JP4838830B2 - Method for manufacturing variable capacity exhaust gas turbine - Google Patents

Method for manufacturing variable capacity exhaust gas turbine Download PDF

Info

Publication number
JP4838830B2
JP4838830B2 JP2008220363A JP2008220363A JP4838830B2 JP 4838830 B2 JP4838830 B2 JP 4838830B2 JP 2008220363 A JP2008220363 A JP 2008220363A JP 2008220363 A JP2008220363 A JP 2008220363A JP 4838830 B2 JP4838830 B2 JP 4838830B2
Authority
JP
Japan
Prior art keywords
exhaust gas
lid member
turbine
scroll portion
bearing housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008220363A
Other languages
Japanese (ja)
Other versions
JP2010053792A (en
Inventor
幹 惠比寿
真吾 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008220363A priority Critical patent/JP4838830B2/en
Priority to KR1020107015867A priority patent/KR101205259B1/en
Priority to PCT/JP2009/064400 priority patent/WO2010024145A1/en
Priority to CN200980103560.7A priority patent/CN101932808B/en
Priority to US12/811,530 priority patent/US8601690B2/en
Priority to EP09809798.3A priority patent/EP2233720B1/en
Publication of JP2010053792A publication Critical patent/JP2010053792A/en
Application granted granted Critical
Publication of JP4838830B2 publication Critical patent/JP4838830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/146Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by throttling the volute inlet of radial machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49321Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member

Description

本発明は、比較的中小型内燃機関の排気ターボ過給機の製造に用いられ、エンジン(内燃機関)からの排気ガスを、排気入口部とタービンロータとの間に通路断面積が漸次減少するスクロール部を、前記タービンロータの径方向に分割して形成された内周スクロール部および外周スクロール部とに構成し、蓋部材の周方向に複数個列設されたインサートベーンにより、前記内周スクロール部と外周スクロール部とに排気ガスを流動させるようにした可変容量排気ガスタービンの製造方法に関する。   INDUSTRIAL APPLICABILITY The present invention is used for manufacturing an exhaust turbocharger for a relatively small and medium-sized internal combustion engine, and the passage cross-sectional area of exhaust gas from the engine (internal combustion engine) gradually decreases between the exhaust inlet and the turbine rotor. The scroll portion is composed of an inner scroll portion and an outer scroll portion formed by dividing the turbine rotor in the radial direction, and the inner scroll is provided by a plurality of insert vanes arranged in the circumferential direction of the lid member. The present invention relates to a method for manufacturing a variable displacement exhaust gas turbine in which an exhaust gas is caused to flow through a section and an outer peripheral scroll section.

図4(A)は特許文献1(特許第3956884号公報)にて開示されている可変容量排気ガスタービンの回転軸心に直角な要部断面図、図4(B)は図4(A)のD−D断面図、図5は図4(A)のY−Y断面図である。
かかる可変容量排気ガスタービンは、排気ガスにより回転駆動されるタービンロータ10を、タービンハウジング01の中央部に収容(回転軸心100a)している。
前記タービンハウジング01は、排気入口部20及び排気出口部20aを有して、該排気入口部20と内周のタービンロータ10との間に通路断面積が漸次減少するスクロール部12を有する。
4A is a cross-sectional view of the main part perpendicular to the rotational axis of the variable capacity exhaust gas turbine disclosed in Patent Document 1 (Japanese Patent No. 3956884), and FIG. 4B is FIG. 4A. DD sectional view of FIG. 5, FIG. 5 is a YY sectional view of FIG.
In such a variable capacity exhaust gas turbine, a turbine rotor 10 that is rotationally driven by exhaust gas is accommodated in a central portion of a turbine housing 01 (rotation axis 100a).
The turbine housing 01 has an exhaust inlet portion 20 and an exhaust outlet portion 20a, and has a scroll portion 12 between which the passage sectional area gradually decreases between the exhaust inlet portion 20 and the turbine rotor 10 on the inner periphery.

前記スクロール部12は、前記タービンロータ10の径方向に2分割されて、内周スクロール部2および外周スクロール部1を形成している。
前記内周スクロール部2と外周スクロール部1との間は、前記スクロール部12の境界壁2aに沿うように周方向に複数個列設されたインサートベーン6aを介して分割され、それぞれのインサートベーン6aの間には、排気通路6bが形成されている。
また、インサートベーン6aは、蓋部材6の本体部から前記周方向に複数個突設されており、図5に示すように、該インサートベーン6aにより、該内周スクロール部2と前記外周スクロール部1とを分離している。
また、図5に示すように、特許文献1では、前記蓋部材6と遮熱板6cの2枚を一体にして、該一体品を、タービンハウジング01を軸受ハウジング11に締め付けるボルト29を用いて、蓋部材6の外縁のリング円8で前記タービンハウジング01の支持部1sで挟着しつつ、締め付けられている。
The scroll portion 12 is divided into two in the radial direction of the turbine rotor 10 to form an inner peripheral scroll portion 2 and an outer peripheral scroll portion 1.
The inner scroll portion 2 and the outer scroll portion 1 are divided through a plurality of insert vanes 6a arranged in the circumferential direction along the boundary wall 2a of the scroll portion 12, and each insert vane is divided. An exhaust passage 6b is formed between 6a.
Further, a plurality of insert vanes 6a project from the main body of the lid member 6 in the circumferential direction. As shown in FIG. 5, the insert vanes 6a cause the inner scroll 2 and the outer scroll to be inserted. 1 is separated.
Further, as shown in FIG. 5, in Patent Document 1, two pieces of the lid member 6 and the heat shield plate 6 c are integrated, and the integrated product is used by using a bolt 29 for fastening the turbine housing 01 to the bearing housing 11. The ring member 8 of the outer edge of the lid member 6 is tightened while being sandwiched between the support portions 1 s of the turbine housing 01.

また、図4(A)に示すように、前記内周スクロール部2の入口部には、該入口部に排気ガスをガイドし、排気ガスの流れを円滑に前記内周スクロール部2に流入されるための舌部5が、排気ガス流に沿って形成されている。
また、前記外周スクロール部1の排気入口部側には、制御弁4が設置され、該制御弁4は前記タービンハウジング01の周壁4aに接脱することにより、前記内周スクロール部2への排気ガス流量および外周スクロール部1への排気ガス流量をそれぞれ制御している。
Further, as shown in FIG. 4A, the exhaust gas is guided into the inlet portion of the inner scroll portion 2 so that the exhaust gas flows smoothly into the inner scroll portion 2. A tongue 5 is formed along the exhaust gas flow.
In addition, a control valve 4 is installed on the exhaust inlet side of the outer peripheral scroll portion 1, and the control valve 4 contacts and departs from the peripheral wall 4 a of the turbine housing 01, thereby exhausting the inner scroll portion 2. The gas flow rate and the exhaust gas flow rate to the outer scroll portion 1 are controlled.

即ち、エンジンの低回転時には、制御弁4が周壁4aに接して閉じることにより外周スクロール部1が閉じて、排気ガスはUのように内周スクロール部2側にのみ流れる。
またエンジンの高回転時には、制御弁4が周壁4aから離れて開くことにより、排気ガスは外周スクロール部1をUのように流れて、インサートベーン6aの排気通路6bを通って内周スクロール部2に流入するとともに、内周スクロール部2へもUのように流れる。
従って、エンジンの低回転時と高回転時とで、前記制御弁4により排気ガス流量を変えることができる。
That is, when the low rotation of the engine, the control valve 4 is closed the outer scroll part 1 by closing against the peripheral wall 4a, the exhaust gas flows only into the inner scroll part 2 side as U 2.
Also at the time of high rotation of the engine, the control valve 4 to open away from the peripheral wall 4a, the exhaust gas flows through the outer scroll part 1 as U 1, the inner scroll part via the exhaust passage 6b of the insert vanes 6a with flows 2, it flows like U 2 also to the inner scroll part 2.
Therefore, the exhaust gas flow rate can be changed by the control valve 4 when the engine is rotating at low speed and when the engine is rotating at high speed.

特許第3956884号公報Japanese Patent No. 3956884

図4、5に記載された特許文献1のような可変容量排気ガスタービンを、鋳造、射出成形、もしくは冷間鍛造のいずれかで成型、即ち素材成型により製作し、機械加工により最終仕上り製品を得る場合、次のような解決すべき問題がある。   The variable capacity exhaust gas turbine described in Patent Document 1 described in FIGS. 4 and 5 is formed by casting, injection molding, or cold forging, that is, by material molding, and the final finished product is manufactured by machining. If so, there are the following problems to be solved.

(1)図4(A)および図4(A)のD−D断面図である図4(B)に示すように、前記内周スクロール部2の入口部に排気ガスをガイドし、排気ガスの流れを円滑に前記内周スクロール部2に流入されるための舌部5が、排気ガス流に沿って形成されている。
この舌部5と前記蓋部材6の本体面6pとの間隙19a、つまりタービンハウジング01に形成される舌部5と前記本体面6pとの間隙19a(間隙寸法S)は、該本体面6pのみが素材成型面か、あるいは該本体面6pおよび舌部5の双方が素材成型面であるため、素材成型面の公差を考慮して大きめに取っている。
然るに、かかる舌部5と前記本体面6pとの間隙19aは、これが小さい程、タービン性能が良好であり、前記のように素材成型面の公差を考慮してこれを大きく取ると、かかる間隙19aからのガス漏れが多くなって、タービン性能が低下するという問題がある。
(1) As shown in FIG. 4 (A) and FIG. 4 (B) which is a DD cross-sectional view of FIG. 4 (A), exhaust gas is guided to the inlet portion of the inner peripheral scroll portion 2 to exhaust gas. A tongue 5 is formed along the exhaust gas flow to smoothly flow into the inner scroll portion 2.
The gap 19a between the tongue 5 and the main body surface 6p of the lid member 6, that is, the gap 19a (gap size S 1 ) between the tongue 5 and the main body surface 6p formed in the turbine housing 01 is the main body surface 6p. Since only the material molding surface is used, or both the main body surface 6p and the tongue 5 are material molding surfaces, they are set to be large in consideration of the tolerance of the material molding surface.
However, the smaller the gap 19a between the tongue portion 5 and the main body surface 6p, the better the turbine performance. There is a problem that gas leakage from the turbine increases and turbine performance decreases.

(2)また、前記蓋部材6は、図5のように、外周のリング円8で前記タービンハウジング01の支持部1sで挟着して、ボルト29で締め付けている。しかしながら、かかる構造では、蓋部材6の取り付けが高精度でできず、また前記遮熱板6cの熱膨張を考慮した対策がなされていない等の問題がある。   (2) Further, as shown in FIG. 5, the lid member 6 is clamped by the support portion 1 s of the turbine housing 01 with the ring circle 8 on the outer periphery and fastened with the bolts 29. However, with such a structure, there is a problem that the lid member 6 cannot be attached with high accuracy, and that no measures are taken in consideration of the thermal expansion of the heat shield plate 6c.

本発明はかかる従来技術の課題に鑑み、鋳造等の素材成型により製作し、機械加工により最終仕上げ製品を得るような可変容量排気ガスタービンの構成部材において、排気ガスの流れを円滑に前記内周スクロール部に流入されるための舌部の間隙を最小限度に形成でき、またリング円近傍での蓋部材の装着を高精度で行うことを可能とした可変容量排気ガスタービンの製造方法を提供することを目的とする。   In view of the problems of the prior art, the present invention is a component of a variable capacity exhaust gas turbine that is manufactured by material molding such as casting and obtains a final finished product by machining. Provided is a variable displacement exhaust gas turbine manufacturing method capable of forming a gap between tongue portions to be introduced into a scroll portion to a minimum and mounting a lid member in the vicinity of a ring circle with high accuracy. For the purpose.

本発明はかかる目的を達成するもので、軸受ハウジングにより軸支されるシャフトと、該シャフトの一端に固定され排気ガスにより回転駆動されるタービンロータと、該タービンロータを中央部に収容するとともに排気入口部及び排気出口部を有し、前記排気入口部とタービンロータとの間に通路断面積が漸次減少するスクロール部を有するタービンハウジングと、前記スクロール部を前記タービンロータの径方向に分割して形成された内周スクロール部および外周スクロール部とを備えるとともに、該タービンロータの周方向に複数個列設されたインサートベーンにより、内周スクロール部へ直接流入する排気ガスの流動と前記外周スクロール部を流れる排気ガスを内周スクロール部に流入させる排気ガスの流動とを制御するように構成し、前記外周スクロール部の排気入口部側に配設され前記内周スクロール部への排気ガス流量および外周スクロール部への排気ガス流量をそれぞれ制御する制御弁を備えるとともに、前記タービンハウジングの開口端面に前記内、外周スクロール部を画成する蓋部材が配設され、該蓋部材の排気通路側に前記インサートベーンが突設されて構成されている可変容量排気ガスタービンの製造方法において、
前記蓋部材と該蓋部材の内径側に位置し前記タービンロータに対向するように軸受ハウジングとタービンロータの空隙に沿ってシャフト直交面方向に延在して前記タービンロータからの熱流を遮断する縮径板とを一体的に鋳造、射出成形、若しくは冷間鍛造のいずれかの成型にて形するとともに、
前記蓋部材および前記縮径板の間に位置して前記蓋部材から軸受ハウジング側に突出するリング円を前記蓋部材及び前記縮径板と一体的に形成し、該リング円を軸受ハウジングに形成した円形段差部に嵌合させたことを特徴とする(請求項1)。
The present invention achieves such an object, and includes a shaft that is pivotally supported by a bearing housing, a turbine rotor that is fixed to one end of the shaft and is driven to rotate by exhaust gas, and the turbine rotor is housed in a central portion and exhausted. A turbine housing having an inlet portion and an exhaust outlet portion, and having a scroll portion in which a passage cross-sectional area gradually decreases between the exhaust inlet portion and the turbine rotor; and dividing the scroll portion in a radial direction of the turbine rotor. A flow of exhaust gas directly flowing into the inner peripheral scroll portion and the outer peripheral scroll portion by an insert vane provided in a plurality in the circumferential direction of the turbine rotor, the inner peripheral scroll portion and the outer peripheral scroll portion being formed. It is configured to control the flow of exhaust gas that flows into the inner scroll part. A control valve is provided on the exhaust inlet side of the outer scroll portion and controls an exhaust gas flow rate to the inner scroll portion and an exhaust gas flow rate to the outer scroll portion. In the method of manufacturing a variable capacity exhaust gas turbine, wherein a lid member that defines an inner peripheral scroll portion is disposed, and the insert vane protrudes on the exhaust passage side of the lid member.
Blocking said cover member, a heat flow from the turbine rotor and extending in the shaft perpendicular plane along the air gap of the bearing housing and the turbine rotor as located on the inner diameter side of the lid member facing said turbine rotor integrally casting a contraction径板, the co-injection molding, or when the form formed by two or molding of cold forging,
A ring circle located between the lid member and the reduced diameter plate and protruding from the lid member toward the bearing housing is formed integrally with the lid member and the reduced diameter plate, and the ring circle is formed in the bearing housing. The step portion is fitted (claim 1).

また、本発明は、好ましくは、前記リング円を前記蓋部材及び前記縮径板とともに成型し、該リング円の内周側に切削加工を施して、前記リング円の内周と軸受ハウジング側の円形段部とを嵌合させる(請求項2)。 In the present invention, it is preferable that the ring circle is molded together with the lid member and the reduced diameter plate, and the inner circumference side of the ring circle is cut so that the inner circumference of the ring circle and the bearing housing side are formed. make fitting a circular step portion (claim 2).

また、本発明は、好ましくは、記蓋部材の外径側を軸受ハウジングとタービンハウジングとで挟着支持することで前記蓋部材と一体的に形成された前記縮径板を前記軸受ハウジングには接触させずフリーの状態で中空保持する(請求項3)。
また、前記蓋部材の外径の外側面に切削加工を施して、前記蓋部材の外径側を軸受ハウジングとタービンハウジングとで挟着支持してもよい(請求項4)。
さらに、前記蓋部材の内周スクロール部の入口相当部分に形成される前記タービンハウジングの排気ガス通路の舌部に対応する、前記蓋部材の成型面を突起させて突出部を形成し、該突出部に切削加工を施して該切削加工面と舌部との間に間隙値を保持して組み付けてもよい(請求項5)。
Further, the present invention is preferably, by clamping supports the outer diameter side in the bearing housing and the turbine housing before Kifuta member, the bearing housing the lid member are integrally formed with the reduced径板Are held in a free state without being brought into contact with each other (Claim 3).
In addition, the outer surface of the outer diameter of the lid member may be cut to support the outer diameter side of the lid member between the bearing housing and the turbine housing.
Further, a projection is formed by projecting the molding surface of the lid member corresponding to the tongue portion of the exhaust gas passage of the turbine housing formed at the inlet corresponding portion of the inner peripheral scroll portion of the lid member. The part may be cut and assembled with the gap value maintained between the cut surface and the tongue (Claim 5).

本発明によれば、鋳造、射出成形、もしくは冷間鍛造のいずれかの成型、即ち素材成型により製作し機械加工により最終仕上り製品を得る場合において、
前記蓋部材と該蓋部材の内径側に位置し前記タービンロータに対向するように軸受ハウジングとタービンロータの空隙に沿ってシャフト直交面方向に延在して前記タービンロータからの熱流を遮断する縮径板とを一体的に鋳造、射出成形、若しくは冷間鍛造のいずれかの成型にて形するとともに、
前記蓋部材および前記縮径板の間に位置して前記蓋部材から軸受ハウジング側に突出するリング円を前記蓋部材及び前記縮径板と一体的に形成し、該リング円を軸受ハウジングに形成した円形段差部に嵌合させたので(請求項1)、
図5の従来技術のように、外周のリング円で前記タービンハウジングの支持部で挟着してボルトで締め付けるものに比べて、蓋部材の取り付けを高精度で行うことができる。
According to the present invention, when casting, injection molding, or cold forging, that is, production by material molding to obtain a final finished product by machining,
Blocking said cover member, a heat flow from the turbine rotor and extending in the shaft perpendicular plane along the air gap of the bearing housing and the turbine rotor as located on the inner diameter side of the lid member facing said turbine rotor integrally casting a contraction径板, the co-injection molding, or when the form formed by two or molding of cold forging,
A ring circle located between the lid member and the reduced diameter plate and protruding from the lid member toward the bearing housing is formed integrally with the lid member and the reduced diameter plate, and the ring circle is formed in the bearing housing. Since it is fitted to the step part (Claim 1),
As in the prior art of FIG. 5, the lid member can be attached with higher precision than the outer ring ring that is clamped by the supporting portion of the turbine housing and tightened with a bolt.

また、前記発明において、前記リング円を前記蓋部材及び前記縮径板とともに成型し、該リング円の内周側に切削加工を施して、前記リング円の内周と軸受ハウジング側の円形段部とを嵌合させるように構成すれば(請求項2)、
素材成型にて蓋部材内径側と縮径板との間を、前記リング円を介して一体的に成型接続するにあたり、該リング円の内周側に切削加工を施して、該リング円内周側の切削加工面を高精度に加工して軸受ハウジング側の円形段部に嵌合でき、
これにより、蓋部材内径側と縮径板とを接続するリング円の内周側と、軸受ハウジング側の円形段部とが切削加工面の嵌合により、寸法の狂いがなく高精度に嵌合できる。
従って、図5の従来技術のように、外周のリング円で前記タービンハウジングの支持部で挟着してボルトで締め付けるものに比べて、蓋部材の取り付けを高精度で行うことができる。
In the invention, the ring circle is molded together with the lid member and the reduced-diameter plate, and cutting is performed on the inner peripheral side of the ring circle so that the inner periphery of the ring circle and the circular step on the bearing housing side are formed. by configuring the door to make the fitting (claim 2),
When integrally forming and connecting between the inner diameter side of the lid member and the reduced diameter plate via the ring circle in the material molding, the inner circumference side of the ring circle is cut and the inner circumference of the ring circle is obtained. The cutting surface on the side can be machined with high accuracy and fitted into the circular step on the bearing housing side.
As a result, the inner circumference side of the ring circle that connects the inner diameter side of the lid member and the reduced diameter plate and the circular stepped part on the bearing housing side can be fitted with high precision without any dimensional deviation due to the fitting of the cut surface. it can.
Therefore, as in the prior art of FIG. 5, the lid member can be attached with higher accuracy compared to the case where the outer ring ring is sandwiched between the support portions of the turbine housing and tightened with the bolts.

また、前記発明において、記蓋部材の外径側を軸受ハウジングとタービンハウジングとで挟着支持することで前記蓋部材と一体的に形成された前記縮径板を前記軸受ハウジングには接触させずフリーの状態で中空保持すれば(請求項3)、
素材成型の状態で蓋部材の外径の外側面に切削加工を施して、上述したような構成とすることにより、前記縮径板(遮熱板)の熱膨張を許容することになって熱拘束の発生を防止して、縮径板(遮熱板)の破損を防止できる。
さらに、前記蓋部材の内周スクロール部の入口相当部分に形成される前記タービンハウジングの排気ガス通路の舌部に対応する、前記蓋部材の成型面を突起させて突出部を形成し、該突出部に切削加工を施して該切削加工面と舌部との間に間隙値を保持して組み付けるように構成すれば(請求項5)、
タービンハウジングに形成される前記舌部と前記本体面との間隙は、前記舌部に対応して蓋部材の素材成型面を突起させて突出部を形成しておいてから、該突出部に切削加工を施して、該切削加工面と舌部との間に間隙値を形成するので、前記舌部との間に間隙値を保持して組み付けることとなり、前記間隙値を機械加工面によって形成することができる。従って、かかる舌部と前記本体面との間隙値は機械加工面であるため、これを最小限度に小さく取ることができ、かかる間隙値からのガス漏れが少なくなって、タービン性能が向上する。また、蓋部材の素材成型面を突出させ、該突出部に切削加工を施すのみであるので、加工および構造が簡単で低コストである。
Further, in the invention, prior to the outer diameter side of Kifuta member by clamping the support between the bearing housing and the turbine housing, the contacting the lid member are integrally formed with the reduced径板to the bearing housing If it is held hollow in a free state (Claim 3),
By cutting the outer surface of the outer diameter of the lid member in the state of the material molding and having the configuration as described above, thermal expansion of the reduced-diameter plate (heat shield plate) is allowed and heat is generated. Generation | occurrence | production of restraint can be prevented and damage to a reduced diameter board (heat shield board) can be prevented.
Further, a projection is formed by projecting the molding surface of the lid member corresponding to the tongue portion of the exhaust gas passage of the turbine housing formed at the inlet corresponding portion of the inner peripheral scroll portion of the lid member. If it is configured so that the part is cut and the gap between the cut surface and the tongue is maintained and assembled (Claim 5),
The gap between the tongue portion and the main body surface formed in the turbine housing is formed by projecting the material molding surface of the lid member corresponding to the tongue portion to form a projection portion, and then cutting the projection portion. Since the gap value is formed between the cut surface and the tongue by processing, the gap value is held between the tongue and assembled, and the gap value is formed by the machined surface. be able to. Therefore, since the gap value between the tongue and the main body surface is a machined surface, it can be minimized and gas leakage from the gap value is reduced, and the turbine performance is improved. Further, since the material molding surface of the lid member is protruded and only the cutting process is performed on the protruding portion, the processing and structure are simple and low cost.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.

図1は、本発明の実施例に係る可変容量排気ガスタービンのタービン軸心線に沿う断面図である。図2(A)は前記実施例における蓋部材および縮径板の断面図、図2(B)は(A)のA矢視図、図2(C)は(A)のB矢視図である。図3(A)は図1のC−C断面図、図3(B)は(A)のD−D断面図である。
図1において、かかる可変容量排気ガスタービンは、タービンハウジング01内に、排気ガスにより回転駆動されるタービンロータ10を、該タービンハウジング01の中央部に配置し、該タービンロータ10は該タービンシャフト10aを介して、コンプレッサハウジング13内に収納されたコンプレッサ10bを直結駆動している(100aは回転軸心)。
また、前記コンプレッサハウジング13は軸受ハウジング11を介して前記タービンハウジング01に連結されている。
FIG. 1 is a cross-sectional view taken along a turbine axis of a variable capacity exhaust gas turbine according to an embodiment of the present invention. 2A is a cross-sectional view of the lid member and the reduced diameter plate in the above embodiment, FIG. 2B is a view as viewed from the arrow A in FIG. 2A, and FIG. 2C is a view as viewed from the arrow B in FIG. is there. 3A is a cross-sectional view taken along the line CC in FIG. 1, and FIG. 3B is a cross-sectional view taken along the line DD in FIG.
In FIG. 1, in such a variable capacity exhaust gas turbine, a turbine rotor 10 that is rotationally driven by exhaust gas is disposed in a turbine housing 01 at the center of the turbine housing 01, and the turbine rotor 10 is connected to the turbine shaft 10a. , The compressor 10b housed in the compressor housing 13 is directly connected and driven (100a is the rotational axis).
The compressor housing 13 is connected to the turbine housing 01 via a bearing housing 11.

図3(A)は前記タービンハウジング01の平面形状を示し、かかるタービンハウジング01は、排気入口部20及び排気出口部20a(図1参照)を有し、該排気入口部20と内周のタービンロータとの間に通路断面積が漸次減少するスクロール部12を有する。
前記スクロール部12は、前記タービンロータの径方向に、内周スクロール部2および外周スクロール部1に、2分割して形成されている。後述する制御弁は符号4で示されている。
FIG. 3A shows a planar shape of the turbine housing 01. The turbine housing 01 has an exhaust inlet portion 20 and an exhaust outlet portion 20a (see FIG. 1). Between the rotor and the rotor, there is a scroll portion 12 whose passage sectional area gradually decreases.
The scroll portion 12 is formed by dividing the scroll portion 12 into an inner scroll portion 2 and an outer scroll portion 1 in the radial direction of the turbine rotor. A control valve to be described later is denoted by reference numeral 4.

以上の基本構成は、図4〜5の従来技術と同様である。
本発明は、蓋部材6及び縮径板62からなるインサート部材60の素材成型および加工仕上げに関するものである。
The above basic configuration is the same as that of the prior art shown in FIGS.
The present invention relates to material molding and processing finishing of the insert member 60 composed of the lid member 6 and the reduced diameter plate 62.

図1において、前記タービンハウジング01によって、開口端面100b側から覆われる形で蓋部材6及び縮径板62からなるインサート部材60が設けられている。また、その他に図1に示される可変容量排気ガスタービンは、排気出口20aと、スクロール部12と、後述されるリング円7と、インサートベーン6aを備える。
前記蓋部材6及び縮径板62からなるインサート部材60は、本実施例では精密鋳造により素材成型を行うものとする。尚、前記素材成型は、ロストワックス成形、金属射出成形、もしくは冷間鍛造のいずれかの成型でもよい。
In FIG. 1, an insert member 60 including a lid member 6 and a reduced diameter plate 62 is provided by the turbine housing 01 so as to be covered from the opening end surface 100 b side. In addition, the variable capacity exhaust gas turbine shown in FIG. 1 includes an exhaust outlet 20a, a scroll portion 12, a ring circle 7 described later, and an insert vane 6a.
In this embodiment, the insert member 60 composed of the lid member 6 and the reduced diameter plate 62 is formed by precision casting. The material molding may be lost wax molding, metal injection molding, or cold forging.

前記インサート部材60の形状を図2(A)〜(C)に示す。
前記蓋部材6及び縮径板62からなるインサート部材60は、素材成型時には、前記蓋部材6については、前記内周スクロール部2と外周スクロール部1とを区画形成し、該内周スクロール部2と外周スクロール部1との間は、図3(A)に示す該スクロール部12の境界壁2aが設けられ、該境界壁2aに沿うように後述する複数のインサートベーン6aが設置されている。
そして、前記複数個のインサートベーン6aを、それぞれ排気側に一体にほぼ軸方向に突設して排気ガスの流動を制御するように構成している。そして、それぞれのインサートベーン6aの間には、排気通路6bが該インサートベーン6aの周方向に沿って形成されている。
The shape of the insert member 60 is shown in FIGS.
The insert member 60 composed of the lid member 6 and the reduced diameter plate 62 defines the inner scroll portion 2 and the outer scroll portion 1 for the lid member 6 during material molding, and the inner scroll portion 2. A boundary wall 2a of the scroll portion 12 shown in FIG. 3A is provided between the outer peripheral scroll portion 1 and the outer peripheral scroll portion 1, and a plurality of insert vanes 6a described later are provided along the boundary wall 2a.
The plurality of insert vanes 6a are integrally provided on the exhaust side so as to protrude substantially in the axial direction so as to control the flow of exhaust gas. And between each insert vane 6a, the exhaust passage 6b is formed along the circumferential direction of this insert vane 6a.

図1に示すように、前記インサート部材60の前記蓋部材6の内径側には、軸受ハウジング11とタービンロータ10の空隙に沿ってタービンシャフト10aの直交面方向に延在させた縮径板62が、該蓋部材6と一体的に形成されている。
この縮径板62は、タービンロータ10に対向させて、該タービンロータ10からの熱流を遮断する遮熱板として用いられる。
As shown in FIG. 1, on the inner diameter side of the lid member 6 of the insert member 60, a reduced diameter plate 62 extending in the direction perpendicular to the turbine shaft 10 a along the gap between the bearing housing 11 and the turbine rotor 10. Is formed integrally with the lid member 6.
The reduced diameter plate 62 is used as a heat shield plate that opposes the turbine rotor 10 and blocks the heat flow from the turbine rotor 10.

以上のようにして、精密鋳造により素材成型が行われた蓋部材6と縮径板62ならなるインサート部材60は、図2のように、蓋部材6のリング円7の内周側(径D)に切削加工を施す。
そして、前記リング円7の内周の切削加工面7eを、軸受ハウジング11側の円形段部11aに嵌合して、該インサート部材60を前記軸受ハウジング11に支持せしめる。即ち、リング円7の内周側(径D)に切削加工を施こすことにより、該リング円7内周側の切削加工面(径D)を高精度に加工して、軸受ハウジング11側の円形段部11a(図1参照)に嵌合することができる。
As described above, the insert member 60 including the lid member 6 and the reduced-diameter plate 62 that have been molded by precision casting has an inner peripheral side (diameter D) of the ring circle 7 of the lid member 6 as shown in FIG. 1 ) Cutting is performed.
Then, the cutting surface 7 e on the inner periphery of the ring circle 7 is fitted to the circular step portion 11 a on the bearing housing 11 side, and the insert member 60 is supported on the bearing housing 11. That is, by cutting the inner peripheral side (diameter D 1 ) of the ring circle 7, the cutting surface (diameter D 1 ) on the inner peripheral side of the ring circle 7 is processed with high accuracy, and the bearing housing 11. It can be fitted to the side circular step 11a (see FIG. 1).

これにより、蓋部材6内径側と縮径板62とを接続するリング円7内周側(径D)と、軸受ハウジング11側の円形段部11aとが、切削加工面の嵌合により、寸法の狂いがなく高精度に嵌合できる。
従って、図5の従来技術のように、外周のリング円で前記タービンハウジング01の支持部で挟着してボルトで締め付けるものに比べて、蓋部材6の取り付けを高精度で行うことができる。
Thereby, the ring circle 7 inner peripheral side (diameter D 1 ) that connects the inner diameter side of the lid member 6 and the reduced diameter plate 62 and the circular step portion 11a on the bearing housing 11 side are engaged with each other by the cutting surface fitting. Can be fitted with high accuracy without dimensional deviation.
Therefore, as in the prior art of FIG. 5, the lid member 6 can be attached with higher accuracy than a ring ring that is sandwiched between the outer peripheral ring circles and fastened with bolts.

次に、図2(A)のように、前記蓋部材6の外径の外側面6uに、切削加工を施してかかる蓋部材6の外径の外側面6uを、軸受ハウジング11とタービンハウジング01の間に挟着支持させるとともに、前記リング円7の内周側に延在する縮径板62をフリーの状態にて中空保持する。
このように構成すれば、素材成型の状態で蓋部材6の外径の外側面6uに切削加工を施して、蓋部材6を軸受ハウジング11とタービンハウジング01の間に挟着支持させておき、高温になる縮径板(遮熱板)62をフリーの状態にて中空保持することにより、縮径板(遮熱板)62の熱膨張を許容することになって熱拘束の発生を防止して、縮径板(遮熱板)62の破損を防止できる。
Next, as shown in FIG. 2 (A), the outer surface 6u of the outer diameter of the lid member 6 is subjected to cutting, and the outer surface 6u of the outer diameter of the lid member 6 is replaced with the bearing housing 11 and the turbine housing 01. In addition, the reduced diameter plate 62 extending to the inner peripheral side of the ring circle 7 is held hollow in a free state.
If comprised in this way, it cuts to the outer side surface 6u of the outer diameter of the cover member 6 in the raw material molding state, and the cover member 6 is sandwiched and supported between the bearing housing 11 and the turbine housing 01, By holding the reduced-diameter plate (heat shield plate) 62 that is hot in a free state in a free state, the thermal expansion of the reduced-diameter plate (heat shield plate) 62 is allowed and the occurrence of thermal restraint is prevented. Thus, damage to the reduced diameter plate (heat shield plate) 62 can be prevented.

次に、図3(A)、(B)に示すように、前記内周スクロール部2の入口部には、該入口部に排気ガスをガイドし、排気ガスの流れを円滑に前記内周スクロール部2に流入されるための舌部5が、素材成型の状態で、排気ガス流に沿って形成されている。
そこで、かかる実施例では、図3(B)に示すように、タービンハウジング01の前記舌部5に対応して、前記蓋部材6の成型面6sから突起させて厚さtなる突出部19sを形成しておく。
そして、該突出部19sに切削加工を施して、該切削加工面19と舌部5との間に間隙値Sを保持して組み付ける。
Next, as shown in FIGS. 3A and 3B, at the inlet of the inner scroll 2, the exhaust gas is guided to the inlet so that the flow of the exhaust gas smoothly. A tongue portion 5 for flowing into the portion 2 is formed along the exhaust gas flow in a material-molded state.
Therefore, in this embodiment, as shown in FIG. 3 (B), corresponding to the tongue portion 5 of the turbine housing 01, a protruding portion 19s having a thickness t protruding from the molding surface 6s of the lid member 6 is provided. Form it.
Then, the projecting portion 19 s is cut, and the gap value S is held between the cut surface 19 and the tongue portion 5 and assembled.

このように構成すれば、図3(B)に示すように、前記舌部5に対応する突出部19sに切削加工を施こすことにより、舌部5と前記突出部19sの切削加工面19との間隙値Sを、常時舌部5に対応した最小間隙に保持できる。
従って、かかる舌部5と前記突出部19sの切削加工面19との間隙値Sは、機械加工面であるためこれを最小限度に小さく取ることができ、かかる間隙値Sからのガス漏れが少なくなって、タービン性能が良好となる。
また、蓋部材6の素材成型面6sを突出させ、該突出部19sに切削加工を施すのみであるので、加工および構造が簡単で低コストとなる。
If comprised in this way, as shown in FIG.3 (B), by cutting the protrusion part 19s corresponding to the said tongue part 5, the tongue part 5 and the cutting surface 19 of the said protrusion part 19s, and The gap value S can be kept at the minimum gap corresponding to the tongue 5 at all times.
Accordingly, since the gap value S between the tongue 5 and the cut surface 19 of the protrusion 19s is a machined surface, it can be minimized, and there is little gas leakage from the gap value S. Thus, the turbine performance is improved.
Further, since the material molding surface 6s of the lid member 6 is protruded and only the cutting process is performed on the protruding portion 19s, the processing and structure are simple and low cost.

次に、本発明の実施例において、かかる要素の組み立てを以下に述べる。
前記インサート部材60を構成する蓋部材6は、図1のように、前記タービンハウジング01と軸受ハウジング11との間に、該タービンハウジング01と軸受ハウジング11とを締着するボルト29によって、前記該タービンハウジング01と軸受ハウジング11間に、止めピン30を介して挟着されている。
また、外側に位置するリング円8は、図2(A)のように、内径Dなるリング円8であり、該リング円8は、蓋部材6に形成された凸部8aと該凸部8aに嵌合するようにタービンハウジング01に形成された凹部1s(図1参照)を嵌着している。
Next, the assembly of such elements in an embodiment of the present invention will be described below.
As shown in FIG. 1, the lid member 6 constituting the insert member 60 is provided between the turbine housing 01 and the bearing housing 11 by bolts 29 that fasten the turbine housing 01 and the bearing housing 11. It is sandwiched between the turbine housing 01 and the bearing housing 11 via a stop pin 30.
The ring ¥ 8 positioned outside, as in FIG. 2 (A), an inner diameter of D 2 becomes ring ¥ 8, the ring ¥ 8, the convex portion 8a and the convex portion formed on the lid member 6 A recess 1s (see FIG. 1) formed in the turbine housing 01 is fitted so as to be fitted to 8a.

なお、前記図4に示す従来技術と同様に、前記外周スクロール部1の排気入口部側には制御弁4が設置され、該制御弁4は前記タービンハウジング01の周壁4aに接脱することにより、前記内周スクロール部2への排気ガス流量および外周スクロール部1への排気ガス流量をそれぞれ制御している。
即ち、エンジンの低回転時には、制御弁4が周壁4aに接して閉じることにより外周スクロール部1が閉じて、排気ガスはUのように内周スクロール部2側にのみ流れる。
またエンジンの高回転時には、制御弁4が周壁4aから離れて開くことにより、排気ガスは外周スクロール部1をUのように流れて、インサートベーン6aの排気通路6bを通って内周スクロール部2に流入するとともに、内周スクロール部2へもUのように流れる。
従って、エンジンの低回転時と高回転時とで、前記制御弁4により排気ガス流量を変えることができる。
As in the prior art shown in FIG. 4, a control valve 4 is installed on the exhaust inlet side of the outer peripheral scroll portion 1, and the control valve 4 comes into contact with and disengages from the peripheral wall 4 a of the turbine housing 01. The exhaust gas flow rate to the inner scroll portion 2 and the exhaust gas flow rate to the outer scroll portion 1 are respectively controlled.
That is, when the low rotation of the engine, the control valve 4 is closed the outer scroll part 1 by closing against the peripheral wall 4a, the exhaust gas flows only into the inner scroll part 2 side as U 2.
Also at the time of high rotation of the engine, the control valve 4 to open away from the peripheral wall 4a, the exhaust gas flows through the outer scroll part 1 as U 1, the inner scroll part via the exhaust passage 6b of the insert vanes 6a with flows 2, it flows like U 2 also to the inner scroll part 2.
Therefore, the exhaust gas flow rate can be changed by the control valve 4 when the engine is rotating at low speed and when the engine is rotating at high speed.

本発明によれば、鋳造等の素材成型により製作し、機械加工により最終仕上げ製品を得るような可変容量排気ガスタービンの構成部材において、排気ガスの流れを円滑に前記内周スクロール部に流入されるための舌部の間隙を最小限度に形成でき、またリング円近傍での蓋部材の装着を高精度で行うことを可能とした可変容量排気ガスタービンの製造方法を提供できる。   According to the present invention, in a component of a variable capacity exhaust gas turbine that is manufactured by material molding such as casting and obtains a final finished product by machining, the flow of exhaust gas is smoothly flowed into the inner scroll portion. Therefore, it is possible to provide a manufacturing method of a variable displacement exhaust gas turbine that can form a gap between the tongue portions to a minimum and can attach the lid member in the vicinity of the ring circle with high accuracy.

本発明の実施例に係る可変容量排気ガスタービンのタービン軸心線に沿う断面図である。It is sectional drawing which follows the turbine axis line of the variable capacity exhaust gas turbine which concerns on the Example of this invention. (A)は前記実施例における蓋部材および縮径板の断面図、(B)は(A)のA矢視図、(C)は(A)のB矢視図である。(A) is sectional drawing of the cover member and reduced diameter board in the said Example, (B) is A arrow directional view of (A), (C) is B arrow directional view of (A). (A)は図1のC−C断面図、(B)は(A)のD−D断面図である。(A) is CC sectional drawing of FIG. 1, (B) is DD sectional drawing of (A). 従来技術にかかる可変容量排気ガスタービンの回転軸心に直角な要部断面図である。It is principal part sectional drawing orthogonal to the rotating shaft center of the variable capacity exhaust gas turbine concerning a prior art. 従来技術にかかる図4のY−Y断面図である。It is YY sectional drawing of FIG. 4 concerning a prior art.

01 タービンハウジング
1 外周スクロール部
2 内周スクロール部
2a 境界壁
4 制御弁
4a 周壁
5 舌部
60 インサート部材
6 蓋部材
6a インサートベーン
6b 排気通路
8 リング円
10 タービンロータ
11 軸受ハウジング
12 スクロール部
20 排気入口部
20a 排気出口部
29 ボルト
30 止めピン
62 縮径板(遮熱板)
100b 開孔端面
01 turbine housing 1 outer peripheral scroll portion 2 inner peripheral scroll portion 2a boundary wall 4 control valve 4a peripheral wall 5 tongue 60 insert member 6 lid member 6a insert vane 6b exhaust passage 8 ring circle 10 turbine rotor 11 bearing housing 12 scroll portion 20 exhaust inlet Portion 20a Exhaust outlet portion 29 Bolt 30 Locking pin 62 Reduced diameter plate (heat shield plate)
100b Open end face

Claims (5)

軸受ハウジングにより軸支されるシャフトと、該シャフトの一端に固定され排気ガスにより回転駆動されるタービンロータと、該タービンロータを中央部に収容するとともに排気入口部及び排気出口部を有し、前記排気入口部とタービンロータとの間に通路断面積が漸次減少するスクロール部を有するタービンハウジングと、前記スクロール部を前記タービンロータの径方向に分割して形成された内周スクロール部および外周スクロール部とを備えるとともに、該タービンロータの周方向に複数個列設されたインサートベーンにより、内周スクロール部へ直接流入する排気ガスの流動と前記外周スクロール部を流れる排気ガスを内周スクロール部に流入させる排気ガスの流動とを制御するように構成し、
前記外周スクロール部の排気入口部側に配設され前記内周スクロール部への排気ガス流量および外周スクロール部への排気ガス流量をそれぞれ制御する制御弁を備えるとともに、
前記タービンハウジングの開口端面に前記内、外周スクロール部を画成する蓋部材が配設され、該蓋部材の排気通路側に前記インサートベーンが突設されて構成されている可変容量排気ガスタービンの製造方法において、
前記蓋部材と該蓋部材の内径側に位置し前記タービンロータに対向するように軸受ハウジングとタービンロータの空隙に沿ってシャフト直交面方向に延在して前記タービンロータからの熱流を遮断する縮径板とを一体的に鋳造、射出成形、若しくは冷間鍛造のいずれかの成型にて形するとともに、
前記蓋部材および前記縮径板の間に位置して前記蓋部材から軸受ハウジング側に突出するリング円を前記蓋部材及び前記縮径板と一体的に形成し、該リング円を軸受ハウジングに形成した円形段差部に嵌合させたことを特徴とする可変容量排気ガスタービンの製造方法。
A shaft pivotally supported by a bearing housing, a turbine rotor fixed to one end of the shaft and driven to rotate by exhaust gas, the turbine rotor being housed in a central portion and having an exhaust inlet portion and an exhaust outlet portion, A turbine housing having a scroll portion in which a passage sectional area gradually decreases between the exhaust inlet portion and the turbine rotor, and an inner scroll portion and an outer scroll portion formed by dividing the scroll portion in the radial direction of the turbine rotor. And a plurality of insert vanes arranged in the circumferential direction of the turbine rotor to flow the exhaust gas flowing directly into the inner scroll portion and the exhaust gas flowing through the outer scroll portion into the inner scroll portion. Configured to control the flow of exhaust gas,
Provided with a control valve that is disposed on the exhaust inlet side of the outer scroll portion and controls the exhaust gas flow rate to the inner scroll portion and the exhaust gas flow rate to the outer scroll portion, respectively.
A variable capacity exhaust gas turbine in which a lid member that defines the inner and outer peripheral scroll portions is disposed on an opening end surface of the turbine housing, and the insert vane protrudes on the exhaust passage side of the lid member. In the manufacturing method,
Blocking said cover member, a heat flow from the turbine rotor and extending in the shaft perpendicular plane along the air gap of the bearing housing and the turbine rotor as located on the inner diameter side of the lid member facing said turbine rotor integrally casting a contraction径板, the co-injection molding, or when the form formed by two or molding of cold forging,
A ring circle located between the lid member and the reduced diameter plate and protruding from the lid member toward the bearing housing is formed integrally with the lid member and the reduced diameter plate, and the ring circle is formed in the bearing housing. A method for manufacturing a variable displacement exhaust gas turbine, wherein the stepped portion is fitted .
前記リング円を前記蓋部材及び前記縮径板とともに成型し、該リング円の内周側に切削加工を施して、前記リング円の内周と軸受ハウジング側の円形段部とを嵌合させることを特徴とする請求項1記載の可変容量排気ガスタービンの製造方法。 The ring circle and molded together with the lid member and the reduced径板is subjected to cutting on the inner peripheral side of the ring circle, it makes fitting a circular stepped portion of the inner periphery and the bearing housing side of the ring circle The method of manufacturing a variable displacement exhaust gas turbine according to claim 1. 記蓋部材の外径側を軸受ハウジングとタービンハウジングとで挟着支持することで前記蓋部材と一体的に形成された前記縮径板を前記軸受ハウジングには接触させずフリーの状態で中空保持するようにしたことを特徴とする請求項1又は2記載の可変容量排気ガスタービンの製造方法。 Before the outer diameter side of Kifuta member by clamping the support between the bearing housing and the turbine housing, said lid member are integrally formed with the reduced径板to the bearing housing in a free state without contacting method for manufacturing a variable capacity exhaust gas turbine according to claim 1 or 2, characterized in that so as to hollow holding. 前記蓋部材の外径の外側面に切削加工を施して、前記蓋部材の外径側を軸受ハウジングとタービンハウジングとで挟着支持するようにしたことを特徴とする請求項3に記載の可変容量排気ガスタービンの製造方法。4. The variable according to claim 3, wherein the outer surface of the outer diameter of the lid member is cut to support the outer diameter side of the lid member between the bearing housing and the turbine housing. A method for manufacturing a displacement exhaust gas turbine. 前記蓋部材の内周スクロール部の入口相当部分に形成される前記タービンハウジングの排気ガス通路の舌部に対応する、前記蓋部材の成型面を突起させて突出部を形成し、該突出部に切削加工を施して該切削加工面と舌部との間に間隙値を保持して組み付けたことを特徴とする請求項1乃至4のいずれか一項に記載の可変容量排気ガスタービンの製造方法。A projection is formed by projecting a molding surface of the lid member corresponding to a tongue portion of the exhaust gas passage of the turbine housing formed at a portion corresponding to the inlet of the inner peripheral scroll portion of the lid member. The method for manufacturing a variable displacement exhaust gas turbine according to any one of claims 1 to 4, wherein the variable displacement exhaust gas turbine according to any one of claims 1 to 4 is assembled by cutting and maintaining a gap value between the cut surface and the tongue. .
JP2008220363A 2008-08-28 2008-08-28 Method for manufacturing variable capacity exhaust gas turbine Active JP4838830B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008220363A JP4838830B2 (en) 2008-08-28 2008-08-28 Method for manufacturing variable capacity exhaust gas turbine
KR1020107015867A KR101205259B1 (en) 2008-08-28 2009-08-17 Manufacturing method for variable capacity exhaust gas turbine
PCT/JP2009/064400 WO2010024145A1 (en) 2008-08-28 2009-08-17 Manufacturing method for variable capacity exhaust gas turbine
CN200980103560.7A CN101932808B (en) 2008-08-28 2009-08-17 Manufacturing method for variable capacity exhaust gas turbine
US12/811,530 US8601690B2 (en) 2008-08-28 2009-08-17 Method for manufacturing a variable capacity exhaust gas turbine
EP09809798.3A EP2233720B1 (en) 2008-08-28 2009-08-17 Manufacturing method for variable capacity exhaust gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008220363A JP4838830B2 (en) 2008-08-28 2008-08-28 Method for manufacturing variable capacity exhaust gas turbine

Publications (2)

Publication Number Publication Date
JP2010053792A JP2010053792A (en) 2010-03-11
JP4838830B2 true JP4838830B2 (en) 2011-12-14

Family

ID=41721314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008220363A Active JP4838830B2 (en) 2008-08-28 2008-08-28 Method for manufacturing variable capacity exhaust gas turbine

Country Status (6)

Country Link
US (1) US8601690B2 (en)
EP (1) EP2233720B1 (en)
JP (1) JP4838830B2 (en)
KR (1) KR101205259B1 (en)
CN (1) CN101932808B (en)
WO (1) WO2010024145A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5193093B2 (en) * 2009-02-27 2013-05-08 三菱重工業株式会社 Variable displacement exhaust turbocharger
DE102010051359A1 (en) * 2010-11-13 2012-05-16 Daimler Ag Insert element for a turbine of an exhaust gas turbocharger, exhaust gas turbocharger and turbine for an exhaust gas turbocharger
CN102080577A (en) * 2010-12-24 2011-06-01 康跃科技股份有限公司 Section-variable turbine
JP5916377B2 (en) * 2011-12-27 2016-05-11 三菱重工業株式会社 Turbocharger turbine and supercharger assembly method
JP2013174129A (en) * 2012-02-23 2013-09-05 Mitsubishi Heavy Ind Ltd Turbocharger
KR101482572B1 (en) * 2013-02-26 2015-01-14 두산중공업 주식회사 Apparatus and method of fixing blade ring assembly for compressor
DE102014206409A1 (en) * 2014-04-03 2015-10-08 Bosch Mahle Turbo Systems Gmbh & Co. Kg Rotor of a charging device
JP6512761B2 (en) * 2014-07-14 2019-05-15 株式会社Ihi回転機械エンジニアリング Method of manufacturing supercharger and heat shield plate
GB2568732B (en) 2017-11-24 2021-05-05 Cummins Ltd Turbine
US10801357B2 (en) * 2019-02-20 2020-10-13 Switchblade Turbo, Llc Turbocharger with a pivoting sliding vane for progressively variable A/R ratio

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2944786A (en) * 1953-10-15 1960-07-12 Thompson Ramo Wooldridge Inc Super and subsonic vaneless nozzle
US4177005A (en) * 1975-09-06 1979-12-04 Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft (M.A.N.) Variable-throat spiral duct system for rotary stream-flow machines
JPS58162703A (en) * 1982-03-24 1983-09-27 Nissan Motor Co Ltd Manufacture for turbine casing of radial flow turbine
US4678397A (en) * 1983-06-15 1987-07-07 Nissan Motor Co., Ltd. Variable-capacitance radial turbine having swingable tongue member
KR920008914B1 (en) * 1985-11-27 1992-10-12 미쓰비시전기 주식회사 Apparatus for transferring scroll-type fluid
JP3725287B2 (en) 1996-04-25 2005-12-07 アイシン精機株式会社 Variable capacity turbocharger
GB0121864D0 (en) * 2001-09-10 2001-10-31 Leavesley Malcolm G Turbocharger apparatus
JP2003314290A (en) 2002-04-23 2003-11-06 Aisin Seiki Co Ltd Variable capacity turbocharger
JP4008404B2 (en) * 2002-10-18 2007-11-14 三菱重工業株式会社 Variable displacement exhaust turbocharger
JP3956884B2 (en) * 2003-03-28 2007-08-08 アイシン精機株式会社 Variable capacity turbocharger
WO2006038836A1 (en) * 2004-09-22 2006-04-13 Volvo Lastvagnar Ab Turbo charger unit comprising double entry turbine
JP4234107B2 (en) * 2005-02-10 2009-03-04 三菱重工業株式会社 Variable displacement exhaust turbocharger and variable nozzle mechanism component manufacturing method
US8591177B2 (en) * 2008-10-20 2013-11-26 Mitsubishi Heavy Industries, Ltd. Structure of radial turbine scroll

Also Published As

Publication number Publication date
KR101205259B1 (en) 2012-11-27
EP2233720A1 (en) 2010-09-29
WO2010024145A1 (en) 2010-03-04
US8601690B2 (en) 2013-12-10
JP2010053792A (en) 2010-03-11
EP2233720B1 (en) 2018-12-19
KR20100092976A (en) 2010-08-23
CN101932808B (en) 2012-08-08
US20110041333A1 (en) 2011-02-24
EP2233720A4 (en) 2017-02-08
CN101932808A (en) 2010-12-29

Similar Documents

Publication Publication Date Title
JP4838830B2 (en) Method for manufacturing variable capacity exhaust gas turbine
KR101240109B1 (en) Exhaust-gas-turbine casing
US20060056963A1 (en) Retaining of centring keys for rings under variable angle stator vanes in a gas turbine engine
JP2008215083A (en) Mounting structure for variable nozzle mechanism in variable geometry exhaust turbocharger
US10094391B2 (en) Compressor housing for supercharger
CN109415970B (en) Turbine housing, exhaust turbine, and supercharger
WO2017150450A1 (en) Nozzle drive mechanism, supercharger, and variable-capacity supercharger
JP4885180B2 (en) Variable capacity exhaust gas turbine
CN106438019B (en) Turbocharger assembly
US8250760B2 (en) Center housing of a turbine for a turbocharger and method of manufacturing the same
JP2012057592A (en) Fixed vane type turbocharger
US20170350408A1 (en) Compressor housing for turbocharger and method of manufacturing the same
CN110475945B (en) Nozzle ring for exhaust gas turbocharger
JP5010712B2 (en) Variable displacement exhaust turbocharger and variable nozzle mechanism component manufacturing method
JP6276117B2 (en) Compressor and manufacturing method of compressor
JP6992910B2 (en) Variable capacity turbocharger
US20160356282A1 (en) Compressor housing for supercharger and producing method of the same
JP2016020652A (en) Turbine and heat shield plate manufacturing method
US20150064031A1 (en) Exhaust gas turbocharger with turbine
JP6209604B2 (en) Turbocharger
JP7097505B2 (en) Nozzle device and exhaust turbocharger
JP7037634B2 (en) Turbocharger and internal combustion engine
JPS60184906A (en) Turbine housing
JP2019127871A (en) Compressor housing
JP2008008173A (en) Turbosupercharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4838830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350