JP4845713B2 - Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus - Google Patents
Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus Download PDFInfo
- Publication number
- JP4845713B2 JP4845713B2 JP2006343433A JP2006343433A JP4845713B2 JP 4845713 B2 JP4845713 B2 JP 4845713B2 JP 2006343433 A JP2006343433 A JP 2006343433A JP 2006343433 A JP2006343433 A JP 2006343433A JP 4845713 B2 JP4845713 B2 JP 4845713B2
- Authority
- JP
- Japan
- Prior art keywords
- photosensitive member
- electrophotographic
- group
- electrophotographic photosensitive
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Photoreceptors In Electrophotography (AREA)
Description
本発明は、電子写真感光体ならびに電子写真感光体を有するプロセスカートリッジおよび電子写真装置に関する。 The present invention relates to an electrophotographic photosensitive member, a process cartridge having the electrophotographic photosensitive member, and an electrophotographic apparatus.
近年、有機材料を用いた電子写真感光体(有機電子写真感光体)は、数多くの電子写真装置(複写機やプリンターなど)に搭載されるようになり、用いられる材料の研究開発も盛んに行われている。 In recent years, electrophotographic photoconductors using organic materials (organic electrophotographic photoconductors) have been installed in many electrophotographic apparatuses (copiers, printers, etc.), and research and development of the materials used has been actively conducted. It has been broken.
特に、フタロシアニン顔料やアゾ顔料をはじめとした電荷発生物質の研究開発は盛んに行われており、感度や耐久性の向上を目指した、新規化合物や、顔料の新規結晶形に関する様々な提案がなされている。例えば、特許文献1、2および3には、電荷発生物質として、特定の結晶形のガリウムフタロシアニン結晶が開示されている。 In particular, research and development of charge generation materials such as phthalocyanine pigments and azo pigments has been actively conducted, and various proposals for new compounds and new crystal forms of pigments have been made with the aim of improving sensitivity and durability. ing. For example, Patent Documents 1, 2, and 3 disclose a gallium phthalocyanine crystal having a specific crystal form as a charge generation material.
また、電荷輸送物質や電荷輸送層用の結着樹脂の研究開発も盛んに行われており、低コスト化や、高モビリティー化や、耐久性の向上などを目指し、様々な化合物の提案がなされている。 In addition, research and development of charge transport materials and binder resins for charge transport layers has been actively conducted, and various compounds have been proposed with the aim of reducing costs, increasing mobility, and improving durability. ing.
これに対して、感光層用の結着樹脂、特に積層型感光層の電荷発生層用の結着樹脂に関する研究開発は、あまり盛んではないのが現状である。 On the other hand, the research and development on the binder resin for the photosensitive layer, particularly the binder resin for the charge generation layer of the laminated photosensitive layer, is not very active at present.
そのような現状において、例えば、特許文献4や5には、感度向上や残電低下の効果がある樹脂として、ポリビニルベンザール誘導体が開示されている。また、特許文献6には、ポリビニルアセタール誘導体が開示されている。
Under such circumstances, for example,
しかしながら、実際は、塗工性や電荷発生物質の分散性を考慮して、ポリビニルブチラールなどの市販品が使用されている例がほとんどであり、電荷発生物質の特性を十分に発揮させているとは限らない。
本発明の目的は、電荷発生物質の特性(電子写真特性)が十分に発揮され、その結果として、出力画像の均一性が向上し、ゴースト画像の発生が抑制された電子写真感光体、ならびに、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供することにある。 The object of the present invention is to sufficiently exhibit the characteristics (electrophotographic characteristics) of the charge generating material, and as a result, improve the uniformity of the output image and suppress the generation of ghost images, and An object of the present invention is to provide a process cartridge and an electrophotographic apparatus having the electrophotographic photosensitive member.
本発明は、支持体および該支持体上に感光層を有する電子写真感光体において、
該感光層が、
(a)CuKα特性X線回折におけるブラッグ角の7.4°±0.3°および28.2°±0.3°に強いピークを有するガリウムフタロシアニン結晶、
(b)下記一般式(1)で示される繰り返し構造単位を有するポリビニルアセタール樹脂
The present invention relates to a support and an electrophotographic photoreceptor having a photosensitive layer on the support,
The photosensitive layer is
(A) a gallium phthalocyanine crystal having strong peaks at Bragg angles of 7.4 ° ± 0.3 ° and 28.2 ° ± 0.3 ° in CuKα characteristic X-ray diffraction,
(B) Polyvinyl acetal resin having a repeating structural unit represented by the following general formula (1)
(一般式(1)中、X11は、置換もしくは無置換のエチレン基、置換もしくは無置換のプロピレン基、または、置換もしくは無置換のブチレン基を示す。R11、R12、R13およびR14は、それぞれ独立に、水素原子、アルキル基、または、メトキシ基を示す。Ar11およびAr12は、それぞれ独立に、電子供与性置換基を1個以上有するフェニル基を示す。)、および、
(c)下記一般式(2)で示されるアゾ化合物
(In the general formula (1), X 11 represents a substituted or unsubstituted ethylene group, a substituted or unsubstituted propylene group, or a substituted or unsubstituted butylene group. R 11 , R 12 , R 13 and R 14 each independently represents a hydrogen atom, an alkyl group, or a methoxy group, and Ar 11 and Ar 12 each independently represent a phenyl group having one or more electron-donating substituents).
(C) An azo compound represented by the following general formula (2)
(一般式(2)中、Ar21およびAr22は、それぞれ独立に、置換もしくは無置換のアリール基を示す。)
を含有することを特徴とする電子写真感光体である。
(In the general formula (2), Ar 21 and Ar 22 each independently represent a substituted or unsubstituted aryl group.)
An electrophotographic photosensitive member characterized by comprising:
また、本発明は、上記電子写真感光体と、帯電手段、現像手段、転写手段およびクリーニング手段からなる群より選択される少なくとも1つの手段とを一体に支持し、電子写真装置本体に着脱自在であるプロセスカートリッジである。 Further, the present invention integrally supports the electrophotographic photosensitive member and at least one means selected from the group consisting of a charging means, a developing means, a transfer means, and a cleaning means, and is detachable from the main body of the electrophotographic apparatus. A process cartridge.
また、本発明は、上記電子写真感光体、帯電手段、露光手段、現像手段および転写手段を有する電子写真装置である。 The present invention also provides an electrophotographic apparatus having the electrophotographic photosensitive member, a charging unit, an exposure unit, a developing unit, and a transfer unit.
本発明によれば、電荷発生物質の特性が十分に発揮され、出力画像の均一性が高く、ゴースト画像の発生が抑制された電子写真感光体、ならびに、該電子写真感光体を有するプロセスカートリッジおよび電子写真装置を提供することができる。 According to the present invention, the electrophotographic photosensitive member in which the characteristics of the charge generating material are sufficiently exhibited, the uniformity of the output image is high, and the generation of the ghost image is suppressed, and the process cartridge having the electrophotographic photosensitive member and An electrophotographic apparatus can be provided.
本発明で用いられるCuKα特性X線回折におけるブラッグ角の7.4°±0.3°および28.2°±0.3°に強いピークを有するガリウムフタロシアニン結晶としては、例えば、
CuKα特性X線回折におけるブラッグ角2θ±0.2°の28.1°に最も強いピークを有し、7.3°にも強いピークを有するヒドロキシガリウムフタロシアニン結晶(特許文献1参照)、
CuKα特性X線回折におけるブラッグ角2θ±0.2°の7.5°、9.9°、12.5°、16.3°、18.6°および28.3°に強いピークを有するヒドロキシガリウムフタロシアニン結晶(特許文献2参照)、および、
CuKα特性X線回折におけるブラッグ角2θ±0.2°の7.4°、16.6°、25.5°、および28.3°に強いピークを有するクロロガリウムフタロシアニン結晶(特許文献3参照)
などが挙げられる。
Examples of the gallium phthalocyanine crystal having strong peaks at Bragg angles of 7.4 ° ± 0.3 ° and 28.2 ° ± 0.3 ° in CuKα characteristic X-ray diffraction used in the present invention include:
A hydroxygallium phthalocyanine crystal having a strongest peak at 28.1 ° with a Bragg angle 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction and a strong peak at 7.3 ° (see Patent Document 1);
Hydroxy having strong peaks at 7.5 °, 9.9 °, 12.5 °, 16.3 °, 18.6 ° and 28.3 ° with a Bragg angle 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction Gallium phthalocyanine crystal (see Patent Document 2), and
Chlorogallium phthalocyanine crystal having strong peaks at 7.4 °, 16.6 °, 25.5 °, and 28.3 ° with a Bragg angle 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction (see Patent Document 3)
Etc.
本発明で用いられるポリビニルアセタール樹脂は、通常のブチラール樹脂と同様な方法で合成することが可能である。すなわち、ポリビニルアルコールと電子供与性の置換トリアリールアミン骨格を有するアルデヒドを、例えばエタノールとトルエンの混合溶剤中で塩酸や硫酸などの酸の存在下、20〜70℃で反応させることによって合成することができる。 The polyvinyl acetal resin used in the present invention can be synthesized by the same method as a normal butyral resin. That is, synthesis is performed by reacting polyvinyl alcohol and an aldehyde having an electron-donating substituted triarylamine skeleton in a mixed solvent of ethanol and toluene at 20 to 70 ° C. in the presence of an acid such as hydrochloric acid or sulfuric acid. Can do.
また、上記ポリビニルアセタール樹脂の重量平均分子量は10000〜500000の範囲にあることが好ましく、30000〜100000の範囲にあることがより好ましい。分子量が小さすぎると、電荷発生物質の分散安定性や層の成膜性が不十分になることがある。分子量が大きすぎると、合成時のハンドリングに不具合が生じやすく、また、電荷発生物質分散時の粘度が高くなるので、分散不良を引き起こすこともある。 The weight average molecular weight of the polyvinyl acetal resin is preferably in the range of 10,000 to 500,000, and more preferably in the range of 30,000 to 100,000. If the molecular weight is too small, the dispersion stability of the charge generation material and the film formability of the layer may be insufficient. If the molecular weight is too large, problems in handling at the time of synthesis are likely to occur, and the viscosity at the time of dispersion of the charge generating substance is increased, which may cause poor dispersion.
また、上記ポリビニルアセタール樹脂のアセタール化度は30モル%以上であることが好ましく、50〜85モル%であることがより好ましい。アセタール化度が低すぎると、溶剤に対する樹脂の溶解性が低下しすぎることがあり、また、電子供与性の置換トリアリールアミン骨格の数が少なくなるために、本発明の効果が十分得られない場合がある。一方、アセタール化度が85モル%より高いアセタール化度を有する樹脂は、合成するのが難しい。 The degree of acetalization of the polyvinyl acetal resin is preferably 30 mol% or more, and more preferably 50 to 85 mol%. If the degree of acetalization is too low, the solubility of the resin in the solvent may decrease too much, and the number of electron-donating substituted triarylamine skeletons will decrease, so that the effects of the present invention cannot be obtained sufficiently. There is a case. On the other hand, a resin having an acetalization degree higher than 85 mol% is difficult to synthesize.
また、本発明においては、原料のポリビニルアルコールに由来する残存酢酸ビニル成分の含有率は低いほど好ましい。原料のポリビニルアルコールとしては、ケン化度が85%以上のものを原料として使用することが好ましい。ケン化度が85%より低いとアセタール化度が低くなりやすい。 Moreover, in this invention, the content rate of the residual vinyl acetate component originating in the raw material polyvinyl alcohol is so preferable that it is low. As the raw material polyvinyl alcohol, those having a saponification degree of 85% or more are preferably used as the raw material. If the degree of saponification is lower than 85%, the degree of acetalization tends to be low.
電子供与性置換基としては、メチル基、エチル基およびプロピル基などのアルキル基や、メトキシ基およびエトキシ基などのアルコキシ基や、フェニル基や、フェノキシ基や、ベンジル基などが挙げられる。 Examples of the electron donating substituent include alkyl groups such as a methyl group, an ethyl group, and a propyl group, alkoxy groups such as a methoxy group and an ethoxy group, a phenyl group, a phenoxy group, and a benzyl group.
上記ポリビニルアセタール樹脂を電子写真感光体の感光層(電荷発生層)に用いる際、上記ポリビニルアセタール樹脂とともに他の樹脂を混合して用いてもよい。その混合割合は、樹脂全質量に対して、上記ポリビニルアセタール樹脂が50質量%以上であることが好ましく、70質量%以上であることがより好ましい。 When the polyvinyl acetal resin is used for the photosensitive layer (charge generation layer) of the electrophotographic photosensitive member, other resins may be mixed with the polyvinyl acetal resin. The mixing ratio of the polyvinyl acetal resin is preferably 50% by mass or more, and more preferably 70% by mass or more with respect to the total mass of the resin.
以下に、本発明で用いられるポリビニルアセタール樹脂の具体例を例示する。以下のX11、R11、R12、R13、R14、Ar11およびAr12は、上記一般式(1)のX11、R11、R12、R13、R14、Ar11およびAr12である。 Below, the specific example of the polyvinyl acetal resin used by this invention is illustrated. The following X 11, R 11, R 12 , R 13, R 14, Ar 11 and Ar 12, X 11 in the general formula (1), R 11, R 12, R 13, R 14, Ar 11 and Ar 12 .
上記一般式(1)において、X11はエチレン基(無置換のエチレン基)であることが好ましい。また、R11、R12、R13およびR14はすべて水素原子であることが好ましい。また、出力画像の均一性の向上およびゴースト画像の発生の抑制の観点から、Ar11およびAr12が有している上記電子供与性置換基はアルキル基であることが好ましく、その中でも、メチル基またはエチル基がより好ましい。 In the general formula (1), X 11 is preferably an ethylene group (unsubstituted ethylene group). R 11 , R 12 , R 13 and R 14 are preferably all hydrogen atoms. Further, from the viewpoint of improving the uniformity of the output image and suppressing the generation of ghost images, the electron donating substituents of Ar 11 and Ar 12 are preferably alkyl groups, and among them, methyl groups Or an ethyl group is more preferable.
本発明で用いられる上記一般式(2)で示されるアゾ化合物は、アゾ顔料の一般的な合成法であるアゾニウム塩とナフトール誘導体とのアゾカップリング反応により得ることができる。 The azo compound represented by the general formula (2) used in the present invention can be obtained by an azo coupling reaction between an azonium salt and a naphthol derivative, which is a general synthesis method of an azo pigment.
上記一般式(2)のAr21およびAr22のアリール基としては、例えば、フェニル基、ナフチル基、フルオレニル基およびピレニル基などが挙げられる。また、このアリール基が有してもよい置換基としては、
メチル基、エチル基およびプロピル基などのアルキル基や、
メトキシ基、エトキシ基などのアルコキシ基や、
メチルアミノ基、ジメチルアミノ基およびジエチルアミノ基などのアルキルアミノ基や、
フェニルアミノ基およびジフェニルアミノ基などのアリールアミノ基や、
フッ素原子、塩素原子、臭素原子およびヨウ素原子などのハロゲン原子や、
ヒドロキシ基や、
ニトロ基や、
シアノ基や、
トリフルオロメトキシ基や、
ヒドロキシカルボニル基や、
エトキシカルボニル基や、
トリフルオロメチルなどのハロメチル基や、
トリフルオロメトキシ基
などが挙げられる。これらの中でも、ハロゲン含有基(ハロゲン原子を含有する基)が好ましい。また、ハロゲン含有基の中でも、トリフルオロメチル基、ハロゲン原子が好ましい。
Examples of the aryl group of Ar 21 and Ar 22 in the general formula (2) include a phenyl group, a naphthyl group, a fluorenyl group, and a pyrenyl group. Moreover, as a substituent which this aryl group may have,
Alkyl groups such as methyl, ethyl and propyl,
Alkoxy groups such as methoxy group and ethoxy group,
Alkylamino groups such as methylamino group, dimethylamino group and diethylamino group,
Arylamino groups such as phenylamino and diphenylamino groups,
Halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom,
Hydroxy groups,
Nitro group,
Cyano group,
A trifluoromethoxy group,
A hydroxycarbonyl group,
Ethoxycarbonyl group,
Halomethyl groups such as trifluoromethyl,
A trifluoromethoxy group etc. are mentioned. Among these, a halogen-containing group (group containing a halogen atom) is preferable. Of the halogen-containing groups, a trifluoromethyl group and a halogen atom are preferable.
以下に、本発明で用いられる上記一般式(2)で示されるアゾ化合物の具体例を例示する。以下のAr21およびAr22は、上記一般式(2)のAr21およびAr22である。 Below, the specific example of the azo compound shown by the said General formula (2) used by this invention is illustrated. The following Ar 21 and Ar 22 are the Ar 21 and Ar 22 in the general formula (2).
出力画像の均一性の向上およびゴースト画像の発生の抑制の観点から、上記一般式(2)において、Ar21およびAr22は、m−トリフルオロメチルフェニル基、m−ヨ−ドフェニル基またはm−ブロモフェニル基が好ましい。 From the viewpoint of improving the uniformity of the output image and suppressing the generation of the ghost image, in the general formula (2), Ar 21 and Ar 22 are m-trifluoromethylphenyl group, m-iodophenyl group or m- A bromophenyl group is preferred.
本発明の電子写真感光体の感光層としては、電荷発生物質および電荷輸送物質を単一の層に含有させた単層型感光層であってもよいし、電荷発生物質を含有する電荷発生層および電荷輸送物質を含有する電荷輸送層を有する積層型感光層であってもよい。電子写真特性の観点からは、積層型感光層が好ましい。また、積層型感光層の中でも、支持体側から電荷発生層、電荷輸送層の順に積層した順層型感光層がより好ましい。 The photosensitive layer of the electrophotographic photoreceptor of the present invention may be a single layer type photosensitive layer containing a charge generating material and a charge transport material in a single layer, or a charge generating layer containing a charge generating material. And a laminated photosensitive layer having a charge transport layer containing a charge transport material. From the viewpoint of electrophotographic characteristics, a laminated photosensitive layer is preferable. Among the laminated photosensitive layers, a normal layer type photosensitive layer in which a charge generation layer and a charge transport layer are laminated in this order from the support side is more preferable.
感光層を積層型感光層とする場合は、電荷発生層が上記(a)、(b)および(c)を含有することが好ましい。 When the photosensitive layer is a laminated photosensitive layer, the charge generation layer preferably contains the above (a), (b) and (c).
感光層を積層型感光層とする場合、電荷発生層は、以下のようにして形成することができる。すなわち、まず、(c)のアゾ化合物を溶剤に分散させる。次に、その分散液中に、(a)のガリウムフタロシアニン結晶と、(b)のポリビニルアセタール樹脂を溶剤に溶解させた液とを添加し、再度、分散処理を行うことによって、電荷発生層用塗布液を調製する。この電荷発生層用塗布液を塗布し、これを乾燥させることによって電荷発生層を形成することができる。 When the photosensitive layer is a laminated photosensitive layer, the charge generation layer can be formed as follows. That is, first, the azo compound (c) is dispersed in a solvent. Next, (a) gallium phthalocyanine crystal and (b) a solution obtained by dissolving the polyvinyl acetal resin in a solvent are added to the dispersion, and the dispersion treatment is performed again, whereby the charge generation layer is used. A coating solution is prepared. The charge generation layer can be formed by applying the charge generation layer coating solution and drying it.
上記分散の際には、サンドミルやボールミルなどのメディア型分散機や、液衝突型分散機などの分散機を用いることができる。 In the dispersion, a media type disperser such as a sand mill or a ball mill, or a disperser such as a liquid collision type disperser can be used.
電荷発生層中、(a)のガリウムフタロシアニン結晶、(b)のポリビニルアセタール樹脂および(c)のアゾ化合物の割合は、{(a)+(c)}:(b)=5:1〜1:2(質量比)の範囲であることが好ましい。(b)が少なすぎると本発明の効果が十分得られない場合があり、(a)+(c)が少なすぎると十分な電荷発生能が得られない場合がある。 The ratio of the gallium phthalocyanine crystal (a), the polyvinyl acetal resin (b) and the azo compound (c) in the charge generation layer is {(a) + (c)} :( b) = 5: 1 to 1 : It is preferable that it is the range of 2 (mass ratio). If the amount of (b) is too small, the effect of the present invention may not be sufficiently obtained, and if the amount of (a) + (c) is too small, sufficient charge generation ability may not be obtained.
また、(a)ガリウムフタロシアニン結晶および(c)アゾ化合物の割合は、(a):(c)=98:2〜60:40(質量比)の範囲であることが好ましく、(a):(c)=95:5〜80:20(質量比)の範囲であることがより好ましい。(c)が多すぎても少なすぎても本発明の効果、特に出力画像の均一性の向上効果が十分得られない場合がある。 The ratio of (a) gallium phthalocyanine crystal and (c) azo compound is preferably in the range of (a) :( c) = 98: 2 to 60:40 (mass ratio), and (a) :( c) = 95: 5 to 80:20 (mass ratio) is more preferable. If the amount of (c) is too much or too little, the effect of the present invention, particularly the effect of improving the uniformity of the output image, may not be obtained sufficiently.
また、電荷発生層の膜厚は5μm以下であることが好ましく、0.05〜1μmであることがより好ましい。 In addition, the thickness of the charge generation layer is preferably 5 μm or less, and more preferably 0.05 to 1 μm.
感光層を積層型感光層とする場合、電荷輸送層は、電荷輸送物質と結着樹脂を溶剤に溶解させて得られる電荷輸送層用塗布液を塗布し、これを乾燥させることによって形成することができる。 When the photosensitive layer is a laminate type photosensitive layer, the charge transport layer is formed by applying a charge transport layer coating solution obtained by dissolving a charge transport material and a binder resin in a solvent, and drying it. Can do.
電荷輸送物質としては、例えば、トリアリールアミン化合物、ヒドラゾン化合物、スチルベン化合物、ピラゾリン化合物、オキサゾール化合物、チアゾール化合物およびトリアリルメタン化合物などが挙げられる。 Examples of the charge transport material include triarylamine compounds, hydrazone compounds, stilbene compounds, pyrazoline compounds, oxazole compounds, thiazole compounds, and triallylmethane compounds.
また、電荷輸送層用の結着樹脂としては、例えば、ポリエステル樹脂、アクリル樹脂、ポリビニルカルバゾール樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、ポリスルホン樹脂、ポリアリレート樹脂および塩化ビニリデン−アクリロニトリル共重合体樹脂などが挙げられる。 Examples of the binder resin for the charge transport layer include polyester resin, acrylic resin, polyvinyl carbazole resin, phenoxy resin, polycarbonate resin, polyvinyl butyral resin, polystyrene resin, polyvinyl acetate resin, polysulfone resin, polyarylate resin, and chloride. And vinylidene-acrylonitrile copolymer resin.
また、電荷輸送層の膜厚は5〜40μmであることが好ましく、10〜30μmであることがより好ましい。 The thickness of the charge transport layer is preferably 5 to 40 μm, and more preferably 10 to 30 μm.
感光層を単層型感光層とする場合、感光層は、上記電荷発生層用塗布液と同様の液に電荷輸送物質および必要に応じて他の樹脂を添加して得られる単層型感光層用塗布液を塗布し、これを乾燥させることによって形成することができる。 When the photosensitive layer is a single-layer type photosensitive layer, the photosensitive layer is a single-layer type photosensitive layer obtained by adding a charge transport material and, if necessary, another resin to the same solution as the charge generation layer coating solution. It can form by apply | coating the coating liquid for coating and drying this.
単層型感光層中、(a)のガリウムフタロシアニン結晶、(b)のポリビニルアセタール樹脂および(c)のアゾ化合物の割合は、{(a)+(c)}:(b)=2:1〜1:50(質量比)の範囲であることが好ましく、1:5〜1:20(質量比)の範囲であることがより好ましい。(b)が少なすぎると本発明の効果が十分得られない場合があり、(a)+(c)が少なすぎると十分な電荷発生能が得られない場合がある。 The ratio of the gallium phthalocyanine crystal of (a), the polyvinyl acetal resin of (b) and the azo compound of (c) in the single-layer type photosensitive layer is {(a) + (c)} :( b) = 2: 1 It is preferably in the range of ˜1: 50 (mass ratio), more preferably in the range of 1: 5 to 1:20 (mass ratio). If the amount of (b) is too small, the effect of the present invention may not be sufficiently obtained, and if the amount of (a) + (c) is too small, sufficient charge generation ability may not be obtained.
また、単層型感光層における(a)ガリウムフタロシアニン結晶および(c)アゾ化合物の割合の好適範囲は、積層型感光層の電荷発生層におけるそれと同様である。 Further, the preferred range of the ratio of (a) gallium phthalocyanine crystal and (c) azo compound in the single layer type photosensitive layer is the same as that in the charge generation layer of the multilayer type photosensitive layer.
また、単層型感光層の膜厚は5〜30μmであることが好ましく、0.1〜20μmであることがより好ましい。 Further, the film thickness of the single-layer type photosensitive layer is preferably 5 to 30 μm, and more preferably 0.1 to 20 μm.
本発明の電子写真感光体に用いられる支持体としては、導電性を有するもの(導電性支持体)であればよく、その材料としては、例えば、アルミニウム、アルミニウム合金、銅、亜鉛、ステンレス、バナジウム、モリブデン、クロム、チタン、ニッケル、インジウム、金および白金などが挙げられる。 The support used in the electrophotographic photosensitive member of the present invention may be any conductive one (conductive support). Examples of the material include aluminum, aluminum alloy, copper, zinc, stainless steel, and vanadium. , Molybdenum, chromium, titanium, nickel, indium, gold and platinum.
また、このような金属あるいは合金を、プラスチック(例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリエチレンテレフタレートおよびアクリル樹脂など)上に真空蒸着法によって被覆形成した支持体であってもよい。また、導電性粒子(例えば、カーボンブラックおよび銀粒子など)を結着樹脂とともにプラスチックまたは金属もしくは合金の基体上に被覆してなる支持体であってもよい。また、導電性粒子をプラスチックや紙に含浸させてなる支持体であってもよい。 Further, a support in which such a metal or alloy is coated on a plastic (for example, polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, acrylic resin, etc.) by vacuum deposition may be used. Further, it may be a support obtained by coating conductive particles (for example, carbon black and silver particles) on a plastic or metal or alloy substrate together with a binder resin. Further, a support obtained by impregnating conductive particles with plastic or paper may be used.
支持体の形状としては、例えば、ドラム状、シート状およびベルト状などが挙げられるが、適用される電子写真装置に最も適した形状にすることが好ましい。 Examples of the shape of the support include a drum shape, a sheet shape, and a belt shape, and it is preferable to have a shape most suitable for the electrophotographic apparatus to be applied.
本発明の電子写真感光体においては、支持体と感光層との間に、バリヤー機能や接着機能などの機能を持つ下引き層(中間層)を設けてもよい。下引き層は、例えば、カゼイン、ポリビニルアルコール、ニトロセルロース、ポリアミド(ナイロン6、ナイロン66、ナイロン610、共重合ナイロン、アルコキシメチル化ナイロンなど)、ポリウレタンおよび酸化アルミニウムなどによって形成することができる。 In the electrophotographic photoreceptor of the present invention, an undercoat layer (intermediate layer) having functions such as a barrier function and an adhesive function may be provided between the support and the photosensitive layer. The undercoat layer can be formed of, for example, casein, polyvinyl alcohol, nitrocellulose, polyamide (nylon 6, nylon 66, nylon 610, copolymer nylon, alkoxymethylated nylon, etc.), polyurethane, aluminum oxide, or the like.
下引き層の膜厚は5μm以下であることが好ましく、0.3〜2μmであることがより好ましい。 The thickness of the undercoat layer is preferably 5 μm or less, and more preferably 0.3 to 2 μm.
また、感光層上には、感光層を保護し、電子写真感光体の耐久性を向上させることを目的として、保護層を設けてもよい。 Further, a protective layer may be provided on the photosensitive layer for the purpose of protecting the photosensitive layer and improving the durability of the electrophotographic photosensitive member.
保護層は、例えば、ポリビニルブチラール、ポリエステル、ポリカーボネート(ポリカーボネートZ、変性ポリカーボネートなど)、ポリアミド、ポリイミド、ポリアリレート、ポリウレタン、スチレン−ブタジエンコポリマー、スチレン−アクリル酸コポリマーおよびスチレン−アクリロニトリルコポリマーなどの樹脂を溶剤に溶解させて得られる保護層用塗布液を感光層上に塗布し、これを乾燥させることによって形成することができる。あるいは、保護層用塗布液を感光層上に塗布し、これを加熱し、または、これに電子線もしくは紫外線などを照射し、硬化させることによって形成することもできる。 The protective layer is made of, for example, a resin such as polyvinyl butyral, polyester, polycarbonate (polycarbonate Z, modified polycarbonate, etc.), polyamide, polyimide, polyarylate, polyurethane, styrene-butadiene copolymer, styrene-acrylic acid copolymer and styrene-acrylonitrile copolymer as a solvent. It can be formed by applying a coating solution for a protective layer obtained by dissolving in a photosensitive layer on the photosensitive layer and drying it. Alternatively, it may be formed by applying a coating solution for a protective layer on the photosensitive layer and heating it, or irradiating it with an electron beam or ultraviolet rays and curing it.
保護層の膜厚は0.1〜10μmであることが好ましい。 The thickness of the protective layer is preferably 0.1 to 10 μm.
また、保護層中には、導電性粒子や紫外線吸収剤やフッ素原子含有樹脂粒子などの潤滑性粒子などを含有させてもよい。導電性粒子としては、例えば、酸化スズ、シリカなどの金属酸化物粒子が好ましい。 Further, the protective layer may contain conductive particles, ultraviolet absorbents, lubricating particles such as fluorine atom-containing resin particles, and the like. As the conductive particles, for example, metal oxide particles such as tin oxide and silica are preferable.
本発明の電子写真感光体は、電子写真方式の複写機、レーザービームプリンター、CRTプリンター、電子写真式製版システムなどに広く適用することが可能である。 The electrophotographic photosensitive member of the present invention can be widely applied to electrophotographic copying machines, laser beam printers, CRT printers, electrophotographic plate making systems, and the like.
次に、本発明の電子写真感光体を用いた電子写真装置について説明する。 Next, an electrophotographic apparatus using the electrophotographic photosensitive member of the present invention will be described.
本発明の電子写真装置の一つの実施の形態を図1に示す。 One embodiment of the electrophotographic apparatus of the present invention is shown in FIG.
図1において、1は本発明のドラム型の電子写真感光体であり軸1aを中心に矢印方向に所定の周速度で回転駆動する。該電子写真感光体1は、その回転過程で帯電手段2によりその周面に正または負の所定電位の均一帯電を受け、次いで露光部3にて不図示の露光手段により露光光L(レーザービーム走査露光等)を受ける。これにより電子写真感光体周面に露光像に対応した静電潜像が順次形成されていく。その静電潜像は、次いで現像手段4でトナー像として現像され、そのトナー現像像がコロナ転写手段5により不図示の給紙部から電子写真感光体1と転写手段5との間に電子写真感光体1の回転と同期取りされて給送された転写材9の面に順次転写されていく。像転写を受けた転写材9は、電子写真感光体面から分離されて像定着手段8へ導入されて像定着を受けて複写物(コピー)として電子写真装置の機外へプリントアウトされる。像転写後の電子写真感光体1の表面は、クリーニング手段6にて転写残りトナーの除去を受けて清浄面化され、前露光手段7により除電処理がされて、繰り返して像形成に使用される。
In FIG. 1, reference numeral 1 denotes a drum type electrophotographic photosensitive member of the present invention, which is driven to rotate at a predetermined peripheral speed in the direction of an arrow about a shaft 1a. In the rotating process, the electrophotographic photosensitive member 1 is uniformly charged with a predetermined positive or negative potential on its peripheral surface by the charging means 2, and then the exposure unit 3 exposes the exposure light L (laser beam) by the exposure means not shown. Scanning exposure, etc.). As a result, electrostatic latent images corresponding to the exposure images are sequentially formed on the peripheral surface of the electrophotographic photosensitive member. The electrostatic latent image is then developed as a toner image by the developing
また、帯電手段、現像手段およびクリーニング手段からなる群より選択された少なくとも一つの手段を感光体と一体に支持し、電子写真装置本体に着脱自在としたプロセスカートリッジも本発明の範囲内である。本発明のプロセスカートリッジの一つの実施の形態を図2に示す。 Further, a process cartridge in which at least one means selected from the group consisting of a charging means, a developing means and a cleaning means is integrally supported with the photosensitive member and is detachable from the main body of the electrophotographic apparatus is also within the scope of the present invention. One embodiment of the process cartridge of the present invention is shown in FIG.
図2に示すプロセスカートリッジは、電子写真感光体1、帯電手段2および現像手段4を容器20に納めてプロセスカートリッジとし、このプロセスカートリッジは、レール等の案内手段12により電子写真装置本体に対して着脱自在に構成されている。クリーニング手段6は、容器20内に配置しても配置しなくてもよい。
The process cartridge shown in FIG. 2 is a process cartridge in which the electrophotographic photosensitive member 1, the charging means 2 and the developing
本発明のプロセスカートリッジおよび電子写真装置の別の実施の形態を図3に示す。図3に示すように、本発明のプロセスカートリッジおよび電子写真装置は、帯電手段として直接帯電部材10を用い、電圧印加された直接帯電部材10を電子写真感光体1に接触させることにより電子写真感光体1の帯電を行ってもよい(この帯電方法を、以下直接帯電という)。図3に示す本発明の装置では、電子写真感光体1上のトナー像も直接帯電部材23で転写材9に転写される。すなわち、電圧印加された直接帯電部材23を転写材9に接触させることにより電子写真感光体1上のトナー像を転写材9に転写させる。
FIG. 3 shows another embodiment of the process cartridge and the electrophotographic apparatus of the present invention. As shown in FIG. 3, the process cartridge and the electrophotographic apparatus according to the present invention use a
さらに、本発明の電子写真装置は、図4に示すように、少なくとも電子写真感光体1および直接帯電部材10を第1の容器21に納めて第1のプロセスカートリッジとし、少なくとも現像手段4を第2の容器22に納めて第2のプロセスカートリッジとを有し、これらプロセスカートリッジが電子写真装置本体に対して着脱自在に構成されている形態であってもよい。また、図4における第1のプロセスカートリッジ(少なくとも電子写真感光体1および直接帯電部材10を第1の容器21に納めた形態)は、本発明のプロセスカートリッジの一つの形態である。第1のプロセスカートリッジは、クリーニング手段6を容器21内に配置しても配置しなくてもよい。
Further, as shown in FIG. 4, the electrophotographic apparatus of the present invention accommodates at least the electrophotographic photosensitive member 1 and the direct charging
露光光Lは、電子写真装置を複写機やプリンターとして使用する場合には、原稿からの反射光や透過光を用いる、あるいは原稿を読み取り信号化に従って、この信号に従ってレーザービームの走査、発光ダイオードアレイの駆動、または液晶シャッターアレイの駆動などを行うことにより行われる。 When the electrophotographic apparatus is used as a copying machine or a printer, the exposure light L uses reflected light or transmitted light from the original, or reads the original into a signal, scans the laser beam according to this signal, and the light emitting diode array. Or driving a liquid crystal shutter array.
次に、本発明の電子写真感光体を有する電子写真装置について説明する。 Next, an electrophotographic apparatus having the electrophotographic photosensitive member of the present invention will be described.
図1に、本発明の電子写真装置の概略構成の一例を示す。 FIG. 1 shows an example of a schematic configuration of the electrophotographic apparatus of the present invention.
図1において、1は本発明のドラム型の電子写真感光体であり、軸1aを中心に矢印方向に所定の周速度で回転駆動する。電子写真感光体1は、その回転過程で帯電手段2によって、その周面を正または負の所定電位に帯電される。次いで、露光部3にて、不図示の露光手段により露光光L(レーザービーム走査露光など)を受ける。これにより、電子写真感光体の周面に露光像に対応した静電潜像が順次形成されていく。その静電潜像は、次いで、現像手段4でトナー像として現像され、そのトナー像がコロナ方式の転写手段(コロナ転写手段)5により、不図示の給紙部から電子写真感光体1と転写手段5との間に電子写真感光体1の回転と同期取りされて給送された転写材9の面に順次転写されていく。トナー像の転写を受けた転写材9は、電子写真感光体の周面から分離されて定着手段8へ導入されて像定着を受けて複写物(コピー)として電子写真装置の機外へプリントアウトされる。トナー像転写後の電子写真感光体1の周面は、クリーニング手段6にて転写残トナーの除去を受けて清浄面化され、前露光手段7により除電処理がなされて、繰り返して像形成に使用される。
In FIG. 1, reference numeral 1 denotes a drum-type electrophotographic photosensitive member of the present invention, which is rotationally driven in a direction of an arrow about a shaft 1a at a predetermined peripheral speed. The electrophotographic photosensitive member 1 is charged at a predetermined positive or negative potential by the charging means 2 during the rotation process. Next, the exposure unit 3 receives exposure light L (laser beam scanning exposure or the like) by an exposure unit (not shown). As a result, electrostatic latent images corresponding to the exposure images are sequentially formed on the peripheral surface of the electrophotographic photosensitive member. The electrostatic latent image is then developed as a toner image by the developing
また、図2に例示するように、電子写真感光体と、帯電手段、現像手段、転写手段およびクリーニング手段からなる群より選択された少なくとも1つの手段とを一体に支持し、電子写真装置本体に着脱自在としたプロセスカートリッジを構成してもよい。 Further, as illustrated in FIG. 2, the electrophotographic photosensitive member and at least one means selected from the group consisting of a charging means, a developing means, a transfer means and a cleaning means are integrally supported, and the electrophotographic apparatus main body is supported. A process cartridge that is detachable may be configured.
図2に示すプロセスカートリッジは、電子写真感光体1、帯電手段2および現像手段4を容器20に納めてプロセスカートリッジとし、このプロセスカートリッジは、レールなどの案内手段12により電子写真装置本体に対して着脱自在に構成されている。クリーニング手段6は、容器20内に配置しても配置しなくてもよい。
The process cartridge shown in FIG. 2 is a process cartridge in which the electrophotographic photosensitive member 1, the charging means 2 and the developing
本発明のプロセスカートリッジおよび電子写真装置の別の形態を図3に示す。図3に示すように、本発明のプロセスカートリッジおよび電子写真装置は、帯電手段として接触帯電部材10を用い、電圧印加された接触帯電部材10を電子写真感光体1に接触させることにより電子写真感光体1の帯電を行ってもよい(この帯電方法を、以下「接触帯電」という)。図3に示す装置では、電子写真感光体1上のトナー像も転写用接触帯電部材23で転写材9に転写される。すなわち、電圧印加された転写用接触帯電部材23を転写材9に接触させることにより電子写真感光体1上のトナー像を転写材9に転写させる。
FIG. 3 shows another embodiment of the process cartridge and the electrophotographic apparatus of the present invention. As shown in FIG. 3, the process cartridge and the electrophotographic apparatus of the present invention use a
さらに、プロセスカートリッジおよび電子写真装置は、図4に示すように、電子写真感光体1および接触帯電部材10を第1の容器21に納めて第1のプロセスカートリッジとし、現像手段4を第2の容器22に納めて第2のプロセスカートリッジとした構成にしてもよい。
Further, as shown in FIG. 4, in the process cartridge and the electrophotographic apparatus, the electrophotographic photosensitive member 1 and the
露光光Lは、電子写真装置を複写機やプリンターとして使用する場合、原稿からの反射光や透過光を用いてもよいし、原稿を読み取り信号化し、この信号に従って走査されるレーザービームを用いてもよい。また、発光ダイオードアレイの駆動や、液晶シャッターアレイの駆動などを採用してもよい。 When the electrophotographic apparatus is used as a copying machine or a printer, the exposure light L may be reflected light or transmitted light from a document, or a laser beam scanned according to this signal is converted into a read signal. Also good. Further, driving of a light emitting diode array, driving of a liquid crystal shutter array, or the like may be employed.
以下、実施例を用いて本発明をさらに詳細に説明する。なお、以下の例中における「部」は「質量部」を示す。 Hereinafter, the present invention will be described in more detail with reference to examples. In the following examples, “part” means “part by mass”.
IR(赤外分光法)の測定は、FT/IR−420(日本分光(株)製)を用いて行った。 The measurement of IR (infrared spectroscopy) was performed using FT / IR-420 (manufactured by JASCO Corporation).
結晶形のX線回折の測定は、CuKα線を用い、次の条件で行ったものである。
使用測定機:マック・サイエンス社製、全自動X線回折装置MXP18
X線管球:Cu
管電圧:50kV
管電流:300mA
スキャン方法:2θ/θスキャン
スキャン速度:2deg./min
サンプリング間隔:0.020deg.
スタート角度(2θ):5deg.
ストップ角度(2θ):40deg.
ダイバージェンススリット:0.5deg.
スキャッタリングスリット:0.5deg.
レシービングスリット:0.3deg.
湾曲モノクロメーター使用
Measurement of X-ray diffraction of the crystal form was performed using CuKα rays under the following conditions.
Measuring instrument used: Fully automatic X-ray diffractometer MXP18, manufactured by Mac Science
X-ray tube: Cu
Tube voltage: 50 kV
Tube current: 300mA
Scan method: 2θ / θ scan Scan speed: 2 deg. / Min
Sampling interval: 0.020 deg.
Start angle (2θ): 5 deg.
Stop angle (2θ): 40 deg.
Divergence slit: 0.5 deg.
Scattering slit: 0.5 deg.
Receiving slit: 0.3 deg.
Uses curved monochromator
(合成例1)
<例示樹脂(1−1)の合成>
ポリビニルアルコール(商品名:ポバール1400、キシダ化学(株)製)3部および下記構造式で示されるアルデヒド化合物
(Synthesis Example 1)
<Synthesis of Exemplified Resin (1-1)>
3 parts of polyvinyl alcohol (trade name: Poval 1400, manufactured by Kishida Chemical Co., Ltd.) and an aldehyde compound represented by the following structural formula
54部を、トルエン25部およびエタノール25部中で撹拌した中に、濃塩酸0.2部を滴下し、50℃に昇温させて5時間加熱撹拌を行った。反応物を水酸化ナトリウム0.4部を溶かしたメタノール1000部に撹拌下滴下し、析出物を濾取した。得られた濾物をトルエン100部およびアセトン100部に溶解させ、不溶分をひだ濾紙により除去後、メタノール2000部に撹拌下滴下し、析出物を濾取した。得られた濾物を再度トルエン/アセトン=1/1の混合溶液180部に溶解させた後、メタノール2000部に撹拌下滴下し、析出物を濾取し、例示樹脂の(1−1)を7.4部得た。得られた樹脂のIRのデータを以下に示す。
IR(cm−1,KBr):3525,3025,2919,2859,1607,1507,1319,1272,1138,1056,814,714
While 54 parts were stirred in 25 parts of toluene and 25 parts of ethanol, 0.2 part of concentrated hydrochloric acid was added dropwise, and the mixture was heated to 50 ° C. and stirred for 5 hours. The reaction product was added dropwise with stirring to 1000 parts of methanol in which 0.4 part of sodium hydroxide was dissolved, and the precipitate was collected by filtration. The obtained filtrate was dissolved in 100 parts of toluene and 100 parts of acetone, the insoluble matter was removed with pleated filter paper, and then added dropwise to 2000 parts of methanol with stirring, and the precipitate was collected by filtration. The obtained filtrate was again dissolved in 180 parts of a mixed solution of toluene / acetone = 1/1, and then added dropwise to 2000 parts of methanol with stirring, and the precipitate was collected by filtration to obtain (1-1) of the exemplary resin. 7.4 parts were obtained. The IR data of the obtained resin are shown below.
IR (cm −1 , KBr): 3525, 3025, 2919, 2859, 1607, 1507, 1319, 1272, 1138, 1056, 814, 714
(合成例2)
<例示樹脂(1−2)の合成>
ポリビニルアルコール(商品名:ポバール1400、キシダ化学(株)製)1.8部および下記構造式で示されるアルデヒド化合物
(Synthesis Example 2)
<Synthesis of Exemplified Resin (1-2)>
1.8 parts of polyvinyl alcohol (trade name: Poval 1400, manufactured by Kishida Chemical Co., Ltd.) and an aldehyde compound represented by the following structural formula
34部を、トルエン25部およびエタノール25部中で撹拌した中に、濃塩酸0.2部を滴下し、50℃に昇温させて5時間加熱撹拌を行った。反応物を水酸化ナトリウム0.3gを溶かしたメタノール1000部に撹拌下滴下し、析出物を濾取した。得られた濾物をトルエン90部およびアセトン90部に溶解させ、不溶分をひだ濾紙により除去後、メタノール2000部に撹拌下滴下し、析出物を濾取した。得られた濾物を再度トルエン50部およびアセトン30部に溶解させた後、メタノール2000部に撹拌下滴下し、析出物を濾取し、例示樹脂の(1−2)を1.6部得た。得られた樹脂のIRのデータを以下に示す。
IR(cm−1,KBr):3510,2919,2859,1606,1508,1321,1273,1135,1045,814,600
While 34 parts were stirred in 25 parts of toluene and 25 parts of ethanol, 0.2 part of concentrated hydrochloric acid was added dropwise, and the mixture was heated to 50 ° C. and stirred for 5 hours. The reaction product was added dropwise with stirring to 1000 parts of methanol in which 0.3 g of sodium hydroxide was dissolved, and the precipitate was collected by filtration. The obtained filtrate was dissolved in 90 parts of toluene and 90 parts of acetone, the insoluble matter was removed with pleated filter paper, and then added dropwise to 2000 parts of methanol with stirring, and the precipitate was collected by filtration. The obtained filtrate was dissolved again in 50 parts of toluene and 30 parts of acetone, and then added dropwise to 2000 parts of methanol with stirring. The precipitate was collected by filtration to obtain 1.6 parts of (1-2) of the exemplified resin. It was. The IR data of the obtained resin are shown below.
IR (cm −1 , KBr): 3510, 2919, 2859, 1606, 1508, 1321, 1273, 1135, 1045, 814, 600
(合成例3)
<例示樹脂(1−7)の合成>
ポリビニルアルコール(商品名:ポバール1400、キシダ化学(株)製)3.4部および下記構造式で示されるアルデヒド化合物
(Synthesis Example 3)
<Synthesis of Exemplified Resin (1-7)>
Polyvinyl alcohol (trade name: POVAL 1400, manufactured by Kishida Chemical Co., Ltd.) 3.4 parts and an aldehyde compound represented by the following structural formula
70部を、トルエン80部およびエタノール80部中で撹拌した中に、濃塩酸0.2部を滴下し、50℃に昇温させて6時間加熱撹拌を行った。反応物を水酸化ナトリウム0.3部を溶かしたメタノール1500部に撹拌下滴下し、析出物を濾取した。得られた濾物をトルエン150部およびアセトン150部に溶解させ、不溶分をセライト濾過により除去後、メタノール2000部に撹拌下滴下し、析出物を濾取した。得られた濾物を再度トルエン100部およびアセトン100部に溶解させた後、メタノール2000部に撹拌下滴下し、析出物を濾取し、例示樹脂(1−7)を2.5部得た。得られた樹脂のIRのデータを以下に示す。
IR(cm−1,KBr):3466,2941,1606,1508,1499,1314,1272,1135,1048
While 70 parts were stirred in 80 parts of toluene and 80 parts of ethanol, 0.2 part of concentrated hydrochloric acid was added dropwise, and the mixture was heated to 50 ° C. and stirred for 6 hours. The reaction product was added dropwise to 1500 parts of methanol in which 0.3 part of sodium hydroxide was dissolved with stirring, and the precipitate was collected by filtration. The obtained filtrate was dissolved in 150 parts of toluene and 150 parts of acetone, the insoluble matter was removed by Celite filtration, and the mixture was added dropwise to 2000 parts of methanol with stirring, and the precipitate was collected by filtration. The obtained filtrate was dissolved again in 100 parts of toluene and 100 parts of acetone, and then added dropwise to 2000 parts of methanol with stirring. The precipitate was collected by filtration to obtain 2.5 parts of exemplary resin (1-7). . The IR data of the obtained resin are shown below.
IR (cm −1 , KBr): 3466, 2941, 1606, 1508, 1499, 1314, 1272, 1135, 1048
(比較合成例1)
<比較樹脂(A)の合成>
ポリビニルアルコール(商品名:ポバール1400、キシダ化学(株)製)2.7部および下記構造式で示されるアルデヒド化合物
(Comparative Synthesis Example 1)
<Synthesis of Comparative Resin (A)>
2.7 parts of polyvinyl alcohol (trade name: POVAL 1400, manufactured by Kishida Chemical Co., Ltd.) and an aldehyde compound represented by the following structural formula
46部を、トルエン35部およびエタノール35部中で撹拌した中に、濃塩酸0.4部を滴下し、50℃に昇温させて6時間加熱撹拌を行った。反応物を水酸化ナトリウム0.4部を溶かしたメタノール1000部に撹拌下滴下し、析出物を濾取した。得られた濾物をトルエン50部およびアセトン50部に溶解させ、不溶分をひだ濾紙により除去後、メタノール2000部に撹拌下滴下し、析出物を濾取した。得られた濾物を再度トルエン50部およびアセトン50部に溶解させた後、メタノール2000部に撹拌下滴下し、析出物を濾取し、下記構造式で示される繰り返し構造単位 While 46 parts were stirred in 35 parts of toluene and 35 parts of ethanol, 0.4 part of concentrated hydrochloric acid was added dropwise, and the mixture was heated to 50 ° C. and stirred for 6 hours. The reaction product was added dropwise with stirring to 1000 parts of methanol in which 0.4 part of sodium hydroxide was dissolved, and the precipitate was collected by filtration. The obtained filtrate was dissolved in 50 parts of toluene and 50 parts of acetone, the insoluble matter was removed with pleated filter paper, and then added dropwise to 2000 parts of methanol with stirring, and the precipitate was collected by filtration. The obtained filtrate was dissolved again in 50 parts of toluene and 50 parts of acetone, and then added dropwise to 2000 parts of methanol with stirring. The precipitate was collected by filtration, and the repeating structural unit represented by the following structural formula
を有するポリビニルアセタール樹脂である比較樹脂(A)を1.0部得た。得られた樹脂のIRのデータを以下に示す。
IR(cm−1,KBr):3461,3026,2919,1606,1506,1320,1273,814
1.0 part of a comparative resin (A) which is a polyvinyl acetal resin having The IR data of the obtained resin are shown below.
IR (cm −1 , KBr): 3461, 3026, 2919, 1606, 1506, 1320, 1273, 814
(比較合成例2)
<比較樹脂(B)の合成>
ポリビニルアルコール(商品名:ポバール1400、キシダ化学(株)製)4.4部、下記構造式で示されるアルデヒド化合物
(Comparative Synthesis Example 2)
<Synthesis of Comparative Resin (B)>
4.4 parts of polyvinyl alcohol (trade name: Poval 1400, manufactured by Kishida Chemical Co., Ltd.), an aldehyde compound represented by the following structural formula
75部を、トルエン100部およびエタノール100部中で撹拌した中に、濃塩酸0.3部を滴下し、50℃に昇温させて7時間加熱撹拌を行った。反応物を水酸化ナトリウム0.3部を溶かしたメタノール1000部に撹拌下滴下し、析出物を濾取した。得られた濾物をトルエン150部およびアセトン150部に溶解させ、不溶分をセライト濾過により除去後、メタノール2000部に撹拌下滴下し、析出物を濾取した。得られた濾物を再度トルエン200部およびアセトン100部に溶解させた後、メタノール2000部に撹拌下滴下し、析出物を濾取し、下記構造式で示される繰り返し構造単位 While 75 parts were stirred in 100 parts of toluene and 100 parts of ethanol, 0.3 part of concentrated hydrochloric acid was added dropwise, and the mixture was heated to 50 ° C. and stirred for 7 hours. The reaction product was added dropwise with stirring to 1000 parts of methanol in which 0.3 part of sodium hydroxide was dissolved, and the precipitate was collected by filtration. The obtained filtrate was dissolved in 150 parts of toluene and 150 parts of acetone, the insoluble matter was removed by Celite filtration, and the mixture was added dropwise to 2000 parts of methanol with stirring, and the precipitate was collected by filtration. The obtained filtrate was dissolved again in 200 parts of toluene and 100 parts of acetone, and then added dropwise to 2000 parts of methanol with stirring. The precipitate was collected by filtration, and a repeating structural unit represented by the following structural formula
を有するポリビニルアセタール樹脂である比較樹脂(B)を9.1部得た。得られた樹脂のIRのデータを以下に示す。
IR(cm−1,KBr):3466,3033,2943,1587,1509,1491,1272,1131,830,750,693,620
9.1 parts of comparative resin (B) which is a polyvinyl acetal resin having The IR data of the obtained resin are shown below.
IR (cm −1 , KBr): 3466, 3033, 2943, 1587, 1509, 1491, 1272, 1131, 830, 750, 693, 620
(合成例4)
<例示アゾ化合物(2−2)の合成>
3Lビーカーに、イオン交換水(電導度:1×10−4S/m以下、以下同様)1500mlおよび濃塩酸45.6ml(0.50mol)と、4,4’−ジアミノベンゾイルビフェニル17.9g(0.062mol)とを入れて0℃まで冷却した。これに、亜硝酸ナトリウム9.1g(0.13mol)をイオン交換水22.5mlに溶かした液を液温−1〜3℃に保ちながら26分かけて滴下した。その後、液温0〜5℃で60分間撹拌し、次いで、活性炭1.5gを加えて5分間攪拌した後、吸引濾過した。この濾液を液温0〜5℃に保ったまま、これに、ホウフッ化ナトリウム24.0g(0.22mol)をイオン交換水80mlに溶解した液を17分かけて撹拌下に滴下し、その後、40分間攪拌した。析出した結晶を吸引濾過した。次に、濾過物を、5%のホウフッ化ナトリウム水溶液600mlで、液温0〜5℃に保ったまま、40分間分散洗浄した。分散洗浄後、吸引濾過した。さらに、濾過物を、アセトニトリル450mlおよびイソプロピルエーテル1000mlの混合液で、液温0〜5℃に保ったまま、40分間分散洗浄した。分散洗浄後、吸引濾過した。次いで、アセトニトリル200mlおよびイソプロピルエーテル500mlの混合液で2回濾過器洗浄した後、濾過物を室温で減圧乾燥してホウフッ化塩を得た(収量22.6g、収率74.6%、分解点125.5℃)。
(Synthesis Example 4)
<Synthesis of Exemplified Azo Compound (2-2)>
A 3L beaker, deionized water (conductivity: 1 × 10- 4 S / m or less, the same applies hereinafter) 1500 ml and concentrated hydrochloric acid 45.6ml and (0.50 mol), 4,4'-di-aminobenzoyl biphenyl 17.9 g ( 0.062 mol) and cooled to 0 ° C. A solution prepared by dissolving 9.1 g (0.13 mol) of sodium nitrite in 22.5 ml of ion-exchanged water was added dropwise thereto over 26 minutes while maintaining the liquid temperature at −1 to 3 ° C. Thereafter, the mixture was stirred at a liquid temperature of 0 to 5 ° C. for 60 minutes, and then 1.5 g of activated carbon was added and stirred for 5 minutes, followed by suction filtration. While maintaining this filtrate at a liquid temperature of 0 to 5 ° C., a solution obtained by dissolving 24.0 g (0.22 mol) of sodium borofluoride in 80 ml of ion-exchanged water was added dropwise thereto over 17 minutes with stirring. Stir for 40 minutes. The precipitated crystals were filtered with suction. Next, the filtrate was dispersed and washed with 600 ml of 5% aqueous sodium borofluoride solution while maintaining the liquid temperature at 0 to 5 ° C. for 40 minutes. After dispersion washing, suction filtration was performed. Further, the filtrate was dispersed and washed for 40 minutes with a mixed liquid of 450 ml of acetonitrile and 1000 ml of isopropyl ether while keeping the liquid temperature at 0 to 5 ° C. After dispersion washing, suction filtration was performed. Next, after washing with a filter twice with a mixture of 200 ml of acetonitrile and 500 ml of isopropyl ether, the filtrate was dried under reduced pressure at room temperature to obtain a borofluoride (yield 22.6 g, yield 74.6%, decomposition point). 125.5 ° C).
次に、300mlビーカーに、N,N−ジメチルホルムアミド100mlを入れ、下記構造式(F)で示される化合物 Next, 100 ml of N, N-dimethylformamide is placed in a 300 ml beaker, and the compound represented by the following structural formula (F)
2.43g(0.0065mol)を溶解させ、液温0℃に冷却した。 2.43 g (0.0065 mol) was dissolved, and the liquid temperature was cooled to 0 ° C.
その溶液に、上記で得られたホウフッ化塩1.5g(0.0031mol)を添加し、1分間攪拌した後、N−メチルモルホリン0.72g(0.0071mol)を3分間かけて滴下した。次に、液温0〜5℃で2時間撹拌、さらに室温で1時間攪拌し、その後、吸引濾過した。N,N−ジメチルホルムアミド200mlで濾過器洗浄を2回行った。取り出した濾過物を、N,N−ジメチルホルムアミド150mlで2時間の分散洗浄を4回行い、さらにイオン交換水200mlで2時間の分散洗浄を4回行った後、凍結乾燥処理を施して例示アゾ化合物(2−2)を2.32g得た。 To the solution, 1.5 g (0.0031 mol) of the borofluoride obtained above was added and stirred for 1 minute, and then 0.72 g (0.0071 mol) of N-methylmorpholine was added dropwise over 3 minutes. Next, the mixture was stirred at a liquid temperature of 0 to 5 ° C. for 2 hours, further stirred at room temperature for 1 hour, and then suction filtered. The filter was washed twice with 200 ml of N, N-dimethylformamide. The filtrate obtained was dispersed and washed four times for 2 hours with 150 ml of N, N-dimethylformamide, and further washed four times for 2 hours with 200 ml of ion-exchanged water. 2.32 g of compound (2-2) was obtained.
なお、以上の製造工程は全て黄色光下で実施した。 In addition, all the above manufacturing processes were implemented under yellow light.
得られた化合物のIRのデータを以下に示す。
IR(cm−1,KBr):1701,1603,1561,1492,1449,1335,1273,1221,1162,1124,1070,986,928,756,696
IR data of the obtained compound are shown below.
IR (cm −1 , KBr): 1701, 1603, 1561, 1492, 1449, 1335, 1273, 1221, 1162, 1124, 1070, 986, 928, 756, 696
(合成例5)
<例示アゾ化合物(2−1)の合成>
3Lビーカーに、イオン交換水1500mlおよび濃塩酸45.6ml(0.50mol)と、4,4’−ジアミノベンゾイルビフェニル17.9g(0.062mol)とを入れて0℃まで冷却した。これに、亜硝酸ナトリウム9.1g(0.13mol)をイオン交換水22.5mlに溶かした液を液温−1〜3℃に保ちながら26分かけて滴下した。その後、液温0〜5℃で60分間撹拌し、次いで、活性炭1.5gを加えて5分間攪拌した後、吸引濾過した。この濾液を液温0〜5℃に保ったまま、これに、ホウフッ化ナトリウム24.0g(0.22mol)をイオン交換水80mlに溶解した液を17分かけて撹拌下に滴下し、その後、40分間攪拌した。析出した結晶を吸引濾過した。次に、濾過物を、5%のホウフッ化ナトリウム水溶液600mlで、液温0〜5℃に保ったまま、40分間分散洗浄した。分散洗浄後、吸引濾過した。さらに、濾過物を、アセトニトリル450mlおよびイソプロピルエーテル1000mlの混合液で、液温0〜5℃に保ったまま、40分間分散洗浄した。分散洗浄後、吸引濾過した。次いで、アセトニトリル200mlおよびイソプロピルエーテル500mlの混合液で2回濾過器洗浄した後、濾過物を室温で減圧乾燥してホウフッ化塩を得た(収量22.6g、収率74.6%、分解点125.5℃)。
(Synthesis Example 5)
<Synthesis of Exemplified Azo Compound (2-1)>
In a 3 L beaker, 1500 ml of ion-exchanged water, 45.6 ml (0.50 mol) of concentrated hydrochloric acid, and 17.9 g (0.062 mol) of 4,4′-diaminobenzoylbiphenyl were added and cooled to 0 ° C. A solution prepared by dissolving 9.1 g (0.13 mol) of sodium nitrite in 22.5 ml of ion-exchanged water was added dropwise thereto over 26 minutes while maintaining the liquid temperature at −1 to 3 ° C. Thereafter, the mixture was stirred at a liquid temperature of 0 to 5 ° C. for 60 minutes, and then 1.5 g of activated carbon was added and stirred for 5 minutes, followed by suction filtration. While maintaining this filtrate at a liquid temperature of 0 to 5 ° C., a solution obtained by dissolving 24.0 g (0.22 mol) of sodium borofluoride in 80 ml of ion-exchanged water was added dropwise thereto over 17 minutes with stirring. Stir for 40 minutes. The precipitated crystals were filtered with suction. Next, the filtrate was dispersed and washed with 600 ml of 5% aqueous sodium borofluoride solution while maintaining the liquid temperature at 0 to 5 ° C. for 40 minutes. After dispersion washing, suction filtration was performed. Further, the filtrate was dispersed and washed for 40 minutes with a mixed liquid of 450 ml of acetonitrile and 1000 ml of isopropyl ether while keeping the liquid temperature at 0 to 5 ° C. After dispersion washing, suction filtration was performed. Next, after washing with a filter twice with a mixture of 200 ml of acetonitrile and 500 ml of isopropyl ether, the filtrate was dried under reduced pressure at room temperature to obtain a borofluoride (yield 22.6 g, yield 74.6%, decomposition point). 125.5 ° C).
次に、1Lビーカーに、N,N−ジメチルホルムアミド300mlを入れ、下記構造式(I)で示される化合物 Next, 300 ml of N, N-dimethylformamide is placed in a 1 L beaker, and the compound represented by the following structural formula (I)
4.0g(0.0093mol)を溶解させ、液温0℃に冷却した。 4.0 g (0.0093 mol) was dissolved, and the liquid temperature was cooled to 0 ° C.
その溶液に、上記で得られたホウフッ化塩4.5g(0.0093mol)を添加し、1分間攪拌した後、N−メチルモルホリン0.94g(0.0093mol)を1分間かけて滴下した。次に、そのままの液温で10分間撹拌し、上記構造式(F)で示される化合物3.8g(0.0102mol)を添加し、その後に1分間攪拌した後に、N−メチルモルホリン1.23g(0.0122mol)を1分間かけて滴下した。そのままの液温で2時間撹拌し、さらに室温で2時間攪拌した後、吸引濾過した。N,N−ジメチルホルムアミド100mlで濾過器洗浄を2回行った。取り出した濾過物を、N,N−ジメチルホルムアミド450mlで2時間の分散洗浄を4回行い、さらにイオン交換水450mlで2時間の分散洗浄を4回行った後、凍結乾燥処理を施して例示アゾ化合物(2−1)を主成分とし、さらに例示アゾ化合物(2−2)、(2−3)および(2−4)を含有するアゾ化合物の混合物を7.93g得た。 To the solution, 4.5 g (0.0093 mol) of the borofluoride obtained above was added and stirred for 1 minute, and then 0.94 g (0.0093 mol) of N-methylmorpholine was added dropwise over 1 minute. Next, the mixture was stirred at the same liquid temperature for 10 minutes, 3.8 g (0.0102 mol) of the compound represented by the structural formula (F) was added, and then stirred for 1 minute, and then 1.23 g of N-methylmorpholine. (0.0122 mol) was added dropwise over 1 minute. The mixture was stirred at the same liquid temperature for 2 hours, further stirred at room temperature for 2 hours, and then suction filtered. The filter was washed twice with 100 ml of N, N-dimethylformamide. The filtrate obtained was dispersed and washed four times for 2 hours with 450 ml of N, N-dimethylformamide, and further washed four times for 2 hours with 450 ml of ion-exchanged water. 7.93 g of a mixture of azo compounds containing the compound (2-1) as a main component and further containing the exemplified azo compounds (2-2), (2-3) and (2-4) was obtained.
なお、以上の製造工程は全て黄色光下で実施した。 In addition, all the above manufacturing processes were implemented under yellow light.
得られた化合物のIRのデータを以下に示す。
IR(cm−1,KBr):2925,2855,1719,1702,1656,1602,1579,1560,1543,1509,1492,1475,1273,1221,1160,1124,1070,988,929,845,765,411
IR data of the obtained compound are shown below.
IR (cm −1 , KBr): 2925, 2855, 1719, 1702, 1656, 1602, 1579, 1560, 1543, 1509, 1492, 1475, 1273, 1221, 1160, 1124, 1070, 988, 929, 845, 765 , 411
(実施例1)
直径30mm、長さ260.5mmのアルミニウムシリンダーを支持体とした。
Example 1
An aluminum cylinder having a diameter of 30 mm and a length of 260.5 mm was used as a support.
次に、酸化スズで被覆した酸化チタン(商品名:クロノスECT‐62、チタン工業(株)製)50部、球状シリコーン樹脂粉末(商品名:トスパール120、東芝シリコーン(株)製)3.8部、シリコーンオイル(ポリジメチルシロキサン・ポリオキシアルキレン共重合体、平均分子量:3000)0.002部、メチルセルゾルブ20部、および、メタノール5部を、直径0.8mmのガラスビーズを用いたサンドミル装置で3時間分散して、導電層(干渉縞防止層)用塗布液を調整した。 Next, 50 parts of titanium oxide coated with tin oxide (trade name: Kronos ECT-62, manufactured by Titanium Industry Co., Ltd.), spherical silicone resin powder (trade name: Tospearl 120, manufactured by Toshiba Silicone Co., Ltd.) 3.8 Parts, 0.002 parts of silicone oil (polydimethylsiloxane / polyoxyalkylene copolymer, average molecular weight: 3000), 20 parts of methyl cellosolve, and 5 parts of methanol using a glass bead with a diameter of 0.8 mm The coating liquid for conductive layers (interference fringe prevention layers) was prepared by dispersing for 3 hours with an apparatus.
この導電層(干渉縞防止層)用塗布液を支持体上に浸漬塗布し、これを30分間140℃で乾燥させることによって、膜厚が18μmの導電層(干渉縞防止層)を形成した。 The conductive layer (interference fringe prevention layer) coating solution was dip-coated on a support and dried at 140 ° C. for 30 minutes to form a conductive layer (interference fringe prevention layer) having a thickness of 18 μm.
次に、N−メトキシメチル化ナイロン1部および共重合ナイロン3部をメタノール60部およびn−ブタノール30部の混合溶媒に溶解させて下引き層(中間層)用塗布液を調製した。 Next, 1 part of N-methoxymethylated nylon and 3 parts of copolymer nylon were dissolved in a mixed solvent of 60 parts of methanol and 30 parts of n-butanol to prepare a coating solution for an undercoat layer (intermediate layer).
この下引き層(中間層)用塗布液を導電層上に浸漬塗布し、これを10分間100℃で乾燥させることによって、膜厚が0.6μmの下引き層(中間層)を形成した。 This undercoat layer (intermediate layer) coating solution was dip-coated on the conductive layer and dried at 100 ° C. for 10 minutes to form an undercoat layer (intermediate layer) having a thickness of 0.6 μm.
次に、合成例(4)で得られた例示アゾ化合物(2−2)1部、および、シクロヘキサノン215部を、直径0.8mmのガラスビーズを用いたサンドミル装置で20時間分散した。そこに、合成例(1)で得られた例示樹脂(1−1)5部をシクロヘキサノン45部に溶解した結着樹脂溶液50部と、CuKα特性X線回折のブラック角2θ±0.2°の7.5°、9.9°、12.5°、16.3°、18.6°および28.3°に強いピークを有するヒドロキシガリウムフタロシアニン結晶9部とを加え、さらに6時間分散した。この分散液に、酢酸エチル375部を加えることによって電荷発生層用塗布液を調製した。 Next, 1 part of the exemplified azo compound (2-2) obtained in Synthesis Example (4) and 215 parts of cyclohexanone were dispersed in a sand mill apparatus using glass beads having a diameter of 0.8 mm for 20 hours. There, 50 parts of a binder resin solution obtained by dissolving 5 parts of the exemplified resin (1-1) obtained in Synthesis Example (1) in 45 parts of cyclohexanone, and a black angle 2θ ± 0.2 ° of CuKα characteristic X-ray diffraction. And 9 parts of a hydroxygallium phthalocyanine crystal having strong peaks at 7.5 °, 9.9 °, 12.5 °, 16.3 °, 18.6 ° and 28.3 °, and dispersed for another 6 hours. . A coating solution for charge generation layer was prepared by adding 375 parts of ethyl acetate to this dispersion.
この電荷発生層用塗布液を下引き層(中間層)上に浸漬塗布し、これを10分間80℃で乾燥させることによって、膜厚が0.18μmの電荷発生層を形成した。 This charge generation layer coating solution was dip-coated on the undercoat layer (intermediate layer) and dried at 80 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.18 μm.
次に、下記構造式(CTM−1)で示される化合物(電荷輸送物質) Next, a compound represented by the following structural formula (CTM-1) (charge transport material)
10部、および、ポリカーボネート樹脂(商品名:ユーピロンZ−200、三菱エンジニアリングプラスチックス(株)製)10部を、モノクロロベンゼン70部およびメチラール20部の混合溶媒中に溶解させることによって、電荷輸送層用分散液を調製した。 10 parts and 10 parts of polycarbonate resin (trade name: Iupilon Z-200, manufactured by Mitsubishi Engineering Plastics Co., Ltd.) are dissolved in a mixed solvent of 70 parts of monochlorobenzene and 20 parts of methylal to obtain a charge transport layer. A dispersion was prepared.
この電荷輸送層用塗布液を電荷発生層上に浸漬塗布し、これを60分間110℃で乾燥させることによって、膜厚が20μmの電荷輸送層を形成した。 This charge transport layer coating solution was dip-coated on the charge generation layer and dried at 110 ° C. for 60 minutes to form a charge transport layer having a thickness of 20 μm.
このようにして、電子写真感光体1を作製した。 Thus, the electrophotographic photosensitive member 1 was produced.
(出力画像の均一性評価およびゴースト画像評価)
電子写真感光体1を、反転現像方式のレーザービームプリンター(商品名:レーザージェット4000、ヒューレットパッカード社製)の改造(光量調節できるように改造)した評価機に装着し、出力画像の均一性およびゴースト画像評価を行った。このレーザービームプリンターは、図3で示す構成の電子写真装置である。
(Evaluation of output image uniformity and ghost image evaluation)
The electrophotographic photosensitive member 1 is mounted on a reversal developing type laser beam printer (trade name: Laserjet 4000, manufactured by Hewlett Packard) modified (modified so that the amount of light can be adjusted), and the uniformity of the output image and Ghost image evaluation was performed. This laser beam printer is an electrophotographic apparatus having the configuration shown in FIG.
まず、温度23℃/湿度55%RHの常温常湿環境下で、明部電位が−150Vになるように光量を調節した後、出力画像の均一性評価およびゴースト画像評価を行った。 First, in a room temperature / humidity environment with a temperature of 23 ° C./humidity of 55% RH, the light intensity was adjusted so that the bright part potential was −150 V, and then the uniformity of the output image and the ghost image were evaluated.
また、電子写真感光体1を、評価機とともに温度32℃/湿度80%RHの高温高湿環境下で1日間放置した後に、上記と同様にして出力画像の均一性評価およびゴースト画像評価を行った。 Further, after the electrophotographic photosensitive member 1 is left for one day in a high-temperature and high-humidity environment at a temperature of 32 ° C./humidity of 80% RH together with an evaluation machine, the output image uniformity evaluation and ghost image evaluation are performed in the same manner as described above. It was.
また、電子写真感光体1を、評価機とともに温度15℃/湿度10%RHの低温低湿環境下で3日間放置した後に、上記と同様にしてゴースト画像評価を行った。そして、同環境下で1000枚の通紙耐久試験を行い、通紙耐久試験直後および通紙耐久試験から15時間後のゴースト画像評価を行った。 Further, after the electrophotographic photoreceptor 1 was left for 3 days in a low-temperature and low-humidity environment at a temperature of 15 ° C./humidity of 10% RH together with an evaluation machine, ghost image evaluation was performed in the same manner as described above. Then, 1000 paper passing durability tests were performed under the same environment, and ghost image evaluation was performed immediately after the paper passing durability test and 15 hours after the paper passing durability test.
通紙耐久試験の際は、1分間4枚プリントの間欠モードとし、画像出力のパターンは約0.5mm幅の線を縦10mmおきに印字するパターンとした。 In the paper passing durability test, an intermittent mode of printing four sheets per minute was used, and an image output pattern was a pattern in which lines with a width of about 0.5 mm were printed every 10 mm in length.
出力画像の均一性評価およびゴースト画像評価の方法は、以下のようにした。 The method for evaluating the uniformity of the output image and evaluating the ghost image was as follows.
まず、全面ハーフトーン画像(1ドット1スペースのドット密度の画像)を出力し、出力画像の濃度の均一性を目視で評価した。均一性の程度を下記のようにランク付けした。
ランクA:画像濃度の差は全く見えない。
ランクB:一部に微小な濃度差がうっすら見える。
ランクC:微小な濃度差が見える。
ランクD:全体的に画像の濃度差が見える。
なお、ランクCおよびDは、本発明の効果が十分に得られていないと判断した。
First, an entire halftone image (an image having a dot density of 1 dot and 1 space) was output, and the uniformity of the density of the output image was visually evaluated. The degree of uniformity was ranked as follows.
Rank A: No difference in image density is visible.
Rank B: A slight difference in density is slightly visible.
Rank C: A minute density difference is visible.
Rank D: The density difference of the image can be seen as a whole.
In addition, it was judged that rank C and D did not fully obtain the effect of the present invention.
評価結果を表1に示す。 The evaluation results are shown in Table 1.
次に、5mm角の黒四角パターンを電子写真感光体の1周分だけ印字し、その後、ハーフトーン画像(1ドット1スペースのドット密度の画像)を出力した。 Next, a black square pattern of 5 mm square was printed for one turn of the electrophotographic photosensitive member, and then a halftone image (an image having a dot density of 1 dot and 1 space) was output.
ゴースト画像のサンプルは、機械の現像ボリューム、F5(中心値)とF9(濃度薄い)で各々サンプリングした。この評価も目視で行い、ゴーストの程度を下記のようにランク付けした。
ランク1:どちらのモードでのゴーストは全く見えない。
ランク2:どちらかのモードでゴーストがうっすら見える。
ランク3:どちらのモードでもゴーストがうっすら見える。
ランク4:どちらのモードでもゴーストが見える。
ランク5:どちらのモードでもゴーストがはっきり見える
なお、ランク3、4および5は、本発明の効果が十分に得られていないと判断した。
Ghost image samples were sampled at machine development volumes F5 (center value) and F9 (thin density), respectively. This evaluation was also performed visually, and the degree of ghost was ranked as follows.
Rank 1: Ghosts in either mode are completely invisible.
Rank 2: Ghost is slightly visible in either mode.
Rank 3: Ghost is slightly visible in both modes.
Rank 4: Ghost is visible in both modes.
Rank 5: Ghost is clearly visible in both modes Note that ranks 3, 4 and 5 were judged to have insufficient effects of the present invention.
評価結果を表1に示す。 The evaluation results are shown in Table 1.
(実施例2)
実施例1において電荷発生層に用いた例示アゾ化合物(2−2)を合成例(5)で得られた例示アゾ化合物(2−1)、例示アゾ化合物(2−2)、例示アゾ化合物(2−3)および例示アゾ化合物(2−4)の混合物(アゾ化合物の混合物)に変更した以外は、実施例1と同様にして電子写真感光体2を作製し、評価した。
(Example 2)
Exemplified azo compound (2-1), Exemplified azo compound (2-2), Exemplified azo compound (Example azo compound (2-2) obtained in Synthesis Example (5) from Exemplified azo compound (2-2) used in the charge generation layer in Example 1 The electrophotographic photosensitive member 2 was produced and evaluated in the same manner as in Example 1 except that the mixture was changed to a mixture of 2-3) and the exemplified azo compound (2-4) (a mixture of azo compounds).
結果を表1に示す。 The results are shown in Table 1.
(実施例3)
実施例2において電荷発生層に用いたアゾ化合物の混合物1部を0.5部に変更し、ヒドロキシガリウムフタロシアニン結晶9部を9.5部に変更した以外は、実施例2と同様にして電子写真感光体3を作製し、評価した。
(Example 3)
In the same manner as in Example 2, except that 1 part of the mixture of azo compounds used in the charge generation layer in Example 2 was changed to 0.5 part, and 9 parts of hydroxygallium phthalocyanine crystal was changed to 9.5 parts. Photoconductor 3 was prepared and evaluated.
結果を表1に示す。 The results are shown in Table 1.
(実施例4)
実施例2において電荷発生層に用いた例示アゾ化合物混合物1部を2部に変更し、ヒドロキシガリウムフタロシアニン結晶9部を8部に変更した以外は、実施例2と同様にして電子写真感光体4を作製し、評価した。
Example 4
The electrophotographic
結果を表1に示す。 The results are shown in Table 1.
(実施例5)
実施例1において電荷発生層に用いた例示アゾ化合物(2−2)を例示アゾ化合物(2−4)に変更した以外は、実施例1と同様にして電子写真感光体5を作製し、評価した。
(Example 5)
An electrophotographic photoreceptor 5 was produced and evaluated in the same manner as in Example 1 except that the exemplified azo compound (2-2) used in the charge generation layer in Example 1 was changed to the exemplified azo compound (2-4). did.
結果を表1に示す。 The results are shown in Table 1.
(実施例6)
実施例1において電荷発生層に用いた例示アゾ化合物(2−2)を例示アゾ化合物(2−10)に変更した以外は、実施例1と同様にして電子写真感光体6を作製し、評価した。
(Example 6)
An electrophotographic photoreceptor 6 was prepared and evaluated in the same manner as in Example 1 except that the exemplified azo compound (2-2) used in the charge generation layer in Example 1 was changed to the exemplified azo compound (2-10). did.
結果を表1に示す。 The results are shown in Table 1.
(実施例7)
実施例2において電荷発生層に用いた例示樹脂(1−1)を合成例(2)で得られた例示樹脂(1−2)に変更した以外は、実施例2と同様にして電子写真感光体7を作製し、評価した。
(Example 7)
The electrophotographic photosensitive member is the same as in Example 2 except that the exemplified resin (1-1) used in the charge generation layer in Example 2 is changed to the exemplified resin (1-2) obtained in Synthesis Example (2). Body 7 was made and evaluated.
結果を表1に示す。 The results are shown in Table 1.
(実施例8)
実施例2において電荷発生層に用いた例示樹脂(1−1)を合成例(3)で得られた例示樹脂(1−7)に変更した以外は、実施例2と同様にして電子写真感光体8を作製し、評価した。
(Example 8)
The electrophotographic photosensitive member is the same as in Example 2 except that the exemplified resin (1-1) used in the charge generation layer in Example 2 is changed to the exemplified resin (1-7) obtained in Synthesis Example (3). Body 8 was made and evaluated.
結果を表1に示す。 The results are shown in Table 1.
(実施例9)
実施例1において電荷発生層に用いた例示アゾ化合物(2−2)を例示アゾ化合物(2−5)に変更した以外は、実施例1と同様にして電子写真感光体9を作製し、評価した。
Example 9
An electrophotographic photoreceptor 9 was prepared and evaluated in the same manner as in Example 1 except that the exemplified azo compound (2-2) used in the charge generation layer in Example 1 was changed to the exemplified azo compound (2-5). did.
結果を表1に示す。 The results are shown in Table 1.
(実施例10)
実施例2において電荷発生層に用いたヒドロキシガリウムフタロシアニン結晶9部を11部に変更し、例示樹脂(1−1)5部を3部に変更した以外は、実施例2と同様にして電子写真感光体10を作製し、評価した。
(Example 10)
Electrophotography as in Example 2, except that 9 parts of the hydroxygallium phthalocyanine crystal used in the charge generation layer in Example 2 was changed to 11 parts and 5 parts of the exemplified resin (1-1) was changed to 3 parts.
結果を表1に示す。 The results are shown in Table 1.
(実施例11)
実施例2において電荷発生層に用いたヒドロキシガリウムフタロシアニン結晶をCuKα特性X線回折におけるブラッグ角2θ±0.2°の28.1°に最も強いピークを有し、7.3°にも強いピークを有するヒドロキシガリウムフタロシアニン結晶に変更した以外は、実施例2と同様にして電子写真感光体11を作製し、評価した。
(Example 11)
The hydroxygallium phthalocyanine crystal used in the charge generation layer in Example 2 has the strongest peak at 28.1 ° with a Bragg angle 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction, and the strongest peak at 7.3 ° An electrophotographic photosensitive member 11 was produced and evaluated in the same manner as in Example 2 except that the crystal was changed to a hydroxygallium phthalocyanine crystal having the above.
結果を表1に示す。 The results are shown in Table 1.
(比較例1)
実施例1と同様にして、支持体上に導電層および下引き層を形成した。
(Comparative Example 1)
In the same manner as in Example 1, a conductive layer and an undercoat layer were formed on the support.
次に、ポリビニルブチラール樹脂(商品名:エスレックBX−1、積水化学工業(株)製)5部をシクロヘキサノン260部に溶解させて結着樹脂溶液を調製した。この結着樹脂溶液、および、CuKα特性X線回折におけるブラッグ角2θ±0.2°の7.5°、9.9°、12.5°、16.3°、18.6°および28.3°に強いピークを有するヒドロキシガリウムフタロシアニン結晶10部を、直径0.8mmのガラスビーズを用いたサンドミル装置で6時間分散した後、酢酸エチル380部を加えることによって、電荷発生層用塗布液を調製した。 Next, 5 parts of polyvinyl butyral resin (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.) was dissolved in 260 parts of cyclohexanone to prepare a binder resin solution. This binder resin solution, and 7.5 °, 9.9 °, 12.5 °, 16.3 °, 18.6 ° and 28.6 ° with a Bragg angle 2θ ± 0.2 ° in CuKα characteristic X-ray diffraction. After 10 parts of a hydroxygallium phthalocyanine crystal having a strong peak at 3 ° was dispersed for 6 hours in a sand mill using glass beads having a diameter of 0.8 mm, 380 parts of ethyl acetate was added to obtain a coating solution for a charge generation layer. Prepared.
この電荷発生層用塗布液を下引き層上に浸漬塗布し、これを10分間80℃で乾燥させることによって、膜厚が0.18μmの電荷発生層を形成した。 This charge generation layer coating solution was dip-coated on the undercoat layer and dried at 80 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.18 μm.
次に、実施例1と同様にして電荷発生層上に電荷輸送層を形成した。 Next, a charge transport layer was formed on the charge generation layer in the same manner as in Example 1.
このようにして、比較電子写真感光体1を作製した。 In this way, a comparative electrophotographic photoreceptor 1 was produced.
比較電子写真感光体1を実施例1と同様にして評価した。 The comparative electrophotographic photoreceptor 1 was evaluated in the same manner as in Example 1.
結果を表1に示す。 The results are shown in Table 1.
(比較例2)
実施例1において電荷発生層に用いた例示樹脂(1−1)をポリビニルブチラール樹脂(商品名:エスレックBX−1、積水化学工業(株)製)に変更した以外は、実施例1と同様にして比較電子写真感光体2を作製し、評価した。
(Comparative Example 2)
Except that the exemplary resin (1-1) used in the charge generation layer in Example 1 was changed to a polyvinyl butyral resin (trade name: ESREC BX-1, manufactured by Sekisui Chemical Co., Ltd.), the same as in Example 1. Comparative electrophotographic photoreceptor 2 was prepared and evaluated.
結果を表1に示す。 The results are shown in Table 1.
(比較例3)
比較例2において電荷発生層に用いた例示アゾ化合物(2−2)を下記構造式で示される比較例用アゾ化合物(1)
(Comparative Example 3)
The azo compound for comparative example (1) represented by the following structural formula is used as the exemplified azo compound (2-2) used in the charge generation layer in Comparative Example 2.
に変更した以外は、比較例2と同様にして電子写真感光体3を作製し、評価した。 An electrophotographic photosensitive member 3 was produced and evaluated in the same manner as in Comparative Example 2 except that the above was changed.
結果を表1に示す。 The results are shown in Table 1.
(比較例4)
比較例2において電荷発生層に用いたポリビニルブチラール樹脂を比較合成例(1)で得られた比較樹脂(A)に変更した以外は、比較例2と同様にして比較電子写真感光体4を作製した。
(Comparative Example 4)
A comparative electrophotographic
比較電子写真感光体4を実施例1と同様にして評価しようとしたが、感度が悪かったため十分な評価できなかった。
The comparative electrophotographic
(比較例5)
比較例2において電荷発生層に用いたポリビニルブチラール樹脂を比較合成例(2)で得られた比較樹脂(B)に変更した以外は、比較例2と同様にして比較電子写真感光体5を作製し、評価した。
(Comparative Example 5)
A comparative electrophotographic photoreceptor 5 is produced in the same manner as in Comparative Example 2, except that the polyvinyl butyral resin used in the charge generation layer in Comparative Example 2 is changed to the comparative resin (B) obtained in Comparative Synthesis Example (2). And evaluated.
結果を表1に示す。 The results are shown in Table 1.
(比較例6)
比較例2において電荷発生層に用いたポリビニルブチラール樹脂を下記構造式で示される繰り返し構造単位を有する比較樹脂(C)
(Comparative Example 6)
Comparative resin (C) having a repeating structural unit represented by the following structural formula of the polyvinyl butyral resin used for the charge generation layer in Comparative Example 2
に変更した以外は、比較例2と同様にして比較電子写真感光体6を作製した。 A comparative electrophotographic photosensitive member 6 was produced in the same manner as in Comparative Example 2 except that the above was changed.
比較電子写真感光体6を実施例1と同様にして評価しようとしたところ、常温常湿環境下での評価はできたものの、その結果が著しく悪かった(表1参照)ため、高温高湿環境下および低温低湿環境下での評価は行わなかった。 The comparative electrophotographic photosensitive member 6 was evaluated in the same manner as in Example 1. As a result, although the evaluation was possible under a normal temperature and normal humidity environment, the result was remarkably bad (see Table 1). Evaluation was not performed under low temperature and low temperature and low humidity.
(比較例7)
比較例2において電荷発生層に用いた例示アゾ化合物(2−2)を下記構造式で示される比較例用アゾ化合物(2)
(Comparative Example 7)
The azo compound for comparative example (2) represented by the following structural formula is used as the exemplified azo compound (2-2) used in the charge generation layer in Comparative Example 2.
に変更した以外は、比較例2と同様にして電子写真感光体7を作製し、評価した。 An electrophotographic photosensitive member 7 was prepared and evaluated in the same manner as in Comparative Example 2 except that the above was changed.
結果を表1に示す。 The results are shown in Table 1.
1 電子写真感光体
1a 軸
2 帯電手段
3 露光部
4 現像手段
5 コロナ転写手段
6 クリーリング手段
7 前露光手段
8 定着手段
9 転写材
10 接触帯電部材
12 案内手段
20 容器
21 容器
22 容器
23 接触帯電部材
L レーザー光
DESCRIPTION OF SYMBOLS 1 Electrophotographic photoreceptor 1a Axis 2 Charging means 3
Claims (12)
該感光層が、
(a)CuKα特性X線回折におけるブラッグ角の7.4°±0.3°および28.2°±0.3°に強いピークを有するガリウムフタロシアニン結晶、
(b)下記一般式(1)で示される繰り返し構造単位を有するポリビニルアセタール樹脂
(c)下記一般式(2)で示されるアゾ化合物
を含有することを特徴とする電子写真感光体。 In an electrophotographic photosensitive member having a support and a photosensitive layer on the support,
The photosensitive layer is
(A) a gallium phthalocyanine crystal having strong peaks at Bragg angles of 7.4 ° ± 0.3 ° and 28.2 ° ± 0.3 ° in CuKα characteristic X-ray diffraction,
(B) Polyvinyl acetal resin having a repeating structural unit represented by the following general formula (1)
(C) An azo compound represented by the following general formula (2)
An electrophotographic photosensitive member comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006343433A JP4845713B2 (en) | 2006-12-20 | 2006-12-20 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006343433A JP4845713B2 (en) | 2006-12-20 | 2006-12-20 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008158003A JP2008158003A (en) | 2008-07-10 |
JP4845713B2 true JP4845713B2 (en) | 2011-12-28 |
Family
ID=39659011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006343433A Expired - Fee Related JP4845713B2 (en) | 2006-12-20 | 2006-12-20 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4845713B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6036050B2 (en) * | 2012-09-11 | 2016-11-30 | 株式会社リコー | Hydroxygallium phthalocyanine crystal and method for producing the same, electrophotographic photoreceptor |
JP6061660B2 (en) * | 2012-12-14 | 2017-01-18 | キヤノン株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
JP6150701B2 (en) * | 2013-09-30 | 2017-06-21 | キヤノン株式会社 | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3779750A (en) * | 1972-09-25 | 1973-12-18 | Eastman Kodak Co | Electrophotographic element with a photoconductive copolymer |
JPH11174701A (en) * | 1997-12-15 | 1999-07-02 | Canon Inc | Electrophotographic photoreceptor, process cartridge with same and electrophotographic device |
JP4227514B2 (en) * | 2003-12-26 | 2009-02-18 | キヤノン株式会社 | Electrophotographic photosensitive member, process cartridge having the electrophotographic photosensitive member, and electrophotographic apparatus |
WO2005116777A1 (en) * | 2004-05-27 | 2005-12-08 | Canon Kabushiki Kaisha | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus |
-
2006
- 2006-12-20 JP JP2006343433A patent/JP4845713B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008158003A (en) | 2008-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101017442B1 (en) | Polyvinyl Acetal Resin, Electrophotographic Photosensitive Member, Process Cartridge, and Electrophotographic Apparatus | |
JP6005216B2 (en) | Electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, solid solution, and method for producing solid solution | |
JP6039368B2 (en) | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus, and gallium phthalocyanine crystal | |
JP5827612B2 (en) | Method for producing gallium phthalocyanine crystal, and method for producing electrophotographic photoreceptor using the method for producing gallium phthalocyanine crystal | |
EP0658814B1 (en) | Electrophotographic photosensitive member, electrophotographic apparatus including same and electrophotographic apparatus unit | |
JP2015007761A (en) | Electrophotographic photoreceptor, process cartridge, electrophotographic device and phthalocyanine crystal | |
US9442399B2 (en) | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus and phthalocyanine crystal | |
JP6061660B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2014134783A (en) | Electrophotographic photosensitive member, process cartridge, electrophotographic apparatus, and phthalocyanine crystal | |
JP4845713B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP5025238B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP3397592B2 (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JP3492125B2 (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
EP0538889B1 (en) | Electrophotographic photosensitive member, and electrophotographic apparatus, device unit, and facsimile machine employing the same | |
JPH1073946A (en) | Electrophotographic photoreceptor, process cartridge, and electrophotographic device | |
JP3604745B2 (en) | Electrophotographic photoreceptor, electrophotographic apparatus using the electrophotographic photoreceptor, and electrophotographic apparatus unit | |
JP3601624B2 (en) | Electrophotographic photoreceptor | |
JP4819214B2 (en) | Octaphenyltetraazaporphyrinatomagnesium, method for producing octaphenyltetraazaporphyrinatomagnesium, electrophotographic photoreceptor using the octaphenyltetraazaporphyrinatomagnesium, process cartridge and electrophotographic apparatus provided with the electrophotographic photoreceptor | |
JPH0980773A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic device | |
JP2010145834A (en) | Synthesizing method for charge transport material- containing azo pigment, electrophotographic photoreceptor, process cartridge and electrophotographic apparatus | |
JPH0980792A (en) | Electrophotographic photoreceptor, process cartridge having the same, and electrophotographic apparatus | |
JPH04254862A (en) | Electrophotographic photosensitive body and electrophotographic device and facsimile with electrophotographic photosensitive body | |
JPH10123741A (en) | Electrophotographic photoreceptor, process cartridge and electrophotographic device | |
JP3197128B2 (en) | Electrophotographic photoreceptor and electrophotographic apparatus provided with the electrophotographic photoreceptor | |
JP2004239955A (en) | Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091210 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100201 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20100630 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110629 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111004 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111011 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141021 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141021 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |