JP4837933B2 - Temperature-inhibiting aggregate - Google Patents

Temperature-inhibiting aggregate Download PDF

Info

Publication number
JP4837933B2
JP4837933B2 JP2005086833A JP2005086833A JP4837933B2 JP 4837933 B2 JP4837933 B2 JP 4837933B2 JP 2005086833 A JP2005086833 A JP 2005086833A JP 2005086833 A JP2005086833 A JP 2005086833A JP 4837933 B2 JP4837933 B2 JP 4837933B2
Authority
JP
Japan
Prior art keywords
pavement
aggregate
temperature
ceramic
temperature rise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005086833A
Other languages
Japanese (ja)
Other versions
JP2006265048A (en
Inventor
芳充 蘇
利朗 片岡
優 溝渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mino Ceramic Co Ltd
Nippo Corp
Original Assignee
Mino Ceramic Co Ltd
Nippo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mino Ceramic Co Ltd, Nippo Corp filed Critical Mino Ceramic Co Ltd
Priority to JP2005086833A priority Critical patent/JP4837933B2/en
Publication of JP2006265048A publication Critical patent/JP2006265048A/en
Application granted granted Critical
Publication of JP4837933B2 publication Critical patent/JP4837933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、セラミック骨材を、特に、都市内の舗装や建造物の壁面等の形成材料として用いることで、夏期における舗装又は建造物表面の温度上昇を有効に抑制でき、これによって都市部ヒートアイランド現象の緩和に貢献できる技術に関する。   The present invention can effectively suppress the temperature rise of the pavement or building surface in summer by using the ceramic aggregate, particularly as a forming material for pavement or building wall in the city. It relates to technology that can contribute to mitigating phenomena.

従来より、道路建設で広く行われているアスファルト舗装は、一般的に黒色であるため、太陽光の日射熱を吸収し易く、夏季には路面温度が60℃程度に達することも珍しくなく、いわゆるヒートアイランド現象の一因となっている。このため、舗装面積の多い箇所では、ヒートアイランド現象を抑制する都市環境対策として、路面温度の上昇を抑制できる舗装技術の開発が期待されている。夏季の舗装表面の温度上昇を抑制する技術としては、例えば、舗装に保水性機能を持たせることで、降雨時や散水時に貯留した水分の気化熱によって舗装体の温度上昇を抑制する方法が知られている(特許文献1、特許文献2及び特許文献3参照)。   Conventionally, asphalt pavement widely performed in road construction is generally black, so it is easy to absorb solar heat of sunlight, and it is not uncommon for the road surface temperature to reach about 60 ° C. in the summer, so-called It contributes to the heat island phenomenon. For this reason, in areas with large pavement areas, development of pavement technology that can suppress an increase in road surface temperature is expected as an urban environmental measure that suppresses the heat island phenomenon. As a technology for suppressing the temperature rise of the pavement surface in summer, for example, a method of suppressing the temperature rise of the pavement by heat of vaporization of water stored during raining or watering is known by providing a water retention function to the pavement. (See Patent Document 1, Patent Document 2 and Patent Document 3).

しかしながら、上記に列挙した従来方法のような舗装体の気化潜熱だけを利用する技術では、いずれの場合も水分が補給されないと効果が得られないという問題がある。即ち、水の気化熱を利用する技術の場合には、敷設後に散水するといったメンテナンスが行われない限り、夏季に晴天が続くと上記した効果が得られなくなる。   However, the techniques using only the latent heat of vaporization of the pavement like the conventional methods listed above have a problem that the effect cannot be obtained unless water is replenished. That is, in the case of a technique that uses the heat of vaporization of water, the above-described effects cannot be obtained if the weather continues in the summer unless maintenance is performed such as watering after laying.

一方、水の気化潜熱に頼らないで舗装体の温度上昇を抑制する技術としては日射光を反射し易い遮熱塗料を舗装体表面に塗布する方法がある(特許文献4参照)。しかしながら、遮熱塗料を塗布する方法は、屋根等に塗布するのであればその効果の持続性は期待できるが、道路、特に車道等に使用した場合には、表面に塗布された薄い遮熱コート層が車両通過によって摩耗消失するため、遮熱効果の持続性の点で問題があり、持続させるためには、敷設後に補修が必要となってくる。又、遮熱塗料を舗装表面に塗布すると、濡れた時に滑りやすい傾向があり、道路安全上好ましい舗装技術とは言い難い。更に、遮熱塗料は、日射を反射し易いので、遮熱塗料を舗装路面に塗った場合には、路上にいる人が受ける日射量としては、通常舗装の場合よりも増えてしまうという問題点も指摘されている。   On the other hand, as a technique for suppressing the temperature rise of the pavement without relying on the latent heat of vaporization of water, there is a method of applying a thermal barrier paint that easily reflects sunlight to the surface of the pavement (see Patent Document 4). However, the method of applying a thermal barrier paint can be expected to last long if it is applied to a roof or the like, but when used on a road, especially a roadway, a thin thermal barrier coating applied to the surface. Since the layer is worn away by passing through the vehicle, there is a problem in the durability of the heat shielding effect, and in order to maintain it, repair is required after laying. Moreover, when the thermal barrier coating is applied to the pavement surface, it tends to slip when wet, and it is difficult to say that the pavement technique is preferable for road safety. Furthermore, since thermal barrier paints are easy to reflect solar radiation, the amount of solar radiation received by people on the road when the thermal barrier paint is applied to the pavement surface is higher than that of normal pavement. Has also been pointed out.

特開平9−95904号公報JP-A-9-95904 特開平8−209613号公報JP-A-8-209613 特開2001−295212公報JP 2001-295212 A 特開2004−251108公報JP 2004-251108 A

本発明の目的のその1は、前記の保水機能を持たせた舗装や表面に遮熱塗料を塗布した舗装といった従来技術の問題を解決し、長期間に渡ってメンテナンスフリーで路面の温度上昇抑制効果を維持できるとともに、経済的且つ交通安全上も好ましい舗装材料及びその施工方法を提供することにある。   The first of the objects of the present invention is to solve the problems of the prior art such as the pavement having the water retaining function and the pavement in which the surface is coated with a heat-shielding paint, and it is maintenance-free for a long period of time and suppresses the temperature rise of the road surface. An object of the present invention is to provide a pavement material that can maintain the effect and is economical and preferable in terms of traffic safety, and a construction method thereof.

本発明の目的のその2は、夏期における建造物表面の温度上昇を抑制する壁材料を提供することにある。   The second object of the present invention is to provide a wall material that suppresses the temperature rise of the building surface in summer.

上記の目的は、以下の本発明によって達成される。即ち、本発明は、[1]窯業原料を焼成してなる舗装材料或いは建造物の壁材料のセラミック骨材であって、主成分がシリカとアルミナからなるムライトセラミックス及びスピネルセラミックスから選ばれる少なくとも1種の結晶相と、コバルト及び/又はニッケルとを含み、セラミック骨材中におけるコバルト及び/又はニッケルの含有量が、酸化物換算で0.3〜5質量%であり、その比熱容量(定容)が1800KJ/m3・℃以上であることを特徴とする昇温抑制セラミック骨材である。 The above object is achieved by the present invention described below. That is, the present invention is [1] a ceramic aggregate of a pavement material or a building wall material obtained by firing a ceramic material, and at least one selected from mullite ceramics and spinel ceramics whose main components are silica and alumina. It contains a seed crystal phase and cobalt and / or nickel, and the content of cobalt and / or nickel in the ceramic aggregate is 0.3 to 5% by mass in terms of oxide, and its specific heat capacity (constant volume) ) Is 1800 KJ / m 3 · ° C. or higher.

本発明にかかる上記構成の昇温抑制セラミック骨材の好ましい形態としては、下記のものが挙げられる。[2]更、鉄、マンガン、銅及びクロムからなる群より選ばれる少なくとも1種とを含み、セラミック骨材中における鉄、マンガン、銅及びクロムの総含有量が、酸化物換算で10質量%以下の範囲内である上記[1]に記載の昇温抑制セラミック骨材。 The following are mentioned as a preferable form of the temperature rising suppression ceramic aggregate of the said structure concerning this invention. [2] further to include iron, manganese, and at least one selected from the group consisting of copper and chromium, iron in the ceramic aggregate in, manganese, the total content of copper and chromium, 10 in terms of oxide The temperature rise-suppressing ceramic aggregate according to the above [1], which is in the range of mass% or less.

本発明にかかる別の実施形態としては、上記[1]〜[4]のいずれかに記載の昇温抑制セラミック骨材が、舗装面に散布或いは圧入、又は樹脂によって定着のいずれかの方法で利用されていることを特徴とする昇温抑制舗装である。 Another embodiment of the present invention, the above-mentioned [1] to Atsushi Nobori suppression ceramic aggregate according to any one of [4], sprayed or pressed into the shop Somen, or any method of fixing the resin It is a temperature rising suppression pavement characterized by being used in.

本発明にかかる別の実施形態としては、上記[1]又は2]に記載の昇温抑制セラミック骨材を配合してなる材料で形成されてなることを特徴とする昇温抑制建築資材である。 Another embodiment according to the present invention is a temperature rise-suppressing building material, characterized in that it is formed of a material formed by blending the temperature rise-suppressing ceramic aggregate described in [1] or [ 2]. is there.

上記した通り、本発明によれば、夏季の温度上昇を有効に抑制できる舗装体或いは建造物が得られるが、これによって得られる具体的な効果としては、下記のものが挙げられる。
(1)本発明にかかる昇温抑制セラミック骨材を使った舗装では、降雨や散水等の水分供給がなくても日射エネルギーに対する舗装体の昇温抑制効果が得られるため、夏季の路面温度上昇が効率的に抑制される。
(2)本発明にかかる昇温抑制セラミック骨材を使った場合には、施工方法は従来工法をそのまま使うことができるため、従来のアスファルトコンクリート舗装に使われる骨材を代替するだけですみ、特別の材料や施工手段を必要とせず、従来の方法に比べて昇温抑制効果を経済的に達成することが可能である。
(3)従来の遮熱ペイント(塗料)等で処理した遮熱工法によるよりも、本発明にかかる昇温抑制セラミック骨材を使用して施工された舗装は、耐久性に優れているため補修の必要がなく、重交通の舗装路でも長期間、昇温抑制効果を持続させることができ、この点でも経済的である。
(4)本発明にかかる昇温抑制セラミック骨材は、いわゆる滑り止め舗装工法で使用した場合は、昇温抑制効果以外に、濡れた路面でも通常の路面より滑り難く、道路交通安全性が向上する。又、この場合には、舗装自体の耐久性も向上させることができる。
(5)本発明にかかる昇温抑制セラミック骨材を建築物の外壁等の表面近傍を形成するための建築資材に使用すれば、舗装と同様に、夏季の外壁の温度上昇抑制効果が期待でき、この場合でもヒートアイランド現象の抑制に寄与できる。
(6)本発明にかかる昇温抑制セラミック骨材は、昇温抑制効果を落とすことなく骨材の色調整をすることが可能であり、用途に合わせた骨材色とすることができ、その応用範囲は広く、汎用性に富む。
As described above, according to the present invention, a pavement or a building capable of effectively suppressing a temperature rise in summer can be obtained. Specific effects obtained thereby include the following.
(1) In the pavement using the temperature rise-suppressing ceramic aggregate according to the present invention, the temperature rise suppression effect of the pavement against solar radiation energy can be obtained even without water supply such as rain or water spray. Is effectively suppressed.
(2) In the case of using the temperature rise-suppressing ceramic aggregate according to the present invention, since the conventional construction method can be used as it is, it is only necessary to replace the aggregate used in the conventional asphalt concrete pavement, No special material or construction means is required, and it is possible to economically achieve the temperature rise suppression effect as compared with the conventional method.
(3) The pavement constructed using the ceramic temperature-suppressing ceramic aggregate according to the present invention is more durable than the conventional thermal insulation method treated with thermal insulation paint (paint), etc. Therefore, the temperature rise suppression effect can be maintained for a long time even on heavy traffic paved roads, and this is also economical.
(4) When the temperature rise suppression ceramic aggregate according to the present invention is used in a so-called non-slip pavement method, in addition to the temperature rise suppression effect, it is less slippery than a normal road surface on a wet road surface, and road traffic safety is improved. To do. In this case, the durability of the pavement itself can also be improved.
(5) If the temperature-suppressing ceramic aggregate according to the present invention is used as a building material for forming the vicinity of the surface of the outer wall of a building, the effect of suppressing the temperature increase of the outer wall in summer can be expected as in pavement. Even in this case, it can contribute to the suppression of the heat island phenomenon.
(6) The temperature rise suppression ceramic aggregate according to the present invention can adjust the color of the aggregate without reducing the temperature rise suppression effect, and can be an aggregate color suitable for the application. The application range is wide and versatile.

次に、本発明の好ましい実施の形態を挙げて本発明を詳細に説明する。図1に夏季日中のアスファルト舗装表面の熱収支モデルを示す。舗装表面には太陽からの日射(Q1)及び大気や雲からの赤外放射(Q2)が入射して舗装を暖める。一方、舗装からは表面のアルベド(反射能)に応じて日射を反射(q1)するとともに、赤外放射(q2)及び顕熱(q3)を上空に放出している。又、暖められた舗装の表層は、更にその下に熱を伝達していくことになる。ここで、水の蒸発潜熱を無視した場合に、舗装の表層部温度を上昇させる熱量G1は、表層部下に伝達していく熱量をG2とすると次式で示される。
G1=Q1+Q2−(q1+q2+q3)−G2
Next, the present invention will be described in detail with reference to preferred embodiments of the present invention. Fig. 1 shows the heat balance model of the asphalt pavement surface during the summer day. Solar radiation (Q1) and infrared radiation (Q2) from the atmosphere and clouds enter the pavement surface to warm the pavement. On the other hand, from the pavement, the solar radiation is reflected (q1) according to the albedo (reflectivity) of the surface, and infrared radiation (q2) and sensible heat (q3) are released to the sky. In addition, the surface layer of the pavement that has been warmed will transfer heat further underneath. Here, when the latent heat of vaporization of water is ignored, the amount of heat G1 that raises the surface temperature of the pavement is expressed by the following equation, where the amount of heat transferred to the surface layer portion is G2.
G1 = Q1 + Q2- (q1 + q2 + q3) -G2

上記式からわかるように、表層材料からみてG1を低くするには、日射反射量q1、赤外放射量q2を高くすればよいことになる。しかしながら、本発明者らの検討の結果、舗装の表層部に入る熱量G1が同じ場合でも、下記に述べるように、表層材料の熱容量が異なると表層部の温度上昇に差を生じることがわかった。   As can be seen from the above formula, in view of the surface layer material, G1 can be lowered by increasing the amount of solar reflection q1 and the amount of infrared radiation q2. However, as a result of the study by the present inventors, it was found that even when the amount of heat G1 entering the surface layer portion of the pavement is the same, if the heat capacity of the surface layer material is different, a difference in the temperature rise of the surface layer portion occurs as described below. .

下記のような方法で、夏季に表層部温度が上昇しているときの、舗装の表層部に入る熱量G1と、表層部下に伝達していく熱量G2の凡その比率を確認した。先ず、周囲と下面とを断熱した内寸法が30cm×30cm×高さ5cmの枠と、周囲のみを断熱した同形状の枠を用意し、それぞれの枠をアスファルト舗装面上に置き、両方の枠内に標準砕石を使った排水性アスファルト混合物を枠の上面まで入れて供試体とした。そして、熱電対を、上記供試体の上部と下部にセットし、夏季日射下での温度上昇を測定した。表1に、午前9時と正午(12時)に測定した各箇所の温度を示した。   The following method confirmed the approximate ratio of the amount of heat G1 entering the surface layer of the pavement and the amount of heat G2 transferred below the surface layer when the surface layer temperature was rising in the summer. First, prepare a frame with an inner dimension of 30 cm x 30 cm x 5 cm in height that insulates the periphery and bottom surface, and a frame of the same shape that insulates only the periphery, and place each frame on the asphalt pavement surface. Inside, a drainage asphalt mixture using standard crushed stone was put up to the upper surface of the frame to prepare a specimen. And the thermocouple was set to the upper part and the lower part of the said test body, and the temperature rise under summer solar radiation was measured. Table 1 shows the temperature of each part measured at 9:00 am and noon (12:00).

Figure 0004837933
Figure 0004837933

温度上昇時の9時から正午までに下面を断熱した供試体を上昇させた熱量G1は、供試体の定容比熱をCv(KJ/m3・℃)とすると、G1=(58.7−44.0)×Cv×0.0045m3=0.066Cv(KJ)となる。又、下面を断熱しないで直接アスファルト舗装面に置いた供試体を上昇させた熱量G2はG2=(52.1−42.9)×Cv×0.0045m3=0.041Cv(KJ)となる。従って、供試体上面から上への熱放散量が同じとすれば、断熱材に吸収された熱を考慮しても、供試体上面から下に移動した熱量の6割程度は5cm厚さの供試体の温度を上昇させるのに使われたことになる。 The calorie | heat amount G1 which raised the test piece which heat-insulated the lower surface from 9 o'clock of noon at the time of temperature rise to noon is G1 = (58.7−), where the constant volume specific heat of the test piece is Cv (KJ / m 3 · ° C.). 44.0) × Cv × 0.0045 m 3 = 0.066 Cv (KJ). Further, the amount of heat G2 obtained by raising the specimen placed directly on the asphalt pavement without insulating the lower surface is G2 = (52.1-42.9) × Cv × 0.0045m 3 = 0.041 Cv (KJ). . Therefore, if the amount of heat dissipated upward from the top surface of the specimen is the same, about 60% of the amount of heat transferred downward from the top surface of the specimen is 5 cm thick even if the heat absorbed by the heat insulating material is taken into account. It was used to raise the temperature of the specimen.

上記した試験の結果は、通常施工されているアスファルト舗装においても、正午までの、舗装温度が上昇しているときに、厚さ5cmの表層を暖める熱量(G1)は、地中伝導熱量(G1+G2)全体の6割程度となることを示唆している。従って、表層の温度上昇を予測しようとしたときに、その表層材料の熱容量は無視できないものであるといえる。   As a result of the above-mentioned test, even in the asphalt pavement that is normally constructed, when the pavement temperature is rising until noon, the heat amount (G1) for heating the surface layer of 5 cm in thickness is the heat conduction in the ground (G1 + G2). ) It is suggested that it will be about 60% of the total. Therefore, when trying to predict the temperature rise of the surface layer, it can be said that the heat capacity of the surface layer material cannot be ignored.

例えば、厚さ5cmの表層がG1(KJ/m2)の熱量を受けたときに上昇する温度ΔT℃は、表層の比熱容量をCv(KJ/m3・℃)とすると、次式で示される。
ΔT=G1÷(0.05Cv)
従って、表層に比熱容量の高い材料を使用することは、舗装表面温度の温度上昇を抑制する手段として有効なものとなり得る。本発明は、かかる知見に基づいて達成されたものである。例えば、通常の砕石を使った密粒度アスコン舗装で表層温度が平均30℃上昇した場合に、砕石を比熱容量の高い骨材に置換して、表層の比熱容量が1.5倍になったとすれば、上記の式から表層温度を平均10℃低くできることになる。
For example, the temperature ΔT ° C. that rises when a surface layer with a thickness of 5 cm receives a heat quantity of G1 (KJ / m 2 ) is expressed by the following equation, where the specific heat capacity of the surface layer is Cv (KJ / m 3 · ° C.). It is.
ΔT = G1 ÷ (0.05Cv)
Therefore, the use of a material having a high specific heat capacity for the surface layer can be effective as a means for suppressing the temperature increase of the pavement surface temperature. The present invention has been achieved based on such findings. For example, when the surface layer temperature is increased by 30 ° C on average with dense-grained ascon pavement using ordinary crushed stone, the crushed stone is replaced with aggregate having a high specific heat capacity, and the specific heat capacity of the surface layer is increased 1.5 times. In this case, the surface layer temperature can be lowered by an average of 10 ° C. from the above formula.

本発明者らの検討によれば、舗装に使用される一般的な天然砕石の比熱容量は岩石の種類によってバラツキはあるものの、1500〜1800KJ/m3・℃である。従って、上記した検討結果から、1800KJ/m3・℃以上、好ましくは2000KJ/m3・℃以上の比熱容量を持つ骨材を使って表層を舗装すれば、既存の舗装よりも温度は上昇し難いものとなる。 According to the study by the present inventors, the specific heat capacity of a general natural crushed stone used for pavement is 1500 to 1800 KJ / m 3 · ° C., although it varies depending on the type of rock. Therefore, from the above examination results, if the surface layer is paved with aggregate having a specific heat capacity of 1800 KJ / m 3 · ° C. or higher, preferably 2000 KJ / m 3 · ° C. or higher, the temperature will rise more than existing pavement. It will be difficult.

本発明者らは、かかる知見に基づいて更に検討した結果、人工のセラミック材料、特に、アルミナ、ムライト及びスピネルから選ばれる少なくとも1種の結晶相を含んでなるセラミック骨材は、舗装に使用される一般的な砕石に比べて比熱容量が高く、舗装或いは建造物の表面近傍に使用する骨材とした場合に、昇温抑制機能を有することを見いだした。即ち、例えば、アルミナセラミックの比熱容量は3100KJ/m3・℃、ムライトセラミックの比熱容量は2600KJ/m3・℃、或いはスピネルセラミックの比熱容量は3000KJ/m3・℃等であり、その比熱容量は、いずれも1800KJ/m3・℃以上であり、これらを舗装或いは建造物の表面近傍(表層)に使用すれば、従来の比熱容量の低い天然砕石等の材料を用いた場合と比較し、舗装或いは建造物の表層温度の上昇を抑制することができる。 As a result of further investigation based on such knowledge, the present inventors have found that an artificial ceramic material, in particular, a ceramic aggregate comprising at least one crystalline phase selected from alumina, mullite and spinel is used for pavement. It has been found that the specific heat capacity is higher than that of general crushed stones and has a function to suppress temperature rise when used as an aggregate near the surface of pavement or building. That is, for example, the specific heat capacity of alumina ceramic is 3100 KJ / m 3 · ° C, the specific heat capacity of mullite ceramic is 2600 KJ / m 3 · ° C., or the specific heat capacity of spinel ceramic is 3000 KJ / m 3 · ° C. Is 1800 KJ / m 3 · ° C or more, and if these are used near the surface of the pavement or building (surface layer), compared to the case of using a material such as a conventional natural crushed stone with a low specific heat capacity, An increase in the surface temperature of the pavement or building can be suppressed.

舗装用又は建築用の骨材として広く使用するには、更に、低価格で供給できる材料であることも極めて重要な要素となる。この点を考慮すると、本発明にかかる昇温抑制セラミック骨材は、例えば、主成分がシリカ(SiO2)とアルミナ(Al23)からなるムライト質等のセラミック人工骨材とすることが好ましい。即ち、このような骨材は、比較的安価な窯業原料や石炭灰等の廃棄物を利用して容易に得ることができる。又、このようなセラミック系の人工骨材は、一般的には多結晶相とガラス相から構成されているが、前記した比熱容量の高いアルミナ、スピネル、ムライト等のセラミックの結晶相が多ければ、それだけ骨材の比熱容量も高くなるので、昇温抑制効果の点からは、これらの結晶相の含有量の多いセラミック骨材とすることが望ましい。 In order to be widely used as an aggregate for paving or construction, a material that can be supplied at a low price is also an extremely important factor. In consideration of this point, the temperature rising suppression ceramic aggregate according to the present invention may be, for example, a ceramic artificial aggregate made of mullite or the like whose main components are silica (SiO 2 ) and alumina (Al 2 O 3 ). preferable. That is, such an aggregate can be easily obtained by using a relatively inexpensive ceramic raw material or waste such as coal ash. Such ceramic artificial aggregates are generally composed of a polycrystalline phase and a glass phase. However, if there are many ceramic crystalline phases such as alumina, spinel and mullite having a high specific heat capacity as described above. Since the specific heat capacity of the aggregate increases accordingly, it is desirable to use a ceramic aggregate with a high content of these crystal phases from the viewpoint of the temperature rise suppression effect.

本発明にかかる昇温抑制セラミック骨材の製造方法は、特に限定されるものでないことはいうまでもないが、下記に挙げるような方法によって製造することが好ましい。例えば、シリカ(SiO2)やアルミナ(Al23)等を含有する陶磁器系原料を微粉砕・混合して、プレス成形や押し出し成形したブロックを焼成後に粉砕し、所望の粒度のものに篩い分けする方法、又は、上記した原料を成形してなるブロックを、焼成前に粉砕し、所望の粒度のものに篩い分けした後に焼成する方法、又は、押し出し成形や造粒機により所望粒度に造粒成形した後に焼成する方法等によって、本発明にかかる昇温抑制セラミック骨材を得ることができる。上記における焼成条件は、主成分がシリカ(SiO2)とアルミナ(Al23)を含有する陶磁器系原料であれば、焼成温度が、1100℃〜1350℃の範囲であって、且つ、その吸水率がアスファルト舗装要項に要求されている品質の2%以下となるような焼成条件が好ましい。 It goes without saying that the method for producing a temperature rise-suppressing ceramic aggregate according to the present invention is not particularly limited, but it is preferably produced by the method described below. For example, ceramic raw materials containing silica (SiO 2 ), alumina (Al 2 O 3 ), etc. are finely pulverized and mixed, and the blocks that have been press molded or extruded are pulverized after firing and sieved to a desired particle size. A method of dividing, or a block formed by molding the above-mentioned raw material is pulverized before firing, sieved to a desired particle size, and then fired, or formed into a desired particle size by extrusion molding or a granulator. The temperature rise-suppressing ceramic aggregate according to the present invention can be obtained by a method of firing after grain forming. If the firing condition in the above is a ceramic raw material containing main components of silica (SiO 2 ) and alumina (Al 2 O 3 ), the firing temperature is in the range of 1100 ° C. to 1350 ° C., and Firing conditions such that the water absorption is 2% or less of the quality required for the asphalt pavement requirements are preferred.

本発明にかかる昇温抑制セラミック骨材の粒度は、その用途によって異なるが、例えば、アスファルトコンクリート舗装に使われる骨材とする場合には、5〜20mmのものが一般的である。この場合の利用形態としては、舗装材料中に配合して使用する方法、舗装面に散布してローラで圧入する方法等が挙げられる。又、その他、樹脂を介して昇温抑制セラミック骨材を舗装面や建造物の壁面に定着させることによっても本発明の効果が得られるが、この場合には、樹脂中に本発明にかかる昇温抑制セラミック骨材を混入させて、これを塗布するればよい。上記のような方法で利用する際の本発明にかかる昇温抑制セラミック骨材の粒度は、上記したよりも細かい、例えば、2.5〜5mm程度として使用することもできる。   The particle size of the temperature rise-suppressing ceramic aggregate according to the present invention varies depending on its application, but, for example, in the case of an aggregate used for asphalt concrete pavement, it is generally 5 to 20 mm. Examples of the utilization form in this case include a method of blending in a pavement material and a method of spraying on a pavement surface and press-fitting with a roller. In addition, the effect of the present invention can also be obtained by fixing the temperature rising suppression ceramic aggregate to the pavement surface or the wall surface of the building via a resin. What is necessary is just to mix and mix a temperature suppression ceramic aggregate. The particle size of the temperature rise-suppressing ceramic aggregate according to the present invention when used in the above-described method can be smaller than that described above, for example, about 2.5 to 5 mm.

通常、舗装用材料に使用されている砕石骨材は、産地によって色のばらつきがあるが、比較的明度の暗い石が使用されているのが一般的であり、日射反射量q1が低く、夏季に、舗装等の表層温度を上昇させやすい。これに対して、上記に挙げたような方法で得られる、アルミナ、ムライト及びスピネル等の結晶相を有する本発明にかかる人工セラミック骨材の色調は、使用原料の成分にもよるが、比較的明るい白系の色調となる。このため、日射反射量q1も高いので、舗装の表層への入熱量G1を下げることができ、舗装表面の温度上昇を抑制する上では、この点からも好ましい。更に、セラミックスの特性として、赤外放射量q2も砕石よりは高く、従って、入熱量G1を更に下げることができる。本発明にかかる人工セラミック骨材は、基本的に、その材料が有する高比熱容量と、これに加えて、その明るい色調による高い日射反射量q1、更に、セラミックスであることによる従来の材料よりも高い赤外放射量q2といった性能が奏合されて、該材料を使用した場合に、その舗装や建造物の表面の温度上昇を効果的に抑制することが可能になる。   Usually, crushed stone aggregates used for pavement materials vary in color depending on the production area, but stones with relatively low brightness are generally used, and the amount of solar reflection q1 is low, so in the summer In addition, it is easy to raise the surface temperature of pavement and the like. On the other hand, the color tone of the artificial ceramic aggregate according to the present invention having a crystal phase such as alumina, mullite, and spinel obtained by the method as described above depends on the ingredients used, Bright white tone. For this reason, since the amount of solar radiation q1 is also high, the amount of heat input G1 to the surface layer of the pavement can be lowered, which is preferable also from this point in suppressing the temperature rise of the pavement surface. Furthermore, as a characteristic of ceramics, the amount of infrared radiation q2 is also higher than that of crushed stone, and therefore the heat input G1 can be further reduced. The artificial ceramic aggregate according to the present invention basically has a high specific heat capacity of the material, and in addition to this, a high solar reflection q1 due to its bright color tone, and moreover than a conventional material due to being a ceramic. When the performance such as the high infrared radiation amount q2 is achieved and the material is used, it is possible to effectively suppress the temperature rise of the surface of the pavement or the building.

但し、本発明にかかる人工セラミック骨材は、白過ぎると、舗装に使用した場合には、路面上に設ける白線が見にくくなり、道路交通安全上は好ましくないという別の問題を生じる場合がある。従って、舗装用途の本発明にかかる人工セラミック骨材の場合は、その色を、明度を下げた色調となるように調整することが好ましい。本発明者らの検討によれば、その場合に、一般的な陶磁器用の黒色無機顔料を添加して、単に明度を下げたグレー系の色調にすると、かえって日射を吸収し易くなり、G1の入熱量が増えてしまい、十分な昇温抑制効果が得られなくなるので好ましくない。従って、明度を下げた色調に変える場合でも、日射を吸収し難いような工夫が必要とされる。以下、この場合の好ましい方法について説明する。   However, if the artificial ceramic aggregate according to the present invention is too white, when used for pavement, it may be difficult to see the white lines provided on the road surface, which may cause another problem that is not preferable in terms of road traffic safety. Therefore, in the case of the artificial ceramic aggregate according to the present invention for paving, it is preferable to adjust the color so that the color tone is lowered. According to the study by the present inventors, in that case, when a general black inorganic pigment for ceramics is added to make a gray color tone with a lowered brightness, it becomes easier to absorb solar radiation, and G1 The amount of heat input increases, and a sufficient temperature rise suppression effect cannot be obtained. Therefore, even when changing to a color tone with reduced brightness, a device is required to make it difficult to absorb solar radiation. Hereinafter, a preferable method in this case will be described.

本発明者らは、舗装用として特に好適な、明度を下げた色調の本発明にかかる人工セラミック骨材とすることについて鋭意検討した結果、コバルト及び/又はニッケル成分を含み、セラミック骨材中におけるコバルト及び/又はニッケルの含有量が、酸化物換算で0.3〜5質量%となる構成とすれば、日射(赤外線)の吸収量を増やさないで、骨材の明度を下げることができることを見出した。具体的には、セラミック骨材中に、コバルト又はニッケルの内のどちらか1種を、酸化物換算で0.3〜5質量%含有しているか、又はこれら2種を合わせた含有量が0.3〜5質量%となるようにすることにより、日射(赤外線)の吸収量をそれほど増やさないで骨材の明度を下げることができる。   As a result of intensive studies on the artificial ceramic aggregate according to the present invention having a color with reduced lightness that is particularly suitable for paving, the present inventors have included cobalt and / or nickel components, and in the ceramic aggregate If the content of cobalt and / or nickel is 0.3 to 5% by mass in terms of oxide, the brightness of the aggregate can be lowered without increasing the amount of absorption of solar radiation (infrared rays). I found it. Specifically, in the ceramic aggregate, either one of cobalt or nickel is contained in an amount of 0.3 to 5% by mass in terms of oxide, or the total content of these two is 0. By adjusting to 3 to 5% by mass, the lightness of the aggregate can be lowered without increasing the amount of absorption of solar radiation (infrared rays) so much.

コバルト及び/又はニッケルを、上記した量で含有させることをベースとして、本発明にかかる人工セラミック骨材に、更に、鉄、マンガン、銅及びクロムからなる群より選ばれる少なくとも1種の金属成分を添加して、セラミック骨材中におけるこれら金属成分の総含有量が、酸化物換算で10質量%以下の範囲内となるように構成することも好ましい形態である。このようにすれば、日射の吸収量を抑制しながらグレー系の色調に改善することができる。   Based on the inclusion of cobalt and / or nickel in the amounts described above, the artificial ceramic aggregate according to the present invention further includes at least one metal component selected from the group consisting of iron, manganese, copper and chromium. It is also a preferable form that the total content of these metal components in the ceramic aggregate is within a range of 10% by mass or less in terms of oxide. If it does in this way, it can improve to a gray system tone, suppressing the amount of absorption of solar radiation.

上記舗装用として特に好適な形態の本発明にかかる人工セラミック骨材は、下記に述べる実験方法によって、その効果を確認し、見出したものである。まず、日射に含まれる電磁波エネルギーの中には、可視光より波長の長い0.65μm〜2.5μmの赤外線が約50%を占めており、特に、この波長領域のエネルギーは舗装に吸収され易く、舗装体温度を上昇させる原因となっている。従って、骨材の構成材料としては赤外線を吸収し難いような材料を選択し、これによって色調をグレー系にすることが有効であると考えられる。そこで、この観点から検討を行った。具体的な実験方法としては、赤外線ランプのついている赤外線暗視カメラにより、種々の材料の赤外線反射の程度を比較評価しながら、材料開発を進めた。   The artificial ceramic aggregate according to the present invention, which is particularly suitable for paving, has been found by confirming its effect by the experimental method described below. First, among the electromagnetic energy contained in solar radiation, infrared rays having a wavelength of 0.65 μm to 2.5 μm, which has a wavelength longer than that of visible light, occupy about 50%. , Causing the pavement temperature to rise. Therefore, it is considered effective to select a material that hardly absorbs infrared rays as a constituent material of the aggregate, and thereby make the color tone gray. Therefore, we examined from this viewpoint. As a specific experimental method, we developed materials while comparing and evaluating the degree of infrared reflection of various materials using an infrared night vision camera equipped with an infrared lamp.

その結果、後述する実施例3に示したように、酸化コバルト及び/又は酸化ニッケルを、前記したムライト質の昇温抑制セラミック骨材製造時に添加することによって得られた骨材は、明度を暗くしても赤外の反射性はそれほど低下しないことが分かった。又、その添加料は0.5質量%で、明度(Lab値)が55以下に低下し、道路に使用したときに白線を認識しやすい色調が得られることがわかった。又、酸化コバルト及び酸化ニッケルは高価なため、5%以上入れると製造コストが高くなり、舗装面等の温度上昇を抑制するという本発明の目的を解決する手段としては、極端なコスト高となるため実用的ではなくなる。又、前記した量の酸化コバルト及び/又は酸化ニッケルを含有している配合に対して、更なる色調調整のために、含有量が10質量%以下の範囲内であれば、酸化鉄、酸化マンガン、酸化第二銅及び酸化クロム等の金属酸化物を、これらの中から選択して1種又は2種以上を添加することも可能である。   As a result, as shown in Example 3 to be described later, the aggregate obtained by adding cobalt oxide and / or nickel oxide at the time of manufacturing the above-described mullite temperature-inhibiting ceramic aggregate has a low brightness. Even so, it was found that the infrared reflectivity did not decrease so much. Further, the additive was 0.5% by mass, the lightness (Lab value) was lowered to 55 or less, and it was found that a color tone that makes it easy to recognize white lines when used on a road can be obtained. In addition, since cobalt oxide and nickel oxide are expensive, when 5% or more is added, the manufacturing cost becomes high, and as a means for solving the object of the present invention that suppresses the temperature rise of the pavement surface, the cost becomes extremely high. Therefore, it becomes impractical. In addition, in order to further adjust the color tone of the above-described amount containing cobalt oxide and / or nickel oxide, if the content is within the range of 10% by mass or less, iron oxide, manganese oxide It is also possible to add one or two or more metal oxides such as cupric oxide and chromium oxide selected from these.

本発明にかかる昇温抑制セラミック骨材は、下記に挙げる各種の舗装工法に使用することができる。
(1)一般的なアスファルト舗装や、排水性アスファルト舗装の骨材として使用できる。
The temperature rise suppression ceramic aggregate according to the present invention can be used in various pavement methods described below.
(1) It can be used as an aggregate for general asphalt pavement and drainage asphalt pavement.

(2)通常のアスファルト舗装の施工時に、本発明にかかる昇温抑制セラミック骨材を敷き均されたアスファルト表面に散布して、ローラー等で転圧して定着させるロールドアスファルト舗装に使用する骨材として使用できる。 (2) During normal asphalt pavement construction, the aggregate used for roll door asphalt pavement is sprayed and fixed with a roller or the like by spreading the temperature rising suppression ceramic aggregate according to the present invention on the leveled asphalt surface. Can be used as

(3)通常のアスファルト舗装表面、又はコンクリート舗装表面に、0.5〜5mm程度の厚さに、樹脂を介して昇温抑制セラミック骨材を付着させる、樹脂系すべり止め舗装工法に使用する骨材として使用できる。この場合に使用する樹脂としては、エポキシ系樹脂、アクリル系樹脂、メタクリル系樹脂、ウレタン系樹脂及びビニルエステル系樹脂等を適宜に選択して使用することが可能であるが、本発明の目的には、特に、エポキシ系樹脂又はメタクリル系樹脂が適当である。 (3) Bone used in a resin-based anti-slip pavement method in which a temperature rise-suppressing ceramic aggregate is attached to a normal asphalt pavement surface or concrete pavement surface to a thickness of about 0.5 to 5 mm through a resin. Can be used as a material. As a resin used in this case, an epoxy resin, an acrylic resin, a methacrylic resin, a urethane resin, a vinyl ester resin, and the like can be appropriately selected and used. In particular, an epoxy resin or a methacrylic resin is suitable.

次に、実施例及び比較例を挙げて、本発明を更に詳細に説明する。
<実施例1及び比較例1>
無機系窯業原料をブロック形状に押し出し成形した後、トンネルキルンで1300℃焼成したムライト質セラミック骨材の比熱容量(定容)をレーザーフラッシュ法で測定したところ、2050KJ/m3・℃であった。そこで、本実施例では、このブロックを粉砕して篩い分けし、5〜10mmのムライト質セラミックの昇温抑制骨材を得た。得られた骨材はXRD分析より、ムライト結晶相が確認された。
Next, the present invention will be described in more detail with reference to examples and comparative examples.
<Example 1 and Comparative Example 1>
The specific heat capacity (constant volume) of the mullite ceramic aggregate that was fired at 1300 ° C in a tunnel kiln after extrusion molding of inorganic ceramic raw material into a block shape was measured by a laser flash method, and was 2050 KJ / m 3 · ° C. . Therefore, in this example, this block was pulverized and sieved to obtain a 5-10 mm mullite ceramic temperature rise inhibiting aggregate. The obtained aggregate was confirmed to have a mullite crystal phase by XRD analysis.

(評価)
この骨材をアスファルトと混合して、30cm×30cm×厚さ5cmの形状の排水性舗装供試体を作製し、晴天時日射下での表面温度の変化を放射温度計で測定した。供試体の種類は、上記昇温抑制骨材を100%使用した試料1と、上記昇温抑制骨材の50%を天然骨材に置換した試料3を作成し、更に、舗装表面が摩耗してくる場合を想定して、各々の試料表面を研磨して骨材面を出した試料2及び4についても同時に試験した。又、比較のために、天然砕石を100%使用した試料5及び6を作製し、上記と同様に表面温度を測定した。表2に、外気温が25.7℃に上昇した13:00時の測温結果を示す。その結果、表2に示した通り、本実施例の骨材は、天然砕石を使用した場合と比較して、明らかに舗装表面の温度上昇の抑制効果があることが確認できた。
(Evaluation)
This aggregate was mixed with asphalt to prepare a drainage pavement specimen having a shape of 30 cm × 30 cm × thickness 5 cm, and the change in surface temperature under sunny weather was measured with a radiation thermometer. The types of specimens are Sample 1 using 100% of the above-mentioned temperature rise inhibiting aggregate and Sample 3 in which 50% of the above temperature rise inhibiting aggregate is replaced with natural aggregate, and the pavement surface is worn out. Assuming the case of coming, Samples 2 and 4 in which the surface of each sample was polished to obtain an aggregate surface were also tested at the same time. For comparison, Samples 5 and 6 using 100% natural crushed stone were prepared, and the surface temperature was measured in the same manner as described above. Table 2 shows the temperature measurement results at 13:00 hours when the outside air temperature rose to 25.7 ° C. As a result, as shown in Table 2, it was confirmed that the aggregate of this example clearly has an effect of suppressing the temperature increase of the paved surface as compared with the case where natural crushed stone is used.

Figure 0004837933
Figure 0004837933

表2の実測結果を踏まえ、盛夏時における各試料の上昇温度を熱力学理論によって推定する。検討の結果、外気温が31℃の時、天然砕石を100%使用した密粒度アスファルト舗装体の表面温度は61〜63℃、同じく天然砕石を100%使用した排水性舗装体の表面温度は59〜61℃と推定された。一方、本実施例の骨材を使用した排水性舗装体の表面温度は49〜50℃と推定された。したがって、本実施例の骨材を使用した排水性舗装体は、天然砕石を使用した一般的な密粒度アスファルト舗装体に比べて、盛夏時に表面温度で12〜13℃程度の温度抑制効果があるものと推定された。   Based on the actual measurement results in Table 2, the temperature rise of each sample in midsummer is estimated by thermodynamic theory. As a result of the examination, when the outside air temperature is 31 ° C, the surface temperature of the dense grained asphalt pavement using 100% natural crushed stone is 61-63 ° C, and the surface temperature of the drainage pavement using 100% natural crushed stone is 59 It was estimated to be ~ 61 ° C. On the other hand, the surface temperature of the drainage pavement using the aggregate of this example was estimated to be 49-50 ° C. Therefore, the drainage pavement using the aggregate of the present embodiment has a temperature suppressing effect of about 12 to 13 ° C. at the surface temperature in the midsummer compared to a general dense grained asphalt pavement using natural crushed stone. It was estimated.

<実施例2及び比較例2>
30cm×30cm×厚さ5cmの密粒度アスコン供試体表面にエポキシ系樹脂を塗布し、その上に実施例1で作成した骨材を篩い分けして得られた2〜3.35mmのムライト質セラミック骨材を散布して固着させた供試体を作成した。この供試体を屋外のアスファルト舗装面に置き、上下面以外の周囲を発泡スチロールで断熱して、夏季日射下での表面温度の変化を測定した。尚、比較試料には通常の砕石を使った密粒度アスコン供試体を使用した。結果を図2に示す。図2に示した通り、砕石を使用した比較例2の場合と比べて本実施例の骨材を使用して得た舗装面では、明らかに、温度上昇が抑制されることが確認された。
<Example 2 and Comparative Example 2>
A mullite ceramic of 2 to 3.35 mm obtained by applying an epoxy resin to the surface of a 30 cm × 30 cm × 5 cm thick particle size ascon specimen and then sieving the aggregate prepared in Example 1 A specimen in which aggregate was dispersed and fixed was prepared. This specimen was placed on an outdoor asphalt pavement surface, and the surroundings other than the upper and lower surfaces were insulated with polystyrene foam, and the change in surface temperature under summer solar radiation was measured. As a comparative sample, a dense particle size ascon specimen using ordinary crushed stone was used. The results are shown in FIG. As shown in FIG. 2, it was clearly confirmed that the temperature increase was suppressed on the pavement surface obtained by using the aggregate of this example as compared with Comparative Example 2 using crushed stone.

<実施例3>
本実施例では、実施例1のムライト質セラミックの昇温抑制骨材を作製する際に使用した原料を主原料に用い、これに、骨材の明度を下げるための成分として、表3に示した各種の成分が添加されてなる色の異なるセラミック骨材H1〜H5を作製した。具体的には、上記の骨材中に、コバルト成分、ニッケル成分、或いは鉄成分が、酸化物換算で表3に示した量となるように原料組成を調整し、各原料からなるφ40mm×10mm厚さにプレス成形されたプレス成形物を得、その後に該プレス成形物を1300℃で焼成し、得られた焼成体を試料H1〜H5とした。色及び特性を比較するために、明度を下げるための添加成分を加えずに主原料のみを用いて上記と同様にしてプレス成形物の焼成体を作製し、これを試料H0とした。又、明度を下げるための成分として、陶磁器用黒色顔料(日陶産業M−252)を用いた以外は上記と同様にしてプレス成形物の焼成体を作製し、これを試料H6とした。
<Example 3>
In this example, the raw material used in producing the temperature-inhibited aggregate of the mullite ceramic of Example 1 was used as the main raw material, and the components shown in Table 3 are used as components for reducing the lightness of the aggregate. Ceramic aggregates H1 to H5 having different colors obtained by adding various components were prepared. Specifically, in the above-mentioned aggregate, the raw material composition is adjusted so that the cobalt component, nickel component, or iron component is in the amount shown in Table 3 in terms of oxide, and each material is φ40 mm × 10 mm A press-molded product press-molded to a thickness was obtained, and then the press-molded product was fired at 1300 ° C., and the obtained fired bodies were designated as samples H1 to H5. In order to compare colors and characteristics, a fired body of a press-molded product was produced in the same manner as described above using only the main raw material without adding an additive component for lowering the brightness, and this was designated as Sample H0. Further, a fired body of a press-molded product was produced in the same manner as above except that a black pigment for ceramics (Nissho Sangyo M-252) was used as a component for decreasing the brightness, and this was designated as Sample H6.

得られた各試料H0〜H6について、目視で評価した色調と、色差計により測定した明度を表3にまとめて示した。又、赤外線暗視カメラで試料を撮影して、その明るさを、最も明るく見える試料H0を5とし、最も暗く見える試料H6を1として5段階評価で相対比較した値を、赤外反射性として表3中に示した。更に、各試料H0〜H6の表面を赤外線ランプで60分間照射し、その後における試料温度をあわせて表3中に示した。比較のために、比較例1で使用した砕石と同種の石を加工して得た、上記と同様の大きさの試験体について、同様に赤外線ランプで60分間照射した後、表面温度を測定したところ53.0℃であった。   For each of the obtained samples H0 to H6, the color tone evaluated visually and the brightness measured by a color difference meter are shown in Table 3. In addition, when a sample is photographed with an infrared night vision camera, the brightness of the sample H0 that looks brightest is set to 5, and the sample H6 that looks darkest is set to 1, and the value that is relatively compared in five-step evaluation is defined as infrared reflectivity. This is shown in Table 3. Furthermore, the surface of each sample H0 to H6 was irradiated with an infrared lamp for 60 minutes, and the sample temperature thereafter was shown in Table 3. For comparison, a test body having the same size as above obtained by processing the same kind of crushed stone used in Comparative Example 1 was similarly irradiated with an infrared lamp for 60 minutes, and then the surface temperature was measured. However, it was 53.0 ° C.

Figure 0004837933
Figure 0004837933

表3に示した通り、赤外線ランプで60分間照射した後の各試料についての表面温度の測定結果から、試料H0〜H6のいずれも、従来の砕石を使用した比較のための試験体(表面温度=53.0℃)と比較して、昇温抑制効果があることが確認できた。更に、骨材の明度を下げるための成分としてコバルト又はニッケル成分を使用することで、通常用いられている陶磁器用黒色顔料を使用した場合と比較して、昇温抑制効果が損なわれることがないことが確認できた。   As shown in Table 3, from the measurement results of the surface temperature for each sample after 60 minutes of irradiation with an infrared lamp, all of the samples H0 to H6 were tested for comparison using conventional crushed stone (surface temperature). = 53.0 ° C.), it was confirmed that there was a temperature rise suppressing effect. Furthermore, by using a cobalt or nickel component as a component for lowering the lightness of the aggregate, the temperature rise suppressing effect is not impaired as compared with the case of using a commonly used ceramic black pigment. I was able to confirm.

本発明の活用例としては、頻繁な補修工事を必要とすることなく長期間に渡って路面や壁面の温度上昇抑制効果を維持するとともに、降雨や散水等の水分補給がなくても、夏季の路面温度上昇を有効に抑制することができ、メンテナンスフリーで経済的であり、交通安全上も好ましいヒートアイランド現象の抑制に寄与できる、都市内の舗装、或いは建造物の壁面が挙げられる。   As an application example of the present invention, while maintaining the temperature rise suppression effect of the road surface and wall surface over a long period without requiring frequent repair work, even without hydration such as rain or water spray, Pavements in the city or walls of buildings that can effectively suppress the rise in road surface temperature, are maintenance-free and economical, and can contribute to the suppression of the heat island phenomenon, which is also preferable for traffic safety.

アスファルト舗装表面付近における熱収支形態を説明するための模式図である。It is a schematic diagram for demonstrating the heat balance form in the vicinity of an asphalt pavement surface. 実施例2及び比較例2の舗装体の日射試験−表面付近の温度変化を示すデータである。It is the data which show the solar radiation test of the pavement of Example 2 and Comparative Example 2-temperature change near the surface.

Claims (4)

窯業原料を焼成してなる舗装材料或いは建造物の壁材料のセラミック骨材であって、主成分がシリカとアルミナからなるムライトセラミックス及びスピネルセラミックスから選ばれる少なくとも1種の結晶相と、コバルト及び/又はニッケルとを含み、セラミック骨材中におけるコバルト及び/又はニッケルの含有量が、酸化物換算で0.3〜5質量%であり、その比熱容量(定容)が1800KJ/m3・℃以上であることを特徴とする昇温抑制セラミック骨材。 A ceramic aggregate of a pavement material or a building wall material obtained by firing ceramic raw materials, wherein at least one crystal phase selected from mullite ceramics and spinel ceramics mainly composed of silica and alumina , cobalt and / Or containing nickel and the content of cobalt and / or nickel in the ceramic aggregate is 0.3 to 5% by mass in terms of oxide, and the specific heat capacity (constant volume) is 1800 KJ / m 3 · ° C. or more A temperature rise-suppressing ceramic aggregate characterized by 更に、鉄、マンガン、銅及びクロムからなる群より選ばれる少なくとも1種を含み、セラミック骨材中における鉄、マンガン、銅及びクロムの総含有量が、酸化物換算で10質量%以下の範囲内である請求項1に記載の昇温抑制セラミック骨材。   Furthermore, it contains at least one selected from the group consisting of iron, manganese, copper and chromium, and the total content of iron, manganese, copper and chromium in the ceramic aggregate is within a range of 10% by mass or less in terms of oxide. The ceramic aggregate for suppressing temperature increase according to claim 1. 請求項1又は2に記載の昇温抑制セラミック骨材が、舗装面に散布或いは圧入、又は樹脂によって定着のいずれかの方法で舗装表面に利用されていることを特徴とする昇温抑制舗装。 Claim 1 or 2 Atsushi Nobori suppression ceramic aggregate according to the, sprayed or pressed into the shop Somen, or characterized in that it is utilized in the pavement surface by any of the methods of fixing the resin Atsushi Nobori suppression pavement . 請求項1又は2に記載の昇温抑制セラミック骨材を配合してなる材料で形成されてなることを特徴とする昇温抑制建築資材。   A temperature rise-suppressing building material, characterized in that it is formed of a material obtained by blending the temperature rise-suppressing ceramic aggregate according to claim 1 or 2.
JP2005086833A 2005-03-24 2005-03-24 Temperature-inhibiting aggregate Active JP4837933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005086833A JP4837933B2 (en) 2005-03-24 2005-03-24 Temperature-inhibiting aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005086833A JP4837933B2 (en) 2005-03-24 2005-03-24 Temperature-inhibiting aggregate

Publications (2)

Publication Number Publication Date
JP2006265048A JP2006265048A (en) 2006-10-05
JP4837933B2 true JP4837933B2 (en) 2011-12-14

Family

ID=37201394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005086833A Active JP4837933B2 (en) 2005-03-24 2005-03-24 Temperature-inhibiting aggregate

Country Status (1)

Country Link
JP (1) JP4837933B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5659375B1 (en) * 2013-11-15 2015-01-28 有限会社ワークPro Inspection method for asphalt mixture
JP6634215B2 (en) * 2015-02-24 2020-01-22 東洋工業株式会社 Concrete block
CN110344297A (en) * 2018-04-03 2019-10-18 南京林业大学 A kind of heat-insulated pavement structure and construction method
JP7373988B2 (en) 2019-12-26 2023-11-06 株式会社クボタ coating material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2320806C3 (en) * 1973-04-25 1978-04-27 Bayer Ag, 5090 Leverkusen Process for the production of inorganic pigments or ceramic pigments
JPS5827220B2 (en) * 1979-02-28 1983-06-08 日軽化工株式会社 Colored compound for pavement
JPS6278135A (en) * 1985-09-30 1987-04-10 株式会社 カネキ製陶所 Manufacture of artificial bone material
JPH0558700A (en) * 1991-09-02 1993-03-09 Ohbayashi Corp Production of mortar-concrete
JP2803406B2 (en) * 1991-09-02 1998-09-24 株式会社大林組 Aggregate for mortar and concrete
JP2853403B2 (en) * 1991-09-02 1999-02-03 株式会社大林組 Mortar and concrete construction method
JPH05208856A (en) * 1991-09-25 1993-08-20 Ohbayashi Corp Production of ultrahigh-strength mortar-concrete
JP3058800B2 (en) * 1994-09-19 2000-07-04 内外セラミックス株式会社 Artificial light-colored aggregate for roads and construction and method for producing the same

Also Published As

Publication number Publication date
JP2006265048A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
Santamouris Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments
Chen et al. Field and laboratory measurement of albedo and heat transfer for pavement materials
Anting et al. Experimental evaluation of thermal performance of cool pavement material using waste tiles in tropical climate
Wang et al. Impacts of the water absorption capability on the evaporative cooling effect of pervious paving materials
Xu et al. Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses
Chatzidimitriou et al. Microclimate development in open urban spaces: The influence of form and materials
Kinouchi et al. 4.7 Development of cool pavement with dark colored high albedo coating
Li et al. The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management
Del Carpio et al. Urban pavements used in Brazil: Characterization of solar reflectance and temperature verification in the field
JP4546328B2 (en) Pavement and manufacturing method thereof
Zinzi Exploring the potentialities of cool facades to improve the thermal response of Mediterranean residential buildings
Anting et al. Optimizing of near infrared region reflectance of mix-waste tile aggregate as coating material for cool pavement with surface temperature measurement
Bao et al. A drainable water-retaining paver block for runoff reduction and evaporation cooling
Pomerantz et al. Reflective surfaces for cooler buildings and cities
JP4837933B2 (en) Temperature-inhibiting aggregate
AU2011235540A1 (en) Reflective asphalt composition
Wardeh et al. Review of the optimization techniques for cool pavements solutions to mitigate Urban Heat Islands
Kousis et al. Evaluating the performance of cool pavements for urban heat island mitigation under realistic conditions: A systematic review and meta-analysis
Deluka-Tibljaš et al. Analyses of urban pavement surface temperatures
Seifeddine et al. Review on thermal behavior of cool pavements
Al-Humairi et al. Sustainable pavement: A review on the usage of pavement as a mitigation strategy for UHI
Allmendinger Measures at Buildings for Mitigating the Microclimate
EP3831794B1 (en) Asphalt pavements having high solar reflectance
JP2007192016A (en) Sunlight reflecting civil engineering building material, shading material, and method of restraining heat island phenomenon
Sagar et al. Design of Cool & Reflective Pavements for Reduction in Air Temperature at Day Time & Better Visibility of Road at Night

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4837933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250