 8, composition of Fe 10 atomic% -Ti 10 atomic% -Ti 30 atomic% -Ni 30 atomic% -Zr 50 atomic% as Example 45, Fe 30 atomic% -Nb 30 atomic% -Mo 40 atomic% as Example 46, Example 47 Fe 12 atomic% -Nb 12 atomic% -Ni 18 atomic% -Zr 58 atomic% composition, Example 48 Fe 30 atomic% -Nb 25 atomic% -Mo 5 atomic% -Zr 40 atomic% composition, Example 49 Fe 10 atomic% Surface modification of a watch case comprising 6 compositions of Co 15 atomic%, Ni 5 atomic%, Ti 70 atomic%, Fe 50 atomic%, Nb 40 atomic%, and Mo 30 atomic% as Example 50. The crystallinity after the modification treatment of the layer shows a broad peak peculiar to amorphous (X-ray diffraction peak is not shown), and the surface is open. It was observed that the surface modification treatment on the surface modification layer made of Rufasu alloy. The hardness is passed when the Vickers hardness is Hv = 570 or higher, and even in the evaluation of corrosion resistance, no corrosion has occurred after the CASS test. It became clear that the surface roughness was a high mirror surface with Ra = 0.09 μm or less. Further, in the evaluation of the anti-magnetic property of the timepiece after the timepiece module part was incorporated, all of the hour hand, minute hand and second hand of the timepiece operated normally without being affected by the magnetic field of 60 gauss. Therefore, the comprehensive evaluation result was acceptable.
[0065]
In Example 45-50, the laser energy or the electron beam energy that reached the watch case made of the crystalline bulk alloy is immediately converted into thermal energy to heat-activate the watch case surface. Only the surface was melted, but at this time, the laser output, electron beam energy, pulse width, and pulse repetition number were adjusted to arbitrary values. Then, laser or electron beam irradiation was stopped on the melted surface, and the surface was subjected to surface modification treatment so that the surface was rapidly solidified to become an amorphous alloy. At this time, since the shape of the watch case cannot be maintained when the entire watch case is melted, the watch case is cooled with water so that the whole watch case does not melt, and the surface temperature does not rise too much. Since the laser output, electron beam energy, pulse width, and pulse repetition rate were arbitrarily adjusted, the area to be heated and melted was limited to the vicinity of the surface, and a watch as a crystalline bulk alloy was used for pulse irradiation. The case temperature was hardly increased, and the surface modification treatment was possible with almost no influence on the properties as a bulk material.
[0066]
In Examples 45-50, He was used as the inert gas, but Ar, Ne, Kr, etc. may be used. The important thing is to prevent the elements constituting the alloy from being oxidized, nitrided, and carbonized, and inert. Not only a gas atmosphere but also a vacuum atmosphere may be used. The excimer laser of Example 7 is not limited to ArF, but may be a KrF excimer laser. In addition, when irradiating a laser having a certain area, the energy distribution in the surface is usually uniform by using a beam homogenizer or the like because of the energy distribution in the surface. Two-dimensional processing by laser irradiation becomes possible. Furthermore, the surface modification treatment of the three-dimensional object can be performed by moving the parts three-dimensionally.
[0067]
Examples 19-36 and 4th implementation in the second embodiment are the conditions for subjecting the surface of a part made of a crystalline bulk alloy or a crystalline bulk alloy to a surface modification layer made of an amorphous alloy. In Example 42 in the embodiment and Examples 45-46 in the seventh embodiment, a YAG laser having a wavelength of 1.06 μm is used. The irradiation condition of the YAG laser is an average output of 3 to 200 W, a pulse width of 1 Although it was arbitrarily adjusted within the range of ˜20 ms and the number of pulse repetitions of 1 to 100 pps, any laser irradiation condition may be used as long as the conditions are within this range. In Example 43 in the fifth embodiment and Examples 47-48 in the seventh embodiment, an ArF excimer laser with a wavelength of 193 nm is used, and the irradiation condition of the ArF excimer laser is an average output of 20 to 100 W, a pulse Although it was arbitrarily adjusted within a range of 10 to 20 ns in width and 10 to 200 pps of pulse repetition, any laser irradiation condition may be used as long as the conditions are within this range. In Example 44 in the sixth embodiment and Examples 49-50 in the seventh embodiment, an electron beam is used, and the irradiation condition of the electron beam is energy -20 to 100 keV, and a pulse width is 10 to 200 ns. However, any laser irradiation condition may be used as long as the conditions are within this range. What is important is to limit the region to be heated and melted in the vicinity of the surface so that the surface temperature does not rise too much and the whole is melted. For this purpose, the crystalline bulk alloy is cooled with water, and the laser output, It is necessary to arbitrarily adjust the electron beam energy, the pulse width, and the pulse repetition number within the above ranges.
[0068]
In the seventh embodiment, the eighth embodiment, and the ninth embodiment, as specific watch exterior parts, watch cases made of crystalline bulk alloys having various alloy compositions have been described as specific examples. The watch exterior part is not limited to the watch case, and may be any part used for the exterior of the watch, such as a watch band, a bezel, a middle ring, and a crown. That is, even if the watch exterior part is made of any crystalline bulk alloy, only the surface of the watch exterior part can be surface-modified to the surface-modified layer made of an amorphous alloy.
[0069]
As described in the third embodiment, the thickness of the surface modification layer is amorphous in the thin ribbon because the thickness is 25 μm or less. Therefore, the thickness that becomes amorphous by the surface modification treatment is 25 μm or less. Needless to say.
[0070]
【The invention's effect】
As described above, according to the present invention, the Fe—Ti—Ni—Zr alloy, the Fe—Nb—Ni—Zr alloy, the Fe—Co—Ni—Ti alloy, the Fe—Nb—Mo alloy, or the Fe—Nb— A crystalline bulk alloy composed mainly of a Mo-Zr alloy or a watch exterior part made of a crystalline bulk alloy is produced in a desired shape, and then laser light or an electron beam is irradiated on the surface to produce crystallinity. The surface modification layer made of an amorphous alloy was surface-modified within a depth of 25 μm from the surface of the watch exterior part made of a bulk alloy or a crystalline bulk alloy. By carrying out such surface modification treatment, the watch exterior parts made of crystalline bulk alloy or crystalline bulk alloy are made into a gradient structure with a polycrystalline phase to an amorphous phase, and an amorphous alloy with high hardness, high corrosion resistance, and high mirror surface. And a watch exterior part having high hardness, high corrosion resistance, high mirror surface, and magnetic resistance. In addition, if the surface of a watch exterior part made of crystalline bulk alloy or crystalline bulk alloy is mirror-polished in advance, a high mirror surface is maintained even after the surface modification treatment on the surface modification layer made of amorphous alloy. There is a remarkable effect as a surface treatment method for a watch exterior part, such as providing a watch exterior part in a practical range because it has high decorative performance and is magnetically resistant.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a method for producing ribbons of various alloys in a single roll type liquid rapid solidification apparatus as an embodiment of the method for producing an alloy of the present invention.
FIG. 2 shows the surface modification in which the inside of the crystalline bulk alloy which is an embodiment of the alloy of the present invention remains a crystalline bulk alloy, and the surface modification layer made of an amorphous alloy is surface-modified only on the surface thereof. It is a cross-sectional schematic diagram which shows the structure of a layer.
FIG. 3 is a schematic view showing an apparatus configuration for performing a surface modification treatment which is an embodiment in the method for producing an alloy of the present invention.
FIG. 4 is a schematic view showing a configuration of an apparatus for performing a surface modification treatment which is an embodiment in the method for producing an alloy of the present invention.
FIG. 5 is a watch case made of a crystalline bulk alloy which is an embodiment of the watch exterior part of the present invention, and the inside of the watch case remains a crystalline bulk alloy, and only the surface thereof is a surface modified layer made of an amorphous alloy. It is a cross-sectional schematic diagram which shows the structure of the surface modification layer by which surface modification processing was carried out.
[Explanation of symbols]
2 Crystalline bulk alloy
4 Quartz tube
6 small holes
8 High frequency coil
10 Copper roll
12 ribbon
14 Surface modification layer made of amorphous alloy
16 Vacuum equipment
18 Gas inlet
20 Gas exhaust port
22 Laser light source
24 windows
26 Holder
28 Parts made of crystalline bulk alloy
30 Vacuum equipment
32 Gas inlet
34 Gas exhaust port
36 windows
38 Electronic beam generator
40 Holder
42 Watchcases made of crystalline bulk alloy

Claims (4)

Fe、NbおよびMoからなる合金であって、前記Feの含有量が30原子%〜40原子%、前記Nbの含有量が25原子%〜40原子%、前記Moの含有量が25原子%〜40原子%の範囲にあり、表面層がアモルファスで、内部が結晶質である合金。An alloy composed of Fe, Nb and Mo, wherein the Fe content is 30 atomic% to 40 atomic%, the Nb content is 25 atomic% to 40 atomic%, and the Mo content is 25 atomic% to Ri 40 atomic percent range near the surface layer is an amorphous, alloy inner is crystalline. 前記表面層の厚みが25μm以内であることを特徴とする請求項に記載の合金。 Alloy of claim 1, wherein the thickness of the surface layer is within 25 [mu] m. 請求項1または請求項2に記載の合金からなることを特徴とする時計外装部品。A watch exterior part comprising the alloy according to claim 1 . 前記表面層が軟磁性を示すことを特徴とする請求項に記載の時計外装部品。Timepiece exterior part according to claim 3, wherein the table surface layer, characterized in that it presents a soft magnetic.
JP2001284213A 2000-10-05 2001-09-19 Alloy and watch exterior parts Expired - Fee Related JP4851669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001284213A JP4851669B2 (en) 2000-10-05 2001-09-19 Alloy and watch exterior parts

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-305597 2000-10-05
JP2000305597 2000-10-05
JP2000305597 2000-10-05
JP2001284213A JP4851669B2 (en) 2000-10-05 2001-09-19 Alloy and watch exterior parts

Publications (2)

Publication Number Publication Date
JP2002180217A JP2002180217A (en) 2002-06-26
JP4851669B2 true JP4851669B2 (en) 2012-01-11

Family

ID=26601574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001284213A Expired - Fee Related JP4851669B2 (en) 2000-10-05 2001-09-19 Alloy and watch exterior parts

Country Status (1)

Country Link
JP (1) JP4851669B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100503891C (en) * 2001-09-19 2009-06-24 西铁城控股株式会社 Soft metal and method for preparation thereof, and exterior part of watch and method for preparation thereof
US10214800B2 (en) * 2003-08-13 2019-02-26 Crucible Intellectual Property, Llc High durability structures of amorphous alloy and a method of forming
US7553382B2 (en) * 2005-02-11 2009-06-30 The Nanosteel Company, Inc. Glass stability, glass forming ability, and microstructural refinement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253847A (en) * 1995-03-16 1996-10-01 Takeshi Masumoto Titanium-zirconium amorphous metal filament

Also Published As

Publication number Publication date
JP2002180217A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
ES2616345T3 (en) Soft magnetic thin band, process for its production, magnetic pieces, and thin amorphous band
US11098403B2 (en) High entropy alloy thin film coating and method for preparing the same
US4225339A (en) Amorphous alloy of high magnetic permeability
JP6195285B2 (en) FeNi alloy composition containing L10 type FeNi ordered phase, method for producing FeNi alloy composition containing L10 type FeNi ordered phase, FeNi alloy composition containing amorphous as main phase, amorphous alloy mother alloy, amorphous material, magnetic material, and Manufacturing method of magnetic material
KR960002611B1 (en) Magnetic film
EP0422760A1 (en) Amorphous alloy and process for preparation thereof
Chen et al. Structural investigation of cold‐rolled metallic glasses using positron annihilation methods
JP2007107095A (en) Magnetic alloy, amorphous alloy thin band, and magnetic component
US20100310901A1 (en) Metallic glass, magnetic recording medium using the same, and method of manufacturing the magnetic recording medium
TWI685578B (en) Soft magnetic alloy ribbon and magnetic parts
JP3229718B2 (en) Soft magnetic alloys, soft magnetic thin films and multilayer films
JP4851669B2 (en) Alloy and watch exterior parts
EP0899753B1 (en) Magnetic cores of bulky and laminated types
JPS6141974B2 (en)
EP1945448A2 (en) Amorphous metal film and process for applying same
JPS62227070A (en) Manufacture of thin amorphous co alloy strip having superior magnetic characteristic at high frequency
JPH04124246A (en) Dial
JP6845205B2 (en) Soft magnetic alloy strips and magnetic parts
JP4320701B2 (en) Permanent magnet alloy and bonded magnet
JP2021153107A (en) Alloy thin strip and magnetic core
JP2002275605A (en) Noble metal decorative parts, production method and production apparatus for the noble metal decorative parts
JPS63147303A (en) Corrosion-resisting permanent magnet
JPS63293707A (en) Multi-layered fe-co magnetic film and magnetic head
JPH03101202A (en) Soft magnetic thin film and manufacture thereof
JPH0314207A (en) Soft magnetic thin film and formation thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111021

R150 Certificate of patent or registration of utility model

Ref document number: 4851669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees