JP4847885B2 - Method for reducing residual stress in piping - Google Patents

Method for reducing residual stress in piping Download PDF

Info

Publication number
JP4847885B2
JP4847885B2 JP2007024756A JP2007024756A JP4847885B2 JP 4847885 B2 JP4847885 B2 JP 4847885B2 JP 2007024756 A JP2007024756 A JP 2007024756A JP 2007024756 A JP2007024756 A JP 2007024756A JP 4847885 B2 JP4847885 B2 JP 4847885B2
Authority
JP
Japan
Prior art keywords
pipe
oil
cooling water
residual stress
stress reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007024756A
Other languages
Japanese (ja)
Other versions
JP2008189983A (en
Inventor
ゆか 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2007024756A priority Critical patent/JP4847885B2/en
Publication of JP2008189983A publication Critical patent/JP2008189983A/en
Application granted granted Critical
Publication of JP4847885B2 publication Critical patent/JP4847885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

本発明は、溶接又は曲げ加工により発生した配管の残留応力を低減するための熱処理方法に係り、特に小口径配管を対象とする技術に関する。   The present invention relates to a heat treatment method for reducing the residual stress of a pipe generated by welding or bending, and particularly to a technique for a small diameter pipe.

配管の溶接後又は曲げ加工後の残留応力を低減する代表的な方法として、特許文献1及び特許文献2が挙げられる。これらの特許文献には、配管内面に予め冷媒を存在させ、配管外表面を加熱して配管内表面と外表面に温度差を発生させ、内面を引張り降伏、外面を圧縮降伏させる熱処理方法が示されている。   As typical methods for reducing the residual stress after pipe welding or bending, Patent Document 1 and Patent Document 2 can be cited. These patent documents describe a heat treatment method in which a refrigerant is preliminarily present on the inner surface of a pipe, the outer surface of the pipe is heated to generate a temperature difference between the inner and outer surfaces of the pipe, the inner surface is pulled to yield, and the outer surface is compressed to yield. Has been.

また特許文献3には、配管内面に予め冷媒を存在させないで、配管内外面がクリープ温度領域の同一温度状態になるように所定時間加熱した後、前記配管内表面を冷媒で冷却する加熱冷却処理を行い、溶接部近傍又は曲げ加工近傍の残留応力を圧縮残留応力に変えることができる熱処理方法が示されている。前記熱処理方法には、配管外表面を加熱する加熱源と、該加熱源による前記配管の温度をクリープ温度領域で所定時間加熱制御する加熱源制御装置と、前記配管内面に冷媒を供給する冷媒供給装置と、前記所定時間加熱した後前記配管内面に冷媒を供給する熱処理制御装置とを有することを特徴とする熱処理装置を有する。   Patent Document 3 discloses a heating / cooling process in which a refrigerant is not previously present on the inner surface of a pipe, and the inner surface of the pipe is heated for a predetermined time so as to be in the same temperature state in the creep temperature region, and then the inner surface of the pipe is cooled with the refrigerant. A heat treatment method is shown in which the residual stress in the vicinity of the welded portion or in the vicinity of the bending process can be changed into a compressive residual stress. The heat treatment method includes a heating source that heats an outer surface of a pipe, a heating source controller that controls heating of the pipe by the heating source in a creep temperature region for a predetermined time, and a refrigerant supply that supplies a refrigerant to the inner surface of the pipe And a heat treatment control device for supplying a refrigerant to the inner surface of the pipe after heating for the predetermined time.

さらに特許文献4には、配管外表面を加熱し、同配管の残留応力を低減する手法が挙げられており、配管外表面を加熱する手段としてレーザを用いるという特徴を有する。   Further, Patent Document 4 mentions a method of heating the outer surface of the pipe to reduce the residual stress of the pipe, and has a feature that a laser is used as a means for heating the outer surface of the pipe.

特開昭52−130409号公報JP-A-52-130409 特開昭52−70914号公報JP-A-52-70914 特開2005−320626号公報Japanese Patent Laying-Open No. 2005-320626 特開2006−37199号公報JP 2006-37199 A

溶接等の熱、加工履歴に伴い発生した残留応力又は曲げ加工によって発生した引張り残留応力は、疲労強度の低下、応力腐食割れの発生及び進展の主要因となる。上記の損傷が危惧される部位の引張り残留応力を圧縮化または低減することにより、疲労、応力腐食割れによる損傷を抑制することが可能となる。   Heat generated by welding, residual stress generated with processing history, or tensile residual stress generated by bending is a major factor in fatigue strength reduction, stress corrosion cracking, and progress. By compressing or reducing the tensile residual stress at a site where the above-mentioned damage is a concern, it is possible to suppress damage due to fatigue and stress corrosion cracking.

配管内表面に作用する引張り残留応力に対し、特許文献1及び特許文献2に代表される熱処理を施す技術は、予め冷媒を配管内面に存在させることが可能な大型配管で、ポンプ等の循環システムを有する配管系には有効であるが、薄肉の小口径配管では十分な効果を期待できない。   The technique of performing heat treatment represented by Patent Document 1 and Patent Document 2 on the tensile residual stress acting on the inner surface of the pipe is a large pipe that allows the refrigerant to exist on the inner surface of the pipe in advance. It is effective for a piping system having a small diameter, but a thin-walled small-diameter piping cannot be expected to have a sufficient effect.

特許文献3の、配管を高温に保持した状態で、配管内表面を冷却水により冷却する場合、口径が小さく配管に供給される冷却水量が少ない小口径配管の場合、冷却水に対する入熱量が大きくなり、沸騰状態が膜沸騰となり、熱伝達率が激減する可能性がある。熱伝達率が減少すると、配管内外面の温度差が小さくなり、内外面での熱膨脹差が小さくなるため、残留応力の低減効果が減少する。また、管と管とが狭い間隔で隣接して設置された配管群(以下、集合管という)では、各配管の対象箇所にバンド型電気ヒータ等を均一に設置することが難しく、温度むらが生じ、残留応力低減効果がばらつく可能性がある。   When the inner surface of the pipe is cooled with cooling water while the pipe is kept at a high temperature in Patent Document 3, the amount of heat input to the cooling water is large in the case of a small diameter pipe with a small diameter and a small amount of cooling water supplied to the pipe. Therefore, the boiling state becomes film boiling, and the heat transfer rate may be drastically reduced. When the heat transfer rate decreases, the temperature difference between the inner and outer surfaces of the pipe becomes smaller, and the difference in thermal expansion between the inner and outer surfaces becomes smaller, so the effect of reducing the residual stress is reduced. In addition, in a pipe group in which pipes are installed adjacent to each other at a narrow interval (hereinafter referred to as a collecting pipe), it is difficult to uniformly install a band-type electric heater or the like at a target portion of each pipe, and temperature unevenness occurs. May occur and the residual stress reduction effect may vary.

特許文献4のレーザ照射による残留応力低減法は、前述のような配管群(集合管)においては、隣接する配管の干渉により適用が困難な場合が考えられる。   The method of reducing the residual stress by laser irradiation in Patent Document 4 may be difficult to apply in the pipe group (collecting pipe) as described above due to interference between adjacent pipes.

原子力プラントでは、原子炉廻りの高温配管では、オーステナイト系ステンレス鋼製の配管が採用されている。また、原子炉廻りの配管は狭い間隔で隣接して設置することが多い。ここでいう小口径の配管は、外径が77mm以下、肉厚が8mm以下程度のものである。   In nuclear power plants, austenitic stainless steel piping is used for high-temperature piping around the nuclear reactor. In addition, piping around the reactor is often installed adjacent to each other with a narrow interval. The small-diameter pipe here has an outer diameter of 77 mm or less and a wall thickness of about 8 mm or less.

本発明は、上記状況に鑑みてなされたものであり、その課題は、小口径配管を対象として残留応力低減のための処理を行う際の、残留応力低減効果の向上と施工効果のばらつき低減を図ることにある。   The present invention has been made in view of the above situation, and its problem is to improve the residual stress reduction effect and reduce the variation in construction effect when performing a process for reducing the residual stress for small diameter pipes. There is to plan.

本発明は、配管の残留応力低減対象箇所を所望の温度に加熱する手順と、冷却水を収容した密閉容器に加圧気体を供給して前記冷却水を加圧する手順と、前記所望の温度に加熱された配管対象箇所内部に、前記加圧された冷却水を、少なくとも該冷却水が前記加熱された配管対象箇所内面に接する箇所で膜沸騰を生じさせない流量、圧力で通流する手順とを有してなる、配管内表面の引張残留応力低減方法により上記課題を達成する。 The present invention provides a procedure for heating a residual stress reduction target portion of a pipe to a desired temperature, a procedure for supplying pressurized gas to a sealed container containing cooling water and pressurizing the cooling water, and the desired temperature. A procedure for passing the pressurized cooling water through the heated piping target portion at a flow rate and pressure that does not cause film boiling at least at a location where the cooling water contacts the inner surface of the heated piping target portion. made has, to achieve the above object by a tensile residual stress reduction method distribution pipe surface.

配管溶接部近傍の残留応力低減対象箇所を所望の温度に加熱した後、前記対象箇所の配管内面に加圧した冷却水を通流させ、前記対象箇所の配管内面を冷却する。前記対象箇所の配管内面では、配管の熱により冷却水が加熱され沸騰するが、沸騰状態が膜沸騰にならないような冷却水の流量、圧力を維持することで、配管内面から冷却水への熱伝達率の低下が避けられる。これで、配管内面の冷却効率を高い値に維持し、配管内外面の温度勾配を大きくし、配管内表面に作用する引張残留応力の低減能力を向上させることが可能になる。   After the residual stress reduction target location near the pipe weld is heated to a desired temperature, pressurized cooling water is passed through the pipe inner surface of the target location to cool the pipe inner surface of the target location. On the inner surface of the pipe at the target location, the cooling water is heated and boiled by the heat of the pipe, but the heat from the inner surface of the pipe to the cooling water is maintained by maintaining the flow rate and pressure of the cooling water so that the boiling state does not become film boiling. A decrease in transmission rate is avoided. Thus, the cooling efficiency of the inner surface of the pipe can be maintained at a high value, the temperature gradient of the inner and outer surfaces of the pipe can be increased, and the ability to reduce the tensile residual stress acting on the inner surface of the pipe can be improved.

配管内に通流する冷却水の水源として、加圧気体で内部を加圧される密閉容器を用いることで、冷却水通流のためのポンプやそのための電源設備の仮設が不要になり、既設の配管設備への施工が容易になる。   By using a sealed container that is pressurized inside with pressurized gas as the source of cooling water flowing through the piping, there is no need for a temporary pump for cooling water flow or power supply equipment for that purpose. The installation to the piping equipment becomes easy.

また、前記対象箇所の配管を加熱するに際し、残留応力低減対象箇所を含む配管を浸漬させる油容器を設け、配管の加熱目標温度に調整した油を前記油容器に供給することで、施工箇所の配管を目標温度に加熱する。加熱された油を、配管を囲む油容器に満たすことで、配管が狭い間隔で配置されている場合でも、配管それぞれの周囲は加熱された油で覆われ、全体を均一な温度に加熱することが可能になる。均一温度に加熱後、前記引張残留応力の低減方法と同様の方法で、配管内に冷却水を供給することで、配管内表面に作用する引張残留応力を効率よく低減させることができる。   In addition, when heating the pipe of the target location, an oil container is provided to immerse the pipe including the residual stress reduction target location, and the oil adjusted to the heating target temperature of the pipe is supplied to the oil container, so that Heat the pipe to the target temperature. Filling the heated oil with an oil container that surrounds the piping, even when the piping is arranged at narrow intervals, the circumference of each piping is covered with heated oil, and the whole is heated to a uniform temperature Is possible. After heating to a uniform temperature, the tensile residual stress acting on the pipe inner surface can be efficiently reduced by supplying cooling water into the pipe in the same manner as the method for reducing the tensile residual stress.

本発明によれば、配管溶接部近傍の施工箇所を均一温度に加熱した後の施工箇所の配管内表面冷却において、熱伝達率の高い沸騰状態として、配管内表面を冷却することが可能となる。これにより、配管内表面と外表面の温度差を効率よくもうけることが可能となり、集合管の配管内表面に作用する引張残留応力を低減させることができる。   According to the present invention, it becomes possible to cool the inner surface of the pipe as a boiling state with a high heat transfer rate in the cooling of the inner surface of the pipe at the construction site after heating the construction site near the pipe weld to a uniform temperature. . As a result, a temperature difference between the pipe inner surface and the outer surface can be efficiently created, and the tensile residual stress acting on the pipe inner surface of the collecting pipe can be reduced.

また、本発明によれば、管と管とが狭隘に隣接する集合管の加熱においても、施工箇所の配管温度を均一に加熱することが可能となる。これにより、施工効果のばらつきを小さくすることができる。   Further, according to the present invention, it is possible to uniformly heat the pipe temperature at the construction site even in the heating of the collecting pipe where the pipes are adjacent to each other narrowly. Thereby, the dispersion | variation in a construction effect can be made small.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施例1に係る引張残留応力低減方法を実施する装置の要部構成の例を示す概念図である。図示の装置は、冷却水を収容し、該冷却水を加圧する密閉容器(以下、加圧器という)8と、引張残留応力低減対象の配管28を収容、浸漬するように設置される油容器23と、この油容器23に油配管31,32で接続され、加熱された油を油容器23に供給する加熱油供給装置22と、前記加圧器8と配管28の一方の端部をヘッダー管29を介して接続する冷却水供給配管14と、を含んで構成されている。なお、図1では、制御装置や電源などの細部は省略してある。また、配管28の他方の端部には、図示されていないが、冷却水回収用バルブを介装した冷却水回収用配管が仮設、接続されている。   FIG. 1 is a conceptual diagram illustrating an example of a configuration of a main part of an apparatus that performs a tensile residual stress reduction method according to Embodiment 1 of the present invention. The illustrated apparatus accommodates cooling water and seals an airtight container (hereinafter referred to as a pressurizer) 8 that pressurizes the cooling water, and an oil container 23 that is installed so as to accommodate and immerse a pipe 28 to be subjected to reduction of tensile residual stress. A heating oil supply device 22 connected to the oil container 23 by oil pipes 31 and 32 and supplying heated oil to the oil container 23; one end of the pressurizer 8 and the pipe 28 is connected to a header pipe 29; And a cooling water supply pipe 14 connected via the. In FIG. 1, details such as the control device and the power source are omitted. Further, although not shown in the drawing, a cooling water recovery pipe interposing a cooling water recovery valve is temporarily connected to the other end of the pipe 28.

加圧器8は、内圧に耐えられるよう構成された円筒形の容器で、上部に加圧用の圧縮空気供給配管34が接続され、圧縮空気供給配管34には、加圧バルブ9が介装されている。圧縮空気供給配管34には、エアコンプレッサ35が減圧弁を介して接続され、圧縮空気を供給できるようになっている。加圧器8の上部には、圧縮空気を大気に放出する開放バルブ10、加圧器8内部の圧力を計測表示する圧力計13が接続されている。また、加圧器8の上部には、冷却水取り入れバルブ36が介装されている冷却水取り入れ配管12が、加圧器8の底部には、冷却水供給バルブ11を介装した冷却水供給配管14が、それぞれ接続されている。さらに、加圧器内部の液面を表示する液面計(図示せず)が設けられている。   The pressurizer 8 is a cylindrical container configured to withstand internal pressure, and a compressed air supply pipe 34 for pressurization is connected to the upper part, and a pressurized valve 9 is interposed in the compressed air supply pipe 34. Yes. An air compressor 35 is connected to the compressed air supply pipe 34 via a pressure reducing valve so that compressed air can be supplied. An upper valve 10 for releasing compressed air to the atmosphere and a pressure gauge 13 for measuring and displaying the pressure inside the pressurizer 8 are connected to the upper portion of the pressurizer 8. In addition, a cooling water intake pipe 12 having a cooling water intake valve 36 interposed in the upper part of the pressurizer 8 and a cooling water supply pipe 14 having a cooling water supply valve 11 interposed in the bottom of the pressurizer 8. Are connected to each other. Further, a liquid level gauge (not shown) for displaying the liquid level inside the pressurizer is provided.

油容器23は、引張残留応力低減対象の配管28の下方及び側方を囲むように設置され、加熱用の油が満たされる。本実施の形態においては、既設の配管群に施工するため、詳細は省略したが上面が開放された組立式の容器となっている。油容器23には、上部に油供給用の油配管31,下部に油取り出し用の油配管32がそれぞれ一端を接続されるようになっている。油容器23の底部には又、油温計測用の温度計(図示せず)が取り付けられている。   The oil container 23 is installed so as to surround the lower side and the side of the pipe 28 to be subjected to tensile residual stress reduction, and is filled with heating oil. In the present embodiment, since the construction is performed on an existing pipe group, although the details are omitted, the container is an assembly-type container having an open upper surface. The oil container 23 is connected at one end to an oil pipe 31 for supplying oil at the upper part and an oil pipe 32 for taking out oil at the lower part. A thermometer (not shown) for measuring the oil temperature is also attached to the bottom of the oil container 23.

加熱油供給装置22は、油を加熱する加熱器24と、一方の端部が加熱器24に接続された油供給配管30と、油供給配管30に、吐出側を加熱器24に向けて介装された油供給ポンプ25と、油供給ポンプ25の下流側の油供給配管30に介装された油バルブ26dと、加熱器24と前記油容器23をそれぞれ接続する油配管31,32と、油配管31に介装された油バルブ26aと、油配管32に吐出側を加熱器24に向けて介装された油循環ポンプ27と、油配管32の油循環ポンプ27下流側に介装された油バルブ26bと、一方の端部が油配管32の油循環ポンプ27と油バルブ26bの間に分岐して接続された油抜き出し配管33と、油抜き出し配管33に介装された油バルブ26cと、を含んで構成されている。   The heating oil supply device 22 includes a heater 24 that heats oil, an oil supply pipe 30 that has one end connected to the heater 24, an oil supply pipe 30, and a discharge side facing the heater 24. An oil supply pump 25 mounted, an oil valve 26d interposed in an oil supply pipe 30 on the downstream side of the oil supply pump 25, oil pipes 31 and 32 connecting the heater 24 and the oil container 23, and An oil valve 26 a interposed in the oil pipe 31, an oil circulation pump 27 interposed in the oil pipe 32 with the discharge side facing the heater 24, and an oil circulation pump 27 downstream of the oil pipe 32. The oil valve 26 b, one end of which is branched and connected between the oil circulation pump 27 of the oil pipe 32 and the oil valve 26 b, and the oil valve 26 c interposed in the oil drain pipe 33. And.

加熱器24は、内部に加熱源を内装した密閉筐体で、この筐体に前記油供給配管30、油配管31,32がそれぞれ接続されている。また、油供給配管30と油抜き出し配管33の各他端は、図示されていない油タンクに接続されている。   The heater 24 is a hermetically sealed casing with a heating source inside, and the oil supply pipe 30 and the oil pipes 31 and 32 are connected to the casing. The other ends of the oil supply pipe 30 and the oil extraction pipe 33 are connected to an oil tank (not shown).

以下、上記構成の装置を用いて、対象配管の引張残留応力を低減する手順について説明する。   Hereinafter, a procedure for reducing the tensile residual stress of the target pipe using the apparatus configured as described above will be described.

初期条件として、加圧バルブ9を全閉、開放バルブ10、冷却水回収用バルブを全開、冷却水供給バルブ11、冷却水取り入れバルブ36を全閉にしておく。また、油バルブ26a、26b、26c、26dは全閉にしておく。図1に示すバルブの開閉状態は、この時点での状態である。   As initial conditions, the pressurizing valve 9 is fully closed, the opening valve 10 and the cooling water recovery valve are fully opened, and the cooling water supply valve 11 and the cooling water intake valve 36 are fully closed. The oil valves 26a, 26b, 26c, and 26d are fully closed. The open / closed state of the valve shown in FIG. 1 is the state at this point.

まず、冷却水取り入れバルブ36を開き、加圧器8内部の液面が所定の位置になるまで、冷却水を取り入れる。加圧器8内部の液面が所定の位置になったら、冷却水取り入れバルブ36を閉じ、次いで開放バルブ10を閉じる。   First, the cooling water intake valve 36 is opened, and cooling water is taken in until the liquid level inside the pressurizer 8 reaches a predetermined position. When the liquid level inside the pressurizer 8 reaches a predetermined position, the cooling water intake valve 36 is closed, and then the release valve 10 is closed.

次に、加圧バルブ9を開いて所定の圧力に減圧された圧縮空気を加圧器8内部に送り込む。この状態で、加圧器8内部の冷却水は所定の圧力に加圧され、冷却水供給バルブ11が開かれると、配管28に送り込まれるようになっている。   Next, the pressurized valve 9 is opened, and the compressed air reduced to a predetermined pressure is sent into the pressurizer 8. In this state, the cooling water inside the pressurizer 8 is pressurized to a predetermined pressure, and when the cooling water supply valve 11 is opened, the cooling water is fed into the pipe 28.

次に、油による配管28の加熱が行われる。まず、油バルブ26a、26b、26dが開かれ、油供給ポンプ25が駆動されて、加熱用の油が加熱器24、油配管31を介して油容器23に供給される。同時に、加熱器24が作動され、通過する油が加熱される。油容器23内の油面が所望の油面、つまり、処理対象の配管28が油で覆われる状態になったら、油供給ポンプ25が停止され、油バルブ26dが閉じられるとともに、油循環ポンプ27が起動される。   Next, the piping 28 is heated with oil. First, the oil valves 26 a, 26 b and 26 d are opened, the oil supply pump 25 is driven, and heating oil is supplied to the oil container 23 via the heater 24 and the oil pipe 31. At the same time, the heater 24 is activated and the passing oil is heated. When the oil level in the oil container 23 is a desired oil level, that is, the pipe 28 to be treated is covered with oil, the oil supply pump 25 is stopped, the oil valve 26d is closed, and the oil circulation pump 27 Is activated.

油容器23内の油は、油循環ポンプ27により駆動されて、油配管32、加熱器24、油配管31、油容器23を循環し、その過程で加熱器24で加熱されて昇温される。前記油温計で検出される温度が所望の温度を維持するよう、加熱器24の加熱量が制御される。油容器23内に供給された高温の油により、配管28の外表面温度が所望の温度になるまで加熱が継続される。配管28の外表面温度が所望の温度になったことを確認できるように、予め、配管28の外表面温度を測定する手段を設けておくのが望ましい。   The oil in the oil container 23 is driven by the oil circulation pump 27 and circulates through the oil pipe 32, the heater 24, the oil pipe 31, and the oil container 23, and is heated by the heater 24 in the process to be heated. . The heating amount of the heater 24 is controlled so that the temperature detected by the oil thermometer maintains a desired temperature. Heating is continued until the outer surface temperature of the pipe 28 reaches a desired temperature by the high-temperature oil supplied into the oil container 23. It is desirable to provide a means for measuring the outer surface temperature of the pipe 28 in advance so that it can be confirmed that the outer surface temperature of the pipe 28 has reached a desired temperature.

配管28の外表面温度が所望の均一温度になったら、あるいは前記油温計の表示温度が所望の温度になってから、予め定めた時間経過したら、冷却水供給バルブ11を開く。冷却水供給バルブ11が開かれると、加圧器8内の冷却水は、圧縮空気の圧力に加圧されているため、常温のまま、冷却水供給配管14、ヘッダー管29を経て配管28に流入し、配管28を通過して前記冷却水回収用配管から流出する。このとき、加圧器8内の冷却水が流出するにつれて加圧器8内部の気体圧力が低下するが、気体圧力の低下につれて、減圧弁が動作して、エアコンプレッサ35から圧縮空気が加圧器8内に流入する。したがって、冷却水は常に同じ圧力で流出する。   When the outer surface temperature of the pipe 28 reaches a desired uniform temperature, or when a predetermined time elapses after the display temperature of the oil thermometer reaches the desired temperature, the cooling water supply valve 11 is opened. When the cooling water supply valve 11 is opened, the cooling water in the pressurizer 8 is pressurized to the pressure of the compressed air, and thus flows into the pipe 28 through the cooling water supply pipe 14 and the header pipe 29 at the normal temperature. Then, it passes through the pipe 28 and flows out from the cooling water recovery pipe. At this time, the gas pressure in the pressurizer 8 decreases as the cooling water in the pressurizer 8 flows out. However, as the gas pressure decreases, the pressure reducing valve operates and compressed air is supplied from the air compressor 35 to the pressurizer 8. Flow into. Therefore, the cooling water always flows out at the same pressure.

配管外表面側から油で加熱され、外表面側が所望の温度に保持されている配管28は、配管内面を冷却水が流れることにより内面側が冷却される。このとき、配管内面は冷却水を沸騰させながら冷却されるが、沸騰状態が膜沸騰状態になると、配管内面から冷却水への熱伝達率が低下し、冷却が効果的に行われなくなる。本実施の形態では、冷却水流量が、配管内面の沸騰状態が膜沸騰状態にならないような流量、圧力になるように、前記加圧器8の内圧が設定されている。このとき、冷却水回収用バルブの開度を調整することにより、配管28内を通流する冷却水の流量、圧力を調整するようにしてもよい。   In the pipe 28 that is heated with oil from the outer surface side of the pipe and the outer surface side is maintained at a desired temperature, the inner surface side is cooled by the cooling water flowing through the inner surface of the pipe. At this time, the inner surface of the pipe is cooled while boiling the cooling water. However, when the boiling state becomes a film boiling state, the heat transfer rate from the inner surface of the pipe to the cooling water is reduced, and cooling is not effectively performed. In the present embodiment, the internal pressure of the pressurizer 8 is set so that the cooling water flow rate becomes a flow rate and pressure so that the boiling state of the inner surface of the pipe does not become a film boiling state. At this time, the flow rate and pressure of the cooling water flowing through the pipe 28 may be adjusted by adjusting the opening of the cooling water recovery valve.

この結果、冷却水により配管内表面が常温まで冷却され、配管の内表面と外表面に温度差が発生する。   As a result, the inner surface of the pipe is cooled to room temperature by the cooling water, and a temperature difference is generated between the inner surface and the outer surface of the pipe.

配管内表面を常温まで冷却するのに十分な量の冷却水がストックされた加圧器8は、集合管の内表面が常温になるまで冷却水を供給し、さらに、常温になった状態を予め定めた時間保持したのち加熱器24による油の加熱が停止される。集合管の内表面の温度の様子は、例えば冷却水回収用配管に流入する冷却水温度を測定することにより知ることができる。   The pressurizer 8 stocked with a sufficient amount of cooling water to cool the inner surface of the pipe to the normal temperature supplies the cooling water until the inner surface of the collecting pipe reaches the normal temperature, and further maintains the state at the normal temperature in advance. After holding for a predetermined time, heating of the oil by the heater 24 is stopped. The state of the temperature of the inner surface of the collecting pipe can be known, for example, by measuring the temperature of the cooling water flowing into the cooling water recovery pipe.

加熱器24による油の加熱が停止されると同時に、冷却水供給バルブ11閉じられて冷却水供給が停止され、冷却工程が終了する。配管28の外表面と内表面に温度差を発生させることにより、配管28の溶接部近傍の内表面に作用する引張残留応力を低減する。   At the same time as the heating of the oil by the heater 24 is stopped, the cooling water supply valve 11 is closed to stop the supply of cooling water, and the cooling process ends. By generating a temperature difference between the outer surface and the inner surface of the pipe 28, the tensile residual stress acting on the inner surface in the vicinity of the welded portion of the pipe 28 is reduced.

配管の内表面と外表面の温度差及び配管の肉厚により、配管の内表面と外表面の温度勾配が決まる。引張応力低減のために必要な温度勾配は既知であるから、前記所望の温度を配管28の肉厚に応じて設定することで、必要な温度勾配を得ることができる。   The temperature gradient between the inner and outer surfaces of the pipe is determined by the temperature difference between the inner and outer surfaces of the pipe and the thickness of the pipe. Since the temperature gradient necessary for reducing the tensile stress is known, the necessary temperature gradient can be obtained by setting the desired temperature according to the thickness of the pipe 28.

引張残留応力の低減作業が終了したら、油バルブ26bが閉止され、油バルブ26cが開かれ、油容器23の油は、油循環ポンプ27により油抜き出し配管33を経て、図示されていない油タンクに取り出される。   When the work of reducing the tensile residual stress is completed, the oil valve 26b is closed, the oil valve 26c is opened, and the oil in the oil container 23 is passed through the oil extraction pipe 33 by the oil circulation pump 27 to the oil tank (not shown). It is taken out.

図3、図4に上記手順をフロー図で示す。ここでは据え付けられた前記図1に示す配管28を対象に引張応力低減を行う場合について述べる。   3 and 4 are flowcharts showing the above procedure. Here, a case where tensile stress reduction is performed on the installed pipe 28 shown in FIG. 1 will be described.

まず、配管28を囲む油容器23を設置する(手順1)。油容器23は、複数のパネルを組み合わせる組み立て式にしてある。   First, the oil container 23 surrounding the pipe 28 is installed (procedure 1). The oil container 23 is an assembly type that combines a plurality of panels.

加圧器8を設置し、関連配管を接続する(手順2)。すなわち、冷却水源と加圧器8を冷却水取り入れバルブ36を介して接続する冷却水取り入れ配管12、ヘッダー管29と加圧器8を冷却水供給バルブ11を介して接続する冷却水供給配管14をそれぞれ設置する。配管28のヘッダー管29と反対側の端部に、冷却水回収用バルブを介装した冷却水回収用配管を接続する。また、エアコンプレッサ35を設置し、このエアコンプレッサ35と加圧器8を減圧弁及び加圧バルブ9を介して接続する圧縮空気供給配管34を設置する。   The pressurizer 8 is installed and related piping is connected (procedure 2). That is, a cooling water intake pipe 12 that connects the cooling water source and the pressurizer 8 via the cooling water intake valve 36, and a cooling water supply pipe 14 that connects the header pipe 29 and the pressurizer 8 via the cooling water supply valve 11 respectively. Install. A cooling water recovery pipe having a cooling water recovery valve interposed is connected to the end of the pipe 28 opposite to the header pipe 29. Also, an air compressor 35 is installed, and a compressed air supply pipe 34 that connects the air compressor 35 and the pressurizer 8 via the pressure reducing valve and the pressure valve 9 is installed.

次いで、加熱油供給装置22を設置し、油容器23に、油配管31,32を接続する(手順3)。また、加熱用の油を収容した油タンクを設置し、この油タンクと加熱油供給装置22を、油供給配管30、油抜き出し配管33で接続する(手順4)。さらに、ポンプ駆動用の電源や加熱器24の電源、及び所要の制御装置を設置する(手順5)。   Next, the heating oil supply device 22 is installed, and the oil pipes 31 and 32 are connected to the oil container 23 (procedure 3). An oil tank containing heating oil is installed, and the oil tank and the heating oil supply device 22 are connected by an oil supply pipe 30 and an oil extraction pipe 33 (procedure 4). Further, a power source for driving the pump, a power source for the heater 24, and a necessary control device are installed (procedure 5).

各バルブの開閉状態を所定の初期条件に設定する(手順6)。加圧器8に冷却水を供給して加圧する(手順7)。油供給ポンプ25を起動し、油タンクの加熱用油を加熱器24を経由して油容器23に供給し、同時に、加熱器24を作動させて通過する油を加熱する(手順8)。油容器23内の油面が所望の位置、つまり、処理対象の配管28が油で覆われる位置になったことが確認されたら(手順9)、油の供給を停止し、油を循環させながらの加熱に切り替える(手順10)。つまり、油供給ポンプ25が停止され、油バルブ26dが閉じられるとともに、油循環ポンプ27が起動される。   The open / close state of each valve is set to a predetermined initial condition (procedure 6). Cooling water is supplied to the pressurizer 8 to pressurize it (procedure 7). The oil supply pump 25 is activated to supply oil for heating the oil tank to the oil container 23 via the heater 24, and at the same time, the heater 24 is operated to heat the passing oil (procedure 8). When it is confirmed that the oil level in the oil container 23 is at a desired position, that is, the position where the pipe 28 to be treated is covered with oil (procedure 9), the oil supply is stopped and the oil is circulated. (Step 10). That is, the oil supply pump 25 is stopped, the oil valve 26d is closed, and the oil circulation pump 27 is activated.

油温計が所望の温度を示したら(手順11)、加熱器24を制御してその温度を保持する(手順12)。予め設定された時間が経過したら(手順13)、冷却水供給バルブ11を開き、冷却水を配管28に通流させる(手順14)。配管内表面を常温まで冷却するのに十分な量の冷却水がストックされた加圧器8は、配管28の内表面が常温になり、さらに所定の時間が経過するまで冷却水を配管28に供給、通流させる。   When the oil thermometer indicates a desired temperature (procedure 11), the heater 24 is controlled to maintain the temperature (procedure 12). When a preset time has elapsed (procedure 13), the cooling water supply valve 11 is opened, and the cooling water is passed through the pipe 28 (procedure 14). The pressurizer 8 stocked with a sufficient amount of cooling water to cool the inner surface of the pipe to room temperature supplies the cooling water to the pipe 28 until the inner surface of the pipe 28 reaches room temperature and a predetermined time elapses. , Let it flow.

配管内表面の温度が所望の温度条件になったかどうかが確認され(手順15)、所望の温度条件になってから設定された時間経過後(手順16)、加熱器24による油加熱が停止され、冷却水供給バルブ11及び冷却水回収用バルブが閉じられる(手順17)。次いで、油容器から油が抜き出されて油タンクに移送され(手順18)、加圧器8、油容器23、加熱油供給装置22などの仮設設備が撤去される(手順19)。   It is confirmed whether or not the temperature of the inner surface of the pipe has reached a desired temperature condition (procedure 15), and after the set time has elapsed since the desired temperature condition was reached (procedure 16), oil heating by the heater 24 is stopped. The cooling water supply valve 11 and the cooling water recovery valve are closed (procedure 17). Next, oil is extracted from the oil container and transferred to the oil tank (procedure 18), and temporary facilities such as the pressurizer 8, the oil container 23, and the heating oil supply device 22 are removed (procedure 19).

本実施の形態では、管と管とが狭隘に隣接する配管の加熱においても、施工箇所の配管温度を均一に加熱することが可能となる。これにより、施工効果のばらつきを小さくすることができる。   In the present embodiment, it is possible to uniformly heat the pipe temperature at the construction site even in the heating of the pipe where the pipes are narrowly adjacent to each other. Thereby, the dispersion | variation in a construction effect can be made small.

次に、本発明に係る残留引張応力低減方法の実施例2を、図2を参照して説明する。本実施の形態が前記実施例1と異なるのは、対象となる小口径配管が狭い間隔で、多数本、平行配列された集合管である点であり、他の構成は同じであるので、同じ構成については、同じ符号を付して説明を省略する。   Next, a second embodiment of the residual tensile stress reduction method according to the present invention will be described with reference to FIG. The present embodiment is different from the first embodiment in that the target small-diameter pipes are collecting pipes arranged in parallel at a narrow interval, and the other configurations are the same. About the structure, the same code | symbol is attached | subjected and description is abbreviate | omitted.

本実施例においては、油容器23に満たされた加熱用の油に浸漬される配管は、原子力発電プラントの炉心部に接続される小口径配管で、この小口径配管は、一対のヘッダー管29を炉心の圧力管を介して連結するように配設された集合管である。図示されているヘッダー管に対応する他方のヘッダー管は図示されているヘッダー管の後方にある。すなわち、図2は、2対のヘッダー管を備えた集合管を示しており、油容器23は、図示の集合管全体を囲むように設置される。集合管の上部に示されたヘッダー管29の一方に、冷却水供給配管14が接続され、ヘッダー管29の他方には図示されていない冷却水回収用バルブを介装した冷却水回収用の配管が接続される。集合管を構成する小口径配管はオーステナイト系ステンレス鋼管で、外径77mm以下、肉厚8mm以下である。   In the present embodiment, the pipe immersed in the heating oil filled in the oil container 23 is a small diameter pipe connected to the core of the nuclear power plant, and the small diameter pipe is a pair of header pipes 29. Is a collecting pipe arranged so as to be connected through a pressure pipe of the core. The other header tube corresponding to the header tube shown is behind the header tube shown. That is, FIG. 2 shows a collecting pipe provided with two pairs of header pipes, and the oil container 23 is installed so as to surround the entire collecting pipe shown in the figure. A cooling water supply pipe 14 is connected to one of the header pipes 29 shown in the upper part of the collecting pipe, and a cooling water recovery pipe is provided on the other side of the header pipe 29 with a cooling water recovery valve not shown. Is connected. The small diameter pipe constituting the collecting pipe is an austenitic stainless steel pipe having an outer diameter of 77 mm or less and a wall thickness of 8 mm or less.

図2では、2対のヘッダー管9の図上左側に示されたヘッダー管に接続された小口径配管に処理を行う場合が示されている。作業の手順は、前記実施例1について述べた手順と同様であり、説明は省略する。   FIG. 2 shows a case where processing is performed on small-diameter pipes connected to the header pipes shown on the left side of the two pairs of header pipes 9 in the drawing. The work procedure is the same as that described in the first embodiment, and a description thereof will be omitted.

本実施の形態では、2つのヘッダー管の間を連結する集合管に対して、一度の施工で、多数の集合管の施工対象箇所の配管内表面に作用する引張残留応力を低減することができる。   In the present embodiment, it is possible to reduce the residual tensile stress acting on the inner surface of the pipe at the construction target location of a large number of collecting pipes with a single construction for the collecting pipe connecting the two header pipes. .

本発明の実施の形態に係る引張残留応力低減方法を実施する装置の実施例1の要部構成を示す概念図である。It is a conceptual diagram which shows the principal part structure of Example 1 of the apparatus which implements the tensile residual stress reduction method which concerns on embodiment of this invention. 本発明の実施の形態に係る引張残留応力低減方法を実施する装置の実施例2の要部構成を示す概念図である。It is a conceptual diagram which shows the principal part structure of Example 2 of the apparatus which implements the tensile residual stress reduction method which concerns on embodiment of this invention. 本発明の実施の形態に係る引張残留応力低減方法の手順の例を示すフロー図である。It is a flowchart which shows the example of the procedure of the tension | pulling residual stress reduction method which concerns on embodiment of this invention. 本発明の実施の形態に係る引張残留応力低減方法の手順の例を示すフロー図である。It is a flowchart which shows the example of the procedure of the tension | pulling residual stress reduction method which concerns on embodiment of this invention.

符号の説明Explanation of symbols

8 加圧器
9 加圧バルブ
10 開放バルブ
11 冷却水供給バルブ
12 冷却水取り入れ配管
13 圧力計
14 冷却水供給配管
22 加熱油供給装置
23 油容器
24 加熱器
25 油供給ポンプ
26a、26b、26c、26d 油バルブ
27 油循環ポンプ
28 配管
29 ヘッダー管
30 油供給配管
31、32 油配管
33 油抜き出し配管
34 圧縮空気供給配管
35 エアコンプレッサ
36 冷却水取り入れバルブ
8 Pressurizer 9 Pressurizing valve 10 Opening valve 11 Cooling water supply valve 12 Cooling water intake piping 13 Pressure gauge 14 Cooling water supply piping 22 Heating oil supply device 23 Oil container 24 Heater 25 Oil supply pumps 26a, 26b, 26c, 26d Oil valve 27 Oil circulation pump 28 Pipe 29 Header pipe 30 Oil supply pipe 31, 32 Oil pipe 33 Oil extraction pipe 34 Compressed air supply pipe 35 Air compressor 36 Cooling water intake valve

Claims (3)

配管の残留応力低減対象箇所を外面側から所望の温度に加熱する手順と、冷却水を収容した密閉容器に加圧気体を供給して前記冷却水を加圧する手順と、前記所望の温度に加熱された前記残留応力低減対象箇所内部に、前記加圧された冷却水を、少なくとも該冷却水が前記加熱された配管対象箇所内面に接する箇所で膜沸騰を生じない流量、圧力で通流する手順とを有してなる配管内表面の引張残留応力低減方法。 A procedure for heating the target portion for reducing the residual stress of the piping from the outer surface side to a desired temperature, a procedure for supplying pressurized gas to a sealed container containing cooling water and pressurizing the cooling water, and heating to the desired temperature A procedure for passing the pressurized cooling water through the residual stress reduction target portion at a flow rate and pressure that does not cause film boiling at least at a location where the cooling water contacts the inner surface of the heated pipe target portion. tensile residual stress reduction method distribution pipe surface ing a and. 請求項1記載の配管内表面の引張残留応力低減方法において、前記配管の残留応力低減対象箇所を外面側から所望の温度に加熱するに際し、前記残留応力低減対象箇所を含む配管の下方及び側方を囲む油容器を設け、少なくとも前記所望の温度に加熱した油を前記油容器に供給することで、前記残留応力低減対象箇所を含む配管を加熱することを特徴とする配管内表面の引張残留応力低減方法。 In tensile residual stress reduction method distribution pipe surface according to claim 1, wherein, when heating the residual stress reduction target portion of the pipe from the outer surface side to the desired temperature, lower and side of the pipe containing the residual stress reduction target portion the oil container surrounding provided, by supplying the oil heated to at least the desired temperature to the oil container, tensile distribution pipe surface you characterized by heating the pipe containing the residual stress reduction target portion remaining Stress reduction method. 請求項1または2記載の配管内表面の引張残留応力低減方法において、前記配管は、2つのヘッダー管の間を連通する複数の管からなる集合管であり、前記冷却水は、前記ヘッダー管を介して前記集合管に供給されることを特徴とする配管内表面の引張残留応力低減方法。 In tensile residual stress reduction method as claimed in claim 1 or 2 distribution pipe surface according, before Sharing, ABS pipe, a collecting pipe comprising a plurality of tubes communicating between the two header pipes, the cooling water, the header tensile residual stress reduction method distribution pipe surface you characterized in that it is supplied to the collecting pipe via a tube.
JP2007024756A 2007-02-02 2007-02-02 Method for reducing residual stress in piping Active JP4847885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007024756A JP4847885B2 (en) 2007-02-02 2007-02-02 Method for reducing residual stress in piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007024756A JP4847885B2 (en) 2007-02-02 2007-02-02 Method for reducing residual stress in piping

Publications (2)

Publication Number Publication Date
JP2008189983A JP2008189983A (en) 2008-08-21
JP4847885B2 true JP4847885B2 (en) 2011-12-28

Family

ID=39750351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007024756A Active JP4847885B2 (en) 2007-02-02 2007-02-02 Method for reducing residual stress in piping

Country Status (1)

Country Link
JP (1) JP4847885B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5750276B2 (en) * 2011-02-25 2015-07-15 日立Geニュークリア・エナジー株式会社 Heat treatment method
CN109210273A (en) * 2017-06-30 2019-01-15 中国二十冶集团有限公司 The nonstandard tunnel synchronization rapid constructing method of more stepped heating furnace bodies
CN114959201B (en) * 2022-06-27 2023-10-27 江西省科学院应用物理研究所 Metal material classified annealing cooling device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483610A (en) * 1977-12-16 1979-07-03 Nippon Packaging Kk Cooling method and apparatus of high temperature treated material
JPS5982134A (en) * 1982-11-01 1984-05-12 Nippon Light Metal Co Ltd Press working method
JPH0699754B2 (en) * 1984-07-20 1994-12-07 石川島播磨重工業株式会社 Heat treatment method for metal tubes
JPS61264132A (en) * 1985-05-16 1986-11-22 Ishikawajima Harima Heavy Ind Co Ltd Improvement of residual stress of stainless steel pipe or the like
JPS62247024A (en) * 1986-04-18 1987-10-28 Toshiba Corp Heat treatment of nozzle part for pressure vessel
JPS63143221A (en) * 1986-12-05 1988-06-15 Ishikawajima Harima Heavy Ind Co Ltd Improvement of residual stress in double metal tube or the like
JPS63161122A (en) * 1986-12-23 1988-07-04 Ishikawajima Harima Heavy Ind Co Ltd Improvement of residual stress of double metallic pipe or the like
JP2858011B2 (en) * 1989-04-25 1999-02-17 バブコツク日立株式会社 Water circulation device
JPH0679389A (en) * 1992-09-04 1994-03-22 Daido Steel Co Ltd Production and device for plastic working
JP2005240179A (en) * 2004-01-29 2005-09-08 Hitachi Ltd Method for improving residual stress with high frequency induction heating
JP4759302B2 (en) * 2004-04-06 2011-08-31 日立Geニュークリア・エナジー株式会社 Heat treatment method and apparatus

Also Published As

Publication number Publication date
JP2008189983A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP4759302B2 (en) Heat treatment method and apparatus
JP2020503493A (en) Tee for merging in a system for controlling the volume of coolant in a furnace
JP4847885B2 (en) Method for reducing residual stress in piping
US20060113010A1 (en) Heat treatment method and device for piping
JP2003290987A (en) Hot-isotropic pressure pressing apparatus and hot- isotropic pressure pressing method
KR20170105499A (en) System for the passive removal of heat from a water-cooled, water-moderated reactor via a steam generator
ZA200602629B (en) Method and device for venting the primary circuit of a nuclear reactor
JP3649223B2 (en) Heat treatment method and heat treatment apparatus for piping system
KR101312941B1 (en) Electric discharge machining tube ID cutting device for tube pulling
CA3070834C (en) Method for establishing the natural circulation of liquid metal coolant of a fast neutron nuclear chain reactor
US11535801B2 (en) Removable bend cap in tubing for industrial process equipment
JPH0367902A (en) Method for restricting leakage of heat exchanger tube
US5361284A (en) Tube corrosion accelerator
Taylor et al. The Tritium Extraction eXperiment (TEX): A forced convection fusion blanket PbLi loop
KR101755744B1 (en) Gas supply device
JP2007101332A (en) Aqueous boric acid solution injector and aqueous boric acid solution injection method
JPS63112089A (en) Improving method for residual stress of double metal pipe and the like
KR20100059677A (en) Pressurized water reactor pressurizer heater sheath
JPS63227724A (en) Method for improving residual stress of stainless steel pipe or the like
CN114279734A (en) Pipe scale generation simulation device and pipe scale generation simulation method
JP2016078085A (en) Piping residual stress improving method, antifreeze liquid supply method between ice plugs, and piping residual stress improving device
JP2011225945A (en) Method of and device for heat treatment of stainless steel pipe
JP6034722B2 (en) Wire wound pressure vessel
KR101151743B1 (en) Air storage blowing device and water removing method by air blowing using air storage blowing device in water cooled generator
Begum et al. Investigation on wall thinning and creep damage in boiler tube due to scale formation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4847885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150