JP4850503B2 - Gaseous fuel supply system for energy generation unit of ship for transportation of liquefied gas - Google Patents

Gaseous fuel supply system for energy generation unit of ship for transportation of liquefied gas Download PDF

Info

Publication number
JP4850503B2
JP4850503B2 JP2005354386A JP2005354386A JP4850503B2 JP 4850503 B2 JP4850503 B2 JP 4850503B2 JP 2005354386 A JP2005354386 A JP 2005354386A JP 2005354386 A JP2005354386 A JP 2005354386A JP 4850503 B2 JP4850503 B2 JP 4850503B2
Authority
JP
Japan
Prior art keywords
pressure
evaporator
gas
outlet
feed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005354386A
Other languages
Japanese (ja)
Other versions
JP2006168719A (en
Inventor
マテユー・ロラン
イブ・ブラドー
Original Assignee
エステーイクス フランス エス.アー.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エステーイクス フランス エス.アー. filed Critical エステーイクス フランス エス.アー.
Publication of JP2006168719A publication Critical patent/JP2006168719A/en
Application granted granted Critical
Publication of JP4850503B2 publication Critical patent/JP4850503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0338Pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0178Arrangement in the vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/01Intermediate tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0443Flow or movement of content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships

Description

本発明は、液化ガス輸送用船舶のエネルギー生成ユニットへ気体燃料を供給するための装置に関するものであり、気体燃料は、少なくとも1つのフィードマニホールドを介してエネルギー生成ユニットに供給される前に、1つまたは複数の装置によってある供給圧に圧縮される。   The present invention relates to an apparatus for supplying gaseous fuel to an energy generating unit of a ship for transporting liquefied gas, wherein the gaseous fuel is supplied before being supplied to the energy generating unit via at least one feed manifold. Compressed to a supply pressure by one or more devices.

本発明は、液化ガス輸送船のガスを供給されるエネルギー発生器への、圧力下でのガス供給を調節しサーボ制御することに関し、そのユニットは、たとえば1つまたは複数のディーゼル発電機のセット、または1つまたは複数のガスタービンを含むことができる。ガスを供給されるエネルギー発生器の動作特性は、一般に、前記ガス供給が、比較的低い供給圧において実施されるべきであり、その圧力をたとえば4バール(0.4MPa)程度とすることができることを暗示する。安定した条件化では、この供給は、一般に、所望の流量および供給圧でガスを送出することが可能な既存の圧縮機装置によって、正確に実施される。例として、そのような装置は、圧縮機および/または蒸発器に供給するポンプを含み、それらは、一般に、フィードマニホールドの圧力を基準供給圧の値に近い値に維持するように、フィードマニホールドに特に配置される圧力調節器によって制御される。   The present invention relates to adjusting and servo-controlling the gas supply under pressure to an energy generator supplied with gas from a liquefied gas carrier, the unit comprising, for example, a set of one or more diesel generators Or may include one or more gas turbines. The operating characteristics of an energy generator supplied with gas are generally that the gas supply should be carried out at a relatively low supply pressure, and that pressure can be, for example, around 4 bar (0.4 MPa). Is implied. In stable conditions, this supply is generally accurately performed by existing compressor equipment capable of delivering gas at the desired flow rate and supply pressure. By way of example, such devices include pumps that supply compressors and / or evaporators, which generally feed the feed manifold so as to maintain the feed manifold pressure close to the value of the reference supply pressure. In particular, it is controlled by a pressure regulator.

エネルギー発生器の負荷が変化したとき、その変化は、ガス消費量の上昇または低下につながり、それによって一般に、マニホールド内の供給圧の低下または上昇が引き起こされる。限定されたマニホールドの容積、圧縮装置とフィードマニホールドとの間の距離、および圧縮装置の応答時間が与えられた場合、圧力調節器に基づく圧縮装置によって達成される圧力サーボ制御が、無視できない大きさのヒステリシスを被る。その結果として、エネルギー発生器の負荷が変化した後で、安定した供給圧が再びマニホールドに確立される前に、ある時間間隔が発生する。   When the energy generator load changes, the change leads to an increase or decrease in gas consumption, which generally causes a decrease or increase in supply pressure in the manifold. Given the limited manifold volume, the distance between the compressor and the feed manifold, and the response time of the compressor, the pressure servo control achieved by the compressor based pressure regulator is not negligible. Suffer from hysteresis. As a result, after a change in the energy generator load, a certain time interval occurs before a stable supply pressure is established again in the manifold.

エネルギー生成ユニットの負荷のそのような変化は、船速の加速または減速が要求されたことによって、またはカーゴポンプやその類似の物などのエネルギーを大きく消費する物が起動または停止されたことによって、起こり得る。この時間間隔中、エネルギー発生器の速度およびそれが供給するパワーが乱され、したがって遷移によって、エネルギー発生器の望まない停止が、燃料ガス圧の不足により引き起こされる、または最小または最大の許容圧力に関した制約を満たすことができなくなり、圧縮装置が損傷されることが起こり得る。   Such a change in the load of the energy generating unit is due to the fact that a speeding up or slowing down of the ship is required, or that an energy-consuming item such as a cargo pump or the like is activated or stopped. Can happen. During this time interval, the speed of the energy generator and the power it supplies are disturbed, so the transition causes an undesired shutdown of the energy generator due to a shortage of fuel gas pressure, or with regard to the minimum or maximum allowable pressure It is possible that the compression constraints cannot be met and the compression device is damaged.

たとえば公開された仏国特許出願第2,837,783号、または実際に仏国特許出願第04/50945号に記載されているような従来技術の装置では、蒸発器は、タンクの底部に沈められたポンプによって供給される。蒸発器の流量は、上流側に配置されたバルブによって、タンク内の圧力および/またはフィードマニホールド内の圧力に基づき制御される。それらの装置は、フィードマニホールド内の圧力の変化に追従する蒸発器の応答時間についての問題を被る。応答時間は、とりわけ、蒸発器を満たすために必要な、同調して変化するための時間の結果である。エネルギー生成ユニットの負荷の変化が起きた場合、この避けられない慣性が、フィードマニホールド中の圧力を変化させることに重要な影響を及ぼし、したがって上記に述べたリスクに対して重要性を有する。   In prior art devices, for example as described in published French patent application 2,837,783 or indeed in French patent application 04/50945, the evaporator is submerged in the bottom of the tank. Supplied by a pump. The flow rate of the evaporator is controlled based on the pressure in the tank and / or the pressure in the feed manifold by a valve arranged upstream. These devices suffer from problems with the evaporator response time following the changes in pressure in the feed manifold. Response time is the result of, inter alia, the time required to change in synchrony to fill the evaporator. This unavoidable inertia has a significant effect on changing the pressure in the feed manifold in the event of a change in the load of the energy generating unit and is therefore of importance to the risks mentioned above.

今日まで、この問題は、顕著にされたことはなく、どのような従来の研究のテーマにもなっていない。
仏国特許出願第2,837,783号明細書 仏国特許出願第04/50945号明細書
To date, this issue has never been highlighted and has not become the subject of any conventional research.
French Patent Application No. 2,837,783 French patent application No. 04/50945

したがって、本発明の目的は、強制蒸発の慣性を軽減することである。   Accordingly, an object of the present invention is to reduce the inertia of forced evaporation.

この目的のために、本発明は、液化ガス輸送船のエネルギー生成ユニットへ、前記船の少なくとも1つのカーゴタンクの内容物から気体燃料を供給するための装置を提供する。その装置は、前記タンクから気相のガスを吸気する流入口を有した少なくとも1つの圧縮機を含み、圧縮機からの流出口が、前記エネルギー生成ユニットのフィードマニホールドに送出し、その装置は、タンクの底部に沈められかつ蒸発器の流入口に接続されたポンプをさらに含み、蒸発器からの流出口が、前記エネルギー生成ユニットの前記フィードマニホールドにフィードパイプを介して接続される。この装置は、ポンプが、前記ユニットの供給圧より高い圧力で液化ガスを蒸発器に供給するように構成され、前記フィードパイプが、前記フィードマニホールドへ供給されるガスの流量を調節するための流量調節器手段を取り付けられることを特徴とする。   For this purpose, the present invention provides an apparatus for supplying gaseous fuel from the contents of at least one cargo tank of the ship to the energy generation unit of a liquefied gas transport ship. The apparatus includes at least one compressor having an inlet for intake of gas phase gas from the tank, and an outlet from the compressor delivers to a feed manifold of the energy generation unit, the apparatus comprising: The pump further includes a pump submerged in the bottom of the tank and connected to the inlet of the evaporator, and the outlet from the evaporator is connected to the feed manifold of the energy generating unit via a feed pipe. The apparatus is configured such that the pump supplies liquefied gas to the evaporator at a pressure higher than the supply pressure of the unit, and the feed pipe adjusts the flow rate of the gas supplied to the feed manifold. It is characterized in that the regulator means can be attached.

流量調節器手段は、エネルギー生成ユニットの負荷が変化して、供給圧を一時的に変動させるような傾向にある場合、マニホールド中の供給圧でガスを徐々に放出し、それによってその圧力を調節しかつ安定化するように働く。   When the load on the energy generating unit changes and the supply pressure tends to fluctuate temporarily, the flow regulator means gradually releases the gas at the supply pressure in the manifold, thereby adjusting its pressure And work to stabilize.

このようにして、エネルギー生成ユニットへの供給条件が、負荷の変化の遷移段階中でさえ最適化される。   In this way, the supply conditions to the energy generation unit are optimized even during the transition phase of the load change.

有利にも、フィードマニホールドに供給されるガスの流量を調節するための流量調節手段が、前記マニホールド内の圧力を測定するための手段に接続される。   Advantageously, a flow control means for adjusting the flow rate of the gas supplied to the feed manifold is connected to the means for measuring the pressure in the manifold.

有利な実施形態では、バッファタンクが、流量調節器手段から上流側に配置される。このようにして、前記マニホールド内の圧力のどのような変動も緩和する目的のために、エネルギー生成ユニットの供給圧より高い圧力で、恒久的にガスを貯蔵することが可能である。バッファタンクを使用するこの技術によって、パイプの容量が、その長さおよび/またはその直径が与えられた際、それ自体で十分な安全容量を提供しない場合、高圧でのガス貯蔵容量を増加することが可能になる。   In an advantageous embodiment, a buffer tank is arranged upstream from the flow regulator means. In this way, it is possible to store the gas permanently at a pressure higher than the supply pressure of the energy generating unit for the purpose of mitigating any fluctuations in the pressure in the manifold. This technique of using a buffer tank increases the gas storage capacity at high pressure if the pipe capacity does not provide sufficient safety capacity by itself when given its length and / or its diameter. Is possible.

他の有利な実施形態では、冷却装置が、蒸発器の流出口に配置され、蒸発器からの流出口におけるガス圧を調節するための手段が、蒸発器から上流側に配置される。したがって、冷却装置によって、蒸発器流出口へのガスの温度を低下させることが可能になり、圧力調節器手段によって、蒸発器流出口における圧力が、ポンプからの流出口圧力より低く保つことが可能になり、それによって流量調節器手段から上流側で、フィードマニホールド内の圧力より高いガス圧を維持しながら、冷却装置が動作することが保証される。   In another advantageous embodiment, a cooling device is arranged at the outlet of the evaporator and means for adjusting the gas pressure at the outlet from the evaporator are arranged upstream from the evaporator. Thus, the cooling device can reduce the temperature of the gas to the evaporator outlet, and the pressure regulator means can keep the pressure at the evaporator outlet lower than the outlet pressure from the pump Thereby ensuring that the cooling device operates while maintaining a gas pressure upstream from the flow regulator means and higher than the pressure in the feed manifold.

有利にも、圧力調節器手段が、冷却装置から下流側で圧力を測定するための手段に接続される。   Advantageously, the pressure regulator means is connected to means for measuring pressure downstream from the cooling device.

冷却装置は、少なくとも1つの貯蔵タンクから来る液化ガスを蒸発させ、かつ冷却装置からの流出パイプ中で測定された温度によって起動される装置を含むこともできる。   The cooling device may also include a device that evaporates the liquefied gas coming from at least one storage tank and is activated by the temperature measured in the outlet pipe from the cooling device.

有利な実施形態では、フィードマニホールドへ供給されるガスの流量を調節するための手段が、ガス流量を測定するための手段にも接続され、このガスは、圧縮機および蒸発器によって生成され、かつエネルギー生成ユニットによって、および、ときには「焼却器」とも言われるガス焼却装置によって消費される。この実施形態によって、生成されたガス流量と消費されたガス流量との差を計算して、蒸発器からの流出口における圧力を調節し、そのようにして装置の安定性および反応性の増加が可能になる。   In an advantageous embodiment, means for adjusting the flow rate of the gas supplied to the feed manifold are also connected to means for measuring the gas flow rate, which gas is produced by the compressor and the evaporator, and It is consumed by the energy generating unit and by a gas incinerator, sometimes referred to as an “incinerator”. This embodiment calculates the difference between the gas flow generated and the gas flow consumed and adjusts the pressure at the outlet from the evaporator, thus increasing the stability and reactivity of the device. It becomes possible.

本発明は、極めて詳しく以下で添付図面を参照して述べる。図面は、本発明の実施形態をこれに限定しない例として示す。   The invention will be described in greater detail below with reference to the accompanying drawings. The drawings illustrate embodiments of the invention as non-limiting examples.

図1および図2を参照すると、メタンタンカーでエネルギーの生成に専用の要素が、概略で示してあり、この例では、電気および/または熱エネルギーを生成するためのユニット1が含まれる。ユニット1は、船上の電気設備のためおよび船を推進するための電気エネルギーを生成する交流発電機を駆動するディーゼルエンジンを含むことができ、あるいは、ユニット1は、プロペラを駆動するために蒸気タービンへ供給する蒸気生成ボイラーの形で従来のユニットを含むことができる。   With reference to FIGS. 1 and 2, elements dedicated to the generation of energy in a methane tanker are shown schematically, and in this example, a unit 1 for generating electrical and / or thermal energy is included. Unit 1 can include a diesel engine that drives an alternator that generates electrical energy for onboard electrical equipment and to propel the ship, or Unit 1 can be a steam turbine to drive a propeller. A conventional unit may be included in the form of a steam generating boiler that feeds into the unit.

メタンタンカーで通常行われるように、エネルギー生成ユニット1は、タンカーの1つまたは複数のカーゴタンク2から採取されたガスを供給される。供給ガスは、通常、タンクから直接採取されたメタンであり、数バール(数百kPa)の供給圧に上げられる。   As is usually done with methane tankers, the energy generation unit 1 is fed with gas taken from one or more cargo tanks 2 of the tanker. The supply gas is usually methane taken directly from the tank and is raised to a supply pressure of several bar (several hundred kPa).

この供給ガスは、2つの異なる方法で平行に採取される。第1は、気相のガス4が、タンク2の液体メタン5の表面上から直接採取され、電動モータ(図示せず)によって駆動される圧縮機6で圧縮される。次いで、このガスは、エネルギー生成ユニット1に供給するのに望ましい圧力で、フィードマニホールド7に注入される。第2に、タンク2の底部に沈められた電動のポンプ8が、液体メタン3を採取し、蒸発器9へ送出する。蒸発器9からの流出口において、メタンは、エネルギー生成ユニット1のフィードマニホールド7へフィードパイプ10を介して供給されるように、同様に気体状態である。   This feed gas is taken in parallel in two different ways. First, gas phase gas 4 is collected directly from the surface of liquid methane 5 in tank 2 and compressed by compressor 6 driven by an electric motor (not shown). This gas is then injected into the feed manifold 7 at the pressure desired to be supplied to the energy generating unit 1. Second, an electric pump 8 sunk in the bottom of the tank 2 collects the liquid methane 3 and sends it to the evaporator 9. At the outlet from the evaporator 9, the methane is likewise in a gaseous state so that it is supplied via the feed pipe 10 to the feed manifold 7 of the energy generation unit 1.

過圧排気パイプが、パイプ10と前記フィードマニホールドとの間の接続部から下流側でフィードマニホールド7に接続され、ガスを酸化するための装置11につながる。そのような過圧が、たとえばユニット1の負荷が急に低下し、そのガス消費が急に減少するに至った後、起こることがある。   An overpressure exhaust pipe is connected to the feed manifold 7 downstream from the connection between the pipe 10 and the feed manifold, leading to a device 11 for oxidizing the gas. Such an overpressure may occur, for example, after the load on unit 1 suddenly drops and its gas consumption suddenly decreases.

図1に示す実施形態では、ガス流量調節器弁12が、フィードマニホールド7内の供給圧の変動を緩和するように、ユニット1の前記フィードマニホールド7から上流側でパイプ10からの流出口に配置される。弁12は、フィードマニホールドに接続された圧力調節器13によって、特にサーボ制御されることができ、より一般には自動調節器によって制御される。   In the embodiment shown in FIG. 1, a gas flow regulator valve 12 is arranged at the outlet from the pipe 10 upstream from the feed manifold 7 of the unit 1 so as to reduce fluctuations in the supply pressure in the feed manifold 7. Is done. The valve 12 can be particularly servo-controlled by a pressure regulator 13 connected to the feed manifold, and more generally is controlled by an automatic regulator.

ポンプ8は、エネルギー生成ユニット1の供給圧より高い圧力で液化ガスを蒸発器9へ供給する。その結果、蒸発器9からの流出口において気相のガスは、フィードマニホールド7で確立される供給圧より高い圧力で送出され、それによってパイプ10内の貯蔵ガスを高圧に確立し、そのガスは、ユニット1が要求したとき、調節器弁12を介してフィードマニホールドに供給するために使用することができる。ユニット1の負荷が変動したとき、パイプ10をフィードマニホールド7に接続する弁12は、その開口サイズを変化して、パイプ10中の貯蔵ガスの一部を、マニホールド中での必要な供給圧でマニホールドに放出する。これによって、供給圧基準値に供給圧を維持する目的のために、たとえば、ユニット1の負荷の増加によるマニホールドの供給圧の低下を補償することが可能になる。   The pump 8 supplies the liquefied gas to the evaporator 9 at a pressure higher than the supply pressure of the energy generation unit 1. As a result, the gas in the gas phase is delivered at the outlet from the evaporator 9 at a pressure higher than the supply pressure established in the feed manifold 7, thereby establishing the stored gas in the pipe 10 at a high pressure. Can be used to feed the feed manifold via regulator valve 12 when unit 1 requires. When the load of the unit 1 fluctuates, the valve 12 that connects the pipe 10 to the feed manifold 7 changes its opening size so that part of the stored gas in the pipe 10 is at the required supply pressure in the manifold. Release to manifold. Thus, for the purpose of maintaining the supply pressure at the supply pressure reference value, for example, it is possible to compensate for a decrease in the supply pressure of the manifold due to an increase in the load of the unit 1.

図2に示す実施形態では、調節器弁12から上流側でパイプ10に配置されたバッファタンク14が、蒸発器9からの流出口における圧力で膨らみ、その圧力は、ユニット1の供給圧より高い。これによって、蒸発器9からの流出口と弁12への流入口との間においてパイプ10で利用できる容量が、所与のパイプの長さおよび/またはその直径では、この機能を果たすには十分でないときはいつでも、供給圧より高い圧力で十分な安全ガス容量があることが保証される。したがって、調節器弁12と関連したより高い圧力でのこのガス容量を使用することによって、圧縮機を損傷させてエネルギー生成ユニット1の不要な停止に至る恐れがある、フィードマニホールド7中の圧力のどのような著しい低下または上昇も避けるのに十分速い、反応性が得られる。   In the embodiment shown in FIG. 2, the buffer tank 14 disposed in the pipe 10 upstream from the regulator valve 12 is expanded by the pressure at the outlet from the evaporator 9, and the pressure is higher than the supply pressure of the unit 1. . This allows the capacity available in the pipe 10 between the outlet from the evaporator 9 and the inlet to the valve 12 to be sufficient for this function for a given pipe length and / or its diameter. Whenever it is not, it is guaranteed that there is sufficient safe gas capacity at a pressure higher than the supply pressure. Therefore, by using this gas volume at the higher pressure associated with the regulator valve 12, the pressure in the feed manifold 7 can damage the compressor and lead to an unnecessary shutdown of the energy generation unit 1. Reactivity is obtained that is fast enough to avoid any significant drop or rise.

図2に、少なくとも1つのカーゴタンク2から来る液化ガスを注入するための装置を含んだ冷却装置15を示す。この冷却装置は、蒸発器9からの流出口においてガスを冷却して、ある範囲内の温度および圧力になるようにさせ、それによって、弁12が、十分反応して、マニホールド中の供給圧をその基準値に維持することを保証することが可能になる。この目的のために、冷却装置15は、蒸発器9からの流出口で温度を測定することによって起動され、測定手段は、従来型であり図には示していない。冷却装置15の適切な動作を可能にするために、他の調節器弁16が、蒸発器9への流入口に配置され、前記蒸発器9からの流出口における圧力を、手段17によって測定された前記圧力の値に基づき調節する。これによって、この圧力が、冷却装置15に供給するポンプ8からの流出口における圧力より低いことが保証され、それによって液体の吸入を保証することが可能になる。この弁16は、フィードマニホールド7中の供給圧より高い値に圧力を調節し、それによって弁12がその機能を果たすことが可能になるようにも働く。   FIG. 2 shows a cooling device 15 including a device for injecting liquefied gas coming from at least one cargo tank 2. This cooling device cools the gas at the outlet from the evaporator 9 to a temperature and pressure within a certain range, so that the valve 12 reacts sufficiently to reduce the supply pressure in the manifold. It becomes possible to ensure that the reference value is maintained. For this purpose, the cooling device 15 is activated by measuring the temperature at the outlet from the evaporator 9, the measuring means being conventional and not shown in the figure. In order to allow proper operation of the cooling device 15, another regulator valve 16 is arranged at the inlet to the evaporator 9 and the pressure at the outlet from the evaporator 9 is measured by means 17. The pressure is adjusted based on the pressure value. This ensures that this pressure is lower than the pressure at the outlet from the pump 8 that feeds the cooling device 15, thereby making it possible to ensure the suction of liquid. This valve 16 also serves to adjust the pressure to a value higher than the supply pressure in the feed manifold 7, thereby allowing the valve 12 to perform its function.

本発明の最後の変形形態では(図面に示さず)、弁16は、エネルギー生成ユニット1およびガス酸化装置11によって消費されるガスの流量を測定するための手段と、圧縮機6および蒸発器9によって生成される流量を測定するための手段とによって、それぞれの生成ガス流量と消費ガス流量の差を判定し、それに応じて弁16を制御することによって、調節することもできる。この変形形態によって、蒸発器9からの流出口において、さらなる圧力の安定性の達成が、より良好な反応性のため可能になる。   In the last variant of the invention (not shown in the drawings), the valve 16 comprises means for measuring the flow rate of gas consumed by the energy generating unit 1 and the gas oxidizer 11, the compressor 6 and the evaporator 9. Can also be adjusted by determining the difference between the respective product gas flow rate and the consumption gas flow rate by means for measuring the flow rate produced by and controlling the valve 16 accordingly. This variant makes it possible to achieve further pressure stability at the outlet from the evaporator 9 due to better reactivity.

本発明の第1の実施形態の図である。It is a figure of the 1st Embodiment of this invention. 本発明の第2の実施形態の図である。It is a figure of the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 エネルギー生成ユニット
2 カーゴタンク
3、5 液体メタン
4 ガス
6 圧縮機
7 フィードマニホールド
8 ポンプ
9 蒸発器
10 フィードパイプ
11 酸化装置
12 流量調節器弁
13 圧力調節器
14 バッファタンク
15 冷却装置
16 他の調節器弁
17 手段
DESCRIPTION OF SYMBOLS 1 Energy generation unit 2 Cargo tank 3, 5 Liquid methane 4 Gas 6 Compressor 7 Feed manifold 8 Pump 9 Evaporator 10 Feed pipe 11 Oxidizer 12 Flow regulator valve 13 Pressure regulator 14 Buffer tank 15 Cooling device 16 Other adjustment Valve 17 Means

Claims (6)

液化ガス輸送船のエネルギー生成ユニット(1)へ、前記液化ガス輸送船の少なくとも1つのカーゴタンク(2)の内容物から気体燃料を供給するための装置であり、
該装置が、前記カーゴタンク(2)から気相のガスを吸気する流入口を有した少なくとも1つの圧縮機(6)を含み、
圧縮機(6)からの流出口が、前記エネルギー生成ユニット(1)のフィードマニホールド(7)に送出し、
前記装置が、タンク(2)の底部に沈められ、かつ蒸発器(9)の流入口に接続されたポンプ(8)をさらに含み、
蒸発器(9)からの流出口が、前記エネルギー生成ユニット(1)の前記フィードマニホールド(7)にフィードパイプ(10)を介して接続され、
ポンプ(8)が、前記エネルギー生成ユニット(1)の供給圧より高い圧力で液化ガスを蒸発器(9)に供給するように構成された、前記装置であって、
前記フィードパイプ(10)が、前記フィードマニホールド(7)へ供給されるガスの流量を調節するための流量調節器手段(12)を取り付けられ、前記流量調節器手段(12)が、前記フィードマニホールド(7)内の圧力を測定するための手段(13)に接続されることを特徴とする装置。
An apparatus for supplying gaseous fuel from the contents of at least one cargo tank (2) of the liquefied gas transport ship to the energy generation unit (1) of the liquefied gas transport ship;
The apparatus comprises at least one compressor (6) having an inlet for sucking gas-phase gas from the cargo tank (2);
The outlet from the compressor (6) delivers to the feed manifold (7) of the energy generation unit (1),
The apparatus further comprises a pump (8) submerged in the bottom of the tank (2) and connected to the inlet of the evaporator (9);
An outlet from the evaporator (9) is connected to the feed manifold (7) of the energy generation unit (1) via a feed pipe (10) ;
The apparatus, wherein the pump (8) is configured to supply liquefied gas to the evaporator (9) at a pressure higher than the supply pressure of the energy generating unit (1) ,
The feed pipe (10) is fitted with flow regulator means (12) for regulating the flow rate of the gas supplied to the feed manifold (7), the flow regulator means (12) being connected to the feed manifold. (7) is connected to means (13) for measuring the pressure in the apparatus according to claim Rukoto.
バッファタンク(14)が、前記流量調節器手段(12)から上流側に配置されることを特徴とする、請求項1に記載の装置。 Device according to claim 1, characterized in that a buffer tank (14) is arranged upstream from the flow regulator means (12). 冷却装置(15)が、蒸発器(9)からの流出口で前記フィードパイプ(10)に配置され、
蒸発器(9)からの流出口におけるガス圧を調節するための圧力調節器手段(16)が、蒸発器(9)から上流側に配置されることを特徴とする、請求項1または2に記載の装置。
A cooling device (15) is arranged in the feed pipe (10) at the outlet from the evaporator (9),
Pressure regulator means for regulating the gas pressure at the outlet from the evaporator (9) (16), characterized in that disposed upstream from the evaporator (9), in claim 1 or 2 The device described.
前記圧力調節器手段(16)が、冷却装置(15)から下流側で前記フィードパイプ(10)内の圧力を測定するための手段(17)に接続されることを特徴とする、請求項に記載の装置。 It said pressure regulator means (16), characterized in that it is connected from the cooling device (15) to means (17) for measuring the pressure of the feed pipe (10) downstream, claim 3 The device described in 1. 冷却装置(15)が、少なくとも1つのカーゴタンク(2)から来る液化ガスを蒸発させるための蒸発装置を含み、
前記蒸発装置が、冷却装置(15)からの流出口においてフィードパイプ(10)中で測定された温度によって起動されることを特徴とする、請求項またはに記載の装置。
The cooling device (15) comprises an evaporation device for evaporating the liquefied gas coming from at least one cargo tank (2);
5. A device according to claim 3 or 4 , characterized in that the evaporator is activated by a temperature measured in the feed pipe (10) at the outlet from the cooling device (15).
前記圧力調節器手段(16)が、圧縮機(6)および蒸発器(9)によって生成されたガスの流量を測定し、かつエネルギー生成ユニット(1)および酸化装置(11)によって消費される流量を測定するための手段に接続されることを特徴とする、請求項またはに記載の装置。 The pressure regulator means (16) measures the flow rate of gas produced by the compressor (6) and the evaporator (9) and is consumed by the energy generating unit (1) and the oxidizer (11). 6. A device according to claim 4 or 5 , characterized in that it is connected to means for measuring.
JP2005354386A 2004-12-10 2005-12-08 Gaseous fuel supply system for energy generation unit of ship for transportation of liquefied gas Expired - Fee Related JP4850503B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0452932 2004-12-10
FR0452932A FR2879261B1 (en) 2004-12-10 2004-12-10 INSTALLATION FOR THE DELIVERY OF GASEOUS FUEL TO AN ENERGY PRODUCTION ASSEMBLY OF A LIQUEFIED GAS TRANSPORT VESSEL

Publications (2)

Publication Number Publication Date
JP2006168719A JP2006168719A (en) 2006-06-29
JP4850503B2 true JP4850503B2 (en) 2012-01-11

Family

ID=34951631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354386A Expired - Fee Related JP4850503B2 (en) 2004-12-10 2005-12-08 Gaseous fuel supply system for energy generation unit of ship for transportation of liquefied gas

Country Status (7)

Country Link
EP (1) EP1672269B1 (en)
JP (1) JP4850503B2 (en)
KR (1) KR101167320B1 (en)
CN (1) CN100519335C (en)
DE (1) DE602005001546T2 (en)
ES (1) ES2290858T3 (en)
FR (1) FR2879261B1 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100812723B1 (en) * 2006-12-18 2008-03-12 삼성중공업 주식회사 Fuel supply apparatus of liquefied gas carrier and the method thereof
DE102006061251B4 (en) * 2006-12-22 2010-11-11 Man Diesel & Turbo Se Gas supply system for a drive
KR100835090B1 (en) * 2007-05-08 2008-06-03 대우조선해양 주식회사 System and method for supplying fuel gas of lng carrier
KR101076266B1 (en) * 2007-07-19 2011-10-26 대우조선해양 주식회사 System for supplying fuel gas in lng carrier
EP2072885A1 (en) * 2007-12-21 2009-06-24 Cryostar SAS Natural gas supply method and apparatus.
FR2927321B1 (en) * 2008-02-08 2010-03-19 Gaztransp Et Technigaz DEVICE FOR SUPPLYING FUEL TO AN ENERGY PRODUCTION PLANT IN A SHIP.
WO2009112478A1 (en) * 2008-03-10 2009-09-17 Burckhardt Compression Ag Device and method for preparing liquefied natural gas (lng) fuel
KR100961869B1 (en) * 2009-10-16 2010-06-09 대우조선해양 주식회사 Ship for running alternatively a liquified gas fuelled main drive engine or a liquified gas fuelled generator engine
JP2012076561A (en) * 2010-09-30 2012-04-19 Mitsubishi Heavy Ind Ltd Fuel supply system for ship
JP5627628B2 (en) * 2012-03-30 2014-11-19 三菱重工業株式会社 Method of supplying liquefied fuel gas to ship, fuel supply device, main engine for propulsion
US9234472B2 (en) 2012-08-08 2016-01-12 Caterpillar Inc. Dual fuel engine and evaporated natural gas system
KR102044266B1 (en) * 2012-10-24 2019-11-13 대우조선해양 주식회사 Fuel Supply System And Method For Ship Engines
JP5746301B2 (en) * 2013-10-11 2015-07-08 三井造船株式会社 Fuel gas supply system for liquefied gas carrier
KR101613204B1 (en) * 2014-01-08 2016-04-29 대우조선해양 주식회사 Fuel Supply Control System And Method For Ship Engine
KR102234666B1 (en) * 2014-10-23 2021-04-05 삼성중공업(주) Apparatus for supplying low-pressure fuel gas in ship
KR20160120373A (en) * 2015-04-07 2016-10-18 삼성중공업 주식회사 Fuel gas supply system
KR101672175B1 (en) * 2015-04-09 2016-11-04 삼성중공업 주식회사 Fuel gas supply system
JP6541059B2 (en) * 2015-04-10 2019-07-10 三井E&S造船株式会社 Fuel gas supply system for liquefied gas carrier
EP3593030B1 (en) * 2017-03-08 2022-12-28 Wärtsilä Finland Oy A liquefied gas tank arrangement and method of operating a liquefied gas tank arrangement
WO2019088308A1 (en) * 2017-10-30 2019-05-09 대우조선해양 주식회사 Fuel oil supply system and method for ship
KR102233192B1 (en) * 2018-11-14 2021-03-29 대우조선해양 주식회사 Fuel Supply System and Method for Vessel
CN115414772B (en) * 2022-08-30 2023-08-29 内蒙古伊东集团东兴化工有限责任公司 VCM compression process device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2155335A1 (en) * 1971-11-08 1973-05-24 Howaldtswerke Deutsche Werft PROCEDURE FOR THE OPERATION OF GAS TURBINE SYSTEMS FOR SHIP OPERATIONS
JPH06336192A (en) * 1993-05-28 1994-12-06 Ishikawajima Harima Heavy Ind Co Ltd Combustion control device for boil-off gas on liquefied gas carrier
FR2722760B1 (en) * 1994-07-22 1996-08-23 Chantiers De Latlantique PROPULSION INSTALLATION ON A LIQUEFIED GAS TRANSPORT VESSEL
GB0120661D0 (en) * 2001-08-24 2001-10-17 Cryostar France Sa Natural gas supply apparatus
FR2837783B1 (en) * 2002-03-26 2004-05-28 Alstom PLANT FOR THE SUPPLY OF GAS FUEL TO AN ENERGY PRODUCTION ASSEMBLY OF A LIQUEFIED GAS TRANSPORT VESSEL
FR2851301A1 (en) * 2003-02-19 2004-08-20 Alstom Gaseous fuel supplying equipment for ship, has accumulator connected to supply collector of energy production assembly by valve and having gas under pressure greater than supply pressure

Also Published As

Publication number Publication date
DE602005001546D1 (en) 2007-08-16
JP2006168719A (en) 2006-06-29
FR2879261B1 (en) 2007-04-13
KR101167320B1 (en) 2012-07-23
FR2879261A1 (en) 2006-06-16
EP1672269A1 (en) 2006-06-21
CN100519335C (en) 2009-07-29
CN1785748A (en) 2006-06-14
KR20060065535A (en) 2006-06-14
EP1672269B1 (en) 2007-07-04
DE602005001546T2 (en) 2008-03-13
ES2290858T3 (en) 2008-02-16

Similar Documents

Publication Publication Date Title
JP4850503B2 (en) Gaseous fuel supply system for energy generation unit of ship for transportation of liquefied gas
KR100980103B1 (en) An installation for supplying gaseous fuel to a power generation system of a ship for transporting liquefied gas
JP6600247B2 (en) Ship
JP4761827B2 (en) Apparatus for supplying gaseous fuel to a ship energy generation unit for transporting liquefied gas
JP5746301B2 (en) Fuel gas supply system for liquefied gas carrier
KR101772765B1 (en) Treatment system of liquefied natural gas
JP6322155B2 (en) Fuel gas supply system for liquefied gas carrier
EP2939918B1 (en) Natural gas fuel evaporator, natural gas fuel supply device, and method for supplying natural gas fuel to ships and motors
KR20140103357A (en) Ship, fuel gas supply apparatus, and fuel gas supply method
KR101884823B1 (en) System for supplying fuel gas in ships
JP4570130B2 (en) Equipment-linked low temperature liquefied gas supply equipment
WO2016163332A1 (en) Fuel gas supply system for liquefied gas transport vessel
KR20180048572A (en) Ship fuel gas supply system
WO2017078155A1 (en) Ship
JPH06336192A (en) Combustion control device for boil-off gas on liquefied gas carrier
JP2008291817A (en) Power generation plant and power generation method of power generation plant
JP5295298B2 (en) Method for suppressing boil-off gas in liquefied gas storage equipment
JP2002349793A (en) Device for storage and discharge of liquefied carbon dioxide, and system for charging liquefied carbon dioxide into sea
JPH0914588A (en) Liquefied gas supply system
JP2018135091A (en) Fuel gas supply system for liquefied gas carrier
KR20190073928A (en) BOG management optimization system and mehtod using expander
JP2016124386A (en) Liquefied gas carrying vessel
KR20180083556A (en) Floating generating system
JP6239027B2 (en) Fuel gas supply system for liquefied gas carrier
KR20150062259A (en) Fuel supply system of a ship and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090409

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090409

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090602

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110524

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4850503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees