JP4839809B2 - New baker's yeast - Google Patents

New baker's yeast Download PDF

Info

Publication number
JP4839809B2
JP4839809B2 JP2005349815A JP2005349815A JP4839809B2 JP 4839809 B2 JP4839809 B2 JP 4839809B2 JP 2005349815 A JP2005349815 A JP 2005349815A JP 2005349815 A JP2005349815 A JP 2005349815A JP 4839809 B2 JP4839809 B2 JP 4839809B2
Authority
JP
Japan
Prior art keywords
bread
mold
acetic acid
yeast
baker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005349815A
Other languages
Japanese (ja)
Other versions
JP2006187282A (en
Inventor
憲孝 辻本
規夫 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2005349815A priority Critical patent/JP4839809B2/en
Publication of JP2006187282A publication Critical patent/JP2006187282A/en
Application granted granted Critical
Publication of JP4839809B2 publication Critical patent/JP4839809B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は新規なパン酵母、このパン酵母を含有するパン生地、ならびにこのパン酵母を使用するパンの製造方法に関する。   The present invention relates to a novel baker's yeast, bread dough containing the baker's yeast, and a method for producing bread using the baker's yeast.

パンは小麦粉、水、食塩、パン酵母、乳製品、糖類、油脂などをミキシングし、一定の発酵時間を取った後焼成される。発酵の過程では、パン酵母は小麦粉中に含まれるマルトースなどの糖分や原料として添加される砂糖などを発酵して大部分は炭酸ガスとエタノールへと変換するが、この他にもエタノール以外のアルコールや、有機酸、エステルなども生成しこれらがパンの風味に寄与している。焼成は通常200℃前後のオーブン内で行われるために、外側の表皮部温度は160℃位に、そして内相中心部も100℃弱位まで上昇し、焼成時間のうち10分間はこの温度に維持されている。   Bread is baked after mixing flour, water, salt, baker's yeast, dairy products, sugars, oils and fats, taking a certain fermentation time. In the process of fermentation, baker's yeast ferments sugars such as maltose contained in wheat flour and sugar added as raw material and converts it mostly to carbon dioxide and ethanol, but in addition to this, alcohol other than ethanol Organic acids, esters, etc. are also produced, which contribute to the flavor of bread. Since firing is usually performed in an oven at around 200 ° C., the outer skin temperature rises to about 160 ° C., and the center of the inner phase also rises to about 100 ° C., and this temperature is maintained at this temperature for 10 minutes. Maintained.

カビは一般に耐熱性が低いため、青カビの胞子は82℃、10分間で、赤カビの胞子では70℃、10分間程度で死滅することが知られているので、上記のような焼成条件では、オーブンを出た直後のパンは表皮、内相ともに無菌状態にある(非特許文献1)。しかし、オーブンを出たパンは中心温度40℃を目標に数十分間かけて搬送コンベヤー上で冷却されるため、空気中のカビ胞子との接触は不可避である。さらには製造作業員の手によるパンへの接触やスライス、包装などによってもカビ胞子の付着が起こり、これらもパンのカビ発生の原因となる(非特許文献1)。   Since mold is generally low in heat resistance, blue mold spores are known to die at 82 ° C. for 10 minutes, and red mold spores at 70 ° C. for about 10 minutes. The bread immediately after leaving the oven is in a sterile state for both the epidermis and the inner phase (Non-patent Document 1). However, since the bread that has left the oven is cooled on the conveyor for several tens of minutes with the target of a central temperature of 40 ° C., contact with mold spores in the air is inevitable. Furthermore, mold spores adhere to the bread by the hands of manufacturing workers, slices, packaging, and the like, which also cause the mold of the bread (Non-patent Document 1).

このためパンの製造現場においては冷却工程、包装工程、出荷場の塵やパンくずの清掃が行なわれ、カビ胞子の数を低下させること等で、カビ発生を抑える取り組みが行われている(非特許文献1)。またパン製造ではプロピオン酸ナトリウム製剤や酢酸ナトリウム製剤等が保存料として添加される場合もあり、1日〜2日間ほどカビ発生を遅らせている。   For this reason, at the production site of bread, cooling and packaging processes, dust and bread crumbs in the shipping area are cleaned, and efforts are made to reduce mold generation by reducing the number of mold spores. Patent Document 1). Moreover, in bread manufacture, a sodium propionate formulation, a sodium acetate formulation, etc. may be added as a preservative, and the mold | generation generation | occurrence | production is delayed about 1 to 2 days.

このような有機酸が示す抗菌作用は微生物の細胞膜を透過して細胞内に移行して初めて発現するが、解離型分子よりも非解離型分子の方が細胞膜を通過し、細胞内へ侵入しやすい性質を有するため、抗菌活性は非解離型分子の方が高い(非特許文献2)。例えば、種々の有機酸を比較した場合では、pKaの高い酢酸はコハク酸、乳酸、リンゴ酸、クエン酸などの有機酸と比べて解離しにくいために、同一のpHでは非解離型分子の割合は他の有機酸よりも高くなり、結果的に強い抗菌活性を示すことが知られている(非特許文献2)。   The antibacterial action of such organic acids is not expressed until they pass through the cell membrane of microorganisms and migrate into the cell, but non-dissociated molecules pass through the cell membrane and invade into the cells rather than dissociated molecules. Because of its easy nature, antibacterial activity is higher for non-dissociated molecules (Non-Patent Document 2). For example, when various organic acids are compared, acetic acid having a high pKa is less likely to dissociate than organic acids such as succinic acid, lactic acid, malic acid, and citric acid. Is known to be higher than other organic acids and consequently exhibit strong antibacterial activity (Non-patent Document 2).

有機酸の解離はpHの低下によって減少するために、低pHほど非解離型分子の割合が増加し、強い抗菌作用が発揮できる(非特許文献2)。例えば酢酸と乳酸を同時に大腸菌に作用させる場合、乳酸によるpH低下で酢酸の非解離分子濃度を増加させた方がpHを5〜6にコントロールするよりも大腸菌への阻害作用が高まることが報告されている(非特許文献3)。実際に、醤油もろみ中においては乳酸と酢酸が共存することで、乳酸のpH低下による酢酸の非解離型濃度増加で抗菌活性が増強する現象が知られている(非特許文献4)。   Since the dissociation of the organic acid decreases as the pH decreases, the lower the pH, the higher the proportion of non-dissociable molecules, and the stronger antibacterial action can be exhibited (Non-patent Document 2). For example, when acetic acid and lactic acid are allowed to act simultaneously on E. coli, it is reported that increasing the non-dissociated molecular concentration of acetic acid by lowering the pH due to lactic acid increases the inhibitory effect on E. coli than controlling the pH to 5-6. (Non-patent Document 3). In fact, in soy sauce moromi, the coexistence of lactic acid and acetic acid is known to enhance the antibacterial activity by increasing the non-dissociative concentration of acetic acid due to a decrease in the pH of lactic acid (Non-Patent Document 4).

カビ抑制のために酢酸ナトリウム製剤をパン作製時に添加した場合、酢酸ナトリウムは解離してナトリウムイオンを生成するために生地のpHが高まり、酢酸を単独添加する場合と比べて非解離型酢酸濃度は相対的に低下する。このためにカビ抑制効果を一定レベルに保つためには酢酸を単独で添加する場合よりも多くの酢酸ナトリウム製剤を添加する必要があるが、トータルの酢酸濃度を高めることとなり、結果的にパンの風味が酸っぱくなる。   When a sodium acetate preparation is added at the time of bread preparation to suppress mold, the pH of the dough increases because sodium acetate dissociates and generates sodium ions, and the concentration of non-dissociated acetic acid is lower than when acetic acid is added alone. Relatively decreases. For this reason, in order to keep the fungus control effect at a certain level, it is necessary to add more sodium acetate preparation than when acetic acid is added alone. The flavor becomes sour.

一方、生地pHの低下は上記のごとく非解離型酢酸濃度を上昇させ抗菌活性は高まるが、過度なpH低下はグルテンの網目構造を弱め、ガス保持力を低下させ(非特許文献5)、パンの品質に影響を与える恐れがある。   On the other hand, a decrease in dough pH increases the concentration of non-dissociative acetic acid and the antibacterial activity increases as described above, but an excessive decrease in pH weakens the gluten network structure and decreases the gas retention (Non-Patent Document 5) The quality of the product may be affected.

製造したパンを一定時間空気中に放置させ、数日間保管するとパン製造に使用するパン酵母によってパンのカビ発生までの時間に差がみられる。パンクラムのpHが若干低く、かつ生成する発酵による酢酸濃度が高いことでパンのカビ発生を遅らせることができるパン酵母(特許文献1)や生成したエタノール濃度が高く、生地から漏洩しにくい生地構造を採ることでパンのカビ発生を遅らせることができるパン酵母(特許文献2)などの報告があり、パン酵母の発酵作用によるカビ抑制が注目されつつある。
光琳、「製パンの科学(1)製パンプロセスの科学」、1991年、263頁−271頁 技報堂出版、「食品微生物学ハンドブック」、1995年、522頁 J.Appl.Bacteriol.、1983年、54巻、383頁 醸協、1981年、76巻、701頁 ダイレック、「BAKERY技術百科」、1990年、1巻、142頁 特開2004−313190号公報 特開2004−049217号公報
When the produced bread is left in the air for a certain period of time and stored for several days, there is a difference in the time to the occurrence of bread mold depending on the baker's yeast used for bread making. Bread yeast (Patent Document 1), which has a slightly lower pH of crumb and has a high concentration of acetic acid by fermentation to produce bread, and a dough structure that has a high ethanol concentration and is difficult to leak from the dough. There has been a report of baker's yeast (Patent Document 2) that can delay the occurrence of bread mold by adopting it, and mold suppression due to the fermentation action of baker's yeast is attracting attention.
Mitsuaki, “Science of breadmaking (1) Science of breadmaking process”, 1991, pages 263-271 Gihodo Publishing, “Food Microbiology Handbook”, 1995, 522 pages J. et al. Appl. Bacteriol. 1983, 54, 383 Brewery, 1981, 76, 701 Direc, “BAKERY Technology Encyclopedia”, 1990, Volume 1, p. 142 JP 2004-313190 A JP 2004-049217 A

本発明では、パンの膨化、内相のすだち、風味などのパンの品質を損なうことなく、またpH低下要因となるような副材料を添加することなく、カビの発生をより抑制したパン製造を可能とすることを目的としている。   In the present invention, bread production that suppresses the occurrence of mold without impairing the quality of the bread, such as the expansion of the bread, the inner phase, the flavor, and the like, and without the addition of a secondary material that causes a pH decrease, is achieved. The purpose is to make it possible.

本発明者らは上記課題を解決するために鋭意研究を重ねた結果、従来のパン酵母により製造したパンと比較して、クラムのpHが生地のガス保持力を低下させない程度に低いために、パンの膨化や内相に与える影響が少ない為に食感を損ねず、かつ酢酸濃度が高くなることで非解離型酢酸濃度を増加させることができるパン酵母の育種に成功し、本発明を完成するに至った。   As a result of intensive research to solve the above problems, the present inventors have compared the bread produced by conventional baker's yeast, because the pH of the crumb is low enough not to reduce the gas holding power of the dough. Succeeded in breeding baker's yeast that can increase the non-dissociative acetic acid concentration by increasing the acetic acid concentration without affecting the texture because it has little effect on bread swelling and internal phase, and completed the present invention It came to do.

即ち、本発明の第1は、製パンして得たパンのクラムの非解離型酢酸濃度を130ppm以上にすることができるパン酵母に関する。好ましい実施態様は、パン酵母が、サッカロミセス・セレビシエに属するKSY68−9290株(受託番号:FERM P−20204)、KSY85−596株(受託番号:FERM P−20295)であることを特徴とする上記記載のパン酵母に関する。本発明の第2は、上記記載のパン酵母を含有するパン生地に関する。本発明の第3は、小麦粉、パン酵母、糖類、食塩、乳製品、油脂、水を主成分とし、それ以外にpH低下要因となるような副材料を添加しない生地を焼成することで得られるパンであって、パンのクラムの非解離型酢酸濃度が130ppm以上であることを特徴とするパンに関する。本発明の第4は、上記記載のパン酵母を使用するパンの製造方法に関する。   That is, the first of the present invention relates to baker's yeast capable of setting the non-dissociative acetic acid concentration of bread crumbs obtained by baking to 130 ppm or more. In a preferred embodiment, the baker's yeast is KSY68-9290 strain (accession number: FERM P-20204), KSY85-596 strain (accession number: FERM P-20295) belonging to Saccharomyces cerevisiae. Relating to baker's yeast. 2nd of this invention is related with the bread dough containing the baker's yeast of the said description. The third aspect of the present invention is obtained by baking a dough containing wheat flour, baker's yeast, saccharides, salt, dairy products, fats and oils as main components, and no other auxiliary materials that cause a pH lowering factor. A bread, characterized in that the non-dissociative acetic acid concentration of the bread crumb is 130 ppm or more. 4th of this invention is related with the manufacturing method of the bread which uses the said bread yeast.

本発明のパン酵母を用いてパンを製造すると、従来のパン酵母で製造したパンと比べてクラムのpHが低く、かつ酢酸濃度が高くなることで、非解離型酢酸濃度が増加し、パンの食感、ボリューム、風味に影響することなくカビを抑制することが可能となる。   When bread is produced using the baker's yeast of the present invention, the pH of the crumb is lower and the acetic acid concentration is higher than that of bread produced with the conventional baker's yeast, thereby increasing the concentration of non-dissociated acetic acid. Mold can be suppressed without affecting the texture, volume and flavor.

以下、本発明についてさらに詳細に説明する。本明細書において使用される用語は、以下に特に説明する場合を除いて、当該分野で通常に使用される用語の意味と同一である。   Hereinafter, the present invention will be described in more detail. The terms used in the present specification have the same meanings as those commonly used in the art unless otherwise specified below.

本明細書において、砂糖、食塩、その他の製パン副材料の割合(%)は、小麦粉に対する重量割合をいう。例えば、砂糖分6%とは、パン生地において小麦粉100gに対して砂糖6gを使用することをいう。本明細書において「その他の製パン副材料」とは、小麦粉、食塩および水以外の製パンに使用される材料をいい、例えば、砂糖、異性化糖、乳製品、油脂などが挙げられるがこれらに限定されない。   In this specification, the ratio (%) of sugar, salt, and other bread-making auxiliary materials refers to the weight ratio to flour. For example, a sugar content of 6% means that 6 g of sugar is used for 100 g of flour in bread dough. In the present specification, “other bread-making auxiliary materials” refer to materials used for bread-making other than flour, salt and water, and examples thereof include sugar, isomerized sugar, dairy products, and fats and oils. It is not limited to.

本発明のパン酵母は、カビ抑制性パン酵母であり、これを用いて作製したパンのカビ発生が従来のパン酵母のみならず、これまでのカビ抑制性パン酵母を用いて作製したパンのカビ発生よりも遅い。パンの作製法としては、特に限定は無いが、工業的には中種法の方が好ましい。本発明では、パンにおけるカビ発生のしにくい特性をカビ抑制性と言う。なお、ここで従来のパン酵母とは以前より使用されているカビ抑制性の低いパン酵母である。またカビ抑制性パン酵母とは酢酸生成量が従来のパン酵母よりも高い、たとえば特開2004−313190号公報に記載のパン酵母(独立行政法人産業技術総合研究所特許生物寄託センター受託番号:FERM P−18863)のようなパン酵母のことを指す。   The baker's yeast of the present invention is a mold-inhibiting baker's yeast, and the mold produced in the bread produced using the baker's mold is not limited to the conventional baker's yeast, but the mold of bread produced using the conventional mold-inhibiting baker's yeast. Slower than occurrence. The method for producing bread is not particularly limited, but the medium seed method is preferred industrially. In the present invention, a characteristic that hardly causes mold in bread is referred to as mold suppression. In addition, the conventional baker's yeast here is baker's yeast with low mold suppression property used from before. In addition, the mold-inhibiting baker's yeast is higher in acetic acid production than conventional baker's yeast. For example, baker's yeast described in Japanese Patent Application Laid-Open No. 2004-313190 (National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary Accession Number: FERM) It refers to baker's yeast such as P-18863).

本発明のパン酵母を用いて作製したパンのクラムの非解離型酢酸濃度は、130ppm以上であることが本発明の特徴である。更には、カビ抑制性の大きさから考えて、クラム中の非解離型酢酸濃度が200ppm以上であることが好ましい。クラム中の非解離型酢酸濃度が130ppm以上であると、充分なカビ抑制性が得られる。これは、本発明のパン酵母が非解離型酢酸を従来のパン酵母よりも多量に生成する為と思われる。従来のパン酵母を用いて作製したパンのクラム中の非解離型酢酸濃度は、多くても前記のFERM P−18863を用いた場合で120ppm未満であった。またパンの製造においては、空気中の乳酸菌がわずかに混入するが、それによる非解離型酢酸の生成は微々たるものであり、例え製造の環境により非解離型酢酸の生成量が多くても、パンのクラム中の非解離型酢酸濃度は前記のようにFERM P−18863を用いたとしても120ppm未満であった。   It is a feature of the present invention that the non-dissociated acetic acid concentration of bread crumbs prepared using the baker's yeast of the present invention is 130 ppm or more. Furthermore, it is preferable that the concentration of non-dissociative acetic acid in crumb is 200 ppm or more in view of the degree of mold inhibition. When the concentration of non-dissociative acetic acid in the crumb is 130 ppm or more, sufficient mold suppression is obtained. This seems to be because the baker's yeast of the present invention produces a larger amount of non-dissociated acetic acid than the conventional baker's yeast. The concentration of non-dissociated acetic acid in the crumbs of bread produced using conventional baker's yeast was less than 120 ppm at most when the FERM P-18863 was used. In addition, in the production of bread, lactic acid bacteria in the air are slightly mixed, but the production of non-dissociative acetic acid by it is insignificant, even if the production amount of non-dissociable acetic acid is large depending on the production environment, The undissociated acetic acid concentration in the bread crumb was less than 120 ppm even when FERM P-18863 was used as described above.

また市場には、特別に副材料として乳酸菌をパン生地に加えて作製するサワーブレッドがあり、乳酸菌の生成物である非解離型酢酸を多量に含むが、サワーブレッドは酸味を出すのが目的のパンであるので、本発明には含まれない。   In addition, there is a sour bread specially made by adding lactic acid bacteria to bread dough as an auxiliary material, and it contains a large amount of non-dissociative acetic acid, which is a product of lactic acid bacteria, but sour bread is intended to produce a sour taste. Therefore, it is not included in the present invention.

なお本発明では、実施例を含めて中種法により製造した食パンでのカビ抑制効果を中心に説明しているが、食パン以外の配合や製法で作製されたパンでも、本発明のパン酵母によるカビ抑制の効果を奏する。本発明の食パン中種法とは、一般的な食パン製造法であり、例えば次のような工程である。パン製造に使用する小麦粉全量のうちの70%にイースト、水を混合して中種生地を作り、27℃で約4時間発酵させた後、ミキサーへ戻し、中種生地に残りの小麦粉、砂糖、油脂、乳製品および適量の水を加えて本捏し、さらに発酵をとり最後に焼成を行なう方法である。   In addition, in this invention, although it demonstrates centering on the mold | fungi control effect in the bread produced by the middle seed method including the Example, the bread produced by the mixing | blending and manufacturing method other than bread is also based on the baker's yeast of this invention. Has the effect of inhibiting mold. The bread seed method of the present invention is a general bread manufacturing method, and includes the following steps, for example. Mix 70% of the total flour used in bread making with yeast and water to make a medium dough, ferment at 27 ° C for about 4 hours, return to the mixer, leave the remaining flour and sugar in the medium dough In this method, fats and oils, a dairy product and an appropriate amount of water are added, and the mixture is further fermented and finally baked.

本発明のパン酵母は、例えば以下の方法により得ることができる。育種にはサッカロミセス・セレビシエ保存菌株から胞子株を取得し、種々の組み合わせで交雑株を作製し、この中から非解離型酢酸濃度が高い菌株をスクリーニングするために以下の方法でスクリーニング用菌体を作製した。続いて、作製したスクリーニング用菌体を用いてスクリーニング用食パン中種法生地を作製し、生地のpH、酢酸濃度を測定し、これらの測定値から非解離型酢酸濃度を算出した。なお、本発明のパン酵母は、製造したパンのクラムの非解離型酢酸濃度を130ppm以上とするものであれば特に交雑育種に限定されることはなく、自然界からのスクリーニング、変異処理、細胞融合などの育種技術によっても取得することができる。   The baker's yeast of the present invention can be obtained, for example, by the following method. For breeding, spore strains are obtained from Saccharomyces cerevisiae stocks, hybrid strains are prepared in various combinations, and screening cells are screened by the following method to screen for strains with high non-dissociated acetic acid concentration. Produced. Subsequently, using the produced bacterial cells for screening, a seed dough medium method for screening bread was prepared, the pH and acetic acid concentration of the dough were measured, and the non-dissociated acetic acid concentration was calculated from these measured values. The baker's yeast of the present invention is not particularly limited to cross breeding as long as the non-dissociated acetic acid concentration of the produced bread crumb is 130 ppm or more, screening from nature, mutation treatment, cell fusion It can also be obtained by breeding techniques such as.

本発明において、食パン中種法で製造したパンのクラムの非解離型酢酸濃度を130ppm以上とするためには、サッカロミセス・セレビシエに属するパン酵母を選択することが好ましく、それらから得られる交雑株の内、KSY68−9290株、ならびにKSY85−596株が更に好ましい。このKSY68−9290株、ならびにKSY85−596株はサッカロミセス・セレビシエと同定され、KSY68−9290株は2004年9月6日にFERM P−20204(受託番号)として、KSY85−596株は2004年11月12日にFERM P−20295(受託番号)として独立行政法人産業技術総合研究所特許生物寄託センター(日本国茨城県つくば市東1丁目1番地中央第6)に寄託している。   In the present invention, it is preferable to select baker's yeast belonging to Saccharomyces cerevisiae in order to make the non-dissociative acetic acid concentration of bread crumb produced by the seed method of bread bread more than 130 ppm, Of these, the KSY68-9290 strain and the KSY85-596 strain are more preferred. The KSY68-9290 strain and the KSY85-596 strain were identified as Saccharomyces cerevisiae. The KSY68-9290 strain was designated as FERM P-20204 (accession number) on September 6, 2004, and the KSY85-596 strain was designated as November 2004. On December 12, it was deposited as FERM P-20295 (Accession Number) at the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (Chuo 1st, East 1-chome, Tsukuba City, Ibaraki, Japan).

以下に本発明の実施例を記載するがこれらは本発明を例示的に記載するのみであり、本発明はこれらの実施例に限定されるものではない。なお、実施例において「部」や「%」は重量基準である。また、以下の実施例に使用した材料について、小麦粉は「カメリア」(日清製粉(株)社製)を使用し、イーストフードは「イーストフードC」(株式会社カネカ製)、ショートニングは「スノーライト」(株式会社カネカ製)を使用した。また乳化剤は「パンマック200B」(理研ビタミン(株)社製)を使用した。その他の製パン材料および製パン副原料は、一般小売店から入手可能なものを使用した。また、対照菌株として、特開2004−313190号公報に記載のパン酵母FERM P−18863を用いた。   Examples of the present invention will be described below, but these are only illustrative of the present invention, and the present invention is not limited to these examples. In the examples, “parts” and “%” are based on weight. Regarding the materials used in the following examples, “Camelia” (made by Nisshin Flour Milling Co., Ltd.) is used for the flour, “East Food C” (made by Kaneka) is used for the yeast food, and “Snow” is used for the shortening. "Light" (manufactured by Kaneka Corporation) was used. As the emulsifier, “Panmac 200B” (manufactured by Riken Vitamin Co., Ltd.) was used. Other bread-making materials and bread-making auxiliary materials used were those available from general retailers. Moreover, baker's yeast FERM P-18863 described in JP-A-2004-313190 was used as a control strain.

<スクリーニング用菌体作製法>
表1の組成の培地を大型試験管に5ml、500ml坂口フラスコに50ml分注し、オートクレーブ殺菌した後、以下の培養に使用した。育種株1白金耳を大型試験管に植菌し、30℃、1日間振とう培養後、500ml坂口フラスコに継植して、30℃、1日間振とう培養した。その後遠心分離し、ヌッチェにより吸引脱水し湿菌体を作製した。
<Method for preparing cells for screening>
The medium having the composition shown in Table 1 was dispensed in a large test tube in a volume of 5 ml and a 500 ml Sakaguchi flask in an amount of 50 ml, sterilized by autoclave, and used for the following culture. Breeding strain 1 platinum ears were inoculated into a large test tube, shake cultured at 30 ° C. for 1 day, subcultured in a 500 ml Sakaguchi flask, and cultured at 30 ° C. for 1 day with shaking. Thereafter, the mixture was centrifuged and sucked and dehydrated with Nutsche to prepare wet cells.

<スクリーニング用食パン中種法生地作製法>
表2の生地組成、ならびに表3の工程により生地を作製した。
<Method of making seed dough in screening bread>
The dough was prepared by the dough composition shown in Table 2 and the steps shown in Table 3.

<生地pH、酢酸濃度測定方法>
作製した生地のpH、及び酢酸濃度は以下の方法で測定した。ホイロ発酵をさせた生地20gを蒸留水80mlと混合し、ホモジナイザーにて12000rpmで5分間破砕し、破砕液を得て、pHをpHメータで測定したのち、生地pHとした。pH測定後、ただちに10%塩化ベンザルコニウムを1ml添加し、破砕液50mlを17000×g(gravity)で10分間遠心分離し、上清4.5mlを分取し、10%過塩素酸0.5mlを加え十分混合した後、17000×g(gravity)で10分間遠心分離し、上清を孔径0.45μmのシリンジフィルターでろ過を行い試料溶液とした。試料溶液は高速液体クロマトグラフィー(HPLC)で生地中の酢酸濃度([共役塩基]+[共役酸]、以下AcCともいう)の測定を行なった。HPLCによる分析条件は次の通りである。
HPLC :SHIMAZU LC10A
カラム :SCR101H
カラム温度 :60℃
検出器 :SPD10A(475nm)
流速 :1ml/min
移動相 :過塩素酸溶液(pH2.2)
<Dough pH, acetic acid concentration measurement method>
The pH and acetic acid concentration of the prepared dough were measured by the following methods. 20 g of the dough subjected to proofing was mixed with 80 ml of distilled water and crushed with a homogenizer at 12000 rpm for 5 minutes to obtain a crushed liquid. The pH was measured with a pH meter, and then the dough pH was obtained. Immediately after the pH measurement, 1 ml of 10% benzalkonium chloride was added, 50 ml of the crushed liquid was centrifuged at 17000 × g (gravity) for 10 minutes, 4.5 ml of the supernatant was separated, and 10% perchloric acid was added in an amount of 0.1%. After 5 ml was added and mixed well, the mixture was centrifuged at 17000 × g (gravity) for 10 minutes, and the supernatant was filtered with a syringe filter having a pore size of 0.45 μm to obtain a sample solution. The sample solution was subjected to measurement of acetic acid concentration ([conjugated base] + [conjugated acid], hereinafter also referred to as AcC) in the dough by high performance liquid chromatography (HPLC). The analysis conditions by HPLC are as follows.
HPLC: SHIMAZU LC10A
Column: SCR101H
Column temperature: 60 ° C
Detector: SPD10A (475 nm)
Flow rate: 1 ml / min
Mobile phase: Perchloric acid solution (pH 2.2)

<パン生地中の非解離型酢酸濃度算出法>
非解離型酢酸濃度は上記の方法で測定した生地pH、酢酸濃度(AcC)、並びに酢酸のpKa値(4.74)から、Henderson−Hasselbalchの式(pH=pKa+log[共役塩基]/[共役酸]、出典:東京化学同人、「コーンスタンプ生化学(第5版)」、1988年、13頁)を元にした以下の式より算出した。
非解離型酢酸濃度=AcC/{10(pH−pKa)+1}
<Calculation method of non-dissociative acetic acid concentration in bread dough>
The concentration of non-dissociated acetic acid was determined from the Henderson-Hasselbalch equation (pH = pKa + log [conjugated base] / [conjugated acid] from the dough pH, acetic acid concentration (AcC), and pKa value (4.74) of acetic acid measured by the above method. ] Source: Tokyo Kagaku Doujin, “Corn Stamp Biochemistry (5th edition)”, 1988, p. 13).
Non-dissociation type acetic acid concentration = AcC / {10 (pH-pKa) +1}

<製パン試験用菌体作製法>
・バッチ培養
表4の組成の培地を大型試験管に5ml、500ml坂口フラスコに50ml分注し、オートクレーブ殺菌した後、培養に使用した。育種株1白金耳を大型試験管に全量植菌し、30℃、1日間振とう培養後、500ml坂口フラスコに継植して、さらに30℃、1日管振とう培養により作製したバッチ培養菌体を以下の5Lジャーの種母培養に供した。
<Bacteria preparation method for bread making test>
Batch culture 5 ml of the medium having the composition shown in Table 4 was dispensed into a large test tube and 50 ml into a 500 ml Sakaguchi flask, sterilized by autoclave, and used for cultivation. Breeding strain 1 Inoculate all platinum ears in a large test tube, shake culture at 30 ° C for 1 day, transfer to 500 ml Sakaguchi flask, and further culture at 30 ° C for 1 day by tube culture. The body was subjected to the following 5 L jar seed culture.

・5Lジャー種母培養
5Lジャーに表5の組成の培地2Lを入れて、オートクレーブ殺菌後、500ml坂口フラスコ5本分の菌体を植菌し、表6の条件で種母培養を行った。
-5L jar seed culture The culture medium 2L of the composition of Table 5 was put into the 5L jar, and after sterilization by autoclave, the microbial cells for five 500 ml Sakaguchi flasks were inoculated, and seed culture was performed on the conditions of Table 6.

・5Lジャー本培養
始発液量を表7の培地組成で、5Lジャーで培養した種母菌体を湿菌体として50g添加し、表8の条件で本培養を行った。具体的には13時間培養を行い、糖は12時間培養の間に分割添加した。5Lジャー本培養菌体は培養終了後直ちに遠心分離し、ヌッチェにより吸引脱水し湿菌体を得、以下の実施例に使用した。実験に使用する際には、湿菌体の水分含量を測定し、使用量は65%水分に換算した。
-5 L jar main culture 50 g of seed mother cells cultured in a 5 L jar with the medium composition shown in Table 7 was added as wet cells, and main culture was performed under the conditions shown in Table 8. Specifically, culture was performed for 13 hours, and sugar was added in portions during the 12-hour culture. The 5 L jar main cultured cells were centrifuged immediately after completion of the culture, and sucked and dehydrated with Nutsche to obtain wet cells, which were used in the following examples. When used in the experiment, the moisture content of the wet cells was measured, and the amount used was converted to 65% moisture.

<パンクラムのpH、酢酸濃度測定方法>
パンクラムのpH、及び酢酸濃度は以下の方法で測定した。冷却後のパンのクラム部分20gを蒸留水80mlと混合し、ホモジナイザーにて12000rpmで5分間破砕し、破砕液を得た。破砕液のpHをpHメータで測定し、クラムpHとした。破砕液50mlを17000×g(gravity)で10分間遠心分離し、上清4.5mlを分取し10%過塩素酸0.5mlを加え十分混合した後、17000×g(gravity)で10分間遠心分離し、上清を孔径0.45μmのシリンジフィルターでろ過を行い試料溶液とした。試料溶液は高速液体クロマトグラフィー(HPLC)でパンクラム中の酢酸濃度の測定を行なった。HPLCによる分析条件は生地での分析条件に同じである。
<Method of measuring pH and acetic acid concentration of punk crumb>
The crumb pH and acetic acid concentration were measured by the following methods. 20 g of the crumb of the pan after cooling was mixed with 80 ml of distilled water and crushed with a homogenizer at 12000 rpm for 5 minutes to obtain a crushed liquid. The pH of the crushed liquid was measured with a pH meter to obtain crumb pH. Centrifuge 50 ml of the crushed liquid at 17000 × g (gravity) for 10 minutes, collect 4.5 ml of the supernatant, add 0.5 ml of 10% perchloric acid, mix well, and then 10 minutes at 17000 × g (gravity). Centrifugation was performed, and the supernatant was filtered through a syringe filter having a pore diameter of 0.45 μm to obtain a sample solution. The sample solution was subjected to high performance liquid chromatography (HPLC) to measure the concentration of acetic acid in the crumb. The analysis conditions by HPLC are the same as the analysis conditions in the dough.

<パンクラム中の非解離型酢酸濃度算出法>
パンクラムの非解離型酢酸濃度の算出法は生地での算出法に準拠する。
<Calculation method of non-dissociative acetic acid concentration in punk crumb>
The calculation method of non-dissociation type acetic acid concentration of punk crumb is based on the calculation method of dough.

<カビ抑制性の塗布方式による評価法>
まず作製した食パンを空気中で1日放置させた後、ナイロン袋で密封して20℃で10日間放置させてカビを十分に生育させたパンを0.3g秤量し、滅菌水10mlに懸濁して始発濃度とする。さらにこの始発濃度の懸濁液を別の滅菌水にて10倍ずつ100000倍まで希釈した懸濁液を作製した。カビ発生試験には目的サンプルのパンを2cmの厚さでスライスし、作製した希釈倍率100倍、1000倍、10000倍、及び100000倍の4水準のカビ懸濁液30μlをn数=4でクラム部分へ塗布したのち、ナイロン袋で密封し20℃で2〜3日間放置した。クラムの表面にカビが発生し始めたカビ懸濁液の希釈倍率の差、そして同一希釈倍率で比較したカビの濃さ、広がり等の生育の差から総合的にカビ抑制性を判定した。
<Evaluation method by mold-inhibiting coating method>
First, the prepared bread was allowed to stand in the air for one day, then sealed with a nylon bag and allowed to stand at 20 ° C. for 10 days to weigh 0.3 g of the bread in which mold was sufficiently grown, and suspended in 10 ml of sterile water. To the initial concentration. Furthermore, a suspension was prepared by diluting this initial concentration suspension with another sterilized water 10 times to 100000 times. In the mold generation test, the bread of the target sample was sliced at a thickness of 2 cm, and 30 μl of the four-level mold suspensions with the dilution ratios of 100 times, 1000 times, 10000 times, and 100000 times were crumbed with n = 4. After applying to the part, it was sealed with a nylon bag and left at 20 ° C. for 2-3 days. The mold inhibitory property was comprehensively determined from the difference in the dilution ratio of the mold suspension where mold started to develop on the surface of the crumb, and the difference in growth such as the density and spread of mold compared at the same dilution ratio.

<パン表面に自然落下したカビの増殖に対するカビ抑制性の評価法>
作製した食パンを90分間空気中で放置、冷却させた後、ナイロン袋で密封して25℃で24日間保管し、食パン表面に自然落下し増殖したカビの広がりを比較し、カビ抑制性を判定した。
<Evaluation method of mold inhibitory property against growth of mold that naturally falls on bread surface>
The prepared bread is left in the air for 90 minutes and allowed to cool, then sealed with a nylon bag and stored at 25 ° C for 24 days. The spread of mold that has fallen spontaneously on the surface of the bread is compared to determine mold inhibition. did.

(実施例1) 交雑育種、スクリーニング
当社が保存する2倍体のサッカロミセス・セレビシエの複数の菌株から胞子株を取得し、これら胞子株を使用して種々の組み合わせで交雑株を作製した。作製した種々の交雑株ならびにFERM P−18863を上記のスクリーニング用菌体作製法により培養し、得られた菌体を用いてスクリーニング用食パン中種法生地作製法により生地を作製した。生地のpH、酢酸濃度を測定して非解離型酢酸濃度を算出し、FERM P−18863よりも高い非解離型酢酸を生成した菌株を選択した。続いて、上記の5Lジャーによる製パン試験用菌体作製法にて菌体を作製し、前記の食パン中種法に従いパンを作製した。作製したパンのクラムのpH、酢酸濃度の測定値から算出した非解離型酢酸濃度、ならびにパンのカビ発生評価から、発明課題を解決しうる本発明のKSY68−9290株、ならびにKSY85−596株を選択した。
(Example 1) Cross breeding and screening Spore strains were obtained from a plurality of diploid Saccharomyces cerevisiae strains stored by the Company, and hybrid strains were prepared in various combinations using these spore strains. The produced various hybrid strains and FERM P-18863 were cultured by the above-described screening cell preparation method, and the dough was prepared by the screening bread medium seed method preparation method using the obtained cells. The pH and acetic acid concentration of the dough were measured to calculate the non-dissociation type acetic acid concentration, and a strain that produced non-dissociation type acetic acid higher than FERM P-18863 was selected. Subsequently, the microbial cells were prepared by the above-described 5L jar-based microbial cell preparation method for bread making test, and bread was prepared according to the above-mentioned seed method for bread. The KSY68-9290 strain and the KSY85-596 strain of the present invention, which can solve the problems of the invention, from the pH of the prepared bread crumb, the non-dissociated acetic acid concentration calculated from the measurement value of the acetic acid concentration, and the evaluation of the occurrence of mold of bread Selected.

(実施例2) KSY68−9290株の評価
表9に示すパン生地組成、表10に示す工程においてKSY68−9290について中種製パン試験を行った。作製したパンのクラムpH、酢酸濃度、およびpH、酢酸濃度より算出した非解離型酢酸濃度を表11に示す。カビ抑制性評価におけるカビの生育状態を図1、2に示す。図1ではカビ懸濁液を塗布した時のカビの生育状態、図2では食パン表面に自然落下したカビの生育状態を示す。
(Example 2) Evaluation of KSY68-9290 strain A medium-sized bread test was performed on KSY68-9290 in the dough composition shown in Table 9 and the steps shown in Table 10. Table 11 shows the crumb pH and acetic acid concentration of the prepared bread and the non-dissociative acetic acid concentration calculated from the pH and acetic acid concentration. The mold growth state in the mold inhibitory evaluation is shown in FIGS. FIG. 1 shows the growth state of the mold when the mold suspension is applied, and FIG. 2 shows the growth state of the mold that naturally falls on the surface of the bread.

(比較例1) 従来パン酵母の評価
パン酵母として、対照菌株FERM P−18863を用いた以外は、実施例2と同様にして非解離型酢酸濃度測定及びカビ抑制性評価を行った。作製したパンのクラムpH、酢酸濃度、およびpH、酢酸濃度より算出した非解離型酢酸濃度を表11に示す。またカビ抑制性評価におけるカビの生育状態を図1、2に示す。
(Comparative example 1) Conventional baker's yeast evaluation The non-dissociation type acetic acid density | concentration measurement and mold | fungi inhibitory evaluation were performed like Example 2 except having used control strain FERM P-18863 as baker's yeast. Table 11 shows the crumb pH and acetic acid concentration of the prepared bread and the non-dissociative acetic acid concentration calculated from the pH and acetic acid concentration. Moreover, the growth state of the mold in the mold inhibitory evaluation is shown in FIGS.

KSY68−9290を使用したパンクラムのpHはFERM P−18863で使用したパンクラムのpHよりも若干低い程度であった。一方、酢酸濃度はKSY68−9290を使用したパンクラムがFERM P−18863を使用したパンクラムを上回った。このようにKSY68−9290を使用したパンでは、pHが低いことと酢酸濃度が高いことにより、非解離型酢酸濃度は特許文献1に記載された高いカビ抑制性をもったFERM P−18863を使用したパンを大きく上回ることが特徴であった。   The crumb pH using KSY68-9290 was slightly lower than the crumb pH used with FERM P-18863. On the other hand, the acetic acid concentration was higher in the crumbs using KSY68-9290 than in the crumbs using FERM P-18863. Thus, in bread using KSY68-9290, non-dissociation type acetic acid concentration uses FERM P-18863 having high mold inhibition property described in Patent Document 1 due to low pH and high acetic acid concentration. It was characterized by greatly exceeding the bread.

また図1を見てみると、2日経過後のパンのカビ発生についてはKSY68−9290を使用したパンでは希釈倍率100倍部分までしかみられないが、FERM P−18863を使用したパンでは1000倍部分までカビ発生が進行しており、また100倍部分の塗布部分で比較すると、カビの発生はKSY68−9290を使用したパンの方が薄い。3日経過後のカビの発生についてもKSY68−9290を使用したパンでは希釈倍率1000倍希釈部分までしかみられないが、FERM P−18863を使用したパンでは10000倍部分までカビ発生が進行している。また1000倍希釈倍率の塗布部分どうしで比較すると、KSY68−9290を使用したパンの方がカビの発生が薄い。さらに図2を見てみると、FERM P−18863を使用したパンではパン表面にカビの発生がみられるのに対し、KSY68−9290を使用したパンではみられなかった。このようにカビ発生の進行はFERM P−18863を使用して製造したパンと比べて抑制されていた。特開2004−313190号公報ではFERM P−18863は従来のパン酵母よりも高いカビ抑制性をもつことが示されているが、本発明のKSY68−9290はFERM P−18863を大きく上回る非解離型酢酸を生成することで、より一層カビ抑制のレベルが向上していた。   In addition, when looking at FIG. 1, the occurrence of mold on the bread after 2 days has been observed only up to a 100-fold dilution with bread using KSY68-9290, but 1000-fold with bread using FERM P-18863. Mold generation has progressed to the part, and compared with the coated part of 100 times, the mold generation is lighter in bread using KSY68-9290. As for the occurrence of mold after 3 days, the bread using KSY68-9290 can only be seen up to a dilution ratio of 1000 times, but the bread using FERM P-18863 has a mold generation up to 10,000 times. . In addition, when compared with the application parts having a 1000-fold dilution ratio, bread using KSY68-9290 is less susceptible to mold. Further, when FIG. 2 is seen, molds were observed on the bread surface in the bread using FERM P-18863, but not in the bread using KSY68-9290. Thus, the progress of mold generation was suppressed as compared with bread produced using FERM P-18863. JP-A-2004-313190 shows that FERM P-18863 has higher mold-inhibiting ability than conventional baker's yeast, but KSY68-9290 of the present invention is a non-dissociation type that greatly exceeds FERM P-18863. By generating acetic acid, the level of mold suppression was further improved.

(実施例3) KSY85−596株の評価
実施例2と同様、表9に示すパン生地組成、表10に示す工程においてKSY85−596株について中種製パン試験を行った。作製したパンのクラムpH、酢酸濃度、およびpH、酢酸濃度より算出した非解離型酢酸濃度を表12に示す。カビ抑制性評価におけるカビの生育状態を図3、4に示す。図3ではカビ懸濁液を塗布した時のカビの生育状態、図4では食パン表面に自然落下したカビの生育状態を示す。
(Example 3) Evaluation of KSY85-596 strain In the same manner as in Example 2, the bread dough composition shown in Table 9 and the process shown in Table 10 were performed for medium-sized bread tests on KSY85-596 strain. Table 12 shows the crumb pH, acetic acid concentration, and non-dissociated acetic acid concentration calculated from the pH and acetic acid concentration of the prepared bread. The mold growth state in the mold inhibitory evaluation is shown in FIGS. FIG. 3 shows the growth state of the mold when the mold suspension is applied, and FIG. 4 shows the growth state of the mold that naturally falls on the surface of the bread.

(比較例2) 従来パン酵母の評価
パン酵母として、対照菌株FERM P−18863を用いた以外は、実施例3と同様にして非解離型酢酸濃度測定及びカビ抑制性評価を行った。作製したパンのクラムpH、酢酸濃度、およびpH、酢酸濃度より算出した非解離型酢酸濃度を表12に示す。またカビ抑制性評価におけるカビの生育状態を図3、4に示す。
(Comparative example 2) Conventional baker's yeast evaluation The non-dissociation type acetic acid density | concentration measurement and mold | fungi inhibitory evaluation were performed like Example 3 except having used control strain FERM P-18863 as baker's yeast. Table 12 shows the crumb pH, acetic acid concentration, and non-dissociated acetic acid concentration calculated from the pH and acetic acid concentration of the prepared bread. Moreover, the growth state of the mold in the mold inhibitory evaluation is shown in FIGS.

KSY85−596株を使用したパンクラムのpHはFERM P−18863で使用したパンクラムのpHよりも若干低い程度であった。一方、酢酸濃度はKSY85−596株を使用したパンクラムがFERM P−18863を使用したパンクラムを上回った。このようにKSY85−596株を使用したパンでは、pHが低いことと酢酸濃度が高いことにより、非解離型酢酸濃度は特許文献1に記載された高いカビ抑制性をもったFERM P−18863を使用したパンを大きく上回ることが特徴であった。   The pH of the crumb using the KSY85-596 strain was slightly lower than the pH of the crumb used in FERM P-18863. On the other hand, as for the acetic acid concentration, the crumb using KSY85-596 strain exceeded the crumb using FERM P-18863. Thus, in bread using the KSY85-596 strain, non-dissociation type acetic acid concentration is higher than that of FERM P-18863 described in Patent Document 1 due to low pH and high acetic acid concentration. It was characterized by greatly exceeding the bread used.

また図3を見てみると、2日経過後のパンのカビ発生についてはKSY85−596株を使用したパンでは希釈倍率100倍部分までしかみられないが、FERM P−18863を使用したパンでは1000倍部分までカビ発生が進行しており、また100倍部分の塗布部分で比較すると、カビの発生はKSY85−596株を使用したパンの方が薄い。3日経過後ではKSY85−596株を使用したパンでは希釈倍率10000倍希釈部分でのカビ発生がわずかにしかみられないが、FERM P−18863を使用したパンでは10000倍部分でのカビ発生は明瞭に進行している。さらに図4を見てみると、FERM P−18863を使用したパンではパン表面にカビの発生がみられるのに対し、KSY85−596を使用したパンではみられなかった。このようにカビ発生の進行はFERM P−18863を使用して製造したパンと比べて抑制されていた。特開2004−313190号公報ではFERM P−18863は従来のパン酵母よりも高いカビ抑制性をもつことが示されているが、本発明のKSY85−596株はFERM P−18863を上回る非解離型酢酸を生成することで、より一層カビ抑制のレベルが向上していた。   In addition, when looking at FIG. 3, the occurrence of mold on the bread after the passage of 2 days can be seen only up to a 100-fold dilution in the bread using the KSY85-596 strain, but 1000 in the bread using the FERM P-18863. Mold generation has progressed to the doubled portion, and compared to the 100-fold coated portion, the mold generation is lighter in bread using the KSY85-596 strain. After 3 days, the bread using the KSY85-596 strain showed only a slight occurrence of mold at the dilution ratio of 10,000 times, but the bread using the FERM P-18863 clearly showed mold generation at the 10,000 times part. Progressing. Further, when FIG. 4 is seen, molds were observed on the bread surface in the bread using FERM P-18863, but not in the bread using KSY85-596. Thus, the progress of mold generation was suppressed as compared with bread produced using FERM P-18863. JP-A-2004-313190 shows that FERM P-18863 has higher mold-suppression than conventional baker's yeast, but the KSY85-596 strain of the present invention is a non-dissociated type that exceeds FERM P-18863. By generating acetic acid, the level of mold suppression was further improved.

本発明のKSY68−9290株ならびにKSY85−596株はともに特開2004−313190号公報に記載されたFERM P−18863よりも低いpHと高い濃度の酢酸を生成することで、非解離型酢酸濃度を増加させ、より一層、パンでのカビ抑制効果を示した。   Both the KSY68-9290 strain and the KSY85-596 strain of the present invention produce a lower pH and higher concentration of acetic acid than FERM P-18863 described in JP-A-2004-313190. Increased the effect of inhibiting mold in bread.

20℃で2、3日間経過後のパンのカビ発生、及び生育状態を示す。右上:KSY68−9290(2日後)、右下:KSY68−9290(3日後)、左上:FERM P−18863(2日後)、左下:FERM P−18863(3日後)。また、1つのスライスパン中、縦方向では上から順に希釈率100倍、1000倍、10000倍、100000倍のカビ懸濁液をそれぞれ塗布し、横方向は同一のカビ懸濁液を塗布した試料を4点並べた。The mold generation and growth state of bread after a few days at 20 ° C. are shown. Upper right: KSY68-9290 (after 2 days), lower right: KSY68-9290 (after 3 days), upper left: FERM P-18863 (after 2 days), lower left: FERM P-18863 (after 3 days). Further, in one slice pan, a sample in which the mold suspensions with a dilution ratio of 100 times, 1000 times, 10000 times, and 100,000 times were applied in the vertical direction from the top, and the same mold suspension was applied in the horizontal direction. 4 points were arranged. 25℃で24日間経過後のパンにおけるカビの自然発生、及び自然発生したカビの生育状態を示す。上:FERM P−18863、下:KSY68−9290。It shows the occurrence of mold on bread after 24 days at 25 ° C., and the growth state of the mold that occurred naturally. Top: FERM P-18863, bottom: KSY68-9290. 20℃で2、3日間経過後のパンのカビ発生、及び生育状態を示す。右上:KSY85−596(2日後)、右下:KSY85−596(3日後)、左上:FERM P−18863(2日後)、左下:FERM P−18863(3日後)。また、1つのスライスパン中、縦方向では上から順に希釈率100倍、1000倍、10000倍、100000倍のカビ懸濁液を4点塗布し、横方向は同一のカビ懸濁液を塗布した試料を4点並べた。The mold generation and growth state of bread after a few days at 20 ° C. are shown. Upper right: KSY85-596 (after 2 days), lower right: KSY85-596 (after 3 days), upper left: FERM P-18863 (after 2 days), lower left: FERM P-18863 (after 3 days). In one slice pan, four mold suspensions with a dilution ratio of 100 times, 1000 times, 10000 times, and 100,000 times were applied in the vertical direction from the top, and the same mold suspension was applied in the horizontal direction. Four samples were arranged. 25℃で24日間経過後のパンにおけるカビの自然発生、及び自然発生したカビの生育状態を示す。上:FERM P−18863、下:KSY85−596。It shows the occurrence of mold on bread after 24 days at 25 ° C., and the growth state of the mold that occurred naturally. Top: FERM P-18863, bottom: KSY85-596.

Claims (4)

ッカロミセス・セレビシエに属するKSY68−9290株(受託番号:FERM P−20204)またはKSY85−596株(受託番号:FERM P−20295)であることを特徴とするパン酵母。 Sa Kkaromisesu cerevisiae belonging to KSY68-9290 strain (accession number: FERM P-20204) or KSY85-596 strain (accession number: FERM P-20295) features and to Rupa down yeast that it is. 請求項1に記載のパン酵母を含有するパン生地。 A bread dough containing the baker's yeast according to claim 1 . 小麦粉、請求項1に記載のパン酵母、糖類、食塩、乳製品、油脂、水を主成分とし、それ以外にpH低下要因となるような副材料を添加しない生地を焼成することで得られるパンであって、パンのクラムの非解離型酢酸濃度が130ppm以上であることを特徴とするパン。 Bread obtained by baking wheat flour, dough yeast according to claim 1 , sugar, salt, dairy product, fats and oils, and other ingredients that do not contain any additional ingredients that cause pH reduction A bread characterized by having a non-dissociative acetic acid concentration in the bread crumb of 130 ppm or more. 請求項1に記載のパン酵母を使用するパンの製造方法。

The manufacturing method of the bread which uses the baker's yeast of Claim 1 .

JP2005349815A 2004-12-09 2005-12-02 New baker's yeast Expired - Fee Related JP4839809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005349815A JP4839809B2 (en) 2004-12-09 2005-12-02 New baker's yeast

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004357251 2004-12-09
JP2004357251 2004-12-09
JP2005349815A JP4839809B2 (en) 2004-12-09 2005-12-02 New baker's yeast

Publications (2)

Publication Number Publication Date
JP2006187282A JP2006187282A (en) 2006-07-20
JP4839809B2 true JP4839809B2 (en) 2011-12-21

Family

ID=36795026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005349815A Expired - Fee Related JP4839809B2 (en) 2004-12-09 2005-12-02 New baker's yeast

Country Status (1)

Country Link
JP (1) JP4839809B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5677624B2 (en) * 2012-04-26 2015-02-25 株式会社カネカ New baker's yeast

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513383B2 (en) * 2003-04-02 2010-07-28 株式会社カネカ New baker's yeast

Also Published As

Publication number Publication date
JP2006187282A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
KR101551839B1 (en) Natural yeast and lactic acid bacteria isolated from Korean traditional nuruk to be used for bakery
TWI330665B (en) Baker&#39;s yeast and bread made by using the same
JP2021177769A (en) Leavening agents
JP4749341B2 (en) A novel baker&#39;s yeast resistant to the presence of high sugar content and weak organic acids in dough
RU2756307C2 (en) Frost-resistant yeast and its application
JP5677624B2 (en) New baker&#39;s yeast
JP2007068441A (en) Method for preparing leavening by using lactic bacterium
JP4839809B2 (en) New baker&#39;s yeast
JP4565789B2 (en) Novel baker&#39;s yeast and dough containing the yeast
ES2583065T3 (en) Improvement of high yeast bakeries
JP4839860B2 (en) New baker&#39;s yeast
JP4513383B2 (en) New baker&#39;s yeast
CN105829533A (en) Novel breadmaking yeast strains which are effective on non-sweetened or slightly sweetened dough
JPS58201960A (en) Preparation of agent for imparting taste and flavor to food
FR2545330A1 (en) BAKERY PASTE
JP2006230298A (en) Fused yeast
JP2001321160A (en) Method for producing bread
JP6462173B1 (en) Lactic acid bacteria, bread manufacturing method, bread dough and bread
JP2004049217A (en) New yeast
JPH09234058A (en) New yeast and production of bread containing the yeast
CN110785484B (en) Bread yeast
JP4268355B2 (en) Drought resistant yeast
RU2228036C2 (en) Method for preparing of bread
Horstmann et al. Fundamental study on the impact of different S. cerevisiae yeast strains on gluten-free dough and bread quality parameters
JP5926494B2 (en) New baker&#39;s yeast

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Ref document number: 4839809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees