JP4847031B2 - Optical encoder - Google Patents

Optical encoder Download PDF

Info

Publication number
JP4847031B2
JP4847031B2 JP2005071176A JP2005071176A JP4847031B2 JP 4847031 B2 JP4847031 B2 JP 4847031B2 JP 2005071176 A JP2005071176 A JP 2005071176A JP 2005071176 A JP2005071176 A JP 2005071176A JP 4847031 B2 JP4847031 B2 JP 4847031B2
Authority
JP
Japan
Prior art keywords
scale
reflective
reflection
optical encoder
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005071176A
Other languages
Japanese (ja)
Other versions
JP2006250877A (en
JP2006250877A5 (en
Inventor
正彦 井垣
暁生 熱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005071176A priority Critical patent/JP4847031B2/en
Publication of JP2006250877A publication Critical patent/JP2006250877A/en
Publication of JP2006250877A5 publication Critical patent/JP2006250877A5/ja
Application granted granted Critical
Publication of JP4847031B2 publication Critical patent/JP4847031B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Transform (AREA)

Description

本発明は、弯曲形状又はV字形状を有する反射スケールを備えた光学式エンコーダに関するものである。   The present invention relates to an optical encoder provided with a reflective scale having a curved shape or a V-shape.

図21は従来の光学式の反射型エンコーダの斜視図、図22は変位検出軸(座標系におけるX軸)と直交するYZ断面図を示している。LEDチップから成る光源1からの放射光束のうちの反射スケール2からの反射光束を、受光部及び信号処理回路を内蔵したフォトICチップから成る受光素子3で受光する。光源1及び受光素子3の半導体素子は基板4上にダイボンディングされ、更に透光性の樹脂5と透明ガラス6により覆われており、これらの光源1、受光素子3、基板4、樹脂5、透明ガラス6から検出ヘッド7は構成されている。一方、反射スケール2は反射スケール基材8と反射層9と反射層10を含む反射層形成部11から成っている。このような反射型エンコーダは例えば特許文献1に開示されている。   FIG. 21 is a perspective view of a conventional optical reflective encoder, and FIG. 22 is a YZ sectional view orthogonal to the displacement detection axis (X axis in the coordinate system). Of the radiated light beam from the light source 1 composed of an LED chip, the reflected light beam from the reflection scale 2 is received by the light receiving element 3 formed of a photo IC chip incorporating a light receiving unit and a signal processing circuit. The semiconductor elements of the light source 1 and the light receiving element 3 are die-bonded on the substrate 4 and are further covered with a translucent resin 5 and a transparent glass 6, and the light source 1, the light receiving element 3, the substrate 4, the resin 5, The detection head 7 is composed of the transparent glass 6. On the other hand, the reflective scale 2 includes a reflective layer forming portion 11 including a reflective scale substrate 8, a reflective layer 9, and a reflective layer 10. Such a reflective encoder is disclosed in Patent Document 1, for example.

特開2003−337052号公報JP 2003-337052 A

このような構成の反射式エンコーダでは、図23の変位検出軸を含むXZ断面図において、角度θ1が光源1から反射スケール2を介して受光素子3の受光領域に導かれる有効光束となる。この場合に、光源1から放射される光束のうちの僅かな光量しか使われておらず、殆どの光束は無効な成分となり、光の利用効率が極めて悪いという問題点がある。   In the reflective encoder having such a configuration, in the XZ sectional view including the displacement detection axis in FIG. 23, the angle θ1 is an effective light beam guided from the light source 1 to the light receiving region of the light receiving element 3 through the reflective scale 2. In this case, only a small amount of the light flux emitted from the light source 1 is used, and most of the light flux becomes an invalid component, and there is a problem that the light use efficiency is extremely poor.

有効光束を拡大するために、受光素子3の受光面積を拡大する手段が容易に考えられるが、受光素子3のサイズアップにより検出ヘッド7全体が大きくなってしまい、またコストアップにもつながり経済的でない。僅かな受光素子3に届く光量を補うために、光源1の発光量を増大させることも容易に考えられるが、この場合には消費電力の増大と光源1に過剰な電流を流すことになり、光源1の寿命が短くなってしまうという問題が発生する。   In order to expand the effective luminous flux, means for expanding the light receiving area of the light receiving element 3 can be easily considered. However, the size of the light receiving element 3 increases the size of the entire detection head 7 and increases the cost. Not. In order to make up for the slight amount of light that reaches the light receiving element 3, it is easy to increase the amount of light emitted from the light source 1. In this case, however, the power consumption increases and an excessive current flows through the light source 1. There arises a problem that the life of the light source 1 is shortened.

更に、信号処理回路内で信号増幅する手段も考えられるが、この方法もノイズ成分も増大させ実質的に有効な手段とならず、検出精度へ影響を与え、好ましい手段ではない。   Further, although means for amplifying the signal in the signal processing circuit is conceivable, this method also increases the noise component and does not become a substantially effective means, which affects the detection accuracy and is not a preferable means.

安価な可撓性反射スケールも考えられているが、変形が生じ易く、この変形により位置検出誤差が発生し易いという欠点もある。   Inexpensive flexible reflective scales are also considered, but there is also a drawback that deformation is likely to occur and position detection errors are likely to occur due to this deformation.

本発明の目的は、上述の課題を解消し、変形等に対して、反射スケール自体の形状に改良を加え、検出誤差を大幅に低減する光学式エンコーダを提供することにある。   An object of the present invention is to provide an optical encoder that solves the above-described problems, improves the shape of the reflection scale itself against deformation, etc., and greatly reduces detection errors.

上記目的を達成するための本発明に係る光学式エンコーダの技術的特徴は、光源と受光素子を同一基板上に備えた検出ヘッドと、前記検出ヘッドに対して相対変位する可撓性を有する反射スケールと、を備えた光学式エンコーダにおいて、
前記反射スケールの相対変位の検出方向と直交する断面形状の少なくとも一部に弯曲形状又は略V字状を含み、前記反射スケールの固定は、前記反射スケール自体の弾性的な曲げ変形の反力を用いていることにある。
Technical characteristics of the optical encoder according to the present invention for achieving the above object, the reflection having a detection head having on the same substrate as the light receiving element light source, a flexible displaced relative to the detection head An optical encoder with a scale,
The reaction force of at least a portion seen including a curved shape or a substantially V-shaped, fixed of the reflective scale, elastic bending deformation of the reflective scale itself sectional shape perpendicular to the detection direction of the relative displacement of the reflective scale It is in using .

本発明に係る光学式エンコーダによれば、価格面で有利でありながら、精度面で課題があった可撓性を有するフィルムスケールや金属スケール等を高精度に用いることが可能となり、同時に光の利用効率を大幅に向上させることができ、低価格かつ高精度、低消費電力となる。   According to the optical encoder of the present invention, it is possible to use a flexible film scale, metal scale, etc., which has a problem in terms of accuracy, while being advantageous in terms of price, and at the same time, Utilization efficiency can be greatly improved, resulting in low price, high accuracy, and low power consumption.

本発明を図1〜図20に図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiment shown in FIGS.

図1は本発明による光学式反射型エンコーダの実施例1の構成を示す斜視図である。LEDチップから成る光源21、受光部及び信号処理回路を内蔵したフォトICチップから成る受光素子22の半導体素子を主体として検出ヘッド23が構成されている。検出ヘッド23は、光源21、受光素子22の他に、配線基板24と光源21と受光素子22を覆うように封止した透光性の封止樹脂25と、この封止樹脂25上に配設された透明ガラス26から成っている。   FIG. 1 is a perspective view showing the configuration of a first embodiment of an optical reflective encoder according to the present invention. The detection head 23 is mainly composed of a semiconductor element of a light receiving element 22 formed of a light source 21 formed of an LED chip, a light receiving unit, and a photo IC chip incorporating a signal processing circuit. In addition to the light source 21 and the light receiving element 22, the detection head 23 is disposed on the sealing resin 25, and a translucent sealing resin 25 sealed so as to cover the wiring substrate 24, the light source 21 and the light receiving element 22. It consists of a transparent glass 26 provided.

検出ヘッド23の上方に配置された反射スケール31は、図2に示すようにX軸に直交するYZ断面形状により、検出ヘッド23を覆うように弯曲されており、この実施例1では円筒体の母線X0と平行にその一部を切り出した立体形状とされている。また、YZ断面での円弧状断面の曲率半径は略検出ヘッド23と反射スケール31間の距離となっていて、その曲率中心線は光源21と受光素子22の略中間に位置している。   The reflection scale 31 disposed above the detection head 23 is bent so as to cover the detection head 23 by a YZ cross-sectional shape orthogonal to the X axis as shown in FIG. A three-dimensional shape is cut out in parallel with the bus line X0. Further, the radius of curvature of the arcuate section in the YZ section is substantially the distance between the detection head 23 and the reflection scale 31, and the center line of curvature is located approximately in the middle between the light source 21 and the light receiving element 22.

反射スケール31は図3に示すように、パターン形成シート32と反射層形成シート33から構成されている。パターン形成シート32は例えば工業用写真製版フィルム用の透明なPETフィルムであって、0.1〜0.2mm程度の厚みを有し、工業用写真製版フィルムの乳剤層により露光・現像工程を経て必要なパターンが形成されている。パターン形成シート32の基材部32a上には、光吸収部分の非反射部32bと光線透過部32cから成るパターンが交互に設けられている。   As shown in FIG. 3, the reflective scale 31 includes a pattern forming sheet 32 and a reflective layer forming sheet 33. The pattern forming sheet 32 is, for example, a transparent PET film for industrial photoengraving film, has a thickness of about 0.1 to 0.2 mm, and is subjected to exposure / development steps by the emulsion layer of the industrial photoengraving film. Necessary patterns are formed. On the base material portion 32a of the pattern forming sheet 32, a pattern composed of the non-reflecting portion 32b and the light transmitting portion 32c of the light absorbing portion is alternately provided.

一方、反射層形成シート33においては、基材とするPETフィルムから成る反射層33aの下面に蒸着膜から成る反射層33bが形成されている。反射スケール31は、これらのパターン形成シート32と反射層形成シート33を図4に示すように透明な接着剤から成る接着層34で接合した構造とされている。   On the other hand, in the reflection layer forming sheet 33, a reflection layer 33b made of a vapor deposition film is formed on the lower surface of the reflection layer 33a made of a PET film as a base material. The reflective scale 31 has a structure in which the pattern forming sheet 32 and the reflective layer forming sheet 33 are joined by an adhesive layer 34 made of a transparent adhesive as shown in FIG.

このような反射スケール31は、厚み0.2mm前後で可撓性を有しており、図5(a)に示すようにY軸方向から力を加えて弯曲させ、(b)に示すように弯曲させたままの状態で、箱状の取付部材35に挿入する。弯曲変形させたまま、(c)に示すように取付部材35の突き当て位置まで押し込んでY軸方向の力を解放し、反射スケール31自体の弾性的な曲げ変形の反力Fによって、反射スケール31は取付部材35に対して固定される。この場合に、突き当て部位に補助的に接着剤を併用してもよい。   Such a reflective scale 31 is flexible with a thickness of about 0.2 mm, and is bent by applying a force from the Y-axis direction as shown in FIG. 5A, as shown in FIG. It is inserted into the box-shaped attachment member 35 while being bent. As shown in (c), while being bent and deformed, it is pushed to the abutting position of the mounting member 35 to release the force in the Y-axis direction, and the reflection scale 31 is subjected to the elastic bending deformation reaction force F of the reflection scale 31 itself. 31 is fixed to the mounting member 35. In this case, an adhesive may be used in combination with the abutting site.

図6は上記のように取付部材35に取り付けられ弯曲した反射スケール31を示している。図7は検出ヘッド23との反射スケール31が組み合わされた実施例1のYZ断面図である。取付部材35の一部は光源21からの放射光束を制限する役割も兼ねており、取付部材35の底部に設けた枠体部35aが光学的な絞りの役割を果たしている。   FIG. 6 shows the reflection scale 31 which is attached to the attachment member 35 and bent as described above. FIG. 7 is a YZ sectional view of Example 1 in which the reflection scale 31 with the detection head 23 is combined. A part of the mounting member 35 also serves to limit the luminous flux from the light source 21, and the frame body part 35 a provided at the bottom of the mounting member 35 plays a role of an optical stop.

光源21から放射された光束は、図4に示すように光線Laとして反射スケール31のパターン形成シート32を透過し、パターン形成シート32の非反射部32bでその光束の一部が吸収される。一方、光線Lbは光線透過部32cを透過して反射層33bで反射する。この反射光線は再び光線透過部32cを通過し、更に基材部32aを透過して、検出ヘッド23内の受光素子22に入射する。反射型のエンコーダでは、検出ヘッド23と反射スケール31の相対変位に伴って発生する反射パターン部からの反射光束の光強度の変化を電気信号に変換し、図示しない演算手段を用いて相対変位量が計測可能となる。   The light beam emitted from the light source 21 passes through the pattern forming sheet 32 of the reflective scale 31 as a light beam La as shown in FIG. 4, and a part of the light beam is absorbed by the non-reflecting portion 32 b of the pattern forming sheet 32. On the other hand, the light beam Lb is transmitted through the light transmitting portion 32c and reflected by the reflective layer 33b. The reflected light again passes through the light transmitting portion 32 c, further passes through the base material portion 32 a, and enters the light receiving element 22 in the detection head 23. In the reflection type encoder, the change in the light intensity of the reflected light beam from the reflection pattern portion generated with the relative displacement of the detection head 23 and the reflection scale 31 is converted into an electric signal, and the relative displacement amount is calculated by using a calculation means (not shown). Can be measured.

図8は実施例1での光源21〜反射スケール31〜受光素子22までの経路の光線追跡の様子を示し、各状態(a)〜(f)は、検出ヘッド23から反射スケール31までの距離、所謂センサとスケール間ギャップを次第に遠去かるように変化させたものである。YZ断面での円弧状断面の曲率半径をほぼ検出ヘッド23と反射スケール31間の距離とし、更にその曲率中心線を光源21と受光素子22の間に位置しているので、光源21からの放射光束は殆ど受光素子22の面上に収束性光束として導くことが可能となる。   FIG. 8 shows the state of ray tracing of the path from the light source 21 to the reflection scale 31 to the light receiving element 22 in the first embodiment. Each state (a) to (f) is a distance from the detection head 23 to the reflection scale 31. In other words, the so-called gap between the sensor and the scale is gradually changed away. Since the radius of curvature of the arc-shaped section in the YZ section is substantially the distance between the detection head 23 and the reflection scale 31, and the center of curvature is located between the light source 21 and the light receiving element 22, radiation from the light source 21 is performed. Most of the light beam can be guided as a convergent light beam on the surface of the light receiving element 22.

本実施例1での光線光路を示す図8と、YZ断面形状を弯曲させていない従来の反射スケール2を用いた場合の光線追跡の図9とを比較してみると、図9では光源21からの放射光束の内、θ3(≒6°〜10°前後)の角度範囲の光量のみが受光素子22に導かれている。これに対して本実施例1では、図8のθ2(≒12°〜20°)の角度範囲の光量が受光素子22に導かれ、従来の約2倍程度受光光量が向上しており、検出ヘッド23と反射スケール31の間のギャップが広範囲で変動しても、センサとして利用可能となる。   Comparing FIG. 8 showing the light beam path in the first embodiment with FIG. 9 of ray tracing using the conventional reflection scale 2 in which the YZ cross-sectional shape is not curved, FIG. 9 shows the light source 21 in FIG. Among the radiated light beams from, only the light quantity in the angle range of θ3 (≈6 ° to about 10 °) is guided to the light receiving element 22. On the other hand, in the first embodiment, the light amount in the angle range of θ2 (≈12 ° to 20 °) in FIG. 8 is guided to the light receiving element 22, and the received light amount is improved by about twice that of the conventional case. Even if the gap between the head 23 and the reflection scale 31 varies over a wide range, it can be used as a sensor.

図10はその様子を示すグラフ図であり、従来の平面スケールでは検出ヘッドの近傍に反射スケールを配置する必要があったが、本実施例1ではかなりの広範囲で有効な信号を得ることができる。   FIG. 10 is a graph showing the situation. In the conventional planar scale, it is necessary to arrange a reflection scale in the vicinity of the detection head. However, in the first embodiment, an effective signal can be obtained over a considerably wide range. .

このように実施例1では、反射スケール31のYZ断面形状を検出ヘッド23を覆うような円弧状断面としたことによって、光源21からの放射光束を従来の平面反射スケールの場合に比べてより多く受光素子22に導くことになる。特に本実施例1では、YZ断面での円弧状断面の曲率半径を検出ヘッド23と反射スケール31の距離と略等しくし、更にその曲率中心線が光源21と受光素子22の間に位置しているので、光源21から発散する放射光束は、受光素子22の面上に収束性光束として変換され、光源21からの光量を効率良く受光素子22に取り込むことが可能となる。   As described above, in the first embodiment, the YZ cross-sectional shape of the reflective scale 31 is an arc-shaped cross section that covers the detection head 23, so that the amount of radiated light from the light source 21 is larger than that of the conventional flat reflective scale. The light is guided to the light receiving element 22. In particular, in the first embodiment, the radius of curvature of the arc-shaped section in the YZ section is made substantially equal to the distance between the detection head 23 and the reflection scale 31, and the center line of curvature is located between the light source 21 and the light receiving element 22. Therefore, the radiated light beam diverging from the light source 21 is converted as a convergent light beam onto the surface of the light receiving element 22, and the light amount from the light source 21 can be efficiently taken into the light receiving element 22.

反射スケール31では、円筒体の母線X0の方向と変位検出方向を一致させていることが重要であり、円筒体において母線X0の方向の曲げ強度は平板時に比べて増大し、反射スケール31の反射面の変位検出軸X方向に沿った変形は殆ど発生しない。このことは、変位検出軸Xの方向を円筒体の母線X0の方向と平行に配置し、反射型エンコーダに適用したとき、変位検出方向成分の直線性が向上し、反射スケール31での反射光束の振れが抑えられる。   In the reflection scale 31, it is important that the direction of the bus bar X0 of the cylindrical body coincides with the direction of displacement detection. In the cylindrical body, the bending strength in the direction of the bus bar X0 increases compared to the flat plate. Deformation along the surface displacement detection axis X hardly occurs. This is because when the direction of the displacement detection axis X is arranged in parallel to the direction of the generating line X0 of the cylindrical body and applied to a reflective encoder, the linearity of the displacement detection direction component is improved, and the reflected light flux on the reflective scale 31 is improved. Can be controlled.

更に、反射スケール31自体の弾性的な曲げ変形の反力によって取付部材35に固定支持すると、従来の反射スケールで問題となる基準平面に貼り合わせる際の接着層34の厚みむらや、異物の挟み込みなどが発生することはない。   Furthermore, if the reflective scale 31 itself is fixedly supported on the mounting member 35 by the reaction force of the elastic bending deformation, the thickness unevenness of the adhesive layer 34 when the conventional reflective scale is bonded to a reference plane, or the inclusion of foreign matter Etc. will not occur.

図11は実施例2の反射型エンコーダのYZ断面図である。主要構成は実施例1と同じなのでその説明は省略するが、実施例1と異なる点は、反射スケール31を取り付ける取付部材41の形状と取付方法にある。実施例1では、反射スケール31はそれ自体の弾性的な曲げ変形の反力によって取付部材35に固定支持したが、この実施例2では反射スケール31は取付部材41に対して接着層42によって固定されている。   FIG. 11 is a YZ sectional view of the reflective encoder of the second embodiment. Since the main configuration is the same as that of the first embodiment, the description thereof is omitted. However, the difference from the first embodiment is in the shape and mounting method of the mounting member 41 to which the reflective scale 31 is mounted. In the first embodiment, the reflective scale 31 is fixedly supported on the mounting member 35 by its own elastic bending deformation reaction force, but in this second embodiment, the reflective scale 31 is fixed to the mounting member 41 by the adhesive layer 42. Has been.

反射スケール31を弯曲形状とするために、図12にも示すように取付部材41のYZ断面の反射スケール31の貼合部が弯曲形状となっていて、この弯曲面に沿うように反射スケール31は貼り付けられている。従って、取付部材41の貼り合わせ面形状によって、反射スケール31の弯曲形状を或る程度、所望の形状とすることができる。   In order to make the reflective scale 31 into a curved shape, as shown in FIG. 12, the bonding portion of the reflective scale 31 in the YZ section of the mounting member 41 has a curved shape, and the reflective scale 31 extends along this curved surface. Is pasted. Therefore, the curved shape of the reflective scale 31 can be made a desired shape to some extent by the bonded surface shape of the mounting member 41.

この実施例2においても先の実施例1と同様に、変位検出軸X方向を弯曲部の母線X0の方向と平行配置し、反射型エンコーダに適用したとき、変位検出方向成分の直線性が向上し、反射スケール31での反射光束の振れが抑えられる効果がある。   In the second embodiment, similarly to the first embodiment, when the displacement detection axis X direction is arranged in parallel with the direction of the generatrix X0 and applied to the reflective encoder, the linearity of the displacement detection direction component is improved. In addition, there is an effect that the fluctuation of the reflected light beam on the reflection scale 31 can be suppressed.

更に、反射スケール31の裏面全面が接着固定されるのではなく、反射スケール31の光学有効範囲Dに対応する部分41aのみ、取付部材41が形状的に逃げていて、実際には接着固定支持されず、接着層42での面変形、接着層42の厚みむら、貼り合わせ時の異物の挟み込みを避け、弯曲形状の母線X0の剛性が向上する効果により、実質的に変形の少ない取り付けが可能となる。   Further, the entire back surface of the reflective scale 31 is not bonded and fixed, but only the portion 41a corresponding to the optical effective range D of the reflective scale 31 is escaped in shape, and is actually bonded and supported. Therefore, the surface deformation at the adhesive layer 42, uneven thickness of the adhesive layer 42, and the inclusion of foreign matter at the time of bonding are avoided, and the rigidity of the curved busbar X0 is improved, so that attachment with substantially no deformation is possible. Become.

図13(a)〜(c)は実施例2の反射面断面形状が弯曲形状で、特に円弧の場合の光線光路を示し、検出ヘッド23と弯曲した反射スケール31の間隔を2.5mm、3.0mm、3.5mmとした場合の光路図である。円弧の曲率中心は光源21と受光素子22の略中間位置に存在し、曲率半径Rが3.0mmであるような反射円筒面とした場合の説明図である。   FIGS. 13A to 13C show the light beam path in the case where the reflecting surface sectional shape of the second embodiment is a curved shape, in particular, an arc, and the distance between the detecting head 23 and the curved reflecting scale 31 is 2.5 mm. It is an optical path diagram in the case of 0.0 mm and 3.5 mm. It is explanatory drawing at the time of setting it as a reflective cylindrical surface where the curvature center of a circular arc exists in the approximate middle position of the light source 21 and the light receiving element 22, and the curvature radius R is 3.0 mm.

図14(a)〜(c)は反射面断面形状が弯曲形状で、特に放物線の場合の光線光路を示し、検出ヘッド23と弯曲した反射スケール31の間隔を2.5mm、3.0mm、3.5mmとした場合の光路図である。放物面の軸nは光源21と受光素子22の略中間位置とし、光源21からの放射光束をより多く受光素子22に導かれるように形状を最適化した場合で、その光束はθ4≒60°に達する。平行平板状態の従来の反射スケールに比べて5倍前後、光源光量の利用効率が向上している。   14A to 14C show the light beam path in the case where the reflecting surface has a curved cross section, particularly a parabola, and the distance between the detection head 23 and the curved reflection scale 31 is 2.5 mm, 3.0 mm, 3 It is an optical path diagram in the case of .5 mm. The axis n of the paraboloid is set at a substantially intermediate position between the light source 21 and the light receiving element 22 and the shape is optimized so that more light flux from the light source 21 is guided to the light receiving element 22, and the light flux is θ4≈60. Reach °. The use efficiency of the light source quantity is improved by about 5 times compared with the conventional reflection scale in the parallel plate state.

図15(a)〜(c)は反射面断面形状が弯曲形状で特に楕円の場合の光線光路を示し、検出ヘッド23と弯曲した反射スケール31の間隔を2.5mm、3.0mm、3.5mmとした場合の光路図である。楕円の短軸nは光源21と受光素子22の略中間位置とし、反射スケール31からの反射光束を略平行光束として受光素子22に入射させている。   15 (a) to 15 (c) show light beam paths when the reflecting surface has a curved cross-sectional shape, particularly an ellipse, and the intervals between the detection head 23 and the curved reflecting scale 31 are 2.5 mm, 3.0 mm, and 3. It is an optical path figure at the time of setting to 5 mm. The minor axis n of the ellipse is a substantially intermediate position between the light source 21 and the light receiving element 22, and the reflected light beam from the reflection scale 31 is incident on the light receiving element 22 as a substantially parallel light beam.

上述のように実施例2として、弯曲面は円弧だけでなく、放物線、楕円、その他の双曲線などの形状を与えることにより、様々な反射光路の設計が可能であることを示している。何れの場合も、図10に示すように、従来の平板状反射スケールと比べて光の利用効率は大幅に改善されている。更に、この実施例2においても先の実施例1と同様に、何れの面形状の場合も変位検出軸方向を弯曲部の母線X0の方向と平行配置し、反射型エンコーダに適用したとき、変位検出方向成分の直線性が向上し、反射スケール31での反射光束の振れが抑えられる。   As described above, as Example 2, it is shown that various reflection light paths can be designed by giving the curved surface not only a circular arc but also a parabola, an ellipse, and other hyperbola. In any case, as shown in FIG. 10, the light utilization efficiency is greatly improved as compared with the conventional flat reflection scale. Further, in the second embodiment, similarly to the first embodiment, in any surface shape, the displacement detection axis direction is arranged in parallel with the direction of the generatrix X0 and applied to the reflective encoder. The linearity of the detection direction component is improved, and the fluctuation of the reflected light beam at the reflection scale 31 is suppressed.

図16は実施例3の光線光路図を示している。この実施例3では、反射スケール31のYZ断面形状として、略V字状に折り曲げた構造を備えた形状であり、この場合に2つの反射平面からの光束が重なるように、V字型の折り曲げ角度が選択されていて、光源21の光量の利用効率が改善されている。   FIG. 16 shows a ray path diagram of the third embodiment. In the third embodiment, the YZ cross-sectional shape of the reflection scale 31 is a shape having a structure bent in a substantially V shape. In this case, the V-shaped bending is performed so that the light beams from the two reflection planes overlap. The angle is selected, and the utilization efficiency of the light amount of the light source 21 is improved.

実際の曲げ加工では、屈曲部において若干のRが生ずることになるので、実施例2における双曲線断面として扱うことも可能である。図17はこの反射スケール31を取付部材51の外側に貼り付けた場合を示している。反射スケール31に対して先のV字型の折曲部以外に、その両側にそれぞれ曲げ加工が施され、ブロック状の取付部材51に接着層52により固定されている。   In actual bending, a slight amount of R is generated in the bent portion, so that it can be handled as a hyperbolic section in the second embodiment. FIG. 17 shows a case where the reflection scale 31 is attached to the outside of the attachment member 51. The reflective scale 31 is bent on both sides in addition to the V-shaped bent portion, and is fixed to the block-shaped attachment member 51 with an adhesive layer 52.

この実施例3においても、先の実施例1と同様に変位検出軸X方向を折り曲げ構造の屈曲部稜線方向と平行配置し、反射型エンコーダに適用したとき、変位検出方向成分の直線性が向上し、反射スケール31での反射光束の振れが抑えられる。   Also in the third embodiment, the linearity of the displacement detection direction component is improved when the displacement detection axis X direction is arranged in parallel with the bending portion ridge line direction of the bending structure and applied to the reflection type encoder as in the first embodiment. Thus, the fluctuation of the reflected light beam at the reflection scale 31 is suppressed.

図18〜図20は実施例4を示し、特に弯曲スケールの製造方法を示している。図18においては、先に図3で示したパターン形成シート32及び反射層形成シート33は、予めそれぞれ単独で弯曲形状に成形されている。所定の曲率半径を有する断面円弧状の反射パターン形成シート32と反射層形成シート33とを別個に製作し、図19に示すように接着層61により接合されている。   18 to 20 show a fourth embodiment, in particular, a method for manufacturing a fold scale. In FIG. 18, the pattern forming sheet 32 and the reflective layer forming sheet 33 previously shown in FIG. 3 are each independently molded into a curved shape. The reflective pattern forming sheet 32 and the reflective layer forming sheet 33 having a circular arc cross section having a predetermined radius of curvature are separately manufactured and joined by an adhesive layer 61 as shown in FIG.

接合手段としては、接着層61以外にも多くの手段が考えられるが、接合する方法として、例えば図20に示すようにパターン形成シート32と反射層形成シート33の間に接着層61を介在させて積み重ね、上ダイス62と下ダイス63により、これらの積層物を加熱加圧して圧着して製造することができる。   As a joining means, many means other than the adhesive layer 61 are conceivable. As a joining method, for example, the adhesive layer 61 is interposed between the pattern forming sheet 32 and the reflective layer forming sheet 33 as shown in FIG. These laminates can be manufactured by heat-pressing and pressing with the upper die 62 and the lower die 63.

上記全ての実施例の構成に関する説明では、主に反射型フィルムスケールの場合について説明したが、反射型の金属スケールやその他の可撓性を有しない反射スケールに対しても、実質的に適用可能である。   In the description of the configuration of all the above embodiments, the case of the reflective film scale has been mainly described. However, the present invention can be substantially applied to a reflective metal scale and other reflective scales having no flexibility. It is.

実施例1の反射型エンコーダ構成の斜視図である。1 is a perspective view of a reflective encoder configuration according to Embodiment 1. FIG. 実施例1の変位検出方向軸に直交する断面図である。3 is a cross-sectional view orthogonal to a displacement detection direction axis of Example 1. FIG. 実施例1の反射スケールの接着前の断面図である。It is sectional drawing before adhesion | attachment of the reflective scale of Example 1. FIG. 実施例1の反射スケールの断面図である。2 is a cross-sectional view of a reflection scale of Example 1. FIG. 実施例1の反射スケールの取付方法を示す図である。It is a figure which shows the attachment method of the reflective scale of Example 1. FIG. 実施例1の反射スケールを固定部材に取り付けた状態の斜視図である。It is a perspective view of the state where the reflective scale of Example 1 was attached to the fixed member. 実施例1の固定された反射スケールのYZ断面図である。3 is a YZ cross-sectional view of a fixed reflection scale of Example 1. FIG. YZ断面での光路図である。It is an optical path figure in a YZ section. 平面状の反射スケールの光路図である。It is an optical path figure of a planar reflective scale. 検出ヘッドと反射スケールの距離に対する受光光量のグラフ図である。It is a graph figure of received light quantity with respect to the distance of a detection head and a reflective scale. 実施例2の変位検出方向軸に直交する断面図である。6 is a cross-sectional view orthogonal to a displacement detection direction axis of Embodiment 2. FIG. 実施例2の固定部材の斜視図である。6 is a perspective view of a fixing member of Example 2. FIG. 反射スケールが円弧形状の場合の光路図である。It is an optical path figure in case a reflection scale is circular arc shape. 反射スケールが放物線形状の場合の光路図である。It is an optical path figure in case a reflection scale is parabolic shape. 反射スケールが楕円形状の場合の光路図である。It is an optical path figure in case a reflection scale is elliptical shape. 実施例3のYZ断面での光路図である。FIG. 6 is an optical path diagram in the YZ section of Example 3. 実施例3の変位検出方向軸に直交する断面図である。6 is a cross-sectional view orthogonal to a displacement detection direction axis of Example 3. FIG. 実施例4の反射スケールの製造方法の説明図である。6 is an explanatory diagram of a method for manufacturing a reflective scale of Example 4. FIG. 実施例4の反射スケールの製造方法の説明図である。6 is an explanatory diagram of a method for manufacturing a reflective scale of Example 4. FIG. 実施例4の反射スケールの製造方法の説明図である。6 is an explanatory diagram of a method for manufacturing a reflective scale of Example 4. FIG. 従来の反射型エンコーダの斜視図である。It is a perspective view of the conventional reflective encoder. 従来の反射型エンコーダのXZ断面図である。It is XZ sectional drawing of the conventional reflective encoder. 従来の反射型エンコーダのYZ断面図である。It is YZ sectional drawing of the conventional reflective encoder.

符号の説明Explanation of symbols

21 光源
22 受光素子
23 検出ヘッド
31 反射スケール
32 パターン形成シート
33 反射層形成シート
34、42、52、61 接着層
35、41、51 取付部材
62 上ダイス
63 下ダイス
21 Light source 22 Light receiving element 23 Detection head 31 Reflective scale 32 Pattern forming sheet 33 Reflecting layer forming sheet 34, 42, 52, 61 Adhesive layer 35, 41, 51 Mounting member 62 Upper die 63 Lower die

Claims (6)

光源と受光素子を同一基板上に備えた検出ヘッドと、前記検出ヘッドに対して相対変位する可撓性を有する反射スケールと、を備えた光学式エンコーダにおいて、
前記反射スケールの相対変位の検出方向と直交する断面形状の少なくとも一部に弯曲形状又は略V字状を含み、
前記反射スケールの固定は、前記反射スケール自体の弾性的な曲げ変形の反力を用いていることを特徴とする光学式エンコーダ。
In an optical encoder comprising a detection head provided with a light source and a light receiving element on the same substrate, and a reflective scale having flexibility for relative displacement with respect to the detection head,
Look including a curved shape or a substantially V-shaped in at least a portion of the cross section perpendicular to the detection direction of the relative displacement of the reflective scale,
The reflection scale is fixed using an elastic bending deformation reaction force of the reflection scale itself .
前記反射スケールの前記弯曲形状の母線の方向と前記変位検出方向を平行に配置したことを特徴とする請求項1に記載の光学式エンコーダ。   2. The optical encoder according to claim 1, wherein a direction of the bent bus of the reflection scale and the displacement detection direction are arranged in parallel. 前記弯曲形状の曲率半径は、前記反射スケールから前記検出ヘッドまでの距離と略等しく、前記弯曲形状の曲率中心線は、前記光源と受光素子との間に位置するようにしたことを特徴とする請求項2に記載の光学式エンコーダ。 The curvature radius of the curved shape is substantially equal to the distance from the reflection scale to the detection head, and the curvature center line of the curved shape is located between the light source and the light receiving element. The optical encoder according to claim 2. 前記反射スケールの前記略V字状の曲げ稜線方向と前記変位検出方向を平行に配置したことを特徴とする請求項1に記載の光学式エンコーダ。   The optical encoder according to claim 1, wherein the substantially V-shaped bending ridge line direction of the reflection scale and the displacement detection direction are arranged in parallel. 前記反射スケールは、光学有効範囲に対応する裏面を逃げて取付部材に固定したことを特徴とする請求項1に記載の光学式エンコーダ。   The optical encoder according to claim 1, wherein the reflection scale is fixed to an attachment member by escaping from a back surface corresponding to an optical effective range. 光源と受光素子を同一基板上に備えた検出ヘッドと、前記検出ヘッドに対して相対変位する可撓性を有する反射スケールと、を備えた光学式エンコーダにおいて、In an optical encoder comprising a detection head provided with a light source and a light receiving element on the same substrate, and a reflective scale having flexibility for relative displacement with respect to the detection head,
前記反射スケールの相対変位の検出方向と直交する断面形状の少なくとも一部に弯曲形状を含み、Including a curved shape in at least a part of a cross-sectional shape orthogonal to the detection direction of the relative displacement of the reflective scale;
前記反射スケールの弯曲形状は、所定の曲率半径を有する円弧状の反射層形成シートと所定の曲率半径を有する円弧状の反射パターン形成シートとをそれぞれ別個に弯曲形状に製作し、前記反射層形成シートと前記反射パターン形成シートとの間に接着層を介在させて上ダイスと下ダイスにより加熱加圧して前記反射層形成シートと前記反射パターン形成シートを圧着して形成されていることを特徴とする光学式エンコーダ。The curved shape of the reflective scale is produced by separately forming an arc-shaped reflective layer forming sheet having a predetermined radius of curvature and an arc-shaped reflective pattern forming sheet having a predetermined radius of curvature, respectively, and forming the reflective layer An adhesive layer is interposed between the sheet and the reflective pattern forming sheet, and is formed by pressure-bonding the reflective layer forming sheet and the reflective pattern forming sheet by heating and pressing with an upper die and a lower die. An optical encoder.
JP2005071176A 2005-03-14 2005-03-14 Optical encoder Expired - Fee Related JP4847031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005071176A JP4847031B2 (en) 2005-03-14 2005-03-14 Optical encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005071176A JP4847031B2 (en) 2005-03-14 2005-03-14 Optical encoder

Publications (3)

Publication Number Publication Date
JP2006250877A JP2006250877A (en) 2006-09-21
JP2006250877A5 JP2006250877A5 (en) 2008-05-08
JP4847031B2 true JP4847031B2 (en) 2011-12-28

Family

ID=37091537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005071176A Expired - Fee Related JP4847031B2 (en) 2005-03-14 2005-03-14 Optical encoder

Country Status (1)

Country Link
JP (1) JP4847031B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5460352B2 (en) 2010-01-22 2014-04-02 キヤノン株式会社 Displacement measuring device and velocity measuring device
JP5832562B2 (en) 2014-01-24 2015-12-16 ファナック株式会社 Reflective optical encoder with resin code plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310206A (en) * 1989-06-08 1991-01-17 Fujikura Ltd Optical waveguide of linbo3 and production thereof
JP4208483B2 (en) * 2002-05-21 2009-01-14 キヤノン株式会社 Optical encoder

Also Published As

Publication number Publication date
JP2006250877A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4280447B2 (en) Reflection scale and displacement detection device using the same
US8558161B2 (en) Lens having multiple conic sections for LEDs and proximity sensors
JP3753011B2 (en) Reflective light emitting diode
US7473886B2 (en) Position-measuring device
JP5809753B2 (en) Optical distance measuring device and electronic device
JP2006351681A (en) Reflection-type photoelectric switch
JP4847031B2 (en) Optical encoder
JPWO2006008883A1 (en) Reflective optical detector
JP2001155510A (en) Linear light source apparatus
JP2000321018A (en) Optical displacement detector
JP6464736B2 (en) Pulse wave sensor and electronic device
US8854337B2 (en) Optical position detection device, light receiving unit, and display system with input function
JP7102058B2 (en) Photoelectric encoder
JP2006337320A (en) Optical range finder sensor
JP4803644B2 (en) Optical encoder
WO2023067758A1 (en) Reflection-type optical sensor
JP2006135057A (en) Optical sensor
WO2023079705A1 (en) Reflective optical sensor
JP2002228491A (en) Emission light source device for optical encoder
JP7070221B2 (en) Multi-optical axis photoelectric sensor unit
JP6032949B2 (en) Image reading device
JP4694677B2 (en) Optical encoder
JP7294195B2 (en) rangefinder
CN110554454B (en) Backlight module and display device
JP4694676B2 (en) Optical encoder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4847031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees