JP4848496B2 - Asymmetric Polarizability Distribution Periodic Array Optical Second Harmonic Generator - Google Patents

Asymmetric Polarizability Distribution Periodic Array Optical Second Harmonic Generator Download PDF

Info

Publication number
JP4848496B2
JP4848496B2 JP2000292422A JP2000292422A JP4848496B2 JP 4848496 B2 JP4848496 B2 JP 4848496B2 JP 2000292422 A JP2000292422 A JP 2000292422A JP 2000292422 A JP2000292422 A JP 2000292422A JP 4848496 B2 JP4848496 B2 JP 4848496B2
Authority
JP
Japan
Prior art keywords
asymmetric
polarizability
periodic array
optical waveguide
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000292422A
Other languages
Japanese (ja)
Other versions
JP2002099008A (en
Inventor
照也 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
RIKEN Institute of Physical and Chemical Research
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
RIKEN Institute of Physical and Chemical Research
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, RIKEN Institute of Physical and Chemical Research, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000292422A priority Critical patent/JP4848496B2/en
Publication of JP2002099008A publication Critical patent/JP2002099008A/en
Application granted granted Critical
Publication of JP4848496B2 publication Critical patent/JP4848496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、非対称分極率分布周期配列を有する光導波路による光第二高調波発生装置に関するものである。
【0002】
【従来の技術】
光第二高調波発生(SHG)装置は、例えば、赤外レーザー光を青色レーザー光に、あるいは、青色レーザー光を紫外レーザー光に変換する等、入射レーザー光の1/2波長のレーザー光を出力する装置である。既存のレーザーからは直接得られない波長のレーザー光を得ることができ、特定の波長のレーザー光を必要とする化学反応制御、各種の成膜装置、あるいは、レーザーを使用する医療装置等においては、無くてはならない装置である。
従来、光第二高調波の発生は、自然界に存在する電気光学結晶の内、その結晶構造が反転対称性を有しない電気光学結晶、例えば、LiNbO3 単結晶、KTP(KTiOPO4 )単結晶等を用いて行われてきた。
しかしながら、これらの単結晶では、光学非線形性の起源がその結晶構造に由来しているため、より高性能の材料を探索する場合に、対象が極めて限られるという課題があった。
【0003】
また、これらの単結晶を用いた光第二高調波発生では、入射レーザー光、すなわち励起光と、第二高調波の位相速度の違いのために、励起光と第二高調波が結晶を伝搬するにつれ、位相が合わなくなり、第二高調波出力が小さくなると言った問題がある。このため、これらの装置においては、励起光と第二高調波の位相を合わせる手段、すなわち、位相整合手段が不可欠であった。位相整合手段には、使用する電気光学結晶の複屈折を利用したもの、チェレンコフ放射を利用したもの、あるいは、ドメイン反転を利用した擬似位相整合等があった。
しかしながら、これらの位相整合手段は、使用できる単結晶の種類をさらに制限してしまい、あるいは、複雑な装置構成を必要とし、かつ、結晶の光損傷等による特性の劣化があるといった課題があった。
【0004】
このような中で、近年の結晶成長技術や半導体微細加工技術の進歩により半導体量子構造を意のままに製作できるようになった。これに伴い、フォトニック結晶や半導体微小共振器を用いた、輻射場と物質系の相互作用に関する研究が盛んに行われている。これらの研究の成果は基礎物理学の理解に寄与するだけでなく、高性能の光デバイスへの応用も可能である。
【0005】
【発明が解決しようとする課題】
本発明は、上記課題にかんがみ、使用する物質を選ばず、かつ、使用するレーザー波長を選ばずに第二高調波を発生できる非対称分極率分布周期配列型光第二高調波発生装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の第1の非対称分極率分布周期配列型光第二高調波発生装置は、励起光の電界方向に非対称な分極率分布を光導波路内に周期配列した非対称分極率分布周期配列光導波路を有し、非対称分極率分布周期配列光導波路は、第一の分極率を有する透明物質からなる非対称レリーフと、この第一の分極率を有する透明物質からなる非対称レリーフ上に積層した第一の分極率と異なる分極率を有する光閉じ込め用の透明物質とから構成され、所定の波長とTM又はTEの伝搬モードとを有している励起光を非対称分極率分布周期配列光導波路に入射させ、光第二高調波を発生させることを特徴とする。
本発明の第2の非対称分極率分布周期配列型光第二高調波発生装置は、励起光の電界方向に非対称な分極率分布を光導波路内に周期配列した非対称分極率分布周期配列光導波路を有し、非対称分極率分布周期配列光導波路は、第一の分極率を有する透明物質からなる対称レリーフと、この対称レリーフに非対称に積層した第二の分極率を有する透明物質とから構成され、所定の波長とTM又はTEの伝搬モードとを有している励起光を非対称分極率分布周期配列光導波路に入射させ、光第二高調波を発生させることを特徴とする。
本発明の第3の非対称分極率分布周期配列型光第二高調波発生装置は、励起光の電界方向に非対称な分極率分布を光導波路内に周期配列した非対称分極率分布周期配列光導波路を有し、非対称分極率分布周期配列光導波路は、第一の分極率を有する透明物質からなる非対称レリーフと、この非対称レリーフに積層した第二の分極率を有する透明物質とから構成され、所定の波長とTM又はTEの伝搬モードとを有している励起光を非対称分極率分布周期配列光導波路に入射させ、光第二高調波を発生させることを特徴とする。
上記構成において、非対称分極率分布周期配列光導波路の表面は、好ましくは、第三の分極率を有する光閉じ込め用の透明物質で覆われている。
上記構成により、使用する物質を選ばず、かつ、使用するレーザー波長を選ばずに第二高調波を発生できる。非対称分極率分布周期配列光導波路の表面は、光閉じ込め用の透明物質で覆われているので、励起光及び第二高調波の非対称分極率分布周期配列光導波路への閉じ込めが増大し、第二高調波発生の効率が高まる。
【0007】
また、周期配列の周期Λは、励起光のコヒーレンス長よりも短いことを特徴とする。
この構成により、励起光の電界方向に非対称な分極率分布中の電子は、非対称なポテンシャルV(x:位置座標)を感じることができるから第二高調波成分を生成する。
【0010】
また、周期配列の周期Λは、励起波の真空での波長λ0 、励起波の光導波路における屈折率n1 、第二高調波の光導波路における屈折率n2 、及びmを正の整数として、
Λ=m・λ0 /(2n2 −n1 )であることを特徴とする。
この構成により、各々の非対称分極率分布で生成した第二高調波は、位相整合し、光強度を強めあって出力する。
【0011】
さらに、非対称分極分布の表面は、第三の分極率を有する透明物質で覆われていることを特徴とする。
この構成により、励起光及び第二高調波の非対称分極率分布周期配列光導波路への閉じ込めが増大し、第二高調波発生の効率が高まる。
【0012】
【発明の実施の形態】
以下、図1〜図5に基づき、本発明の実施の形態を説明する。なお、実質的に同一な部材には同一の符号を用いて説明する。
図1は、励起光の伝搬モードがTMの場合に使用する本発明の非対称分極率分布周期配列型光第二高調波発生装置の断面形状を示す模式図である。
図1において、座標軸を励起光1の進行方向にx軸、x軸に垂直でかつ断面に垂直な方向をy軸、及びx軸に垂直でかつ断面に平行な方向をz軸と定義する。
図1(a)は非対称性な形状の物体で形成する非対称分極率分布周期配列光導波路の断面模式図である。図1(a)において、励起光の電界方向に対称性を有さない形状の物体、すなわち非対称形状物体2は、x軸方向に長さΛで周期配列し、y軸方向には同一の断面形状で適宜の長さ広がっている。非対称形状物体2の表面には、分極率の異なる光閉じ込め用の高屈折率の透明物質5を積層する。
非対称形状物体2は、例えば、直角三角形断面形状を有しており、非対称形状物体2と透明物質5で構成される単位周期構造の分極率分布は、TMモードの励起光の電界方向であるx軸に垂直な断面4をミラー面として重ね合わせることができない、すなわち、励起光の電界方向に対称性を有していない。
【0013】
非対称形状物体2は、例えばガラス、又はポリマー等の光損傷に強い非晶質透明物質である基板3の表面を、例えばフォトリソ工程及びエッチング工程を使用して、表面を鋸歯断面形状に加工して形成する。
【0014】
図1(b)は、分極率の異なる物体を非対称に積層して構成する非対称分極率分布周期配列光導波路の断面模式図である。図1(b)において、分極率の異なる物体を非対称に積層して形成する非対称積層物体6は、励起光1の電界方向に対称性を有する形状の物体、すなわち対称形状物体7と、この上面及び右側面に積層した透明物質8とから成る。透明物質8と対称形状物体7の分極率は互いに異なる。非対称積層物体6は、x軸方向に長さΛで周期配列し、y軸方向には同一の断面形状で適宜の長さ広がっている。非対称積層物体6の表面には、対称形状物体7及び透明物質8とは分極率の異なる光閉じ込め用の高屈折率の透明物質5を積層する。
非対称積層物体6と透明物質5で構成される単位周期構造の分極率分布は、TMモードの励起光の電界方向であるx軸に垂直な断面4をミラー面として重ね合わせることができない、すなわち、励起光の電界方向に対称性を有していない。
非対称積層物体6は、例えばガラス、又はポリマー等の光損傷に強い非晶質透明物質である基板3の表面を、例えばフォトリソ工程及びエッチング工程を使用して、矩形断面状に加工して形成し、この表面に、例えば、透明物質8を斜め蒸着して形成する。
【0015】
図1(c)は、非対称形状物体と、この非対称形状物体に分極率の異なる物体を積層して構成した非対称分極率分布周期配列光導波路の断面模式図である。
図1(c)において、非対称形状積層物体9は、非対称形状物体2と、この非対称形状物体2の一部に積層した透明物質10とからなる。非対称形状積層物体9は、x軸方向に長さΛで周期配列し、y軸方向には同一の断面形状で適宜の長さ広がっている。非対称形状積層物体9の表面には、非対称形状物体2及び透明物質10とは分極率の異なる光閉じ込め用の高屈折率の透明物質5を積層する。
非対称形状積層物体9と透明物質5で構成される単位周期構造の分極率分布は、TMモードの励起光の電界方向であるx軸に垂直な断面4をミラー面として重ね合わせることができない、すなわち、励起光の電界方向に対称性を有していない。
非対称形状積層物体9は、図1(a)に示した非対称分極率分布周期配列光導波路と同じ方法で作製した非対称形状物体2の鋸歯状溝の一部に、非対称形状物体2とは屈折率の異なる透明物質10を、例えばスピンコートで埋め込んで形成する。
【0016】
図2は、非対称分極率分布をイオン注入によって形成した非対称分極率分布周期配列光導波路の断面模式図である。
図2(a)は、基板3の表面に原子のイオン注入深さを非対称に制御して形成した非対称分極率分布周期配列光導波路の断面模式図である。
図2(a)において、イオン注入層11は、基板3及び透明物質5とは分極率の異なる原子をイオン注入深さを非対称に制御して形成したものであり、基板3及び透明物質5とは分極率が異なる。透明物質5は、イオン注入層11を形成後に積層する。
この構成の分極率分布は、図1の場合と同様に励起光の電界方向に対称性を有していない。
【0017】
図2(b)は、基板3の表面層12に、表面層12及び透明物質5とは分極率の異なる第一及び第二の原子をイオン注入して形成した非対称分極率分布周期配列光導波路の断面模式図である。第一の原子をイオン注入したイオン注入層13と第二の原子をイオン注入したイオン注入層14は互いに分極率及び長さが異なる。イオン注入層13及び14を形成後、透明物質5を積層する。
この構成の分極率分布は、図1の場合と同様に励起光の電界方向に対称性を有していない。
【0018】
図3は、励起光の伝搬モードがTEの場合に使用する本発明の非対称分極率分布周期配列型光第二高調波発生装置の断面形状を示す模式図である。
図3(a)は、非対称形状型の非対称分極率分布周期配列光導波路の平面模式図であり、図3(b)は、その断面模式図を示す。図3(a)において、非対称形状物体15は、例えば、y軸の正の領域にしだいに細くなる形状を有しており、TEモードの励起光の電界方向であるy軸に垂直な断面16をミラー面として重ね合わせることができない、すなわち、励起光の電界方向に対称性を有していない。
非対称形状物体15は、基板3及び光閉じ込め用の高屈折率の透明物質5とは分極率の異なる物質で構成し、x軸方向に長さΛで周期配列する。
また、図示しないが、図2に示したように、イオン注入によってこの構成の分極率分布を形成しても良い。
【0019】
次に、本発明の非対称分極率分布周期配列型光第二高調波発生装置の周期Λについて説明する。
本発明の配列の周期Λは、励起光1と第二高調波が位相整合する長さに形成する。すなわち、周期Λは、励起光1の真空での波長λ0 、励起光1の光導波路における屈折率n1 、第二高調波の上記光導波路における屈折率n2 、及びmを正の整数として、Λ=m・λ0 /(2n2 −n1 )の長さに形成する。
【0020】
次に、本発明の非対称分極率分布周期配列型光第二高調波発生装置の作用について説明する。
図4は物質中の電子による分極波、すなわち散乱光の波形を示した図である。
図4(a)は、反転対称性を有する物質中での散乱光の波形を示しており、図4(b)は、反転対称性を有しない物質中での散乱光の波形を示している。α,βは、それぞれ、励起光の電界強度、散乱光の電界強度を表す。
物質による散乱光p(t)は、物質の原子の外殻の原子核に弱く結合された価電子が励起光の電界に応じて変位すること、すなわち分極によって生じる。この電子の平行位置からの変位をx、電子密度をN、時間をt、電子電荷をeとすると、散乱光p(t)は、
p(t)=−eNx(t) (1)式
となる。分極率は単位電界当たりのp(t)max で定義される。
反転対称性を有する物質中で、この電子にとってのポテンシャルエネルギーV(x)は、V(x)=V(−x)であるから、A,Bを定数として、
V(x)=Ax2 +Bx4 +・・・ (2)式
のように、xの偶数べきの項だけを含んでいる。電子に働く復元力Fは、
F=−dV/dx=−2Ax−4Bx3 −・・、(d:微分記号)(3)式となり、電子は、+の変位xにおいても−の変位xにおいても、同じ大きさの復元力を受ける。したがって、散乱光p(t)は、図4(a)に示すように、+の変位と−の変位が対称な波形を有している。
【0021】
一方、反転対称性を有しない物質中では、V(x)=V(−x)の条件は成り立たず、V(x)は奇数べきの項を含み、Cを定数として、
V(x)=Ax2 +Cx3 +・・ (4)式
となり、電子に働く復元力F(x)は、xの高次の項を無視すると、
F(x)=−dV/dx=−(2Ax+3Cx2 ) (5)式
となる。したがって、+の変位xに対する復元力と、−の変位xに対する復元力とは大きさが異なり、散乱光p(t)は、図4(b)に示すように、+の変位と−の変位が非対称な波形を有している。
【0022】
図5は、非対称な散乱光をフーリエ解析した結果を示す。
図5(a)は、図4(b)に示した、反転対称性を有しない物質中で生じた非対称な散乱光を示し、図5(b)は、励起光と同じ周波数成分を有する散乱光の基本波成分を示し、図5(c)は、励起光の周波数の2倍の周波数を有する散乱光の第二高調波成分を示す。このように、非対称な散乱光は第二高調波成分を有している。
このように、反転対称性を有しない物質中で、励起光によって励起される散乱光は、非対称波形を有し、従って、第二高調波成分を生成する。
【0023】
励起光の電界方向に非対称な分極率分布中の電子は、分極率分布を形成している空間幅、すなわち分極率分布の寸法が励起光のコヒーレンス長よりも小さければ、非対称な分極率分布形状を反映した非対称なポテンシャルV(x)を感じることができる。
すなわち、図1及び図2に示した非対称分極率分布周期配列型光第二高調波発生装置に、周期Λより長いコヒーレンス長を有し、かつ、伝搬モードがTMの励起光1を入射させれば、第二高調波成分を生成する。
また、図3に示した非対称分極率分布周期配列型光第二高調波発生装置に、周期Λより長いコヒーレンス長を有し、かつ、伝搬モードがTEの励起光1を入射させれば、第二高調波成分を生成する。
【0024】
次に、非対称分極率分布周期配列型光第二高調波発生装置の周期Λの作用について説明する。図1、図2及び図3に示した非対称分極率分布の配列周期Λは、励起光1と第二高調波が位相整合する長さに形成している。
各々の非対称分極率分布で生成する第二高調波が、互いに強度を強め合い、大きな出力として取り出せるためには、励起光1と第二高調波が距離Λ離れた隣り合う周期構造を伝搬したときの励起光1と第二高調波の位相差が、2πの整数倍であればよい。すなわち、励起光1と第二高調波の、伝搬定数、周期構造中での波長、及び振動数を、それぞれ、k1 ,k2 、λ1 ,λ2 、及びν1 ,2ν1 とすると、
2 Λ−k1 Λ=2πm (m:正の整数) (6)式
すなわち、
1/λ2 −1/λ1 =m/Λ (7)式
であればよい。λ1 =c/n1 ν1 、λ2 =c/n2 2ν1 であるから、(7)式の関係は、
2 2ν1 /c−n1 ν1 /c=m/Λ (8)式
となる。この関係から、Λが、
Λ=mc/ν1 (2n2 −n1 )=mλ0 /(2n2 −n1 ) (9)式であれば、励起光1と第二高調波が距離Λ離れた隣り合う周期構造を伝搬したときの励起光1と第二高調波の位相差は、2πの整数倍になり、周期構造で生成する第二高調波が互いに強度を強め合うため、大きな出力として取り出すことができる。
すなわち、図1、図2及び図3で示した非対称分極率分布周期配列光導波路で発生する第二高調波は、互いに位相整合して強度を強め合うので、大きな出力として取り出すことができる。
【0025】
【発明の効果】
以上の説明から理解できるように、本発明の非対称分極率分布周期配列型光第二高調波発生装置では、非対称分極率分布を光導波路内に周期配列して第二高調波を生成し、また周期配列の周期によって励起光と第二高調波の位相整合を行うので、物質及び入射レーザー光の波長を選ばずに第二高調波を生成できる。
【図面の簡単な説明】
【図1】励起光の伝搬モードがTMの場合に使用する本発明の非対称分極率分布周期配列型光第二高調波発生装置の断面形状を示す模式図である。
【図2】非対称分極率分布をイオン注入によって形成した非対称分極率分布周期配列光導波路の断面模式図である。
【図3】励起光の伝搬モードがTEの場合に使用する本発明の非対称分極率分布周期配列型光第二高調波発生装置の断面形状を示す模式図である。
【図4】物質中の電子による散乱光の波形を示した図である。
【図5】非対称な散乱光をフーリエ解析した結果を示す波形図である。
【符号の説明】
1 励起光
2 非対称形状物体
3 基板
4 ミラー面
5 高屈折率透明物質
6 非対称積層物体
7 対称形状物体
8 分極率の異なる透明物質
9 非対称形状積層物体
10 分極率の異なる透明物質
11 イオン注入層
12 表面層
13 イオン注入層
14 イオン注入層
Λ 周期
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical second harmonic generation device using an optical waveguide having an asymmetric polarizability distribution periodic array.
[0002]
[Prior art]
An optical second harmonic generation (SHG) device, for example, converts laser light having a half wavelength of incident laser light, such as converting infrared laser light into blue laser light or blue laser light into ultraviolet laser light. It is a device that outputs. Laser light with a wavelength that cannot be obtained directly from existing lasers can be obtained. For chemical reaction control that requires laser light with a specific wavelength, various film forming devices, or medical devices that use lasers, etc. It is an indispensable device.
Conventionally, optical second harmonics are generated in electro-optic crystals that exist in nature, in which the crystal structure has no inversion symmetry, such as LiNbO 3 single crystal, KTP (KTiOPO 4 ) single crystal, etc. Has been done.
However, in these single crystals, since the origin of optical nonlinearity is derived from the crystal structure, there is a problem that the target is extremely limited when searching for a higher performance material.
[0003]
In addition, in the optical second harmonic generation using these single crystals, the excitation light and the second harmonic propagate through the crystal due to the difference in phase velocity between the incident laser light, that is, the excitation light and the second harmonic. As a result, there is a problem that the phase is not matched and the second harmonic output is reduced. Therefore, in these apparatuses, means for matching the phases of the excitation light and the second harmonic, that is, phase matching means is indispensable. Examples of the phase matching means include those using the birefringence of the electro-optic crystal used, those using Cherenkov radiation, and quasi phase matching using domain inversion.
However, these phase matching means have a problem in that the types of single crystals that can be used are further limited, or a complicated apparatus configuration is required, and the characteristics are deteriorated due to optical damage of the crystals. .
[0004]
Under these circumstances, semiconductor quantum structures can be produced at will according to recent advances in crystal growth technology and semiconductor microfabrication technology. Along with this, research on the interaction between radiation fields and matter systems using photonic crystals and semiconductor microresonators has been actively conducted. The results of these studies not only contribute to the understanding of basic physics, but can also be applied to high-performance optical devices.
[0005]
[Problems to be solved by the invention]
In view of the above problems, the present invention provides an asymmetric polarizability distribution periodic array type optical second harmonic generator capable of generating a second harmonic without selecting a substance to be used and a laser wavelength to be used. For the purpose.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the first asymmetric polarizability distribution periodic array type optical second harmonic generator according to the present invention is an asymmetric structure in which a polarizability distribution asymmetric in the electric field direction of pumping light is periodically arrayed in an optical waveguide. An asymmetrical polarizability distributed periodic optical waveguide has an asymmetrical relief made of a transparent material having a first polarizability and an asymmetrical relief made of a transparent material having the first polarizability. An asymmetric polarizability distribution period comprising excitation light having a predetermined wavelength and a propagation mode of TM or TE , which is composed of a transparent material for confining light having a different polarizability from the first polarizability laminated on the top It is made to enter into an arrangement | sequence optical waveguide, and an optical 2nd harmonic is generated.
A second asymmetric polarizability distribution periodic array type optical second harmonic generator of the present invention includes an asymmetric polarizability distribution periodic array optical waveguide in which an asymmetric polarizability distribution in the electric field direction of excitation light is periodically arrayed in the optical waveguide. The asymmetric polarizability distribution periodic array optical waveguide is composed of a symmetric relief made of a transparent material having a first polarizability, and a transparent material having a second polarizability laminated asymmetrically on the symmetric relief, Excitation light having a predetermined wavelength and TM or TE propagation mode is incident on an asymmetric polarizability distribution periodic array optical waveguide to generate an optical second harmonic.
A third asymmetric polarizability distribution periodic array type optical second harmonic generator according to the present invention comprises an asymmetric polarizability distribution periodic array optical waveguide in which an asymmetric polarization distribution in the direction of the electric field of the excitation light is periodically arrayed in the optical waveguide. has an asymmetric polarization distribution periodic array optical waveguide, and asymmetric relief made of a transparent material having a first polarization, is composed of a transparent material having a second polarization that is laminated on the asymmetrical relief, predetermined Excitation light having a wavelength and TM or TE propagation mode is incident on an asymmetric polarizability distribution periodic array optical waveguide to generate an optical second harmonic.
In the above configuration, the surface of the asymmetric polarizability distribution periodic array optical waveguide is preferably covered with an optical confinement transparent material having a third polarizability.
With the above configuration, the second harmonic can be generated without selecting the substance to be used and without selecting the laser wavelength to be used. Since the surface of the asymmetric polarizability distribution periodic array optical waveguide is covered with a transparent material for optical confinement, the confinement of the excitation light and the second harmonic in the asymmetric polarizability distribution periodic array optical waveguide increases, and the second Increases the efficiency of harmonic generation.
[0007]
Further, the period Λ of the periodic array is characterized by being shorter than the coherence length of the excitation light.
With this configuration, electrons in the polarizability distribution that is asymmetric in the direction of the electric field of the excitation light can feel an asymmetric potential V (x: position coordinate), and thus generate a second harmonic component.
[0010]
In addition, the period Λ of the periodic array has a wavelength λ 0 of the excitation wave in vacuum, a refractive index n 1 in the optical waveguide of the excitation wave, a refractive index n 2 in the optical waveguide of the second harmonic, and m as positive integers. ,
Λ = m · λ 0 / (2n 2 −n 1 ).
With this configuration, the second harmonics generated in each asymmetric polarizability distribution are phase-matched and output with increased light intensity.
[0011]
Further, the surface of the asymmetric polarization distribution, characterized in that it cracks covered with a transparent material having a third polarization.
With this configuration, the confinement of the excitation light and the second harmonic into the asymmetric polarizability distribution periodic array optical waveguide is increased, and the efficiency of second harmonic generation is increased.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. Note that substantially the same members will be described using the same reference numerals.
FIG. 1 is a schematic diagram showing the cross-sectional shape of an asymmetric polarizability distribution periodic array type optical second harmonic generator of the present invention used when the propagation mode of excitation light is TM.
In FIG. 1, the coordinate axis is defined as the x axis in the traveling direction of the excitation light 1, the direction perpendicular to the x axis and perpendicular to the cross section as the y axis, and the direction perpendicular to the x axis and parallel to the cross section as the z axis.
FIG. 1A is a schematic cross-sectional view of an asymmetric polarizability distribution periodic array optical waveguide formed of an object having an asymmetric shape. In FIG. 1A, an object having a shape that is not symmetrical in the electric field direction of the excitation light, that is, an asymmetric shape object 2 is periodically arranged with a length Λ in the x-axis direction and the same cross section in the y-axis direction. Appropriate length spreads in shape. On the surface of the asymmetrically shaped object 2, a transparent material 5 having a high refractive index for confining light having different polarizabilities is laminated.
The asymmetrically shaped object 2 has, for example, a right triangle cross-sectional shape, and the polarizability distribution of the unit periodic structure composed of the asymmetrically shaped object 2 and the transparent material 5 is the electric field direction of the TM mode excitation light x The section 4 perpendicular to the axis cannot be overlapped as a mirror surface, that is, it does not have symmetry in the electric field direction of the excitation light.
[0013]
The asymmetrically shaped object 2 is obtained by processing the surface of a substrate 3 which is an amorphous transparent material resistant to light damage, such as glass or polymer, into a sawtooth cross-sectional shape using, for example, a photolithography process and an etching process. Form.
[0014]
FIG. 1B is a schematic cross-sectional view of an asymmetric polarizability distribution periodic array optical waveguide configured by asymmetrically stacking objects having different polarizabilities. In FIG. 1B, an asymmetric laminated object 6 formed by asymmetrically laminating objects having different polarizabilities is an object having a shape having symmetry in the electric field direction of the excitation light 1, that is, a symmetrical object 7 and its upper surface. And a transparent material 8 laminated on the right side surface. The polarizabilities of the transparent material 8 and the symmetrical object 7 are different from each other. The asymmetric laminated body 6 is periodically arranged with a length Λ in the x-axis direction and has an appropriate length extending in the same cross-sectional shape in the y-axis direction. On the surface of the asymmetric laminated object 6, a transparent material 5 having a high refractive index for confinement of light having a different polarizability from the symmetrical object 7 and the transparent material 8 is laminated.
The polarizability distribution of the unit periodic structure composed of the asymmetric laminated body 6 and the transparent material 5 cannot be overlapped with the cross section 4 perpendicular to the x-axis, which is the electric field direction of the TM mode excitation light, as a mirror surface, There is no symmetry in the electric field direction of the excitation light.
The asymmetrical laminated body 6 is formed by processing the surface of the substrate 3 which is an amorphous transparent material resistant to light damage such as glass or polymer into a rectangular cross section using, for example, a photolithography process and an etching process. On this surface, for example, the transparent material 8 is formed by oblique deposition.
[0015]
FIG. 1C is a schematic cross-sectional view of an asymmetric polarizability periodic array optical waveguide configured by stacking an asymmetric object and objects having different polarizabilities on the asymmetric object.
In FIG. 1 (c), the asymmetrically shaped laminated object 9 includes an asymmetrically shaped object 2 and a transparent material 10 laminated on a part of the asymmetrically shaped object 2. The asymmetrical stacked body 9 is periodically arranged with a length Λ in the x-axis direction, and has an appropriate length extending in the same cross-sectional shape in the y-axis direction. On the surface of the asymmetrically shaped laminated body 9, a transparent material 5 having a high refractive index for confinement of light having a different polarizability from that of the asymmetrically shaped object 2 and the transparent material 10 is laminated.
The polarizability distribution of the unit periodic structure composed of the asymmetrically shaped laminated body 9 and the transparent material 5 cannot be overlapped with the cross section 4 perpendicular to the x-axis, which is the electric field direction of the TM mode excitation light, as a mirror surface. It does not have symmetry in the electric field direction of the excitation light.
The asymmetrically shaped laminated body 9 has a refractive index different from that of the asymmetrically shaped object 2 in a part of the serrated groove of the asymmetrically shaped object 2 manufactured by the same method as the asymmetric polarizability distribution periodic array optical waveguide shown in FIG. The transparent materials 10 having different sizes are embedded by, for example, spin coating.
[0016]
FIG. 2 is a schematic cross-sectional view of an asymmetric polarizability distribution periodic array optical waveguide in which an asymmetric polarizability distribution is formed by ion implantation.
FIG. 2A is a schematic cross-sectional view of an asymmetric polarizability distribution periodic array optical waveguide formed on the surface of the substrate 3 by controlling the ion implantation depth of atoms asymmetrically.
In FIG. 2A, the ion implantation layer 11 is formed by controlling atoms having different polarizabilities from those of the substrate 3 and the transparent material 5 while controlling the ion implantation depth asymmetrically. Have different polarizabilities. The transparent material 5 is laminated after the ion implantation layer 11 is formed.
The polarizability distribution of this configuration does not have symmetry in the electric field direction of the excitation light as in the case of FIG.
[0017]
FIG. 2B shows an asymmetric polarizability distribution periodic array optical waveguide formed by ion-implanting first and second atoms having different polarizabilities from the surface layer 12 and the transparent material 5 into the surface layer 12 of the substrate 3. FIG. The ion implantation layer 13 into which the first atoms are ion implanted and the ion implantation layer 14 into which the second atoms are ion implanted have different polarizabilities and lengths. After forming the ion implantation layers 13 and 14, the transparent material 5 is laminated.
The polarizability distribution of this configuration does not have symmetry in the electric field direction of the excitation light as in the case of FIG.
[0018]
FIG. 3 is a schematic diagram showing a cross-sectional shape of an asymmetric polarizability distribution periodic array type optical second harmonic generator of the present invention used when the propagation mode of excitation light is TE.
FIG. 3A is a schematic plan view of an asymmetric shape-type asymmetric polarizability distribution periodic array optical waveguide, and FIG. 3B is a schematic cross-sectional view thereof. In FIG. 3A, the asymmetrically shaped object 15 has a shape that gradually becomes thinner in the positive region of the y axis, for example, and a cross section 16 perpendicular to the y axis that is the electric field direction of the TE mode excitation light. Cannot be superimposed as a mirror surface, that is, they do not have symmetry in the electric field direction of the excitation light.
The asymmetrically shaped object 15 is made of a material having a different polarizability from the substrate 3 and the transparent material 5 with high refractive index for optical confinement, and is periodically arranged with a length Λ in the x axis direction.
Although not shown, a polarizability distribution having this configuration may be formed by ion implantation as shown in FIG.
[0019]
Next, the period Λ of the asymmetric polarizability distribution periodic array type optical second harmonic generator of the present invention will be described.
The period Λ of the arrangement of the present invention is formed to a length that matches the phase of the excitation light 1 and the second harmonic. That is, the period lambda, the wavelength lambda 0 in the vacuum of the excitation light 1, the refractive index n 1 of the optical waveguide of the excitation light 1, the refractive index n 2 of the optical waveguide of the second harmonic, and m is a positive integer , Λ = m · λ 0 / (2n 2 −n 1 ).
[0020]
Next, the operation of the asymmetric polarizability distribution periodic array optical second harmonic generator of the present invention will be described.
FIG. 4 is a diagram showing a polarization wave caused by electrons in a substance, that is, a waveform of scattered light.
FIG. 4A shows a waveform of scattered light in a substance having inversion symmetry, and FIG. 4B shows a waveform of scattered light in a substance having no inversion symmetry. . α and β represent the electric field strength of the excitation light and the electric field strength of the scattered light, respectively.
Scattered light p (t) by a substance is generated by displacement of valence electrons weakly bonded to the nucleus of the outer shell of the substance atom in accordance with the electric field of the excitation light, that is, polarization. When the displacement of the electrons from the parallel position is x, the electron density is N, the time is t, and the electron charge is e, the scattered light p (t) is
p (t) = − eNx (t) (1) Polarizability is defined as p (t) max per unit electric field.
In a substance having inversion symmetry, the potential energy V (x) for this electron is V (x) = V (−x), so that A and B are constants.
V (x) = Ax 2 + Bx 4 +... Only the even power term of x is included as shown in equation (2). The restoring force F acting on the electrons is
F = −dV / dx = −2Ax−4Bx 3 −... (D: differential symbol) (3), and the electron has a restoring force having the same magnitude in both the positive displacement x and the negative displacement x. Receive. Therefore, as shown in FIG. 4A, the scattered light p (t) has a waveform in which + displacement and-displacement are symmetrical.
[0021]
On the other hand, in a substance having no inversion symmetry, the condition of V (x) = V (−x) does not hold, V (x) includes an odd-numbered term, and C is a constant.
V (x) = Ax 2 + Cx 3 + ·· (4) The restoring force F (x) acting on the electrons is ignored if the higher order terms of x are ignored.
F (x) = − dV / dx = − (2Ax + 3Cx 2 ) (5) Therefore, the restoring force with respect to the + displacement x and the restoring force with respect to the − displacement x are different in magnitude, and the scattered light p (t) has a + displacement and a − displacement as shown in FIG. Has an asymmetric waveform.
[0022]
FIG. 5 shows the result of Fourier analysis of asymmetric scattered light.
FIG. 5A shows the asymmetric scattered light generated in the material having no inversion symmetry shown in FIG. 4B, and FIG. 5B shows the scattering having the same frequency component as the excitation light. FIG. 5C shows the second harmonic component of the scattered light having a frequency twice the frequency of the excitation light. Thus, the asymmetric scattered light has a second harmonic component.
As described above, the scattered light excited by the excitation light in the material having no inversion symmetry has an asymmetric waveform, and thus generates a second harmonic component.
[0023]
Electrons in the polarizability distribution that is asymmetric in the direction of the electric field of the excitation light have an asymmetric polarizability distribution shape if the width of the polarizability distribution, that is, the size of the polarizability distribution is smaller than the coherence length of the excitation light. An asymmetric potential V (x) reflecting the above can be felt.
That is, pump light 1 having a coherence length longer than the period Λ and a propagation mode of TM can be incident on the asymmetric polarizability distribution periodic array optical second harmonic generator shown in FIGS. For example, a second harmonic component is generated.
If the pump light 1 having a coherence length longer than the period Λ and the propagation mode TE is incident on the asymmetric polarizability distribution periodic array optical second harmonic generator shown in FIG. Generates a second harmonic component.
[0024]
Next, the action of the period Λ of the asymmetric polarizability distribution periodic array type optical second harmonic generator will be described. The array period Λ of the asymmetric polarizability distribution shown in FIGS. 1, 2, and 3 is formed so as to have a phase matching between the pumping light 1 and the second harmonic.
In order for the second harmonics generated by each asymmetric polarizability distribution to intensify each other and be extracted as a large output, when the excitation light 1 and the second harmonic propagate through adjacent periodic structures separated by a distance Λ The phase difference between the excitation light 1 and the second harmonic may be an integer multiple of 2π. That is, assuming that the propagation constant, the wavelength in the periodic structure, and the frequency of the excitation light 1 and the second harmonic are k 1 , k 2 , λ 1 , λ 2 , and ν 1 , 2ν 1 , respectively.
k 2 Λ−k 1 Λ = 2πm (m: positive integer) Equation (6)
1 / λ 2 −1 / λ 1 = m / Λ (7) Since λ 1 = c / n 1 ν 1 and λ 2 = c / n 21 , the relationship of equation (7) is
n 21 / c−n 1 v 1 / c = m / Λ (8) From this relationship, Λ is
If Λ = mc / ν 1 (2n 2 −n 1 ) = mλ 0 / (2n 2 −n 1 ) (9), the adjacent periodic structure in which the excitation light 1 and the second harmonic are separated by a distance Λ The phase difference between the pumping light 1 and the second harmonic when propagating becomes an integer multiple of 2π, and the second harmonics generated by the periodic structure intensify each other and can be extracted as a large output.
That is, the second harmonics generated in the asymmetric polarizability distribution periodic array optical waveguide shown in FIG. 1, FIG. 2, and FIG.
[0025]
【The invention's effect】
As can be understood from the above description, in the asymmetric polarizability distribution periodic array optical second harmonic generator of the present invention, the asymmetric polarizability distribution is periodically arrayed in the optical waveguide to generate the second harmonic, Since the phase matching between the excitation light and the second harmonic is performed according to the period of the periodic array, the second harmonic can be generated without selecting the wavelength of the substance and the incident laser light.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a cross-sectional shape of an asymmetric polarizability distribution periodic array type optical second harmonic generator of the present invention used when the propagation mode of pumping light is TM.
FIG. 2 is a schematic cross-sectional view of an asymmetric polarizability distribution periodic array optical waveguide in which an asymmetric polarizability distribution is formed by ion implantation.
FIG. 3 is a schematic diagram showing a cross-sectional shape of an asymmetric polarizability distribution periodic array optical second harmonic generator of the present invention used when the propagation mode of pumping light is TE.
FIG. 4 is a diagram showing a waveform of scattered light by electrons in a substance.
FIG. 5 is a waveform diagram showing the result of Fourier analysis of asymmetric scattered light.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Excitation light 2 Asymmetrically shaped object 3 Substrate 4 Mirror surface 5 High refractive index transparent material 6 Asymmetric laminated object 7 Symmetric shaped object 8 Transparent material with different polarizability 9 Asymmetrically shaped laminated object 10 Transparent material 11 with different polarizability 11 Ion implantation layer 12 Surface layer 13 Ion implantation layer 14 Ion implantation layer Λ Period

Claims (6)

励起光の電界方向に非対称な分極率分布を光導波路内に周期配列した非対称分極率分布周期配列光導波路を有し、
上記非対称分極率分布周期配列光導波路は、第一の分極率を有する透明物質からなる非対称レリーフと、この第一の分極率を有する透明物質からなる非対称レリーフ上に積層した第一の分極率と異なる分極率を有する光閉じ込め用の透明物質とから構成され、
所定の波長とTM又はTEの伝搬モードとを有している上記励起光を上記非対称分極率分布周期配列光導波路に入射させ、光第二高調波を発生させることを特徴とする、非対称分極率分布周期配列型光第二高調波発生装置。
An asymmetric polarizability distribution periodic array optical waveguide in which an asymmetric polarizability distribution in the electric field direction of the excitation light is periodically arranged in the optical waveguide,
The asymmetric polarizability distribution periodic array optical waveguide includes an asymmetric relief made of a transparent material having a first polarizability, and a first polarizability laminated on the asymmetric relief made of a transparent material having the first polarizability. Composed of transparent materials for optical confinement having different polarizabilities,
An asymmetric polarizability characterized by causing the excitation light having a predetermined wavelength and a TM or TE propagation mode to enter the asymmetric polarizability distribution periodic array optical waveguide to generate an optical second harmonic. Distributed periodic array optical second harmonic generator.
励起光の電界方向に非対称な分極率分布を光導波路内に周期配列した非対称分極率分布周期配列光導波路を有し、
上記非対称分極率分布周期配列光導波路は、第一の分極率を有する透明物質からなる対称レリーフと、この対称レリーフに非対称に積層した第二の分極率を有する透明物質とから構成され、
所定の波長とTM又はTEの伝搬モードとを有している上記励起光を上記非対称分極率分布周期配列光導波路に入射させ、光第二高調波を発生させることを特徴とする、非対称分極率分布周期配列型光第二高調波発生装置。
An asymmetric polarizability distribution periodic array optical waveguide in which an asymmetric polarizability distribution in the electric field direction of the excitation light is periodically arranged in the optical waveguide,
The asymmetric polarizability distribution periodic array optical waveguide is composed of a symmetrical relief made of a transparent material having a first polarizability and a transparent material having a second polarizability laminated asymmetrically on the symmetrical relief,
An asymmetric polarizability characterized by causing the excitation light having a predetermined wavelength and a TM or TE propagation mode to enter the asymmetric polarizability distribution periodic array optical waveguide to generate an optical second harmonic. Distributed periodic array optical second harmonic generator.
励起光の電界方向に非対称な分極率分布を光導波路内に周期配列した非対称分極率分布周期配列光導波路を有し、
上記非対称分極率分布周期配列光導波路は、第一の分極率を有する透明物質からなる非対称レリーフと、この非対称レリーフに積層した第二の分極率を有する透明物質とから構成され、
所定の波長とTM又はTEの伝搬モードとを有している上記励起光を上記非対称分極率分布周期配列光導波路に入射させ、光第二高調波を発生させることを特徴とする、非対称分極率分布周期配列型光第二高調波発生装置。
An asymmetric polarizability distribution periodic array optical waveguide in which an asymmetric polarizability distribution in the electric field direction of the excitation light is periodically arranged in the optical waveguide,
The asymmetric polarizability distribution periodic array optical waveguide is composed of an asymmetric relief made of a transparent material having a first polarizability, and a transparent material having a second polarizability laminated on the asymmetric relief,
An asymmetric polarizability characterized by causing the excitation light having a predetermined wavelength and a TM or TE propagation mode to enter the asymmetric polarizability distribution periodic array optical waveguide to generate an optical second harmonic. Distributed periodic array optical second harmonic generator.
前記周期配列の周期は、前記励起光のコヒーレンス長よりも短いことを特徴とする、請求項1〜3の何れかに記載の非対称分極率分布周期配列型光第二高調波発生装置。  4. The asymmetric polarizability distribution periodic array optical second harmonic generation device according to claim 1, wherein a period of the periodic array is shorter than a coherence length of the excitation light. 前記周期配列の周期は、この周期をΛ、前記励起光の真空での波長をλ、上記励起光の前記非対称分極率分布周期配列光導波路における屈折率をn、前記第二高調波の上記光導波路における屈折率をn、及びmを正の整数として、
Λ=mλ/(2n−n)であることを特徴とする、請求項1〜3の何れかに記載の非対称分極率分布周期配列型光第二高調波発生装置。
The period of the periodic array is such that the period is Λ, the wavelength of the excitation light in vacuum is λ 0 , the refractive index of the excitation light in the asymmetric polarizability distribution periodic array optical waveguide is n 1 , and the second harmonic The refractive index in the optical waveguide is n 2 and m is a positive integer.
Λ = mλ 0 / wherein the (2n 2 -n 1) is asymmetric polarizability distributed periodically arranged optical second harmonic generating device according to any one of claims 1 to 3.
前記非対称分極率分布周期配列光導波路の表面は、第三の分極率を有する光閉じ込め用の透明物質で覆われていることを特徴とする、請求項2又は3に記載の非対称分極率分布周期配列型光第二高調波発生装置。  4. The asymmetric polarizability distribution period according to claim 2, wherein a surface of the asymmetric polarizability periodic array optical waveguide is covered with a transparent material for confining light having a third polarizability. 5. Array type optical second harmonic generator.
JP2000292422A 2000-09-26 2000-09-26 Asymmetric Polarizability Distribution Periodic Array Optical Second Harmonic Generator Expired - Fee Related JP4848496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000292422A JP4848496B2 (en) 2000-09-26 2000-09-26 Asymmetric Polarizability Distribution Periodic Array Optical Second Harmonic Generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000292422A JP4848496B2 (en) 2000-09-26 2000-09-26 Asymmetric Polarizability Distribution Periodic Array Optical Second Harmonic Generator

Publications (2)

Publication Number Publication Date
JP2002099008A JP2002099008A (en) 2002-04-05
JP4848496B2 true JP4848496B2 (en) 2011-12-28

Family

ID=18775365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000292422A Expired - Fee Related JP4848496B2 (en) 2000-09-26 2000-09-26 Asymmetric Polarizability Distribution Periodic Array Optical Second Harmonic Generator

Country Status (1)

Country Link
JP (1) JP4848496B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113689840A (en) * 2021-08-25 2021-11-23 南京林业大学 Sound wave asymmetric propagation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2643735B2 (en) * 1992-11-10 1997-08-20 日本電気株式会社 Wavelength conversion element

Also Published As

Publication number Publication date
JP2002099008A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
Parry et al. Enhanced generation of nondegenerate photon pairs in nonlinear metasurfaces
US5838702A (en) Method of electrically controlling regions of ferroelectric polarization domains in solid state bodies
JP4864143B2 (en) Compact, single-chip based entangled polarization state photon source and method for generating photons in an entangled polarization state
US5615041A (en) Fabrication of patterned poled dielectric structures and devices
Fedotova et al. Lithium niobate meta-optics
Chezganov et al. Periodic domain patterning by electron beam of proton exchanged waveguides in lithium niobate
Glickman et al. Electron-beam-induced domain poling in LiNbO3 for two-dimensional nonlinear frequency conversion
WO2009015474A1 (en) Method of ferroelectronic domain inversion and its applications
US7976717B2 (en) Method of forming polarization reversal area, apparatus thereof and device using it
Davidson et al. Ultrafast plasmonic control of second harmonic generation
JP3616181B2 (en) Optical device
JPH0296121A (en) Wavelength converting element
JPH09218431A (en) Light wavelength conversion element and its formation as well as light wavelength conversion module
JP4848496B2 (en) Asymmetric Polarizability Distribution Periodic Array Optical Second Harmonic Generator
JPH0419719A (en) Domain control method for nonlinear ferrodielectric optical material
JPH06502499A (en) Polymer waveguide for frequency doubling that is insensitive to thickness changes
JP2852831B2 (en) Method for forming domain inversion structure of ferroelectric
JPH04246624A (en) Wavelength converting element
JP2002510809A (en) Frequency conversion of photonic signal using photonic bandgap structure
JP4182655B2 (en) Method and apparatus for generating light or electromagnetic wave
JPH06342177A (en) Preparation of optical waveguide device and optical frequency multiplier
WO1999049354A1 (en) Electrooptic device, driving method thereof, and manufacture thereof
JP2643735B2 (en) Wavelength conversion element
Charalampous III-V semiconductor waveguides for application in nonlinear optics.
JPS62198824A (en) Optical modulator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040709

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees