JP4848250B2 - Method for producing carbon nanofibers carrying metal nanoparticles - Google Patents

Method for producing carbon nanofibers carrying metal nanoparticles Download PDF

Info

Publication number
JP4848250B2
JP4848250B2 JP2006301076A JP2006301076A JP4848250B2 JP 4848250 B2 JP4848250 B2 JP 4848250B2 JP 2006301076 A JP2006301076 A JP 2006301076A JP 2006301076 A JP2006301076 A JP 2006301076A JP 4848250 B2 JP4848250 B2 JP 4848250B2
Authority
JP
Japan
Prior art keywords
carbon
metal
supported
cnf
carbon nanofibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006301076A
Other languages
Japanese (ja)
Other versions
JP2008115051A (en
Inventor
幸弘 本山
英夫 永島
幹大 高崎
賢志 東
聖昊 尹
勲 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2006301076A priority Critical patent/JP4848250B2/en
Publication of JP2008115051A publication Critical patent/JP2008115051A/en
Application granted granted Critical
Publication of JP4848250B2 publication Critical patent/JP4848250B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、ナノテクノロジーの技術分野に属し、特に、ナノメートルサイズの金属微粒子を含む構造体を製造するための新規な技術に関する。   The present invention belongs to the technical field of nanotechnology, and particularly relates to a novel technique for producing a structure including nanometer-sized metal fine particles.

ナノメートルサイズの金属微粒子を含む構造体は、例えば、種々の化成品の触媒的合成に広く用いられ、更には、環境触媒や水素貯蔵およびとりだし反応等に利用が見込まれている。金属微粒子の化学的および物理的特性は、粒子の形状やサイズに大きく依存するが、一般にナノサイズの金属微粒子は化学的反応性が高く、容易に粒子が合体して大きなサイズになり、その特性を失う(非特許文献1)。   Structures containing nanometer-sized metal fine particles are widely used, for example, for catalytic synthesis of various chemical products, and further are expected to be used for environmental catalysts, hydrogen storage and extraction reactions, and the like. The chemical and physical properties of metal particles depend largely on the shape and size of the particles, but in general, nano-sized metal particles are highly chemically reactive and easily coalesce into large sizes. (Non-Patent Document 1).

上記現象を防ぐために、金属微粒子を固体の担体上に分散させる手法がある。例えば、担体として二酸化ケイ素、酸化アルミニウムやゼオライト等の、細孔構造を有し表面積の大きなものが用いられているが、より安価な担体が望まれている。   In order to prevent the above phenomenon, there is a method of dispersing metal fine particles on a solid support. For example, a carrier having a pore structure and a large surface area such as silicon dioxide, aluminum oxide, or zeolite is used, but a cheaper carrier is desired.

上記担体に代え、活性炭に代表される炭素材料も金属微粒子の担体として多く用いられている。活性炭は、多孔性で表面積が大きく、表面はフェノール性水酸基、カルボキシル基、無水カルボン酸、カルボニル基、γおよびδ−ラクトン等様々な酸素官能基を有しており、この部分に金属が優先的に担持されやすい(非特許文献2)。しかしながら、活性炭はその微細構造が明らかではなく、表面構造が均質ではないことから、金属を担持した際の金属粒子の分散度や粒子系制御が必ずしも十分ではない。さらに原材料の種類により金属担持触媒の活性が異なるなど、再現性にも問題がある。   Instead of the above-mentioned carrier, a carbon material typified by activated carbon is often used as a carrier for metal fine particles. Activated carbon is porous and has a large surface area, and the surface has various oxygen functional groups such as phenolic hydroxyl group, carboxyl group, carboxylic anhydride, carbonyl group, γ and δ-lactone, and metal is preferential in this part. (Non-Patent Document 2). However, since the fine structure of activated carbon is not clear and the surface structure is not homogeneous, the degree of dispersion and particle system control of metal particles when a metal is supported are not always sufficient. Furthermore, there is a problem in reproducibility such as the activity of the metal-supported catalyst varies depending on the type of raw material.

その他の炭素材料として、構造の明らかな炭素材料である炭素ナノチューブ(CNT)なども知られている。しかし、金属を担持するには、CNT表面の活性が低く、酸化処理を施さなければならず、しばしば前処理として硝酸などの強酸性条件を必要とする(非特許文献3)。   As other carbon materials, carbon nanotubes (CNT), which are carbon materials with a clear structure, are also known. However, in order to carry a metal, the activity of the CNT surface is low and an oxidation treatment must be performed, and a strong acid condition such as nitric acid is often required as a pretreatment (Non-patent Document 3).

金属担持CNT触媒を合成する際、表面処理をしない手法も報告されているが、超臨界二酸化炭素が必要であったり(非特許文献4)、担持量が0.2重量%と低かったり(非特許文献5)、反応時間と共に粒子径が大きくなる(非特許文献6)など、汎用性や実用性に欠ける。   Although it has been reported that when a metal-supported CNT catalyst is synthesized, no surface treatment is reported, but supercritical carbon dioxide is necessary (Non-patent Document 4), or the supported amount is as low as 0.2% by weight (Non-patent Document). 5) The particle size increases with the reaction time (Non-Patent Document 6) and lacks versatility and practicality.

近年、新しい炭素材料として、特徴的なナノ構造を有する炭素繊維(いわゆるカーボンナノファイバ:CNF、もしくはグラファイトナノファイバ:GNF)の製造法が開発され(非特許文献7−10、特許文献1、2)、金属ナノ微粒子炭素ナノ繊維が、金属担持触媒(非特許文献11)、電気化学キャパシタ用電極(特許文献2)、燃料電池用電極(非特許文献12)への応用が期待されている。   In recent years, as a new carbon material, a method for producing a carbon fiber having a characteristic nanostructure (so-called carbon nanofiber: CNF or graphite nanofiber: GNF) has been developed (Non-patent Documents 7-10 and Patent Documents 1 and 2). ), And metal nanoparticle carbon nanofibers are expected to be applied to metal-supported catalysts (Non-Patent Document 11), electrochemical capacitor electrodes (Patent Document 2), and fuel cell electrodes (Non-Patent Document 12).

CNFを含め、炭素材料への金属微粒子の担持方法としては、担持媒体を触媒活性のある金属種の金属塩溶液に懸濁させ物理吸着(含浸)させた後、還元雰囲気下、高温で処理する方法が主に用いられている(非特許文献13)。しかしながら、この手法では、金属塩を還元する際に長時間にわたる高温処理が必要であり、それに伴う金属の凝集による分散度や粒子系制御が必ずしも十分ではない。   As a method for supporting fine metal particles on carbon materials including CNF, the support medium is suspended in a metal salt solution of a catalytically active metal species and physically adsorbed (impregnated), and then treated at a high temperature in a reducing atmosphere. The method is mainly used (Non-Patent Document 13). However, this method requires a high temperature treatment for a long time when reducing the metal salt, and the degree of dispersion and particle system control due to the aggregation of the metal are not always sufficient.

それに対し、界面活性剤存在下、金属塩を溶液中で水素化ホウ素ナトリウムやカリウム塩で還元してコロイド粒子を形成した後、担持媒体に含浸する方法が報告されている(非特許文献14)。しかしこのコロイド法では、金属塩の濃度や溶媒,界面活性剤の種類といった反応条件で、炭素担体への金属の含浸の深さや分散が決まるため、条件設定が難しい。さらに得られる担持触媒に還元剤残渣が混入してしまい、純度の高い担持触媒の合成が難しい。   On the other hand, a method has been reported in which a metal salt is reduced with sodium borohydride or potassium salt in a solution in the presence of a surfactant to form colloidal particles and then impregnated into a support medium (Non-patent Document 14). . However, in this colloidal method, it is difficult to set conditions because the depth and dispersion of the metal impregnation into the carbon support are determined by the reaction conditions such as the concentration of the metal salt, the solvent, and the type of surfactant. Furthermore, a reducing agent residue is mixed in the obtained supported catalyst, and it is difficult to synthesize a supported catalyst with high purity.

一方、還元剤残渣の混入を抑えるために、有機金属錯体を前駆体に用いる合成法も知られている。例えば金属カルボニル錯体の熱分解によりナノ金属微粒子担持CNFが報告されている(非特許文献15)。しかしながら、この方法では熱分解に100度上の加熱が必要であり、さらに金属担持量を制御することができない。   On the other hand, in order to suppress the mixing of the reducing agent residue, a synthesis method using an organometallic complex as a precursor is also known. For example, nanometal fine particle-supported CNF has been reported by thermal decomposition of a metal carbonyl complex (Non-patent Document 15). However, this method requires heating at 100 degrees for pyrolysis, and the metal loading cannot be controlled.

本発明者らは、先にCNFを用い金属微粒子がCNFに担持された構造体を調製する手法を案出した(特許文献3)。この手法は、ナノメートルサイズの金属微粒子を微細且つ均一に炭素材料に担持し得る数少ない技術であるが、目的の金属のカルボニル錯体を溶かした有機溶媒中にCNFを懸濁させ、該懸濁液を特定温度で加熱還流するなどの操作を必要とする。
特開2004−2052号公報 特開2005−23468号公報 特開2006−281201号公報 MetalNanoparticles, D. L. feldheim, C. A. Foss, Jr. Eds.; Marcel Dekker: New York, 2002 H. Marsh, F. Rodriguez-Reinoso,Activated Carbon, Elsevier: UK, 2006 W. Li, C.Liang, J. Qiu, W. Zhu, H. Han, Z. Wei, G. Sun, Q. Xin, Carbon, 40, 787 (2002) X. R. Ye, Y.Lin, C. M. Wai, Chem. Commun., 642 (2003) J. M.Plancix, N. Goustel, B. Coq, V. Brotons, P. S. Kumbhar, R. Dutartre, P.Geneste, P. Bernier, P. M. Ajayan, J. Am. Chem. Soc., 116, 7935 (1994) H. C. Choi,M. Shim, S. Bangsaruntip, H. Dai, J. Am. Chem. Soc., 124, 9058 (2002) H. Murayama,T. Maeda, Nature, 345, 791 (1990) M.-S. Kim,Dr. Thesis, Auburn University (1991) A. Tanaka,S.-H. Yoon, I. Mochida, Carbon, 42, 591 (2004) A. Tanaka,S.-H. Yoon, I. Mochida, Carbon, 42, 1291 (2004) P. Serp, M.Corrias, P. Kalck, Applied Catalysis A: General, 253, 337 (2003) K. Sasaki,K. Shinya, S. Tanaka, Y. Kawazoe, T. Kuroki, K. Takata, H. Kusaba, Y. Teraoka,Mater. Res. Soc. Symp. 835, K7.4.1 (2005) P. Serp, M.Corrias, P. Kalck, Appl. Catal. A, 253, 337 (2003) A. Roucoux,J. Schulz, H. Patin, Chem. Rev., 102, 3757 (2002) Y. Motoyama,M. Takasaki, K. Higashi, S.-H. Yoon, I. Mochida, H. Nagashima, Chem. Lett. 35, 876 (2006)
The present inventors previously devised a method for preparing a structure in which metal fine particles are supported on CNF using CNF (Patent Document 3). This technique is one of the few techniques that can support nanometer-sized fine metal particles finely and uniformly on a carbon material, but suspends CNF in an organic solvent in which the carbonyl complex of the target metal is dissolved, Is required to be heated to reflux at a specific temperature.
JP 2004-2052 A Japanese Patent Laid-Open No. 2005-23468 JP 2006-281201 A MetalNanoparticles, DL feldheim, CA Foss, Jr. Eds .; Marcel Dekker: New York, 2002 H. Marsh, F. Rodriguez-Reinoso, Activated Carbon, Elsevier: UK, 2006 W. Li, C. Liang, J. Qiu, W. Zhu, H. Han, Z. Wei, G. Sun, Q. Xin, Carbon, 40, 787 (2002) XR Ye, Y. Lin, CM Wai, Chem. Commun., 642 (2003) JMPlancix, N. Goustel, B. Coq, V. Brotons, PS Kumbhar, R. Dutartre, P. Geneste, P. Bernier, PM Ajayan, J. Am. Chem. Soc., 116, 7935 (1994) HC Choi, M. Shim, S. Bangsaruntip, H. Dai, J. Am. Chem. Soc., 124, 9058 (2002) H. Murayama, T. Maeda, Nature, 345, 791 (1990) M.-S. Kim, Dr. Thesis, Auburn University (1991) A. Tanaka, S.-H. Yoon, I. Mochida, Carbon, 42, 591 (2004) A. Tanaka, S.-H. Yoon, I. Mochida, Carbon, 42, 1291 (2004) P. Serp, M. Corrias, P. Kalck, Applied Catalysis A: General, 253, 337 (2003) K. Sasaki, K. Shinya, S. Tanaka, Y. Kawazoe, T. Kuroki, K. Takata, H. Kusaba, Y. Teraoka, Mater. Res. Soc. Symp. 835, K7.4.1 (2005) P. Serp, M. Corrias, P. Kalck, Appl. Catal. A, 253, 337 (2003) A. Roucoux, J. Schulz, H. Patin, Chem. Rev., 102, 3757 (2002) Y. Motoyama, M. Takasaki, K. Higashi, S.-H. Yoon, I. Mochida, H. Nagashima, Chem. Lett. 35, 876 (2006)

本発明の目的は、簡便な操作により、炭素材料を担体とし可及的に微細且つ均一に金属微粒子を担持して触媒等として有用な高い活性と耐久性を示す構造体を調製する新しい技術を提供することにある。   An object of the present invention is to provide a new technique for preparing a structure having high activity and durability useful as a catalyst by supporting metal fine particles as finely and uniformly as possible using a carbon material as a support by a simple operation. It is to provide.

本発明者らは鋭意検討を行なった結果、表面構造が制御された炭素材料である炭素ナノ繊維を担体として用い、且つ、特定の構造の有機金属錯体を金属微粒子源とすることによって、如上の目的が達成されることを見出し、本発明を導き出した。   As a result of intensive studies, the present inventors have used carbon nanofibers, which are carbon materials having a controlled surface structure, as a carrier, and by using an organometallic complex having a specific structure as a metal fine particle source. It was found that the object was achieved, and the present invention was derived.

かくして、本発明は、ナノメートルサイズの金属微粒子が炭素ナノ繊維に担持された金属ナノ微粒子担持炭素ナノ繊維を製造する方法であって、炭素−金属結合を有する有機配位子のみからなる有機金属錯体を溶かした有機溶媒中に炭素ナノ繊維を懸濁させて、水素雰囲気下で懸濁液を室温で攪拌することにより、前記金属錯体をナノ微粒子化する工程を含むことを特徴とする方法を提供するものである。   Thus, the present invention is a method for producing metal nanoparticle-supported carbon nanofibers in which nanometer-sized metal microparticles are supported on carbon nanofibers, and comprising only an organic ligand having a carbon-metal bond. A method comprising the step of suspending carbon nanofibers in an organic solvent in which the complex is dissolved and stirring the suspension at room temperature in a hydrogen atmosphere to form the metal complex into nanoparticles. It is to provide.

本発明に従えば、加熱などの操作を必要とせず、炭素ナノ繊維を懸濁させた前記金属錯体溶液を水素雰囲気下、室温で懸濁液を攪拌するという極めて簡便な操作で、粒子径の制御された金属微粒子が炭素表面に高度に分散したナノ金属微粒子担持炭素ナノ繊維から成る構造体が得られる。   According to the present invention, no operation such as heating is required, and the particle size of the metal complex solution in which the carbon nanofibers are suspended is extremely simple by stirring the suspension at room temperature in a hydrogen atmosphere. A structure composed of carbon nanofibers carrying nanometal fine particles in which controlled metal fine particles are highly dispersed on the carbon surface is obtained.

本発明において用いられる炭素ナノ繊維(カーボンナノファイバー)とは、よく知られているように、サブミクロンオーダーの繊維径をもつ炭素繊維であり、炭素ヘキサゴン表面の配列が繊維軸に垂直なもの、ある角度をもつもの、あるいは平行なものの3種類に分類され、それぞれ、プレートレット(平板積層)、ヘリングボーン(魚骨状積層)、チューブラー(筒状)と名付けられている(例えば、「高圧ガス、Vol.41, No.2,
10-18頁(2004)」参照)。本明細書においては、プレートレット(平板積層)炭素ナノ繊維をCNF−P、ヘリングボーン(魚骨状積層)炭素ナノ繊維をCNF−H、チューブラー(筒状)炭素ナノ繊維をCNF−Tと略記していることがある。このような炭素ナノ繊維は、公知の方法で得ることができる(例えば、特許文献1、2)。市販の例は、米国のCatalytic Materials LLC社の製品であり、CNF−Pについては「Platelet GNF」、CNF−Hについては「Herringbone」、CNF−Tについては「Multi-walled Nanotubes」の商品名で、いずれも純度99.0%の製品として販売されている。
As is well known, the carbon nanofiber (carbon nanofiber) used in the present invention is a carbon fiber having a submicron order fiber diameter, and the carbon hexagon surface array is perpendicular to the fiber axis. They are classified into three types, those with a certain angle or those parallel to each other, and are named platelets (plate stacks), herringbones (fishbone stacks), and tubulars (cylinders, for example) Gas, Vol.41, No.2,
10-18 (2004) "). In this specification, platelet (flat plate) carbon nanofibers are CNF-P, herringbone (fishbone-like laminate) carbon nanofibers are CNF-H, and tubular (tubular) carbon nanofibers are CNF-T. Sometimes abbreviated. Such carbon nanofibers can be obtained by a known method (for example, Patent Documents 1 and 2). Commercially available examples are products of Catalytic Materials LLC in the United States, with the product names “Platelet GNF” for CNF-P, “Herringbone” for CNF-H, and “Multi-walled Nanotubes” for CNF-T. All are sold as 99.0% pure products.

本発明の方法は、目的の金属(金属微粒子を構成する金属の)炭素−金属結合を有する有機配位子のみからなる有機金属錯体を溶かした有機溶媒中に如上の炭素ナノ繊維を懸濁させてその有機金属錯体を分解するという簡便な操作のみから成る。炭素−金属結合を有する有機配位子のみからなる有機金属錯体の分解は、上記錯体を溶解し炭素ナノ繊維を懸濁させた液を水素雰囲気下に室温で攪拌することによって行なわれる。ここで、炭素−金属結合を有する有機配位子のみからなる有機金属錯体とは、当該錯体において金属に配位する部位が、炭素−金属結合を形成する有機配位子から本質的に構成され、無機成分(例えば、ハロゲン原子)は関与しないような構造を有する錯体を指称する。   In the method of the present invention, the above carbon nanofibers are suspended in an organic solvent in which an organic metal complex consisting only of an organic ligand having a carbon-metal bond of the target metal (metal constituting the metal fine particle) is dissolved. It consists only of a simple operation of decomposing the organometallic complex. The decomposition of the organometallic complex consisting only of the organic ligand having a carbon-metal bond is performed by stirring a liquid in which the complex is dissolved and the carbon nanofibers are suspended in a hydrogen atmosphere at room temperature. Here, an organometallic complex consisting only of an organic ligand having a carbon-metal bond is a portion where the site coordinated to the metal in the complex is essentially composed of an organic ligand that forms a carbon-metal bond. , A complex having a structure in which an inorganic component (for example, a halogen atom) is not involved is designated.

かくして、有機溶媒として、上記錯体を溶かし炭素ナノ繊維を懸濁させ得るものを用い、室温で上記錯体の分解が起こる温度で攪拌すればよい。例えば、炭素−金属結合を有する有機配位子のみからなる有機金属錯体がPt(dba)[dba=ジベンジリデンアセトン]の場合は、テトラヒドロフランを用いて当該錯体を溶解し炭素ナノ繊維を懸濁させた懸濁液を、水素雰囲気下、室温で攪拌する。また、上記の要件を満たす限り、他の有機溶媒(例えば、ベンゼン、ジクロロエタン、ジメトキシエタンなど)を使用することもできる。 Thus, an organic solvent that can dissolve the complex and suspend the carbon nanofibers may be stirred at a temperature at which decomposition of the complex occurs at room temperature. For example, when the organometallic complex consisting only of an organic ligand having a carbon-metal bond is Pt (dba) 2 [dba = dibenzylideneacetone], the complex is dissolved using tetrahydrofuran to suspend the carbon nanofibers. The resulting suspension is stirred at room temperature under a hydrogen atmosphere. Further, other organic solvents (for example, benzene, dichloroethane, dimethoxyethane, etc.) can be used as long as the above requirements are satisfied.

なお、本発明で用いられる金属錯体は、上述のように水素雰囲気下に分解して金属ナノ微粒子担持炭素ナノ繊維を形成し得るものであるが、必要に応じて、反応を促進させるために加熱することはできる。   The metal complex used in the present invention can be decomposed in a hydrogen atmosphere as described above to form metal nanoparticle-supported carbon nanofibers. If necessary, the metal complex is heated to promote the reaction. Can do.

以上のような水素雰囲気下で攪拌工程の生成物は、その後、ろ過、洗浄および乾燥に供され、所望の構造体が得られる。このようにして得られた本発明の金属ナノ微粒子担持炭素ナノ繊維は、ナノメートルサイズの比較的均一な粒子径の金属微粒子が炭素表面に高度に分散した構造を呈している。なお、本発明におけるナノメートルサイズの金属微粒子とは、後述の実施例にも記すように、一般に、1〜10nmの範囲の金属微粒子を指称する。   The product of the stirring step under the hydrogen atmosphere as described above is then subjected to filtration, washing, and drying to obtain a desired structure. The metal nanoparticle-supported carbon nanofibers of the present invention thus obtained have a structure in which nanometer-sized metal particles having a relatively uniform particle diameter are highly dispersed on the carbon surface. The nanometer-sized metal fine particles in the present invention generally refer to metal fine particles in the range of 1 to 10 nm, as will be described later in Examples.

本発明が適用される金属の種類の好ましい例として、白金族金属を含む遷移金属が挙げられるが、これらに限定されるものではなく、炭素−金属結合を有する有機配位子のみからなる有機金属錯体を形成し得る各種の金属について本発明を適用することができる。ここで炭素−金属結合を有する有機配位子の例としては、エチレン、プロピレン、シクロオクタジエン、シクロオクタトリエン、ジベンジリデンアセトン等のアルケン類、メチル基、エチル基、プロピル基等のアルキル基、アリル基、メタリル基等のアリル誘導体、フェニル基やトリル基等のアリール基、アセチレン、フェニルアセチレン、ジフェニルアセチレン等のアルキン類、ならびにカルボニルなどが挙げられ、配位結合または共有結合(シグマ結合)として炭素−金属結合を形成するものが使用される。   Preferable examples of the types of metals to which the present invention is applied include transition metals including platinum group metals, but are not limited thereto, and organic metals composed only of organic ligands having a carbon-metal bond. The present invention can be applied to various metals that can form a complex. Examples of the organic ligand having a carbon-metal bond include alkenes such as ethylene, propylene, cyclooctadiene, cyclooctatriene and dibenzylideneacetone, alkyl groups such as methyl group, ethyl group and propyl group, Examples include allyl derivatives such as allyl groups and methallyl groups, aryl groups such as phenyl groups and tolyl groups, alkynes such as acetylene, phenylacetylene, and diphenylacetylene, and carbonyls. Coordination bonds or covalent bonds (sigma bonds) Those that form carbon-metal bonds are used.

本発明において使用されるのに好ましい有機金属錯体は、有機配位子としてアルケン類を含むものであり、例えば、Ru(cod)(cot) [cod=1,5-シクロオクタジエン;cot=シクロオクタトリエン]、Ru(η-C6H6)(η-1,3-C6H8)、Ru(η3-C3H5)(nbd)[nbd=ノルボルナジエン]、Co(C8H13)(cod)、Ni(cod)2、Ni(η3-C3H5)2、Pd(η3-C3H5)2、Pd2(dba)3(CHCl3)[dba=ジベンジリデンアセトン]、Pd(dba)2、Pt(η3-C3H5)2、Pt(dba)2、Pt(cod)2、PtMe2(cod)などが挙げられ、特に好ましくは、Ru(cod)(cot)、Pd2(dba)3(CHCl3)、Pd(dba)2、Pt(dba)2、Pt(cod)2である。これらの有機金属錯体を用いることにより、それぞれの金属の機能に応じた用途の金属ナノ微粒子担持炭素ナノ繊維構造体を調製することができる。図2に、本発明において用いられる有機金属錯体の例の化学構造式を示す。 Preferred organometallic complexes for use in the present invention are those containing alkenes as organic ligands, such as Ru (cod) (cot) [cod = 1,5-cyclooctadiene; cot = cyclo Octatriene], Ru (η-C 6 H 6 ) (η-1,3-C 6 H 8 ), Ru (η 3 -C 3 H 5 ) (nbd) [nbd = norbornadiene], Co (C 8 H 13 ) (cod), Ni (cod) 2 , Ni (η 3 -C 3 H 5 ) 2 , Pd (η 3 -C 3 H 5 ) 2 , Pd 2 (dba) 3 (CHCl 3 ) [dba = di Benzylideneacetone], Pd (dba) 2 , Pt (η 3 -C 3 H 5 ) 2 , Pt (dba) 2 , Pt (cod) 2 , PtMe 2 (cod) and the like, particularly preferably Ru ( cod) (cot), Pd 2 (dba) 3 (CHCl 3 ), Pd (dba) 2 , Pt (dba) 2 , Pt (cod) 2 . By using these organometallic complexes, it is possible to prepare metal nanoparticle-supported carbon nanofiber structures for use according to the function of each metal. FIG. 2 shows a chemical structural formula of an example of an organometallic complex used in the present invention.

なお、如上の有機金属錯体は、公知の方法で合成することができ(例えば、非特許文献16−19)、また、市販品として入手できるものもあり、例えば、Ni(cod)2は和光純薬(>98%)や関東化学(>95%)から販売されている。
W. J. Cherwinski, B. F. G.Johnson, J. Lewis, J. Chem. Soc., Dalton Trans., 1405 (1974):Pt(dba)2について。 T. Ukai, H. Kawazura, Y. Ishii,J. Organomet. Chem., 65, 253 (1974):Pd2(dba)3・(CHCl3)について。 K. Itoh, H. Nagashima, T.Oshima, N. Oshima, H. Nishiyama, J. Organomet. Chem., 272, 179 (1984):Ru(cod)(cot)について。 R. A. Schunn, Inorg. Synth.,15, 5 (1974):Ni(cod)2について。
Note that the organic metal complex According to the process 30 can be synthesized by known methods (e.g., Non-Patent Document 16-19), also, some of them are commercially available, for example, Ni (cod) 2 Net Wako It is sold by drugs (> 98%) and Kanto Chemical (> 95%).
WJ Cherwinski, BFG Johnson, J. Lewis, J. Chem. Soc., Dalton Trans., 1405 (1974): About Pt (dba) 2. T. Ukai, H. Kawazura, Y. Ishii, J. Organomet. Chem., 65, 253 (1974): About Pd2 (dba) 3 · (CHCl3). K. Itoh, H. Nagashima, T. Oshima, N. Oshima, H. Nishiyama, J. Organomet. Chem., 272, 179 (1984): About Ru (cod) (cot). RA Schunn, Inorg. Synth., 15, 5 (1974): About Ni (cod) 2.

以下に、本発明の特徴をさらに具体的に説明するため、実施例を示すが、本発明はこれらによって何ら限定されるものではない。
本発明で用いた炭素ナノ繊維は、上述の文献(非特許文献8−10)に従って合成したものを用いた。
実施例1〜実施例8は、本発明に従う金属微粒子担持炭素ナノ繊維から成る構造体の調製例である。
実施例9〜実施例29は、本発明によって得られる金属微粒子担持炭素ナノ繊維から成る構造体の有用性を示す例として、調製した構造体を水素化反応および水素化分解反応用触媒に適用した場合の結果を示すものである。
In order to describe the features of the present invention more specifically, examples will be shown below, but the present invention is not limited to these examples.
The carbon nanofibers used in the present invention were those synthesized according to the above-mentioned literature (Non-patent Literature 8-10).
Examples 1 to 8 are preparation examples of structures made of metal nanoparticle-supported carbon nanofibers according to the present invention.
In Examples 9 to 29, the prepared structures were applied to hydrogenation and hydrocracking catalysts as examples showing the usefulness of the structures composed of metal nanoparticle-supported carbon nanofibers obtained by the present invention. The result of the case is shown.

〔実施例1〕
白金担持平板積層炭素ナノ繊維構造体(Pt/CNF-P/H2)の合成
50mLのシュレンクに活栓を付け、磁気撹拌子、平板積層炭素ナノ繊維(100mg)とPt(dba)2(17.0mg、0.03mmol)を加えて0.04Torrで約10分減圧乾燥した後、窒素雰囲気に置換した。テトラヒドロフラン(10mL)をシリンジで加えて錯体を溶解した。この炭素繊維が懸濁した錯体溶液を液体窒素で凍結し、0.04Torrに減圧した後、シュレンクチューブ内を水素置換した。この水素置換操作を3回行った後、室温に戻し水素を満たしたガス採取袋(アズワン株式会社:容量3L)を連結させ、20時間撹拌した。反応後、メンブランろ紙(Durapore(登録商標):0.45・LHV)を用いてろ取し、テトラヒドロフラン(50mL)、引き続きエーテル(50mL)で洗浄した。得られた炭素繊維を30mLナスフラスコに移し、その上部に三方コックをつけた後、0.04Torrの減圧下、室温で乾燥することにより、白金担持平板積層炭素ナノ繊維構造体(Pt/CNF-P/H2)(105mg)を得た。
以上の操作により得られたPt/CNF-P/H2の白金担持量をICP-MS(ICP質量分析)により測定したところ、約5.3重量%であった。また、透過型電子顕微鏡(TEM)により平均粒子径を計測したところ約3.8nmであった。
[Example 1]
Synthesis of platinum-supported flat laminated carbon nanofiber structure (Pt / CNF-P / H2)
Add a stopcock to a 50 mL Schlenk, add a magnetic stir bar, flat laminated carbon nanofiber (100 mg) and Pt (dba) 2 (17.0 mg, 0.03 mmol) and dry under reduced pressure at 0.04 Torr for about 10 minutes. Replaced. Tetrahydrofuran (10 mL) was added with a syringe to dissolve the complex. The complex solution in which the carbon fiber was suspended was frozen with liquid nitrogen, decompressed to 0.04 Torr, and then the Schlenk tube was replaced with hydrogen. After performing this hydrogen substitution operation three times, the temperature was returned to room temperature, and a gas sampling bag filled with hydrogen (As One Co., Ltd .: capacity 3 L) was connected and stirred for 20 hours. After the reaction, the reaction mixture was filtered using a membrane filter paper (Durapore (registered trademark): 0.45 · LHV), and washed with tetrahydrofuran (50 mL) and then with ether (50 mL). The obtained carbon fiber was transferred to a 30 mL eggplant flask, and a three-way cock was attached to the top, followed by drying at room temperature under a reduced pressure of 0.04 Torr. Thus, a platinum-supported flat-plate carbon nanofiber structure (Pt / CNF-P / H2) (105 mg) was obtained.
The amount of platinum supported on Pt / CNF-P / H2 obtained by the above operation was measured by ICP-MS (ICP mass spectrometry), and it was about 5.3% by weight. Further, the average particle diameter was measured by a transmission electron microscope (TEM) and found to be about 3.8 nm.

〔実施例2〕
白金担持魚骨型積層炭素ナノ繊維構造体(Pt/CNF-H/H2)の合成
炭素ナノ繊維として魚骨型積層炭素ナノ繊維(100mg)を用いたことを除き、実施例1の手順を繰り返した。白金担持魚骨型積層炭素ナノ繊維構造体(Pt/CNF-H/H2)の収量は111mgであった。また、得られたPt/CNF-H/H2の白金担持量をICP-MS(ICP質量分析)により測定したところ、約3.6重量%であった。透過型電子顕微鏡(TEM)により平均粒子径を計測したところ約3.1nmであった。
[Example 2]
The procedure of Example 1 was repeated except that the fishbone-type laminated carbon nanofiber (100 mg) was used as the synthetic carbon nanofiber of the platinum-supported fishbone-type laminated carbon nanofiber structure (Pt / CNF-H / H2). It was. The yield of platinum-supported fishbone-type laminated carbon nanofiber structure (Pt / CNF-H / H2) was 111 mg. Further, the platinum loading of the obtained Pt / CNF-H / H2 was measured by ICP-MS (ICP mass spectrometry), and it was about 3.6% by weight. When the average particle diameter was measured with a transmission electron microscope (TEM), it was about 3.1 nm.

〔実施例3〕
白金担持円筒型積層炭素ナノ繊維構造体(Pt/CNF-T/H2)の合成
炭素ナノ繊維として円筒型積層炭素ナノ繊維(100mg)を用いたことを除き、実施例1の手順を繰り返した。白金担持円筒型積層炭素ナノ繊維構造体(Pt/CNF-T/H2)の収量は107mgであった。また、得られたPt/CNF-T/H2の白金担持量をICP-MS(ICP質量分析)により測定したところ、約3.3重量%であった。透過型電子顕微鏡(TEM)により平均粒子径を計測したところ約2.6nmであった。
Example 3
The procedure of Example 1 was repeated except that cylindrical laminated carbon nanofibers (100 mg) were used as synthetic carbon nanofibers of platinum-supported cylindrical laminated carbon nanofiber structures (Pt / CNF-T / H2) . The yield of the platinum-supported cylindrical laminated carbon nanofiber structure (Pt / CNF-T / H2) was 107 mg. Further, the platinum loading of the obtained Pt / CNF-T / H2 was measured by ICP-MS (ICP mass spectrometry), and it was about 3.3% by weight. When the average particle diameter was measured by a transmission electron microscope (TEM), it was about 2.6 nm.

〔実施例4〕
パラジウム担持平板積層炭素ナノ繊維構造体(Pd/CNF-P/H2)の合成
50mLのシュレンクに活栓を付け、磁気撹拌子、平板積層炭素ナノ繊維(100mg)とPd2(dba)3・CHCl3(15.5mg、0.015mmol)を加えて0.04Torrで約10分減圧乾燥した後、窒素雰囲気に置換した。トルエン(10mL)をシリンジで加えて錯体を溶解した。この炭素繊維が懸濁した錯体溶液を液体窒素で凍結し、0.04Torrに減圧した後、シュレンクチューブ内を水素置換した。この水素置換操作を3回行った後、室温に戻し水素を満たしたガス採取袋(アズワン株式会社:容量3L)を連結させ、12時間撹拌した。反応後、メンブランろ紙(Durapore(登録商標):0.45・LHV)を用いてろ取し、トルエン(50mL)、引き続きエーテル(100mL)で洗浄した。得られた炭素繊維を30mLナスフラスコに移し、その上部に三方コックをつけた後、0.04Torrの減圧下、室温で約3時間乾燥することにより、パラジウム担持平板積層炭素ナノ繊維構造体(Pd/CNF-P/H2)(100mg)を得た。
以上の操作により得られたPd/CNF-P/H2のパラジウム担持量をICP-MS(ICP質量分析)により測定したところ、3.2-3.5重量%であった。また、透過型電子顕微鏡(TEM)により粒子径を計測したところ、平均粒子径は約4.2nmであった(図1)。
Example 4
Synthesis of palladium-supported planar laminated carbon nanofiber structure (Pd / CNF-P / H2)
After adding a stopcock to a 50 mL Schlenk, adding a magnetic stir bar, flat laminated carbon nanofiber (100 mg) and Pd 2 (dba) 3 · CHCl 3 (15.5 mg, 0.015 mmol) and drying under reduced pressure at 0.04 Torr for about 10 minutes And replaced with a nitrogen atmosphere. Toluene (10 mL) was added with a syringe to dissolve the complex. The complex solution in which the carbon fiber was suspended was frozen with liquid nitrogen, decompressed to 0.04 Torr, and then the Schlenk tube was replaced with hydrogen. After performing this hydrogen substitution operation three times, the temperature was returned to room temperature, and a gas sampling bag (As One Co., Ltd .: capacity 3 L) filled with hydrogen was connected and stirred for 12 hours. After the reaction, the reaction mixture was filtered using a membrane filter paper (Durapore (registered trademark): 0.45 · LHV), and washed with toluene (50 mL) and then with ether (100 mL). The obtained carbon fiber was transferred to a 30 mL eggplant flask, and a three-way cock was attached to the upper part thereof, and then dried at room temperature under a reduced pressure of 0.04 Torr for about 3 hours to obtain a palladium-supported flat-plate laminated carbon nanofiber structure (Pd / CNF-P / H2) (100 mg) was obtained.
The palladium loading of Pd / CNF-P / H2 obtained by the above operation was measured by ICP-MS (ICP mass spectrometry) and found to be 3.2 to 3.5% by weight. Moreover, when the particle diameter was measured with a transmission electron microscope (TEM), the average particle diameter was about 4.2 nm (FIG. 1).

〔実施例5〕
パラジウム担持魚骨型積層炭素ナノ繊維構造体(Pd/CNF-H/H2)の合成
炭素ナノ繊維として魚骨型積層炭素ナノ繊維(100mg)を用いたことを除き、実施例4の手順を繰り返した。パラジウム担持魚骨型積層炭素ナノ繊維構造体(Pd/CNF-H/H2)の収量は102mgであった。また、得られたPd/CNF-H/H2のパラジウム担持量をICP-MS(ICP質量分析)により測定したところ、3.1-3.3重量%であった。透過型電子顕微鏡(TEM)により平均粒子径を計測したところ約5.1nmであった(図1)。
Example 5
The procedure of Example 4 was repeated except that fishbone-type laminated carbon nanofiber (100 mg) was used as the synthetic carbon nanofiber of the palladium-supported fishbone-type laminated carbon nanofiber structure (Pd / CNF-H / H2). It was. The yield of the palladium-supported fishbone-type laminated carbon nanofiber structure (Pd / CNF-H / H2) was 102 mg. The amount of palladium supported on the obtained Pd / CNF-H / H2 was measured by ICP-MS (ICP mass spectrometry) and found to be 3.1-3.3% by weight. When the average particle diameter was measured with a transmission electron microscope (TEM), it was about 5.1 nm (FIG. 1).

〔実施例6〕
パラジウム担持円筒型積層炭素ナノ繊維構造体(Pd/CNF-T/H2)の合成
炭素ナノ繊維として円筒型積層炭素ナノ繊維(100mg)を用いたことを除き、実施例6の手順を繰り返した。パラジウム担持円筒型積層炭素ナノ繊維構造体(Pd/CNF-T/H2)の収量は101mgであった。また、得られたPd/CNF-T/H2のパラジウム担持量をICP-MS(ICP質量分析)により測定したところ、3.2-3.5重量%であった(図1)。
さらに、得られた炭素ナノ繊維構造体の透過型電子顕微鏡(TEM)観察から、2-8nmの微粒子(平均粒子径:約4.6nm)が観測されるが、一部、大きな微粒子も確認できる。
Example 6
The procedure of Example 6 was repeated except that cylindrical laminated carbon nanofiber (100 mg) was used as the synthetic carbon nanofiber of the palladium-supported cylindrical laminated carbon nanofiber structure (Pd / CNF-T / H2) . The yield of the palladium-supported cylindrical laminated carbon nanofiber structure (Pd / CNF-T / H2) was 101 mg. The amount of palladium supported on the obtained Pd / CNF-T / H2 was measured by ICP-MS (ICP mass spectrometry) and found to be 3.2 to 3.5% by weight (FIG. 1).
Furthermore, from the transmission electron microscope (TEM) observation of the obtained carbon nanofiber structure, fine particles of 2-8 nm (average particle diameter: about 4.6 nm) are observed, but some of the fine particles can also be confirmed.

〔実施例7〕
ルテニウム担持平板積層炭素ナノ繊維構造体(Ru/CNF-P/H2)の合成
50mLのシュレンクに活栓を付け、磁気撹拌子、平板積層炭素ナノ繊維(100mg)とRu(cod)(cot)(44.8mg、0.15mmol)を加えて0.04Torrで約10分減圧乾燥した後、窒素雰囲気に置換した。テトラヒドロフラン(10mL)をシリンジで加えて錯体を溶解した。この炭素繊維が懸濁した錯体溶液を液体窒素で凍結し、0.04Torrに減圧した後、シュレンクチューブ内を水素置換した。この水素置換操作を3回行った後、室温に戻し水素を満たしたガス採取袋(アズワン株式会社:容量3L)を連結させ、20時間撹拌した。反応後、メンブランろ紙(Durapore(登録商標):0.45・LHV)を用いてろ取し、テトラヒドロフラン(50mL)、引き続きエーテル(50mL)で洗浄した。得られた炭素繊維を30mLナスフラスコに移し、その上部に三方コックをつけた後、0.04Torrの減圧下、室温で乾燥することにより、ルテニウム担持平板積層炭素ナノ繊維構造体(Ru/CNF-P/H2)(113mg)を得た。
以上の操作により得られたRu/CNF-P/H2のルテニウム担持量をICP-MS(ICP質量分析)により測定したところ、約6重量%であった。また、透過型電子顕微鏡(TEM)により粒子径を計測したところ、粒子径は約2.5-7.5nmであった。
Example 7
Synthesis of Ruthenium-Supported Flat Laminated Carbon Nanofiber Structure (Ru / CNF-P / H2)
After adding a stopcock to a 50 mL Schlenk, adding a magnetic stir bar, flat laminated carbon nanofiber (100 mg) and Ru (cod) (cot) (44.8 mg, 0.15 mmol) and drying under reduced pressure at 0.04 Torr for about 10 minutes, then nitrogen Replaced with atmosphere. Tetrahydrofuran (10 mL) was added with a syringe to dissolve the complex. The complex solution in which the carbon fiber was suspended was frozen with liquid nitrogen, decompressed to 0.04 Torr, and then the Schlenk tube was replaced with hydrogen. After performing this hydrogen substitution operation three times, the temperature was returned to room temperature, and a gas sampling bag filled with hydrogen (As One Co., Ltd .: capacity 3 L) was connected and stirred for 20 hours. After the reaction, the reaction mixture was filtered using a membrane filter paper (Durapore (registered trademark): 0.45 · LHV), and washed with tetrahydrofuran (50 mL) and then with ether (50 mL). The obtained carbon fiber was transferred to a 30 mL eggplant flask, and a three-way cock was attached to the top thereof, and then dried at room temperature under a reduced pressure of 0.04 Torr to obtain a ruthenium-supported flat-plate laminated carbon nanofiber structure (Ru / CNF-P / H2) (113 mg) was obtained.
When the ruthenium loading of Ru / CNF-P / H2 obtained by the above operation was measured by ICP-MS (ICP mass spectrometry), it was about 6% by weight. Further, when the particle diameter was measured with a transmission electron microscope (TEM), the particle diameter was about 2.5-7.5 nm.

〔実施例8〕
ニッケル担持平板積層炭素ナノ繊維構造体(Ni/CNF-P/H2)の合成
有機金属錯体としてNi(cod)2(28.0mg、0.08mmol)を用いたことを除き、実施例7の手順を繰り返した。ニッケル担持平板積層炭素ナノ繊維構造体(Ni/CNF-P/H2)の収量は113mgであった。また、透過型電子顕微鏡(TEM)により粒子径を計測したところ45-100nmであった。
Example 8
The procedure of Example 7 was repeated except that Ni (cod) 2 (28.0 mg, 0.08 mmol) was used as the synthetic organometallic complex of the nickel-supported flat-plate carbon nanofiber structure (Ni / CNF-P / H2) It was. The yield of the nickel-supported flat plate laminated carbon nanofiber structure (Ni / CNF-P / H2) was 113 mg. Further, the particle diameter was measured by a transmission electron microscope (TEM) and found to be 45-100 nm.

〔実施例9−12〕
ベンジルヘキシルエーテルの水素化分解反応
[Examples 9-12]
Hydrogenolysis of benzylhexyl ether.

20mLの2口ナスフラスコにセプタムと三方コックを取り付け、実施例4−6で得られたパラジウム担持ナノ炭素繊維構造体、ならびに市販のパラジウム担持活性炭触媒(5mg)、磁気撹拌子、ベンジルヘキシルエーテル(192mg、1mmol)ならびにn-プロピルベンゼン(120mg、1mmol:GLC用内部標準)を加え、0.04Torrで減圧してアルゴン置換した。エタノール(1mL)をシリンジで加え、しばらく攪拌した後、ガス採取袋(アズワン株式会社製:容量3L)を用いて水素置換を3回くり返し、反応系を水素置換した。この反応容器を27℃の水浴につけて撹拌して反応を行なった。ベンジルヘキシルエーテルの転化率ならびにn-ヘキサノールとトルエンの収率は、ガスクロマトグラフにより決定した。GLC(カラム:TC- WAX;0.25mm x 30m、カラム温度:160℃、入力圧:60kPa、保持時間:4.0min(トルエン);4.4min(n-プロピルベンゼン);4.7min(n-ヘキサノール);11.8min(ベンジルヘキシルエーテル)。なお触媒活性(TOF)は、モル(ベンジルヘキシルエーテル)/モル(金属)・時間と定義する。   A septum and a three-way cock were attached to a 20 mL two-necked eggplant flask, and the palladium-supported nanocarbon fiber structure obtained in Example 4-6, a commercially available palladium-supported activated carbon catalyst (5 mg), a magnetic stirrer, benzylhexyl ether ( 192 mg, 1 mmol) and n-propylbenzene (120 mg, 1 mmol: GLC internal standard) were added, and the pressure was reduced to 0.04 Torr, and the atmosphere was replaced with argon. Ethanol (1 mL) was added with a syringe, and after stirring for a while, hydrogen substitution was repeated three times using a gas sampling bag (manufactured by ASONE Co., Ltd .: volume 3 L), and the reaction system was purged with hydrogen. The reaction vessel was placed in a 27 ° C. water bath and stirred to carry out the reaction. The conversion rate of benzylhexyl ether and the yields of n-hexanol and toluene were determined by gas chromatography. GLC (column: TC-WAX; 0.25 mm x 30 m, column temperature: 160 ° C., input pressure: 60 kPa, retention time: 4.0 min (toluene); 4.4 min (n-propylbenzene); 4.7 min (n-hexanol); 11.8 min (benzyl hexyl ether) The catalytic activity (TOF) is defined as mol (benzyl hexyl ether) / mol (metal) · time.

表1から、合成した炭素ナノ繊維を担体とした触媒の中では、Pd/CNF-T/H2の活性が最も高いことがわかる。特に市販の触媒に比べ、その活性は10倍にまで向上した。   Table 1 shows that the activity of Pd / CNF-T / H2 is the highest among the catalysts using the synthesized carbon nanofibers as a support. In particular, the activity was improved 10 times compared to the commercially available catalyst.

〔実施例13−15〕
N-メチル-N-フェニルベンジルアミンの水素化分解反応
[Examples 13-15]
Hydrogenolysis of N-methyl-N-phenylbenzylamine

20mLの2口ナスフラスコにセプタムと三方コックを取り付け、実施例4−6で得られたパラジウム担持ナノ炭素繊維構造体(5mg)、磁気撹拌子、N-メチル-N-フェニルベンジルアミン(197mg、1mmol)ならびにヘキサメチルベンゼン(16.2mg、0.1mmol:GLC用内部標準)を加え、0.04Torrで減圧してアルゴン置換した。エタノール(1mL)をシリンジで加え、しばらく攪拌した後、ガス採取袋(アズワン株式会社製:容量3L)を用いて水素置換を3回くり返し、反応系を水素置換した。この反応容器を26℃の水浴につけて撹拌して反応を行なった。N-メチル-N-フェニルベンジルアミンの転化率ならびにN-メチルアニリンとトルエンの収率は、ガスクロマトグラフにより決定した。GLC(カラム:TC-WAX;0.25mm x 30m、カラム温度:初期温度120℃;20℃/minで昇温;270℃で5分、入力圧:60kPa、保持時間:4.0min(トルエン);5.5min(N-メチルアニリン);7.9min(ヘキサメチルベンゼン);10.7min(N-メチル-N-フェニルベンジルアミン))。   A septum and a three-way cock were attached to a 20 mL two-necked eggplant flask, and the palladium-supported nanocarbon fiber structure (5 mg) obtained in Example 4-6, a magnetic stirrer, N-methyl-N-phenylbenzylamine (197 mg, 1 mmol) and hexamethylbenzene (16.2 mg, 0.1 mmol: internal standard for GLC) were added, and the pressure was reduced to 0.04 Torr and the atmosphere was replaced with argon. Ethanol (1 mL) was added with a syringe, and after stirring for a while, hydrogen substitution was repeated three times using a gas sampling bag (manufactured by ASONE Co., Ltd .: volume 3 L), and the reaction system was purged with hydrogen. The reaction vessel was placed in a 26 ° C. water bath and stirred to carry out the reaction. The conversion rate of N-methyl-N-phenylbenzylamine and the yields of N-methylaniline and toluene were determined by gas chromatography. GLC (column: TC-WAX; 0.25 mm x 30 m, column temperature: initial temperature 120 ° C .; temperature rise at 20 ° C./min; 270 ° C. for 5 minutes, input pressure: 60 kPa, retention time: 4.0 min (toluene); 5.5 min (N-methylaniline); 7.9 min (hexamethylbenzene); 10.7 min (N-methyl-N-phenylbenzylamine)).

表2からも、合成した炭素ナノ繊維を担体とした触媒の中では、Pd/CNF-T/H2の活性が最も高いことがわかる。   Table 2 also shows that the activity of Pd / CNF-T / H2 is the highest among the catalysts using the synthesized carbon nanofibers as a support.

〔実施例16−23〕
トランス−スチルベンの水素化反応
20mLの2口ナスフラスコにセプタムと三法コックを取り付け、実施例1−3、4−6で得られた金属担持ナノ炭素繊維構造体、ならびに市販の活性炭担持触媒(5mg)、磁気撹拌子、トランス−スチルベン(180mg、1mmol)ならびにヘキサメチルベンゼン(16.2mg、0.1mmol:GLC用内部標準)を加え、0.04Torrで減圧してアルゴン置換した。酢酸エチル(1mL)をシリンジで加え、しばらく攪拌した後、ガス採取袋(アズワン株式会社製:容量3L)を用いて水素置換を3回くり返し、反応系を水素置換した。この反応容器を27℃の水浴につけて撹拌して反応を行なった。トランス−スチルベンの転化率ならびに1,2−ジフェニルエタンの収率は、ガスクロマトグラフにより決定した。GLC(カラム:TC-1;0.25mm x 15m、カラム温度:170℃、入力圧:60kPa、保持時間:2.3min(ヘキサメチルベンゼン);2.7min(1,2−ジフェニルエタン);4.4min(トランス−スチルベン)。なお触媒活性(TOF)は、モル(トランス−スチルベン)/モル(金属)・時間と定義する。
[Examples 16-23]
Hydrogenation of trans-stilbene
A septum and three-way cock were attached to a 20 mL two-necked eggplant flask, a metal-supported nanocarbon fiber structure obtained in Examples 1-3 and 4-6, a commercially available activated carbon-supported catalyst (5 mg), a magnetic stirrer, Trans-stilbene (180 mg, 1 mmol) and hexamethylbenzene (16.2 mg, 0.1 mmol: internal standard for GLC) were added, and the pressure was reduced to 0.04 Torr, and the atmosphere was replaced with argon. After adding ethyl acetate (1 mL) with a syringe and stirring for a while, hydrogen substitution was repeated three times using a gas sampling bag (manufactured by ASONE Co., Ltd .: volume 3 L), and the reaction system was purged with hydrogen. The reaction vessel was placed in a 27 ° C. water bath and stirred to carry out the reaction. The conversion rate of trans-stilbene and the yield of 1,2-diphenylethane were determined by gas chromatography. GLC (column: TC-1; 0.25 mm x 15 m, column temperature: 170 ° C., input pressure: 60 kPa, retention time: 2.3 min (hexamethylbenzene); 2.7 min (1,2-diphenylethane); 4.4 min (trans -Stilbene) The catalytic activity (TOF) is defined as mol (trans-stilbene) / mol (metal) · time.

表1から、白金およびパラジウムのいずれの触媒を用いた場合も、CNF-Tを担体とした触媒の活性が最も高いことがわかる。これらCNF-Tに担持した触媒は、市販の活性炭担持触媒に比べ、パラジウム触媒で約2倍、白金触媒で4倍以上の活性を示した。   It can be seen from Table 1 that the activity of the catalyst using CNF-T as the carrier is the highest when any catalyst of platinum and palladium is used. These catalysts supported on CNF-T showed about twice the activity of the palladium catalyst and four times or more of the platinum catalyst compared to the commercially available activated carbon catalyst.

〔実施例24−29〕
トルエンの水素化反応
[Examples 24-29]
Hydrogenation reaction of toluene

100mLオートクレーブ用ガラス内管に、実施例1−3で得られた白金ナノ炭素繊維構造体、実施例7で得られたルテニウムナノ炭素繊維構造体(5mg)、ならびに市販の白金およびルテニウム担持活性炭触媒(10mg)とトルエン(1mL、0.87g、9.4mmol)を加え、オートクレーブに設置した後、10気圧の水素を充填した。このオートクレーブを40℃の油浴につけ、撹拌した。反応容器を室温まで冷却した後、オートクレーブのコックを徐々に開放して常圧に戻した。反応物に内部標準物質としてn-オクタンを加え、ガスクロマトグラフによりトルエンの転化率ならびにメチルシクロヘキサンの収率を決定した。GLC(カラム:TC-17;0.25 mm x 30m、カラム温度:70℃、入力圧:60kPa、保持時間:4.3min(n-オクタン);4.6min(メチルシクロヘキサン);5.8min(トルエン))。   In a 100 mL glass inner tube for autoclave, platinum nanocarbon fiber structure obtained in Example 1-3, ruthenium nanocarbon fiber structure (5 mg) obtained in Example 7, and commercially available platinum and ruthenium-supported activated carbon catalyst (10 mg) and toluene (1 mL, 0.87 g, 9.4 mmol) were added, and the mixture was placed in an autoclave and then charged with 10 atm of hydrogen. The autoclave was placed in a 40 ° C. oil bath and stirred. After cooling the reaction vessel to room temperature, the autoclave cock was gradually opened to return to normal pressure. N-octane was added as an internal standard substance to the reaction product, and the conversion of toluene and the yield of methylcyclohexane were determined by gas chromatography. GLC (column: TC-17; 0.25 mm × 30 m, column temperature: 70 ° C., input pressure: 60 kPa, retention time: 4.3 min (n-octane); 4.6 min (methylcyclohexane); 5.8 min (toluene)).

ルテニウム触媒では、市販の活性炭担持触媒では本条件下、反応しないのに対し、Ru/CNF-P(H2)触媒では5時間で定量的に反応が進行した。一方、市販の活性炭担持白金触媒では35%しか反応が進行しないのに、CNF担持触媒では、いずれの炭素ナノ繊維を担体に用いても、定量的に生成物が得られることがわかる。   With a ruthenium catalyst, a commercially available activated carbon-supported catalyst does not react under the present conditions, whereas with a Ru / CNF-P (H2) catalyst, the reaction progresses quantitatively in 5 hours. On the other hand, the reaction proceeds only 35% with a commercially available activated carbon-supported platinum catalyst, but with a CNF-supported catalyst, it can be seen that a product can be obtained quantitatively regardless of which carbon nanofiber is used as a support.

本発明に従う金属ナノ微粒子担持炭素ナノ繊維の透過電子顕微鏡像を例示する。The transmission electron microscope image of the metal nanoparticle carrying | support carbon nanofiber according to this invention is illustrated. 本発明において用いられる有機金属錯体の例の化学構造式を示す。The chemical structural formula of the example of the organometallic complex used in this invention is shown.

Claims (3)

ナノメートルサイズの金属微粒子が炭素ナノ繊維に担持された金属ナノ微粒子担持炭素ナノ繊維を製造する方法であって、
目的の金属の炭素−金属結合を有する有機配位子のみからなる有機金属錯体を溶かした有機溶媒中に炭素ナノ繊維を懸濁させて水素雰囲気下で懸濁液を室温で攪拌することにより、前記金属錯体をナノ微粒子化する工程を含むことを特徴とする方法。
A method for producing metal nanoparticle-supported carbon nanofibers in which nanometer-sized metal microparticles are supported on carbon nanofibers,
By suspending carbon nanofibers in an organic solvent in which an organometallic complex consisting only of an organic ligand having a carbon-metal bond of the target metal is dissolved, and stirring the suspension at room temperature in a hydrogen atmosphere, A method comprising the step of making the metal complex into nanoparticles.
有機金属錯体の有機配位子がアルケン類を含むことを特徴とする請求項1の方法。 The method of claim 1, wherein the organic ligand of the organometallic complex comprises alkenes. 前記有機金属錯体として、Ru(cod)(cot)[cod=1,5−シクロオクタジエン;cot=シクロオクタトリエン]、Ni(cod)2、Pd2(dba)3(CHCl3)[dba=ジベンジリデンアセトン]、Pd(dba)2、Pt(dba)2、Pt(cod)2、PtMe2(cod)を用いることを特徴とする請求項2の方法。 As the organometallic complex, Ru (cod) (cot) [cod = 1,5-cyclooctadiene; cot = cyclooctatriene], Ni (cod) 2, Pd2 (dba) 3 (CHCl3) [dba = dibenzylidene Acetone], Pd (dba) 2, Pt (dba) 2, Pt (cod) 2, PtMe2 (cod) are used.
JP2006301076A 2006-11-07 2006-11-07 Method for producing carbon nanofibers carrying metal nanoparticles Expired - Fee Related JP4848250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301076A JP4848250B2 (en) 2006-11-07 2006-11-07 Method for producing carbon nanofibers carrying metal nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301076A JP4848250B2 (en) 2006-11-07 2006-11-07 Method for producing carbon nanofibers carrying metal nanoparticles

Publications (2)

Publication Number Publication Date
JP2008115051A JP2008115051A (en) 2008-05-22
JP4848250B2 true JP4848250B2 (en) 2011-12-28

Family

ID=39501307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301076A Expired - Fee Related JP4848250B2 (en) 2006-11-07 2006-11-07 Method for producing carbon nanofibers carrying metal nanoparticles

Country Status (1)

Country Link
JP (1) JP4848250B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2519950C1 (en) * 2013-03-05 2014-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Method of producing primary or secondary alcohols
JP6864300B2 (en) * 2020-03-03 2021-04-28 株式会社フルヤ金属 Supported catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490037A (en) * 1987-09-29 1989-04-05 Tanaka Precious Metal Ind Production of neutral palladium catalyst
JP5013722B2 (en) * 2005-03-10 2012-08-29 独立行政法人科学技術振興機構 Manufacturing method of nano metal fine particle / carbon nano fiber structure

Also Published As

Publication number Publication date
JP2008115051A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
Wang et al. The recent development of efficient Earth-abundant transition-metal nanocatalysts
Liu et al. Atomically dispersed Cu catalyst for efficient chemoselective hydrogenation reaction
Guan et al. Comparison of Pd-UiO-66 and Pd-UiO-66-NH2 catalysts performance for phenol hydrogenation in aqueous medium
US7396798B2 (en) Method for preparing catalyst supports and supported catalysts from single walled carbon nanotubes
Chen et al. General immobilization of ultrafine alloyed nanoparticles within metal–organic frameworks with high loadings for advanced synergetic catalysis
Zhang et al. PdNi nanoparticles supported on MIL-101 as high-performance catalysts for hydrogen generation from ammonia borane
Li et al. One-pot synthesis of Pd nanoparticle catalysts supported on N-doped carbon and application in the domino carbonylation
Zhao et al. Nickel nanoparticles supported on MOF-5: Synthesis and catalytic hydrogenation properties
Xu et al. Revealing the correlation between catalytic selectivity and the local coordination environment of Pt single atom
Li et al. Palladium Nanoparticles Immobilized on Magnetic Porous Carbon Derived from ZIF‐67 as Efficient Catalysts for the Semihydrogenation of Phenylacetylene under Extremely Mild Conditions
JP5715726B2 (en) Ruthenium fine particles having substantially face-centered cubic structure and method for producing the same
Yu et al. Transition metal oxide-modified Ir nanoparticles supported on SBA-15 silica for selective hydrogenation of substituted nitroaromatics
Wang et al. In Situ One-Step Synthesis of Platinum Nanoparticles Supported on Metal–Organic Frameworks as an Effective and Stable Catalyst for Selective Hydrogenation of 5-Hydroxymethylfurfural
Zhang et al. N-Doped porous carbon supported palladium nanoparticles as a highly efficient and recyclable catalyst for the Suzuki coupling reaction
Wei et al. Precisely Engineering Architectures of Co/C Sub‐Microreactors for Selective Syngas Conversion
JP5013722B2 (en) Manufacturing method of nano metal fine particle / carbon nano fiber structure
Ribeiro et al. Palladium decoration of hybrid carbon nanotubes/charcoal composite and its catalytic behavior in the hydrogenation of trans-cinnamaldehyde
Zhao et al. Ultralow loading cobalt-based nanocatalyst for benign and efficient aerobic oxidation of allylic alcohols and biobased olefins
García-Zaragoza et al. Tailoring graphene-supported Ru nanoparticles by functionalization with pyrene-tagged N-heterocyclic carbenes
CN110665546A (en) Noble metal/amino MOFs selective hydrogenation catalyst, preparation method and application thereof
Ding et al. Ultrasmall palladium nanoparticles anchored on N-doped nestlike carbon nanosheets for selective hydrogenation of quinolines
Wang et al. Oxygen Vacancy-Rich Ni–CeO2 Heterojunction Catalyst for Hydrogenating Halogenated Nitroarenes with High Activity and Selectivity
Wu et al. MOF-derived Fe–N–C with interconnected mesoporous structure for halonitrobenzenes hydrogenation: Role of dicyandiamide on the growth of active sites and pore structure
JP4848250B2 (en) Method for producing carbon nanofibers carrying metal nanoparticles
Amirsardari et al. Controlled attachment of ultrafine iridium nanoparticles on mesoporous aluminosilicate granules with carbon nanotubes and acetyl acetone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110721

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees