JP4839276B2 - Liquid chromatograph mass spectrometer - Google Patents

Liquid chromatograph mass spectrometer Download PDF

Info

Publication number
JP4839276B2
JP4839276B2 JP2007191535A JP2007191535A JP4839276B2 JP 4839276 B2 JP4839276 B2 JP 4839276B2 JP 2007191535 A JP2007191535 A JP 2007191535A JP 2007191535 A JP2007191535 A JP 2007191535A JP 4839276 B2 JP4839276 B2 JP 4839276B2
Authority
JP
Japan
Prior art keywords
sample
mass spectrometer
liquid chromatograph
ion source
chromatograph mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007191535A
Other languages
Japanese (ja)
Other versions
JP2009025260A (en
Inventor
いずみ 緒方
安夫 田口
集 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2007191535A priority Critical patent/JP4839276B2/en
Publication of JP2009025260A publication Critical patent/JP2009025260A/en
Application granted granted Critical
Publication of JP4839276B2 publication Critical patent/JP4839276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

本発明は、液体クロマトグラフ質量分析装置に関する。   The present invention relates to a liquid chromatograph mass spectrometer.

流量が数百μL/min 以上での液体クロマトグラフィーは複数の成分が混合した試料の分離手段として一般的である。液体クロマトグラフの試料検出手段の一つである質量分析装置は、試料分子をイオン化して真空中に導入し、真空内の電場を制御して試料分子の質量を求める分析装置である。質量分析装置のイオン源にはエレクトロスプレイイオン化法を用いたエレクトロスプレイイオン源(ESI)や大気圧化学イオン化法を用いた大気圧化学イオン源(APCI)、ソニックスプレイイオン化法を用いたソニックスプレイイオン源(SSI)が一般的に用いられる。いずれのイオン化法においても、液体クロマトグラフから溶出する試料溶液を噴霧し、生成した試料液滴の気化効率を上げてイオン化効率を向上させる。   Liquid chromatography at a flow rate of several hundred μL / min or more is a general means for separating a sample in which a plurality of components are mixed. A mass spectrometer, which is one of sample detection means of a liquid chromatograph, is an analyzer that ionizes sample molecules and introduces them into a vacuum, and controls the electric field in the vacuum to determine the mass of the sample molecules. The ion source of the mass spectrometer is an electrospray ion source (ESI) using an electrospray ionization method, an atmospheric pressure chemical ion source (APCI) using an atmospheric pressure chemical ionization method, and a sonic spray ion using a sonic spray ionization method. A source (SSI) is commonly used. In any ionization method, the sample solution eluted from the liquid chromatograph is sprayed to increase the vaporization efficiency of the generated sample droplets, thereby improving the ionization efficiency.

液体クロマトグラフから溶出する数百μL/min の試料溶液を噴霧する場合、全ての試料液滴を質量分析装置に導入されるまでに気化させるのは、流量が高いため困難である。   When spraying a sample solution of several hundred μL / min eluted from the liquid chromatograph, it is difficult to vaporize all the sample droplets before they are introduced into the mass spectrometer because of the high flow rate.

試料液滴の気化効率を上げるために噴霧した試料液滴の気化を助ける乾燥ガスを試料液滴に対して導入する方法がある。この場合、試料液滴の十分な気化のためには試料液滴と乾燥ガスを十分攪拌することが必要であるが、例えば、特許文献1に示されるように試料噴霧部と乾燥ガス導入方向が同軸の場合、ガスと試料液滴の攪拌が不十分で気化効率が低く、また気化した試料の濃度が乾燥ガスにより希釈されるため、APCIに於いてはイオン化効率が低下し、その他のイオン源においてもMS部への試料導入効率が低下する結果、感度が低下する課題があった。   There is a method of introducing a dry gas, which helps vaporize the sprayed sample droplets, into the sample droplets in order to increase the vaporization efficiency of the sample droplets. In this case, in order to sufficiently vaporize the sample droplet, it is necessary to sufficiently stir the sample droplet and the dry gas. For example, as shown in Patent Document 1, the sample spraying portion and the dry gas introduction direction are In the case of the coaxial, the gas and sample droplets are not sufficiently stirred and the vaporization efficiency is low, and the concentration of the vaporized sample is diluted with the dry gas, so that the ionization efficiency is reduced in APCI, and other ion sources. However, there is a problem that the sensitivity is lowered as a result of a decrease in efficiency of introducing the sample into the MS portion.

これに対し、例えば、特許文献2や特許文献3に示されるように、試料噴霧部と交差する軸方向より乾燥ガスを導入する場合に於いても、試料液滴を十分乾燥するためには多量のガスが必要であり、気化した試料の濃度がガスにより希釈されAPCIに於いてはイオン化効率が低下し、その他のイオン源においてもMS部への試料導入効率が低下する結果、感度が低下する課題があった。   On the other hand, for example, as shown in Patent Document 2 and Patent Document 3, in the case where the drying gas is introduced from the axial direction intersecting the sample spraying portion, a large amount is required to sufficiently dry the sample droplet. As a result, the concentration of the vaporized sample is diluted with the gas and the ionization efficiency is lowered in APCI, and the efficiency of introducing the sample into the MS section is lowered in other ion sources, resulting in a decrease in sensitivity. There was a problem.

また、気化不十分な試料液滴が質量分析装置の試料導入部に直接あたると、試料導入部の温度低下が生じて質量分析装置の感度が低下する。これを避けるために、この流量の試料をイオン化するイオン源は、気化不十分な試料液滴が直接質量分析装置の試料導入部へ当たらないように試料導入部の細孔とイオン源の噴霧部との軸をずらしたり、試料導入部に対して直交方向から試料を噴霧する方法がある。この場合、噴霧部から噴霧された試料液滴と試料導入部の距離が、細孔正面から噴霧した場合より遠いため、MS部への試料導入効率が低下する結果、感度が低下する課題があった。   In addition, when a sample droplet that is insufficiently vaporized directly hits the sample introduction part of the mass spectrometer, the temperature of the sample introduction part is lowered and the sensitivity of the mass spectrometer is lowered. In order to avoid this, the ion source that ionizes the sample at this flow rate is designed so that the sample droplets that are insufficiently vaporized do not directly hit the sample introduction part of the mass spectrometer and the spray part of the ion source. And a method of spraying a sample from a direction orthogonal to the sample introduction part. In this case, since the distance between the sample droplet sprayed from the spray section and the sample introduction section is farther than when sprayed from the front of the pore, the efficiency of sample introduction to the MS section is reduced, resulting in a problem of reduced sensitivity. It was.

特開2003−83938号公報JP 2003-83938 A 米国特許第5412208号US Pat. No. 5,412,208 米国特許第6759650号US Pat. No. 6,759,650

質量分析装置の複数のイオン化法のうち、複数のイオン化法を同一のイオン源で実現すると測定者の利便性が向上する。   Of the plurality of ionization methods of the mass spectrometer, when a plurality of ionization methods are realized with the same ion source, convenience for the measurer is improved.

ESIとAPCIを一台で実現するイオン源の場合、ESIとAPCIで試料噴霧機構を共有し、かつESIとAPCIを測定者の要望に応じて即時に切替え可能である必要がある。また、いずれのイオン化法においても、イオン化効率やMS部への試料導入効率などで定まる感度を同等に維持する必要がある。   In the case of an ion source that realizes both ESI and APCI, it is necessary that ESI and APCI share the sample spray mechanism and that ESI and APCI can be switched immediately according to the demands of the measurer. In any ionization method, it is necessary to maintain the same sensitivity determined by the ionization efficiency, the efficiency of sample introduction into the MS section, and the like.

APCIの試料噴霧方式には加熱噴霧方式とガス噴霧方式がある。例えば特開2000−314726号公報に示されるような加熱噴霧方式の場合、APCIからESIへ切替える際は加熱ブロックの温度低下を待つ必要があり、高速での切替えは不可能である。   APCI sample spraying methods include a heating spraying method and a gas spraying method. For example, in the case of the heating spray system as shown in Japanese Patent Application Laid-Open No. 2000-314726, when switching from APCI to ESI, it is necessary to wait for a temperature drop of the heating block, and switching at high speed is impossible.

従って、ガス噴霧方式によるESIを基準に、ESIの感度維持したままAPCIにも対応することが課題である。しかし、ガス噴霧方式による試料噴霧でAPCIを行う場合、ESIにおけるレイリー分裂による試料液滴の微細化が不可能であるため試料溶液の気化がESIよりも困難である。これを解決するために多量かつ高温の乾燥ガスを試料液滴に導入すると、気化は促進されるが、気化した試料の濃度が乾燥ガスにより希釈されるためAPCIのイオン化効率が低下する結果、感度が低下する。また、APCIでの試料液滴の気化を赤外線ランプによって実現する場合は、試料の希釈を避けて試料を気化することが可能であるが、ランプ表面に試料液滴などの汚れが付着しやすく、その結果ランプが破損する課題があった。   Therefore, it is a problem to cope with APCI while maintaining the sensitivity of ESI based on ESI by the gas spray method. However, when APCI is performed by sample spraying by a gas spraying method, it is difficult to vaporize a sample solution compared to ESI because it is impossible to make sample droplets fine by Rayleigh splitting in ESI. In order to solve this problem, when a large amount of high-temperature dry gas is introduced into the sample droplet, vaporization is promoted, but the concentration of the vaporized sample is diluted with the dry gas, resulting in a decrease in ionization efficiency of APCI. Decreases. In addition, when vaporization of sample droplets with APCI is realized by an infrared lamp, it is possible to vaporize the sample while avoiding dilution of the sample, but dirt such as sample droplets tends to adhere to the lamp surface, As a result, there was a problem that the lamp was damaged.

本発明は、複数のイオン源の間で(例えば、APCI/ESIの間で)高速切替えが可能な高感度イオン源を有する液体クロマトグラフ質量分析装置の提供を目的としたものである。   An object of the present invention is to provide a liquid chromatograph mass spectrometer having a highly sensitive ion source capable of high-speed switching between a plurality of ion sources (for example, between APCI / ESI).

本発明の一つの態様によれば、複数の試料成分が混合した溶液を成分毎に分離する分離手段と、前記分離手段から溶出する溶液をガスと共に噴霧し試料の一部を第1のイオン源でイオン化する試料噴霧部と、噴霧された試料成分の一部をイオン化する第2のイオン源と、前記第2のイオン源で生成したイオンを真空中に導入する試料導入部と、前記試料導入部より導入されたイオンを質量分離する質量分析部とを有する液体クロマトグラフ質量分析装置であって、前記試料噴霧部で噴霧された試料液滴を覆う気化部を備え、前記気化部の出口面積が前記気化部の断面積より小さいことを特徴とする。   According to one aspect of the present invention, a separation means for separating a solution in which a plurality of sample components are mixed for each component, a solution eluted from the separation means is sprayed together with a gas, and a part of the sample is a first ion source. A sample spraying section that ionizes at a second position, a second ion source that ionizes a part of the sprayed sample components, a sample introduction section that introduces ions generated by the second ion source into a vacuum, and the sample introduction A liquid chromatograph mass spectrometer having a mass spectrometer for mass-separating ions introduced from the unit, the apparatus comprising a vaporizer that covers the sample droplet sprayed by the sample sprayer, and an exit area of the vaporizer Is smaller than the cross-sectional area of the vaporized portion.

本発明の他の態様によれば、複数の試料成分が混合した溶液を成分毎に分離する分離手段と、前記分離手段から溶出する溶液をガスと共に噴霧し試料の一部をエレクトロスプレイイオン化する試料噴霧部と、噴霧された試料成分の一部を大気圧化学イオン化する針電極と、前記針電極で生成したイオンを真空中に導入する試料導入部と、前記試料導入部より導入されたイオンを質量分離する質量分析部で構成される液体クロマトグラフ質量分析装置に於いて、前記試料噴霧部で噴霧された試料液滴を覆う気化部を備え、前記気化部の出口面積が前記気化部の断面積より小さいことを特徴とする。   According to another aspect of the present invention, a separation unit that separates a solution in which a plurality of sample components are mixed for each component, and a sample that sprays a solution eluted from the separation unit together with a gas and electrospray ionizes a part of the sample. A spray part, a needle electrode that chemically ionizes a part of the sprayed sample component, a sample introduction part that introduces ions generated by the needle electrode into a vacuum, and ions introduced from the sample introduction part A liquid chromatograph mass spectrometer comprising a mass spectrometer that performs mass separation includes a vaporization unit that covers a sample droplet sprayed by the sample spray unit, and an outlet area of the vaporization unit is a disconnection of the vaporization unit. It is smaller than the area.

本発明によれば、複数のイオン源(例えば、ESIとAPCI)で試料噴霧機構を共有し、いずれのイオン化法においても、イオン化効率やMS部への試料導入効率などで定まる感度を同等に維持することが可能となるため、複数のイオン源の間(例えば、APCI/ESIの間)の高速切替えが可能な高感度イオン源を有する液体クロマトグラフ質量分析装置の提供が可能となる。   According to the present invention, a sample spray mechanism is shared by a plurality of ion sources (for example, ESI and APCI), and in any ionization method, the sensitivity determined by the ionization efficiency, the efficiency of introducing the sample into the MS section, and the like is equally maintained. Therefore, it is possible to provide a liquid chromatograph mass spectrometer having a highly sensitive ion source capable of high-speed switching between a plurality of ion sources (for example, between APCI / ESI).

以下、本発明の実施例を、図面により説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に、本実施例で用いる装置の構成を示す。本実施例は、液体クロマトグラフ1から溶出する試料溶液がイオン源へ導入される配管2と、試料溶液に高電圧を印加して試料をエレクトロスプレイイオン化する噴霧部3と、スプレイした試料液滴を乾燥するためのガスを供給するガス供給部4およびガス配管5と、試料液滴と加熱ガスを攪拌するための気化部6と、気化部6での攪拌を促す仕切り板7と、気化した試料と溶媒が気化部6から出るための仕切り板7上の出口孔8と、気化した試料を大気圧化学イオン化するためのコロナ放電を起こす針電極9と、ESI時の噴霧部3またはAPCI時の針電極9でイオン化した試料と溶媒を質量分析装置10中に導入するための細孔11とで構成される。   FIG. 1 shows the configuration of an apparatus used in this embodiment. In this embodiment, a pipe 2 through which a sample solution eluted from the liquid chromatograph 1 is introduced into an ion source, a spray unit 3 for applying a high voltage to the sample solution to electrospray ionize the sample, and sprayed sample droplets A gas supply unit 4 and a gas pipe 5 for supplying a gas for drying the gas, a vaporization unit 6 for agitating the sample droplet and the heated gas, a partition plate 7 for promoting the agitation in the vaporization unit 6, and vaporization An outlet hole 8 on the partition plate 7 through which the sample and the solvent exit the vaporizing section 6, a needle electrode 9 for causing corona discharge for atmospheric pressure chemical ionization of the vaporized sample, and the spray section 3 during ESI or APCI The sample is ionized by the needle electrode 9 and the pores 11 for introducing the solvent into the mass spectrometer 10.

まず、本実施例でESIを行う場合は、噴霧部3に直流4kV程度の高電圧が印加され、針電極9への電圧印加はされない。液体クロマトグラフ1により単一成分に分離された試料成分は、溶媒と共に配管2を経て噴霧部3へ送られる。噴霧部3では、エレクトロスプレイイオン化により試料は帯電液滴となる。またガス供給部4からは乾燥窒素ガスが10L/min 程度の流量でガス配管5を経て気化部6へ供給される。試料液滴と乾燥ガスは仕切り板7に衝突しながら気化部6で攪拌されて、試料液滴は気化される。気化により試料液滴の直径がある値以下まで達すると、液滴内の電荷同士の反発により液滴は瞬時に微細化し(レイリー分裂)、液滴内の試料や溶媒がイオン化する。イオン化された試料と溶媒は、出口孔8から排出され、細孔11より質量分析装置10へ導入されて質量分離される。   First, when ESI is performed in the present embodiment, a high voltage of about 4 kV DC is applied to the spray unit 3, and no voltage is applied to the needle electrode 9. The sample component separated into a single component by the liquid chromatograph 1 is sent to the spray unit 3 through the pipe 2 together with the solvent. In the spray unit 3, the sample becomes charged droplets by electrospray ionization. Further, dry nitrogen gas is supplied from the gas supply unit 4 to the vaporization unit 6 through the gas pipe 5 at a flow rate of about 10 L / min. The sample droplet and the dry gas are agitated by the vaporizing unit 6 while colliding with the partition plate 7, and the sample droplet is vaporized. When the diameter of the sample droplet reaches a certain value or less due to vaporization, the droplet is instantly refined (Rayleigh splitting) due to repulsion between charges in the droplet, and the sample and solvent in the droplet are ionized. The ionized sample and solvent are discharged from the outlet hole 8 and introduced into the mass spectrometer 10 through the pores 11 for mass separation.

次に、本実施例でAPCIを行う場合は、噴霧部3に電圧印加はされず、針電極9に直流9kV程度の高電圧が印加される。液体クロマトグラフ1により単一成分に分離された試料成分は、溶媒と共に配管2を経て噴霧部3へ送られる。噴霧部3で資料は噴霧され、試料液滴となる。またガス供給部4からは乾燥窒素ガスが10L/min 程度の流量でガス配管5を経て気化部6へ供給される。試料液滴と乾燥ガスは仕切り板7に衝突しながら気化部6で攪拌されて、試料液滴は気化される。気化した試料と溶媒分子は、出口孔8から排出される。針電極9先端では、印加された高電圧によりコロナ放電が生じ、針電極9近傍に存在する水などの分子がイオン化されて大気圧化学イオン化部12が生成する。出口孔8から排出された試料と溶媒の気体は、大気圧化学イオン化部12のイオンと衝突すると電荷を奪い、イオンとなる。生成した試料と溶媒のイオンは、細孔11より質量分析装置10へ導入されて質量分離される。   Next, when APCI is performed in the present embodiment, no voltage is applied to the spray unit 3, and a high voltage of about 9 kV DC is applied to the needle electrode 9. The sample component separated into a single component by the liquid chromatograph 1 is sent to the spray unit 3 through the pipe 2 together with the solvent. The material is sprayed by the spraying unit 3 to become sample droplets. Further, dry nitrogen gas is supplied from the gas supply unit 4 to the vaporization unit 6 through the gas pipe 5 at a flow rate of about 10 L / min. The sample droplet and the dry gas are agitated by the vaporizing unit 6 while colliding with the partition plate 7, and the sample droplet is vaporized. The vaporized sample and solvent molecules are discharged from the outlet hole 8. At the tip of the needle electrode 9, corona discharge is generated by the applied high voltage, and molecules such as water existing in the vicinity of the needle electrode 9 are ionized to generate the atmospheric pressure chemical ionization unit 12. When the sample and the solvent gas discharged from the outlet hole 8 collide with ions in the atmospheric pressure chemical ionization unit 12, they take charge and become ions. The generated sample and solvent ions are introduced into the mass spectrometer 10 through the pores 11 and mass-separated.

上記のようにESIとAPCIの切替えは、直流高電圧の印加部位を変更するのみであるため、高速での切替えが可能である。   As described above, switching between ESI and APCI only changes the application part of the DC high voltage, and thus switching at high speed is possible.

本実施例では、気化部出口の出口孔8の直径が気化部6の内径よりも小さい。これにより、ESIでは気化部6で気化した試料と溶媒が高濃度で細孔11近傍に排出されるため、質量分析装置10への導入効率が向上する。また、APCIでは大気圧化学イオン化部12に排出されるため、イオン化効率が上がる。   In the present embodiment, the diameter of the outlet hole 8 at the outlet of the vaporizer is smaller than the inner diameter of the vaporizer 6. Thereby, in ESI, the sample and solvent vaporized by the vaporization part 6 are discharged | emitted by high concentration in the pore 11 vicinity, Therefore The introduction efficiency to the mass spectrometer 10 improves. Moreover, since it discharges | emits to the atmospheric pressure chemical ionization part 12 in APCI, ionization efficiency goes up.

また、本実施例では噴霧部3の中心軸よりも出口孔8の中心軸は細孔11に近い。これにより、ESIの場合には、気化部6で生成したイオンが細孔11により近い部分に集められ、質量分析装置10への導入効率がさらに向上する。またAPCIの場合には、噴霧された試料液滴のうち直径が大きく噴霧部3の直下へ吹き付けられる液滴は、まず気化部6下の仕切り板7へ当たるため針電極9には当たらず、大気圧化学イオン化部12の安定性が向上するためイオン化効率が安定する。その他、図2の例に示すように気化部6で気化した試料と溶媒が大気圧化学イオン化部12のイオン密度が大きい部分に排出されるため、イオンとの衝突確率が高くなり、イオン化効率が上がる。さらに、気化部6で気化した試料と溶媒が細孔11に近い部分から排出されるため、イオン化した試料が細孔11に導入される効率が上がる。   In this embodiment, the center axis of the outlet hole 8 is closer to the pore 11 than the center axis of the spray section 3. Thereby, in the case of ESI, the ions generated in the vaporization unit 6 are collected in a portion closer to the pores 11, and the introduction efficiency into the mass spectrometer 10 is further improved. In the case of APCI, the droplets of the sprayed sample droplets that have a large diameter and are sprayed directly below the spraying unit 3 first hit the partition plate 7 below the vaporizing unit 6, and therefore do not hit the needle electrode 9. Since the stability of the atmospheric pressure chemical ionization unit 12 is improved, the ionization efficiency is stabilized. In addition, as shown in the example of FIG. 2, since the sample and the solvent vaporized in the vaporization unit 6 are discharged to a portion where the ion density of the atmospheric pressure chemical ionization unit 12 is high, the probability of collision with ions increases, and the ionization efficiency increases. Go up. Further, since the sample and the solvent vaporized in the vaporization unit 6 are discharged from the portion close to the pores 11, the efficiency of introducing the ionized sample into the pores 11 is increased.

また、本実施例の針電極9の中心軸は、細孔11の中心軸と同一平面上にはなく、細孔の中心軸と平行方向に2mm離れた位置に存在する。これにより、APCIの場合に、図3に示すように細孔11の正面で出口孔8から排出される試料と溶媒の気体の流れが、針電極9と細孔11との間で生じる大気圧化学イオン化部12に与える影響が小さくなり、大気圧化学イオン化部12の安定性が向上するためイオン化効率が安定する。   In addition, the central axis of the needle electrode 9 of the present embodiment is not on the same plane as the central axis of the pore 11 but is present at a position 2 mm away in a direction parallel to the central axis of the pore. Thereby, in the case of APCI, the atmospheric pressure generated between the needle electrode 9 and the pore 11 is that the sample and solvent gas discharged from the outlet hole 8 in front of the pore 11 is flowed between the needle electrode 9 and the pore 11 as shown in FIG. Since the influence on the chemical ionization unit 12 is reduced and the stability of the atmospheric pressure chemical ionization unit 12 is improved, the ionization efficiency is stabilized.

また、本実施例の気化部6の出口孔8が配置された仕切り板は、金属で構成されるため、ESIで生成した帯電液滴や試料と溶媒のイオンによるチャージアップが起きない。   In addition, since the partition plate in which the outlet hole 8 of the vaporization unit 6 of the present embodiment is arranged is made of metal, charging up due to charged droplets generated by ESI or ions of the sample and solvent does not occur.

本実施例の乾燥ガスには窒素ガスなどの不活性ガスを用いる。また、試料液滴の気化を促進するため、乾燥ガスを500℃程度に加熱することもできる。その他、気化部6や仕切り板7にヒータを設け外部から加熱して試料液滴の気化を促進することもできる。   An inert gas such as nitrogen gas is used as the drying gas in this embodiment. Moreover, in order to accelerate | stimulate vaporization of a sample droplet, a dry gas can also be heated to about 500 degreeC. In addition, vaporization of the sample droplet can be promoted by providing a heater in the vaporizing section 6 or the partition plate 7 and heating from the outside.

図4に、本発明の第2の実施例を示す。実施例1と同一符号箇所は、同一物又は同じ機能を有する相当物である。本実施例は、第1の実施例の気化部6近傍に大気圧光イオン化を実現するランプ13を備えて、大気圧光イオン源(APPI)モードも可能にした例である。本実施例では気化部6の材料をランプ13が発する光を透過する材料にすることで、気化部6内で大気圧光イオン化が起きる。   FIG. 4 shows a second embodiment of the present invention. The same code | symbol location as Example 1 is the equivalent which has the same thing or the same function. The present embodiment is an example in which the lamp 13 for realizing the atmospheric pressure photoionization is provided in the vicinity of the vaporization section 6 of the first embodiment, and the atmospheric pressure photoion source (APPI) mode is made possible. In the present embodiment, atmospheric pressure photoionization occurs in the vaporization unit 6 by using the material of the vaporization unit 6 as a material that transmits light emitted from the lamp 13.

第1,第2イオン源の組み合わせは、質量分析装置の複数のイオン化法のうち、複数のイオン化法を実現できる組み合わせとすることができる。さらに、必要に応じて3以上のイオン化法を実現できる組み合わせとしてもよい。質量分析装置部分に関して、複数のイオン化法(例えば、ESIとAPCI)を一台で実現できる。また、複数のイオン化法で試料噴霧機構を共有できる。また、複数のイオン化法間で測定者の要望,測定上の必要性に応じて即時に切替え可能である。また、いずれのイオン化法においても、イオン化効率やMS部への試料導入効率などで定まる感度を同等に維持することが可能となる。   The combination of the first and second ion sources can be a combination that can realize a plurality of ionization methods among a plurality of ionization methods of the mass spectrometer. Furthermore, it is good also as a combination which can implement | achieve 3 or more ionization methods as needed. A plurality of ionization methods (for example, ESI and APCI) can be realized with a single unit for the mass spectrometer portion. In addition, the sample spray mechanism can be shared by a plurality of ionization methods. In addition, it is possible to immediately switch between a plurality of ionization methods according to the needs of the measurer and the necessity for measurement. In any ionization method, the sensitivity determined by the ionization efficiency, the efficiency of introducing the sample into the MS section, and the like can be maintained equally.

本発明の第1の実施例の構成図である。It is a block diagram of the 1st Example of this invention. 本発明の第1の実施例における大気圧イオン化部の概略図である。It is the schematic of the atmospheric pressure ionization part in the 1st Example of this invention. 本発明の第1の実施例を上方向から見た概略図である。It is the schematic which looked at the 1st example of the present invention from the upper direction. 本発明の第2の実施例の構成図である。It is a block diagram of the 2nd Example of this invention.

符号の説明Explanation of symbols

1 液体クロマトグラフ
2 配管
3 噴霧部
4 ガス供給部
5 ガス配管
6 気化部
7 仕切り板
8 出口孔
9 針電極
10 質量分析装置
11 細孔
12 大気圧化学イオン化部
13 ランプ
DESCRIPTION OF SYMBOLS 1 Liquid chromatograph 2 Piping 3 Spraying part 4 Gas supply part 5 Gas piping 6 Evaporation part 7 Partition plate 8 Outlet hole 9 Needle electrode 10 Mass spectrometer 11 Pore 12 Atmospheric pressure chemical ionization part 13 Lamp

Claims (9)

複数の試料成分が混合した溶液を成分毎に分離する分離手段と、前記分離手段から溶出する溶液をガスと共に噴霧して試料をイオン化するエレクトロスプレーイオン源と、針電極を用いて試料をイオン化する大気圧化学イオン源と、イオンを真空中で質量分離する質量分析部とを有する液体クロマトグラフ質量分析装置であって、Separation means for separating a solution in which a plurality of sample components are mixed for each component, an electrospray ion source for spraying a solution eluted from the separation means together with a gas to ionize the sample, and a sample using a needle electrode A liquid chromatograph mass spectrometer having an atmospheric pressure chemical ion source and a mass analyzer for mass-separating ions in a vacuum,
前記エレクトロスプレーイオン源と前記大気圧化学イオン源とを切り替え可能であり、The electrospray ion source and the atmospheric pressure chemical ion source can be switched,
前記大気圧化学イオン源は、前記エレクトロスプレーイオン源の後段に設けられ、The atmospheric pressure chemical ion source is provided at a subsequent stage of the electrospray ion source,
前記質量分析部は、内部へイオンを導入するための細孔を備え、The mass spectrometer includes pores for introducing ions into the interior,
前記エレクトロスプレーイオン源の試料噴霧先には衝突により攪拌を促す仕切り板があり、該仕切り板には孔が設けられており、The sample spray destination of the electrospray ion source has a partition plate that promotes stirring by collision, and the partition plate is provided with holes,
仕切り板は円板形状であり、The partition plate has a disc shape,
前記エレクトロスプレーイオン源内の試料は、仕切り板の円板の中心に噴霧され、The sample in the electrospray ion source is sprayed on the center of the partition disk,
前記孔は該円板の中心からずれた位置に設けられていることを特徴とする液体クロマトグラフ質量分析装置。The liquid chromatograph mass spectrometer according to claim 1, wherein the hole is provided at a position shifted from a center of the disk.
請求項1において、In claim 1,
前記エレクトロスプレーイオン源に乾燥ガスを導入することを特徴とする液体クロマトグラフ質量分析装置。A liquid chromatograph mass spectrometer characterized by introducing a dry gas into the electrospray ion source.
請求項2において、In claim 2,
前記乾燥ガスを加熱することを特徴とする液体クロマトグラフ質量分析装置。A liquid chromatograph mass spectrometer, wherein the dry gas is heated.
請求項1において、In claim 1,
前記気化部を100℃以上に加熱することを特徴とする液体クロマトグラフ質量分析装置。A liquid chromatograph mass spectrometer characterized in that the vaporizing section is heated to 100 ° C. or higher.
請求項1において、In claim 1,
前記仕切り板が試料の進行方向と垂直に配置されていることを特徴とする液体クロマトグラフ質量分析装置。The liquid chromatograph mass spectrometer characterized in that the partition plate is arranged perpendicular to the direction of travel of the sample.
請求項1において、In claim 1,
前記孔は、該円板の中心から前記細孔までの距離よりも、前記孔から前記細孔までの距離の方が近くなる位置に設けられていることを特徴とする液体クロマトグラフ質量分析装置。The liquid chromatograph mass spectrometer characterized in that the hole is provided at a position where the distance from the hole to the pore is closer than the distance from the center of the disc to the pore. .
請求項1において、In claim 1,
前記針電極は、その先端が、前記細孔における試料進行方向の軸からずれた位置に配置されていることを特徴とする液体クロマトグラフ質量分析装置。The needle electrode is arranged at a position where the tip thereof is shifted from the axis of the sample in the pore in the sample traveling direction.
請求項1において、In claim 1,
前記仕切り板が金属で構成されることを特徴とする液体クロマトグラフ質量分析装置。A liquid chromatograph mass spectrometer characterized in that the partition plate is made of metal.
請求項1において、In claim 1,
さらに大気圧光イオン化を実現するランプを備えたことを特徴とする液体クロマトグラフ質量分析装置。Furthermore, the liquid chromatograph mass spectrometer provided with the lamp | ramp which implement | achieves atmospheric pressure photoionization.
JP2007191535A 2007-07-24 2007-07-24 Liquid chromatograph mass spectrometer Active JP4839276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007191535A JP4839276B2 (en) 2007-07-24 2007-07-24 Liquid chromatograph mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191535A JP4839276B2 (en) 2007-07-24 2007-07-24 Liquid chromatograph mass spectrometer

Publications (2)

Publication Number Publication Date
JP2009025260A JP2009025260A (en) 2009-02-05
JP4839276B2 true JP4839276B2 (en) 2011-12-21

Family

ID=40397187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191535A Active JP4839276B2 (en) 2007-07-24 2007-07-24 Liquid chromatograph mass spectrometer

Country Status (1)

Country Link
JP (1) JP4839276B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2499323C2 (en) * 2012-02-10 2013-11-20 Николай Ростиславович Галль Source of ions for mass spectrometer (versions)
CN108369889B (en) 2015-12-18 2021-03-05 Dh科技发展私人贸易有限公司 System for minimizing electrical discharge during ESI operations

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753052A (en) * 1980-09-16 1982-03-29 Hitachi Ltd Atmospheric ionized ion source
JP2854761B2 (en) * 1992-08-26 1999-02-03 株式会社日立製作所 ESI mass spectrometer
JP3087548B2 (en) * 1993-12-09 2000-09-11 株式会社日立製作所 Liquid chromatograph coupled mass spectrometer
US5412208A (en) * 1994-01-13 1995-05-02 Mds Health Group Limited Ion spray with intersecting flow
JP4186889B2 (en) * 1999-04-15 2008-11-26 株式会社日立製作所 Mass spectrometer
JP2003083938A (en) * 2001-09-12 2003-03-19 Shimadzu Corp Mass spectrograph
US6759650B2 (en) * 2002-04-09 2004-07-06 Mds Inc. Method of and apparatus for ionizing an analyte and ion source probe for use therewith
JP2003322639A (en) * 2002-05-01 2003-11-14 Shimadzu Corp Liquid chromatograph mass spectrometer
JP3846417B2 (en) * 2002-12-02 2006-11-15 株式会社島津製作所 Atmospheric pressure ionization mass spectrometer

Also Published As

Publication number Publication date
JP2009025260A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
EP2260503B1 (en) Electrospray ion sources for improved ionization
US6949739B2 (en) Ionization at atmospheric pressure for mass spectrometric analyses
US9449803B2 (en) Mass spectrometer interface
JP5073168B2 (en) A fast combined multimode ion source for mass spectrometers.
JP3791479B2 (en) Ion guide
JP4553011B2 (en) Mass spectrometer
JP2010537371A (en) Sample ionization at pressures above vacuum
JP5589750B2 (en) Ionizer for mass spectrometer and mass spectrometer equipped with the ionizer
EP1829080A2 (en) Atmospheric pressure ionization with optimized drying gas flow
JP6620896B2 (en) Ionizer and mass spectrometer
JP2014533873A (en) System and method for applying curtain gas flow in a mass spectrometer
US20030062474A1 (en) Electrospray ion source for mass spectrometry with atmospheric pressure desolvating capabilities
JP2002181783A (en) Liquid chromatograph mass spectrometer
JP4839276B2 (en) Liquid chromatograph mass spectrometer
JP4645197B2 (en) Mass spectrometry method
JP2013254752A (en) Liquid chromatograph mass spectrometer
JP2002015697A (en) Electrospray ion source
JP4254546B2 (en) Mass spectrometer
JP2000055880A (en) Liquid chromatograph mass spectrometer apparatus
WO2023026355A1 (en) Ionization device
JPH1164289A (en) Liquid chromatograph mass analyzer
JP3166867U (en) Liquid chromatograph mass spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4839276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350