JP4836103B2 - Pump flow rate measuring method and pump flow rate measuring device - Google Patents

Pump flow rate measuring method and pump flow rate measuring device Download PDF

Info

Publication number
JP4836103B2
JP4836103B2 JP2001220188A JP2001220188A JP4836103B2 JP 4836103 B2 JP4836103 B2 JP 4836103B2 JP 2001220188 A JP2001220188 A JP 2001220188A JP 2001220188 A JP2001220188 A JP 2001220188A JP 4836103 B2 JP4836103 B2 JP 4836103B2
Authority
JP
Japan
Prior art keywords
water level
water
discharge
pump
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001220188A
Other languages
Japanese (ja)
Other versions
JP2003035575A (en
Inventor
恒也 杉谷
洋司 佐藤
晃 稲垣
勝志 池澤
Original Assignee
株式会社電業社機械製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社電業社機械製作所 filed Critical 株式会社電業社機械製作所
Priority to JP2001220188A priority Critical patent/JP4836103B2/en
Publication of JP2003035575A publication Critical patent/JP2003035575A/en
Application granted granted Critical
Publication of JP4836103B2 publication Critical patent/JP4836103B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、調圧水槽が設けられた排水設備などに設置されているポンプの吐出流量を測定するポンプ流量測定方法およびポンプ流量測定装置に関するものである。
【0002】
【従来の技術】
排水機場などの排水設備にあっては、ポンプの吐出流量の急激な変化による圧力変動を吸収するために、ポンプと排出水域との間に調圧水槽が設けられる。そこで、ポンプの吐出配管が調圧水槽に接続され、この調圧水槽が排出水域に排水管で連通される。この調圧水槽を設けることで、ポンプの吐出が急激に停止し、あるいはポンプの始動時において、吐出配管内の圧力変動を抑制し、またポンプの吐出が急激に停止したときには調圧水槽内の流体が慣性の法則でひき続き排水管を介して排出水域に流出し、吐出配管の水撃現象を抑制する。さらに、排出水域の水位の急激な変動をも抑制する。
【0003】
ところで、排水設備に設置されたポンプの吐出流量の測定は、吐出配管内の流速を超音波流量計で行うものがある。また、予めポンプ出荷前に工場などでポンプの流量−全場程曲線を実測し、これと現地の設置条件から実測により得られる配管全体の抵抗曲線との交点からポンプの吐出流量を測定するものもある。
【0004】
【発明が解決しようとする課題】
上述の超音波流量計によるポンプの吐出流量の測定では、ポンプの吐出口と調圧水槽の間に介装される吐出配管直管部の長さを充分に長くする必要がある。これは、流量を正確に測定するためには吐出配管直管部内の流れが安定していなければならないためである。しかるに、排水設備の設置スペースなどの制約から、充分な長さの吐出配管直管部を設けることは現実的には困難である。
【0005】
また、流量−全場程曲線を用いて吐出流量を算出する方法では、ポンプ羽根車の経年変化により実際の流量−全場程曲線が変化し、また配管の摩擦損失やバルブの損失も変化して配管全体の抵抗曲線も変化し、吐出流量の算出精度が年々悪化する傾向にある。
【0006】
本発明は、上述のごとき従来技術の不具合に鑑みてなされたもので、調圧水槽と排出水域の水位差からポンプの排出流量を簡単にかつ正確に算出できるポンプ流量測定方法およびポンプ流量測定装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明のポンプ流量測定方法は、ポンプの吐出配管が調圧水槽に接続され、この調圧水槽が排出水域に排水管で連通され、しかも前記排水管が前記排出水域の水面下にあって常に満水状態が保持される排水設備であって、前記ポンプの運転時における前記調圧水槽の水位H1と、前記排出水域の水位H2と、前記ポンプからの流入を停止した際に生ずる前記調圧水槽の水位と前記排出水域の水位との偏差水位変動および前記排水管内の流体の流体運動方程式から予め算出された前記排水管の損失係数ξと、前記排水管の断面積Aから、
数4
により前記ポンプの吐出流量Qを算出する。
【0008】
そして、前記ポンプの吐出を急激に停止させてた際に生ずる前記調圧水槽の水位と前記排出水域の水位との偏差水位変動と、その際の前記排水管内の流体の流体運動方程式から前記損失係数ξを予め算出しておいても良い。
【0009】
さらに、前記ポンプからの流入を停止するとともに前記排水管を遮断して前記調圧水槽の水位と前記排出水域の水位に水位差を設け、前記排水管を急激に連通した際に生ずる前記調圧水槽の水位と前記排出水域の水位との偏差水位変動と、その際の前記排水管内の流体の流体運動方程式から前記損失係数ξを予め算出しておくこともできる。
【0010】
また、本発明のポンプ流量測定装置は、ポンプの吐出配管が調圧水槽に接続され、この調圧水槽が排出水域に排水管で連通され、しかも前記排水管が前記排出水域の水面下にあって常に満水状態が保持される排水設備であって、前記調圧水槽にその水位H1を計測する第1の水位計測手段を設け、前記排出水域にその水位H2を計測する第2の水位計測手段を設け、前記第1と第2の計測手段の計測値が与えられてその水位差を演算する水位差演算手段と、前記水位差に応じた信号を与えられる記録手段を設け、この記録手段で、前記ポンプの吐出が急激に停止された際に生ずる前記調圧水槽の水位と前記排出水域の水位との偏差水位変動曲線を記録し、記録された偏差水位変動曲線と前記排水管内の流体の流体運動方程式より損失係数演算手段で予め損失係数ξを算出し、この損失係数ξを演算手段に設定し、前記第1と第2の計測手段の計測値を前記演算手段に与え、この演算手段で前記水位H1およびH2と、予め算出して設定された前記排水管の損失係数ξと、前記排水管の断面積Aと、から
数5
により前記ポンプの吐出流量Qを算出するように構成されている。
【0011】
また、ポンプの吐出配管が調圧水槽に接続され、この調圧水槽が排出水域に排水管で連通され、しかも前記排水管が前記排出水域の水面下にあって常に満水状態が保持される排水設備であって、前記調圧水槽にその水位H1を計測する第1の水位計測手段を設け、前記排出水域にその水位H2を計測する第2の水位計測手段を設け、前記第1と第2の計測手段の計測値が与えられてその水位差を演算する水位差演算手段と、前記水位差に応じた信号を与えられる記録手段を設け、この記録手段で、前記ポンプからの流入を停止するとともに前記排水管を遮断して前記調圧水槽の水位と前記排出水域の水位に水位差を設け、前記排水管を急激に連通した際に生ずる前記調圧水槽の水位と前記排出水域の水位との偏差水位変動曲線を記録し、記録された偏差水位変動曲線と前記排水管内の流体の流体運動方程式より損失係数演算手段で予め損失係数ξを算出し、この損失係数ξ演算手段に設定し、前記第1と第2の計測手段の計測値を前記演算手段に与え、この演算手段で前記水位H1およびH2と、予め算出して設定された前記排水管の損失係数ξと、前記排水管の断面積Aと、から
【数6】
により前記ポンプの吐出流量Qを算出するように構成しても良い。
【0012】
【発明の実施の形態】
以下、本発明の第1実施例を図1ないし図4を参照して説明する。図1は、本発明のポンプ流量測定装置の第1の実施例の構造図であり、(a)はポンプの定常運転時の水位を示し、(b)はポンプの運転が急激に停止されて調圧水槽の水位が排出水域の水位より低下した状態を示し、(c)は再び調圧水槽の水位が排出水域の水位より上昇した状態を示し、(d)は再び調圧水槽の水位が排出水域の水位より低下した状態を示す。図2は、オシロスコープに記録された調圧水槽の水位と排出水域の水位の偏差水位変動曲線を示す図である。図3は、偏差水位の理論変動曲線を示す図である。図4は、本発明によるポンプの吐出流量の算出値と実測値とを示す表である。
【0013】
まず、図1において、本発明の第1実施例は、ポンプ10の吐出配管12が調圧水槽14に接続され、この調圧水槽14が河川などの排出水域16と排水管18で連通される。この排水管18は、排出水域16の水面下に配設され、常に満水状態が保持される。また、調圧水槽14には、その水位を測定する第1の水位計測手段20が配設され、排出水域16には、その水位を測定する第2の水位計測手段22が配設される。そして、第1と第2の水位計測手段20,22の計測値が水位差演算手段24に与えられて水位差が演算される。この水位差に応じた信号が、演算手段26とオシロスコープなどの記録手段28とに与えられる。記録手段28は、一例として図2に示すごとき、時間の経過と水位差の変動を示す偏差水位変動曲線を記録する。そして、この偏差水位変動曲線が損失係数演算手段30に与えられ、後述のごとくして損失係数ξが演算され、この損失係数ξが演算手段26に設定される。演算手段26では、予め算出して設定された損失件数ξと、ポンプ10の定常運転状態の調圧水槽14と排出水域16の水位の水位差(H1−H2)と、排水管18の断面積Aとからポンプ10の流量Qを後述のごとくして演算出力する。
【0014】
ところで、ポンプ10の定常運転状態にあっては、調圧水槽14の水位H1が排出水域16の水位H2よりも高く、その水位差(H1−H2)と排水管18内の平均流速Vの二乗とが比例する。そして、排水管18の断面積Aと平均流速Vの積が、ポンプ10の吐出する流量Qである。そこで、比例計数としての損失係数ξが予め演算されていれば、調圧水槽14と排出水域16の水位の水位差(H1−H2)からポンプ10の吐出する流量Qが演算できる。そこで、(2)式と(3)式が成立する。
数7
但し、ξは損失係数、Vは排水管内の平均流速である。
数8
但し、Qはポンプの吐出流量、Aは排出管の断面積である。
そして、これらの(2)(3)式から、上述の(1)式が得られる。
数9
ここで、排水管18の断面積Aは、容易に計測または算出でき、また水位H1,H2も第1と第2の水位計測手段20,22により容易に測定し得る。なお、損失係数ξは、一度だけ予め測定算出すれば良く、流量測定の度に繰り返して算出する必要はない。
なお、排水管18の損失係数ξとその断面積A、および水位差から流量を求めることは、公知であり、特開平05−19864号公報(特許文献1)や特開平10−185635号公報(特許文献2)等に示されている。
【特許文献1】
特開平05−19864号公報
【特許文献2】
特開平10−185635号公報
【0015】
続いて、損失係数ξを算出する方法につき以下述べる。ポンプ10の定常運転にて調圧水槽14が水位H1で排出水域16が水位H2の状態で、ポンプ10の運転を急激に停止して吐出流量Qを零とする。すると、ポンプ10からの流入が停止し、調圧水槽14側の高い水位差および排水管18内を流れる水の慣性で、水は排出水域16に流れ続けて調圧水槽14の水位は低下し続け、(b)に示すごとく、調圧水槽14の水位が排出水域16の水位H2より低いH3まで変動する。するとこんどは、排出水域16側の高い水位差により排水管18内を逆流し、調圧水槽14の水位は上昇し、(c)に示すごとく、排出水域16の水位H2よりも高いH4まで変動する。さらにこんどは、調圧水槽14側の水位が高いことで、水が排水管18内を排出水域16に流れて、(d)に示すごとく調圧水槽14の水位は排出水域16の水位よりも低いH5まで変動する。もって、偏差水位変動を生ずる。
【0016】
このように、調圧水槽14の水位は、下降と上昇を繰り返す振動現象を呈し、やがて振動は減衰して最終的には排出水域16の水位H2と等しくなる。この水位差が、第1と第2の水位計測手段20,22の計測値から水位差演算手段24で演算され、この水位差を時間経過とともに記録手段28で記録した一例が、図2の偏差水位変動曲線である。図2でS0、S1、S2、S3、S4,S5は、排出水域16の水位を基準とする水位差を示す。
【0017】
この偏差水位変動の振動現象を生ずる排水管18内の水の流体運動方程式は、公知であり、(4)式で示される。
数10
そして、この(4)式の解として(5)式が得られる。
数11
であり、Sは排出水域の水位を基準とした調圧水槽水位、gは重力加速度、Lは排水管長さ、ξは排水管の損失係数、βは面積比(排水管断面積/調圧水槽底面積)、tは時間、Cは定数である。
なお、(5)式で、プラスマイナス符号(±)およびマイナスプラス符号の上側の符号は排出水域16から調圧水槽14への流入を示し、下側の符号は調圧水槽14から排出水域16への流出を示す。また、排出水域16は、調圧水槽14からの流出に対して、水位がほぼ変動しないとみなし得る程度に十分に広いものとする。具体的には、排出水域16としての河川の幅は、調圧水槽14の幅の約5倍程度以上あれば良い。
【0018】
そして、ポンプ10が定常的に動作している場合は、水位差Sと流量Qと排水管18の断面積Aとその流速Vと、調圧水槽の底面積A0は、(6)式の関係にある。
数12
そこで、ポンプ10を急激に停止した際の流量Qは0となるのでt=0で、(7)式が成立する。
数13
これを整理すれば、(8)式となる。
数14
【0019】
さらに、(5)式と(8)式を整理すると、(9)式となる。
数15
但し、nは2以上である。
【0020】
この(9)式に記録手段28で記録された図2の偏差水位変動曲線から求めた極大値と極小値S1、S2、S3、S4、S5を代入して、それぞれのmを算出して、mの平均値m0を算出する。
【0021】
そして、算出した平均値のm0を下記の(10)式に代入してξを求め、この求めたξを(4)式に代入すると、図3のごとき理論変動曲線が得られる。この図3で、mの値が大きくなると理論変動曲線の偏差水位が小さくなり、mの値が小さくなると理論変動曲線の偏差水位が大きくなる。そこで、記録手段28で記録された偏差水位変動曲線に、理論変動曲線が一致するようにmの値が決定される。
数16
【0022】
なお、上記説明では偏差水位変動曲線から求めた極大値と極小値S1、S2、S3…から理論変動曲線のmを算出し、最終的には偏差水位変動曲線に理論変動曲線が一致するmを求めているが、偏差水位変動曲線に一致する理論変動曲線を探し、これからmを求めても良い。
【0023】
このようにして、予め排水管18の損失係数ξを求め、これと調圧水槽14と排出水域16の水位差S0=(H1−H2)から求めたポンプ10の吐出流量Qと、流量を他の測定手段で測定した実測流量を比較したものが図4の表である。初期水位差S0を0.307mと0.214mと0.136mとそれぞれに相違させて測定を行った。この結果、本発明のポンプ流量測定方法にて充分に正確な流量の測定が可能であることが判明した。
【0024】
次に、排水管18の損失係数ξを上述のごとくポンプ10を急激に停止させることによって測定算出するのとは、別の方法につき説明する。損失係数ξを測定算出するには、調整水槽14の水位が下降および上昇する振動現象を生じれば良い。かかる観点から構成されたものが、図5に示す本発明の第2実施例である。図5は、本発明のポンプ流量測定装置の第2実施例の構造図である。図5において、図1と同じまたは均等な部材に同じ符号を付けて重複する説明を省略する。
【0025】
図5の構造にあっては、排水管18に第1の開閉弁32が介装され、吐出配管12に第2の開閉弁34が介装される。そして、排水管18の損失係数ξの測定算出のときには、第1の開閉弁32を閉塞し、遅れてポンプ10を停止すると同時に第2の開閉弁34を閉塞してポンプ10からの流入を停止し、調圧水槽14と排出水域16に所望の水位差を設定する。そして、第1の開閉弁32を急激に全開とすることで、調圧水槽14の水位に振動現象を生じさせる。もって、第1実施例と同様にして、排水管18の損失係数ξの測定算出が可能である。
【0026】
なお、上記実施例では、水位差演算手段24と演算手段26と記録手段28と損失係数演算手段30がそれぞれ異なるブロックで示されるが、これらを演算手段26としてのコンピュータにより実行しても良いことは勿論である。また、損失係数ξは、予め測定算出して演算手段26にデータとして記録されてあれば良く、ポンプ10の設置の際に測定できれば良く、測定後は記録手段28と損失係数演算手段30が取り外されても良い。
【0027】
【発明の効果】
以上説明したところから明らかなように、本発明のポンプ流量測定方法およびポンプ流量測定装置は、以下のごとき格別な作用効果を奏する。
【0028】
請求項1記載のポンプ流量測定方法にあっては、ポンプからの流入を停止して調圧水槽の水位と排出水域の水位との偏差水位変動と排水管内の流体の流体運動方程式から予め排水管の損失係数ξを算出し、予め測定された排水管の損失係数ξとその断面積および調圧水槽と排出水域との水位差とからポンプの吐出流量が測定でき、その水位差の測定は簡単にでき、流量測定が極めて容易である。そして、ポンプの吐出流量を正確に測定するための吐出配管直管部を必要とせず、それだけ排水設備などの設置スペースが狭くて良い。また、必要により排水管の損失係数ξを測定演算しなおせば、常に正確な流量が得られる。
【0029】
請求項2記載のポンプ流量測定方法にあっては、ポンプの吐出を急激に停止して、調圧水槽の水位を下降および上昇させる振動現象を生じさせることで、簡単に排水管の損失係数ξの測定算出ができる。
【0030】
請求項3記載のポンプ流量測定方法にあっても、ポンプからの流入を停止するとともに排水管を遮断して調圧水槽の水位と排出水域の水位とに水位差を設け、排水管を急激に連通させて、調圧水槽の水位を下降および上昇させる振動現象を生じさせることで、簡単に排水管の損失係数ξの測定算出ができる。
【0031】
請求項4記載のポンプ流量測定装置においては、調圧水槽に設けた第1の水位計測手段と排出水域に設けた第2の水位計測手段とから得られる計測値が与えられて水位差を算出する水位差演算手段と、ポンプの吐出を急激に停止した際に生ずる水位差に応じた偏差水位変動曲線を記録する記録手段を設けたので、この偏差水位変動曲線を用いて排水管の損失係数ξを簡単に算出することができ、この損失係数ξを用いて容易にポンプの吐出流量が算出され得る。
【0032】
請求項5記載のポンプ流量測定装置にあっては、調圧水槽に設けた第1の水位計測手段と排出水域に設けた第2の水位計測手段とから得られる計測値が与えられて水位差を算出する水位差演算手段と、ポンプからの流入を停止するとともに排水管を遮断して調圧水槽の水位と排出水域の水位とに水位差を設け、排水管を急激に連通させた際に生ずる水位差に応じた偏差水位変動曲線を記録する記録手段を設けたので、この偏差水位変動曲線を用いて排水管の損失係数ξを簡単に算出することができ、この損失係数ξを用いて容易にポンプの吐出流量が算出され得る
【図面の簡単な説明】
【図1】 本発明のポンプ流量測定装置の第1の実施例の構造図であり、(a)はポンプの定常運転時の水位を示し、(b)はポンプの運転が急激に停止されて調圧水槽の水位が排出水域の水位より低下した状態を示し、(c)は再び調圧水槽の水位が排出水域の水位より上昇した状態を示し、(d)は再び調圧水槽の水位が排出水域の水位より低下した状態を示す。
【図2】 オシロスコープに記録された調圧水槽の水位と排出水域の水位の偏差水位変動曲線を示す図である。
【図3】 偏差水位の理論変動曲線を示す図である。
【図4】 本発明によるポンプの吐出流量の算出値と実測値とを示す表である。
【図5】 本発明のポンプ流量測定装置の第2実施例の構造図である。
【符号の説明】
10 ポンプ
12 吐出配管
14 調圧水槽
16 排出水域
18 排水管
20 第1の水位測定手段
22 第2の水位測定手段
24 水位差演算手段
26 演算手段
28 記録手段
30 損失係数演算手段
32 第1の開閉弁
34 第2の開閉弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pump flow rate measuring method and a pump flow rate measuring device for measuring a discharge flow rate of a pump installed in a drainage facility provided with a pressure regulating water tank.
[0002]
[Prior art]
In a drainage facility such as a drainage station, a pressure-regulating water tank is provided between the pump and the discharge water area in order to absorb pressure fluctuation due to a rapid change in the discharge flow rate of the pump. Therefore, the discharge pipe of the pump is connected to the pressure regulating water tank, and this pressure regulating water tank is communicated with the discharge water area through the drain pipe. By providing this pressure regulating water tank, the discharge of the pump stops abruptly, or when the pump is started, the pressure fluctuation in the discharge pipe is suppressed, and when the pump discharge stops suddenly, The fluid continues to flow into the discharge water area through the drainage pipe according to the law of inertia, and suppresses the water hammer phenomenon of the discharge pipe. It also suppresses sudden fluctuations in the water level of the discharge area.
[0003]
By the way, the measurement of the discharge flow rate of the pump installed in the drainage equipment includes a method in which the flow velocity in the discharge pipe is measured by an ultrasonic flow meter. In addition, the pump flow rate-whole field curve is measured at the factory before shipping the pump in advance, and the pump discharge flow rate is measured from the intersection of this and the resistance curve of the entire piping obtained from the actual installation conditions. There is also.
[0004]
[Problems to be solved by the invention]
In the measurement of the discharge flow rate of the pump using the ultrasonic flow meter described above, it is necessary to sufficiently increase the length of the discharge pipe straight pipe portion interposed between the discharge port of the pump and the pressure regulating water tank. This is because the flow in the straight portion of the discharge pipe must be stable in order to accurately measure the flow rate. However, it is practically difficult to provide a discharge pipe straight pipe portion having a sufficient length due to restrictions such as the installation space of the drainage facility.
[0005]
Also, in the method of calculating the discharge flow rate using the flow rate-full field curve, the actual flow rate-full field curve changes due to aging of the pump impeller, and the piping friction loss and valve loss also change. As a result, the resistance curve of the entire piping also changes, and the calculation accuracy of the discharge flow rate tends to deteriorate year by year.
[0006]
The present invention has been made in view of the problems of the prior art as described above, and a pump flow rate measuring method and a pump flow rate measuring device capable of easily and accurately calculating the pump discharge flow rate from the water level difference between the pressure regulating water tank and the discharge water area. The purpose is to provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the pump flow rate measuring method of the present invention is such that a pump discharge pipe is connected to a pressure regulating water tank, the pressure regulating water tank is connected to a drainage water area by a drain pipe, and the drain pipe is connected to the drainage pipe. A drainage facility that is always below the surface of the body of water and is kept full of water, and stops the water level H1 of the pressure-regulating water tank, the water level H2 of the discharge water area, and the inflow from the pump during operation of the pump The drainage pipe loss coefficient ξ calculated in advance from the deviation level fluctuation between the water level of the pressure regulating water tank and the water level of the discharge water area and the fluid motion equation of the fluid in the drainage pipe, and the disconnection of the drainage pipe. From area A,
[ Equation 4 ]
To calculate the discharge flow rate Q of the pump.
[0008]
Then, the deviation water level fluctuations in the water level of the pressure water tank water level and the discharge waters generated when had abruptly stopping the discharge of the pump, from said fluid motion equation of the fluid in said drain pipe in that case The loss coefficient ξ may be calculated in advance.
[0009]
Further, the pressure regulation that occurs when the drainage pipe is abruptly communicated by stopping the inflow from the pump and shutting off the drainage pipe to provide a water level difference between the water level of the pressure regulating water tank and the water level of the discharge water area. The loss coefficient ξ can be calculated in advance from the deviation level fluctuation between the water level of the water tank and the water level of the discharge water area and the fluid motion equation of the fluid in the drain pipe at that time.
[0010]
In the pump flow measuring device of the present invention, the discharge pipe of the pump is connected to the pressure regulating water tank, the pressure regulating water tank is connected to the drainage water area through the drain pipe , and the drain pipe is below the surface of the drain water area. And a second water level measuring means for providing a first water level measuring means for measuring the water level H1 in the pressure regulating water tank and measuring the water level H2 in the drained water area. Provided with measurement values of the first and second measuring means and calculating a water level difference calculating means, and a recording means for receiving a signal corresponding to the water level difference. , Recording a deviation water level fluctuation curve between the water level of the pressure regulating water tank and the water level of the discharge water area generated when the discharge of the pump is suddenly stopped, and the recorded deviation water level fluctuation curve and the fluid in the drain pipe Calculate loss factor from fluid equation of motion Calculating a pre-loss coefficient ξ in stages, set this loss coefficient ξ to the arithmetic unit gives a measured value of said first and second measuring means to the calculating means, the water level H1 and H2 in this computing means the a loss factor of drainage pipes ξ which is set in advance calculated, the cross-sectional area a of the drain pipe, Equation 5] from
Thus, the discharge flow rate Q of the pump is calculated.
[0011]
In addition, the discharge pipe of the pump is connected to a pressure regulating water tank, the pressure regulating water tank communicates with the drainage water area through a drain pipe, and the drain pipe is below the surface of the drain water area so that the water is always kept full. A first water level measuring means for measuring the water level H1 in the pressure-regulating water tank; and a second water level measuring means for measuring the water level H2 in the drained water area . The water level difference calculating means for calculating the water level difference given the measurement value of the measuring means, and the recording means for giving a signal corresponding to the water level difference are provided, and the recording means stops the inflow from the pump. In addition, the drainage pipe is shut off to provide a water level difference between the water level of the pressure regulating water tank and the water level of the discharge water area, and the water level of the pressure regulating water tank and the water level of the discharge water area generated when the drain pipe is communicated rapidly Record the deviation water level fluctuation curve with Deviation calculated previously loss coefficient ξ water level fluctuation curve with a fluid motion equation than the loss coefficient calculating means for fluid of the drainage tube, set this loss coefficient ξ to the computing means, said first and second measuring means From the water levels H1 and H2, the loss coefficient ξ of the drain pipe set in advance and the cross-sectional area A of the drain pipe.
[Formula 6]
The may be configured to calculate a discharge flow rate Q of the pump.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a structural diagram of a first embodiment of a pump flow rate measuring apparatus according to the present invention, where (a) shows the water level during steady operation of the pump, and (b) shows that the operation of the pump is suddenly stopped. (C) shows the state where the water level of the pressure regulating tank is raised again from the water level of the discharge water area, and (d) shows the state where the water level of the pressure regulating tank is again Shows a state where the water level is lower than the discharge water area. FIG. 2 is a diagram showing a deviation water level fluctuation curve of the water level of the pressure regulating water tank and the water level of the discharge water area recorded in the oscilloscope. FIG. 3 is a diagram showing a theoretical fluctuation curve of the deviation water level. FIG. 4 is a table showing calculated values and measured values of the discharge flow rate of the pump according to the present invention.
[0013]
First, in FIG. 1, in the first embodiment of the present invention, a discharge pipe 12 of a pump 10 is connected to a pressure regulating water tank 14, and the pressure regulating water tank 14 is communicated with a discharge water area 16 such as a river and a drain pipe 18. . The drain pipe 18 is disposed below the water surface of the discharge water area 16 and is always kept in a full state. Further, the pressure regulating water tank 14 is provided with a first water level measuring means 20 for measuring the water level, and the discharged water area 16 is provided with a second water level measuring means 22 for measuring the water level. And the measured value of the 1st and 2nd water level measuring means 20 and 22 is given to the water level difference calculating means 24, and a water level difference is calculated. A signal corresponding to the water level difference is given to the calculating means 26 and the recording means 28 such as an oscilloscope. As an example, the recording means 28 records a deviation water level fluctuation curve indicating the passage of time and the fluctuation of the water level difference as shown in FIG. Then, this deviation water level fluctuation curve is given to the loss coefficient calculating means 30, the loss coefficient ξ is calculated as described later, and this loss coefficient ξ is set in the calculating means 26. In the calculation means 26, the number of losses ξ that is calculated and set in advance, the water level difference (H 1 −H 2) between the water levels of the pressure-regulating water tank 14 and the discharge water area 16 in the steady operation state of the pump 10, and the cross-sectional area of the drain pipe 18. The flow rate Q of the pump 10 is calculated and output from A as described below.
[0014]
By the way, in the steady operation state of the pump 10, the water level H1 of the pressure regulating water tank 14 is higher than the water level H2 of the discharge water area 16, and the difference between the water levels (H1-H2) and the square of the average flow velocity V in the drain pipe 18. Is proportional. The product of the cross-sectional area A and the average flow velocity V of the drain pipe 18 is the flow rate Q discharged from the pump 10. Therefore, if the loss coefficient ξ as a proportional count is calculated in advance, the flow rate Q discharged from the pump 10 can be calculated from the water level difference (H1−H2) between the water levels in the pressure regulating water tank 14 and the discharge water area 16. Therefore, equations (2) and (3) are established.
[ Expression 7 ]
Where ξ is a loss factor and V is an average flow velocity in the drain pipe.
[ Equation 8 ]
However, Q is the discharge flow rate of the pump, and A is the cross-sectional area of the discharge pipe.
Then, the above-described equation (1) is obtained from these equations (2) and (3).
[ Equation 9 ]
Here, the cross-sectional area A of the drain pipe 18 can be easily measured or calculated, and the water levels H1 and H2 can also be easily measured by the first and second water level measuring means 20 and 22. The loss coefficient ξ may be measured and calculated only once in advance, and does not need to be calculated repeatedly every time the flow rate is measured.
It is known that the flow rate is obtained from the loss coefficient ξ of the drain pipe 18 and its cross-sectional area A and the water level difference, and Japanese Patent Laid-Open No. 05-19864 (Patent Document 1) and Japanese Patent Laid-Open No. 10-185635 ( Patent Document 2) and the like.
[Patent Document 1]
JP 05-19844 A
[Patent Document 2]
Japanese Patent Laid-Open No. 10-185635
Next, a method for calculating the loss coefficient ξ will be described below. In the steady operation of the pump 10, the operation of the pump 10 is abruptly stopped and the discharge flow rate Q is made zero with the pressure regulating water tank 14 at the water level H1 and the discharge water area 16 at the water level H2. Then, the inflow from the pump 10 stops , and water continues to flow into the discharge water area 16 due to the high water level difference on the pressure regulating water tank 14 side and the inertia of the water flowing in the drain pipe 18, and the water level of the pressure regulating water tank 14 decreases. Subsequently, as shown in (b), the water level of the pressure regulating water tank 14 fluctuates to H3 lower than the water level H2 of the discharge water area 16. Then, due to the high water level difference on the discharge water area 16 side, the water flows back in the drain pipe 18 and the water level in the pressure regulating water tank 14 rises and changes to H4 higher than the water level H2 in the discharge water area 16 as shown in (c). To do. Furthermore, this time, the water level on the pressure adjusting water tank 14 side is high, so that water flows in the drain pipe 18 to the discharge water area 16, and the water level in the pressure adjusting water tank 14 is higher than the water level in the discharge water area 16 as shown in (d). Vary to low H5. Therefore, the deviation water level fluctuation occurs.
[0016]
As described above, the water level of the pressure regulating water tank 14 exhibits a vibration phenomenon that repeatedly descends and rises, and eventually the vibration is attenuated and finally becomes equal to the water level H2 of the discharge water area 16. An example in which this water level difference is calculated by the water level difference calculating means 24 from the measured values of the first and second water level measuring means 20 and 22 and this water level difference is recorded by the recording means 28 over time is shown in the deviation of FIG. It is a water level fluctuation curve. In FIG. 2, S 0, S 1, S 2, S 3, S 4, and S 5 indicate water level differences based on the water level of the discharge water area 16.
[0017]
The fluid motion equation of water in the drain pipe 18 that causes the oscillation phenomenon of the deviation water level fluctuation is known and is expressed by the following equation (4).
[ Expression 10 ]
As a solution of the equation (4), the equation (5) is obtained.
[ Expression 11 ]
Where S is the regulated water tank level based on the level of the discharge water area, g is the gravitational acceleration, L is the drain pipe length, ξ is the loss factor of the drain pipe, β is the area ratio (drain pipe cross-sectional area / pressure tank Bottom area), t is time, and C is a constant.
In the equation (5), the plus / minus sign (±) and the sign above the minus / plus sign indicate the inflow from the discharge water area 16 to the pressure regulating water tank 14, and the lower sign indicates the discharge water area 16 from the pressure regulating water tank 14. Indicates an outflow to. Further, the discharge water area 16 is sufficiently wide so that the water level can be regarded as almost unchanged with respect to the outflow from the regulated water tank 14. Specifically, the width of the river as the discharge water area 16 may be about 5 times or more than the width of the pressure regulating water tank 14.
[0018]
When the pump 10 is operating steadily, the water level difference S, the flow rate Q, the cross-sectional area A of the drain pipe 18 and its flow velocity V, and the bottom area A0 of the pressure regulating water tank are expressed by the relationship of equation (6). It is in.
[ Expression 12 ]
Therefore, since the flow rate Q when the pump 10 is suddenly stopped becomes 0, t = 0 and the equation (7) is established.
[ Formula 13 ]
If this is arranged, equation (8) is obtained.
[ Expression 14 ]
[0019]
Furthermore, when formulas (5) and (8) are arranged, formula (9) is obtained.
[ Expression 15 ]
However, n is 2 or more.
[0020]
Substituting the maximum value and the minimum values S1, S2, S3, S4, and S5 obtained from the deviation water level fluctuation curve of FIG. 2 recorded by the recording means 28 into the equation (9), each m is calculated, An average value m0 of m is calculated.
[0021]
Then, by substituting the calculated average value m0 into the following equation (10) to obtain ξ, and substituting the obtained ξ into equation (4), a theoretical fluctuation curve as shown in FIG. 3 is obtained. In FIG. 3, when the value of m increases, the deviation level of the theoretical fluctuation curve decreases, and when the value of m decreases, the deviation level of the theoretical fluctuation curve increases. Therefore, the value of m is determined so that the theoretical fluctuation curve matches the deviation water level fluctuation curve recorded by the recording means 28.
[ Expression 16 ]
[0022]
In the above description, m of the theoretical fluctuation curve is calculated from the maximum value and the minimum values S1, S2, S3... Obtained from the deviation water level fluctuation curve, and finally m is calculated so that the theoretical fluctuation curve matches the deviation water level fluctuation curve. However, m may be obtained from a theoretical fluctuation curve that matches the deviation water level fluctuation curve.
[0023]
In this way, the loss coefficient ξ of the drain pipe 18 is obtained in advance, and the discharge flow rate Q and the flow rate of the pump 10 obtained from this and the water level difference S0 = (H1−H2) between the pressure regulating water tank 14 and the discharge water area 16 FIG. 4 is a table comparing actual flow rates measured by the measuring means. The initial water level difference S0 was set to 0.307 m, 0.214 m, and 0.136 m, respectively. As a result, it has been found that a sufficiently accurate flow rate can be measured by the pump flow rate measuring method of the present invention.
[0024]
Next, another method for calculating and calculating the loss coefficient ξ of the drain pipe 18 by abruptly stopping the pump 10 as described above will be described. In order to measure and calculate the loss factor ξ, a vibration phenomenon in which the water level of the adjustment water tank 14 falls and rises may be generated. The second embodiment of the present invention shown in FIG. 5 is constructed from this viewpoint. FIG. 5 is a structural diagram of a second embodiment of the pump flow rate measuring apparatus of the present invention. In FIG. 5, the same or equivalent members as in FIG.
[0025]
In the structure of FIG. 5, a first on-off valve 32 is interposed in the drain pipe 18, and a second on-off valve 34 is interposed in the discharge pipe 12. When the loss coefficient ξ of the drain pipe 18 is measured and calculated, the first on-off valve 32 is closed, and the pump 10 is stopped with a delay. At the same time, the second on-off valve 34 is closed to stop the inflow from the pump 10. Then , a desired water level difference is set in the pressure regulating water tank 14 and the discharge water area 16. Then, the first on-off valve 32 is suddenly fully opened to cause a vibration phenomenon in the water level of the pressure regulating water tank 14. Therefore, it is possible to measure and calculate the loss coefficient ξ of the drain pipe 18 as in the first embodiment.
[0026]
In the above embodiment, the water level difference calculating means 24, the calculating means 26, the recording means 28, and the loss coefficient calculating means 30 are shown as different blocks, but these may be executed by a computer as the calculating means 26. Of course. Further, the loss coefficient ξ only needs to be measured and calculated in advance and recorded as data in the calculation means 26, and may be measured when the pump 10 is installed. After the measurement, the recording means 28 and the loss coefficient calculation means 30 are taken. May be removed .
[0027]
【The invention's effect】
As is apparent from the above description, the pump flow rate measuring method and the pump flow rate measuring apparatus of the present invention have the following special effects.
[0028]
In the pump flow rate measuring method according to claim 1, the inflow from the pump is stopped, and the drainage pipe is preliminarily determined from the deviation level fluctuation between the water level of the pressure regulating tank and the water level of the discharge water area and the fluid motion equation of the fluid in the drainage pipe. The loss coefficient ξ of the pump can be calculated, and the discharge flow rate of the pump can be measured from the loss factor ξ of the drainage pipe measured in advance and its cross-sectional area and the water level difference between the pressure-regulating tank and the discharge water area. The flow rate measurement is very easy. And the discharge piping straight pipe part for measuring the discharge flow rate of a pump correctly is not required, and installation space, such as a drainage facility, may be so narrow. Further, if the loss coefficient ξ of the drain pipe is measured and calculated again if necessary, an accurate flow rate can always be obtained.
[0029]
In the pump flow rate measuring method according to claim 2, the loss coefficient ξ of the drain pipe can be easily obtained by suddenly stopping the discharge of the pump and causing a vibration phenomenon of lowering and raising the water level of the pressure regulating water tank. Can be measured and calculated.
[0030]
Even in the pump flow rate measuring method according to claim 3, the inflow from the pump is stopped and the drainage pipe is shut off to provide a water level difference between the water level of the pressure regulating water tank and the water level of the discharge water area. By communicating and generating a vibration phenomenon that lowers and raises the water level of the pressure regulating water tank, it is possible to easily measure and calculate the loss coefficient ξ of the drain pipe.
[0031]
5. The pump flow rate measuring apparatus according to claim 4, wherein a measured value obtained from a first water level measuring means provided in the pressure regulating water tank and a second water level measuring means provided in the discharge water area is given to calculate a water level difference. Water level difference calculation means and recording means to record the deviation water level fluctuation curve according to the water level difference that occurs when the pump discharge is suddenly stopped, so using this deviation water level fluctuation curve, the loss factor of the drain pipe ξ can be easily calculated, and the discharge flow rate of the pump can be easily calculated using the loss coefficient ξ .
[0032]
In the pump flow rate measuring device according to claim 5, the measured value obtained from the first water level measuring means provided in the pressure regulating water tank and the second water level measuring means provided in the discharge water area is given, and the water level difference When the water level difference calculation means that calculates the water level and the water level difference between the water level in the regulated water tank and the water level in the discharge water area are stopped by stopping the inflow from the pump and shutting off the drain pipe, Since the recording means for recording the deviation water level fluctuation curve according to the generated water level difference is provided, it is possible to easily calculate the loss coefficient ξ of the drain pipe using this deviation water level fluctuation curve, and using this loss coefficient ξ The discharge flow rate of the pump can be easily calculated .
[Brief description of the drawings]
FIG. 1 is a structural diagram of a first embodiment of a pump flow rate measuring apparatus according to the present invention, where (a) shows the water level during steady operation of the pump, and (b) shows that the operation of the pump is suddenly stopped. (C) shows the state where the water level of the pressure regulating tank is raised again from the water level of the discharge water area, and (d) shows the state where the water level of the pressure regulating tank is again Shows a state where the water level is lower than the discharge water area.
FIG. 2 is a diagram showing a deviation water level fluctuation curve between a water level in a pressure regulating water tank and a water level in a discharge water area recorded in an oscilloscope.
FIG. 3 is a diagram showing a theoretical fluctuation curve of a deviation water level.
FIG. 4 is a table showing calculated values and measured values of the discharge flow rate of the pump according to the present invention.
FIG. 5 is a structural diagram of a second embodiment of the pump flow rate measuring apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Pump 12 Discharge piping 14 Pressure regulation tank 16 Drainage area 18 Drain pipe 20 1st water level measurement means 22 2nd water level measurement means 24 Water level difference calculation means 26 Calculation means 28 Recording means 30 Loss coefficient calculation means 32 1st opening / closing Valve 34 Second on-off valve

Claims (5)

ポンプの吐出配管が調圧水槽に接続され、この調圧水槽が排出水域に排水管で連通され、しかも前記排水管が前記排出水域の水面下にあって常に満水状態が保持される排水設備であって、前記ポンプの運転時における前記調圧水槽の水位H1と、前記排出水域の水位H2と、前記ポンプからの流入を停止した際に生ずる前記調圧水槽の水位と前記排出水域の水位との偏差水位変動および前記排水管内の流体の流体運動方程式から予め算出された前記排水管の損失係数ξと、前記排水管の断面積Aから、
により前記ポンプの吐出流量Qを算出することを特徴としたポンプ流量測定方法。
This is a drainage facility where the discharge pipe of the pump is connected to a pressure regulating water tank, this pressure regulating water tank is connected to the drainage water area by a drainage pipe, and the drainage pipe is below the surface of the drainage water area and is always kept full. The water level H1 of the pressure regulating water tank during operation of the pump, the water level H2 of the discharge water area, the water level of the pressure regulating water tank and the water level of the discharge water area that are generated when the inflow from the pump is stopped. Of the deviation water level and the loss coefficient ξ of the drain pipe calculated in advance from the fluid motion equation of the fluid in the drain pipe, and the sectional area A of the drain pipe,
A pump flow rate measuring method characterized in that the discharge flow rate Q of the pump is calculated by:
請求項1記載のポンプ流量測定方法において、前記ポンプの吐出を急激に停止させてた際に生ずる前記調圧水槽の水位と前記排出水域の水位との偏差水位変動と、その際の前記排水管内の流体の流体運動方程式から前記損失係数ξを予め算出しておくことを特徴としたポンプ流量測定方法。2. The pump flow rate measuring method according to claim 1, wherein a deviation level fluctuation between the water level of the pressure-regulating water tank and the water level of the discharge water area generated when the discharge of the pump is suddenly stopped, and the drain pipe at that time A pump flow rate measuring method, wherein the loss coefficient ξ is calculated in advance from the fluid motion equation of the fluid inside. 請求項1記載のポンプ流量測定方法において、前記ポンプからの流入を停止するとともに前記排水管を遮断して前記調圧水槽の水位と前記排出水域の水位に水位差を設け、前記排水管を急激に連通した際に生ずる前記調圧水槽の水位と前記排出水域の水位との偏差水位変動と、その際の前記排水管内の流体の流体運動方程式から前記損失係数ξを予め算出しておくことを特徴としたポンプ流量測定方法。2. The pump flow rate measuring method according to claim 1 , wherein the inflow from the pump is stopped, the drain pipe is shut off, a water level difference is provided between the water level of the pressure-regulating water tank and the water level of the discharge water area, and the drain pipe is rapidly The loss coefficient ξ is calculated in advance from the deviation water level fluctuation between the water level of the pressure-regulating water tank and the water level of the discharge water area generated when communicating with the fluid, and the fluid motion equation of the fluid in the drain pipe at that time A characteristic pump flow rate measurement method. ポンプの吐出配管が調圧水槽に接続され、この調圧水槽が排出水域に排水管で連通され、しかも前記排水管が前記排出水域の水面下にあって常に満水状態が保持される排水設備であって、前記調圧水槽にその水位H1を計測する第1の水位計測手段を設け、前記排出水域にその水位H2を計測する第2の水位計測手段を設け、前記第1と第2の計測手段の計測値が与えられてその水位差を演算する水位差演算手段と、前記水位差に応じた信号を与えられる記録手段を設け、この記録手段で、前記ポンプの吐出が急激に停止された際に生ずる前記調圧水槽の水位と前記排出水域の水位との偏差水位変動曲線を記録し、記録された偏差水位変動曲線と前記排水管内の流体の流体運動方程式より損失係数演算手段で予め損失係数ξを算出し、この損失係数ξを演算手段に設定し、前記第1と第2の計測手段の計測値を前記演算手段に与え、この演算手段で前記水位H1およびH2と、予め算出して設定された前記排水管の損失係数ξと、前記排水管の断面積Aと、から
により前記ポンプの吐出流量Qを算出するように構成したことを特徴とするポンプ流量測定装置。
This is a drainage facility where the discharge pipe of the pump is connected to a pressure regulating water tank, this pressure regulating water tank is connected to the drainage water area by a drainage pipe, and the drainage pipe is below the surface of the drainage water area and is always kept full. there are, the first water level measurement means for measuring the water level H1 is the pressure water tank is provided, the second water level measurement means for measuring the water level H2 in the discharge water provided, the first and second measurement The water level difference calculating means for calculating the water level difference given by the measured value of the means, and the recording means for receiving a signal corresponding to the water level difference are provided, and the discharge of the pump is suddenly stopped by this recording means. The deviation level fluctuation curve between the water level of the pressure-regulating water tank and the water level of the discharge water area generated at the time of recording is recorded, and the loss coefficient is calculated in advance by the loss coefficient calculation means from the recorded deviation level fluctuation curve and the fluid motion equation of the fluid in the drain pipe. Calculate the coefficient ξ Set coefficient ξ to the computing means, said first and given the measured value of the second measuring means to the calculating means, the water level H1 and H2 in this computing unit, calculates and have been of the drainage tube set in advance From the loss factor ξ and the cross-sectional area A of the drain pipe
The pump flow rate measuring apparatus is configured to calculate the discharge flow rate Q of the pump.
ポンプの吐出配管が調圧水槽に接続され、この調圧水槽が排出水域に排水管で連通され、しかも前記排水管が前記排出水域の水面下にあって常に満水状態が保持される排水設備であって、前記調圧水槽にその水位H1を計測する第1の水位計測手段を設け、前記排出水域にその水位H2を計測する第2の水位計測手段を設け、前記第1と第2の計測手段の計測値が与えられてその水位差を演算する水位差演算手段と、前記水位差に応じた信号を与えられる記録手段を設け、この記録手段で、前記ポンプからの流入を停止するとともに前記排水管を遮断して前記調圧水槽の水位と前記排出水域の水位に水位差を設け、前記排水管を急激に連通した際に生ずる前記調圧水槽の水位と前記排出水域の水位との偏差水位変動曲線を記録し、記録された偏差水位変動曲線と前記排水管内の流体の流体運動方程式より損失係数演算手段で予め損失係数ξを算出し、この損失係数ξ演算手段に設定し、前記第1と第2の計測手段の計測値を前記演算手段に与え、この演算手段で前記水位H1およびH2と、予め算出して設定された前記排水管の損失係数ξと、前記排水管の断面積Aと、から
により前記ポンプの吐出流量Qを算出するように構成したことを特徴とするポンプ流量測定装置。
This is a drainage facility where the discharge pipe of the pump is connected to a pressure regulating water tank, this pressure regulating water tank is connected to the drainage water area by a drainage pipe, and the drainage pipe is below the surface of the drainage water area and is always kept full. The first water level measuring means for measuring the water level H1 is provided in the pressure-regulating water tank, and the second water level measuring means for measuring the water level H2 is provided in the discharge water area. A water level difference calculating means for calculating the water level difference given by the measured value of the means, and a recording means for giving a signal corresponding to the water level difference, wherein the recording means stops the inflow from the pump and The drainage pipe is shut off to provide a water level difference between the water level of the pressure regulating water tank and the water level of the discharge water area, and the water level of the pressure regulating water tank and the water level of the discharge water area generated when the drain pipe is communicated rapidly The deviation water level fluctuation curve was recorded and recorded Calculating a pre-loss coefficient ξ in difference level variation curve and the drainage pipe of the fluid in the fluid motion equation than the loss coefficient calculation means sets the loss coefficient ξ to the arithmetic unit, measuring the first and second measuring means A value is given to the calculation means, and the calculation means calculates the water levels H1 and H2, the loss coefficient ξ of the drain pipe set in advance and the cross-sectional area A of the drain pipe.
The pump flow rate measuring apparatus is configured to calculate the discharge flow rate Q of the pump.
JP2001220188A 2001-07-19 2001-07-19 Pump flow rate measuring method and pump flow rate measuring device Expired - Lifetime JP4836103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001220188A JP4836103B2 (en) 2001-07-19 2001-07-19 Pump flow rate measuring method and pump flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001220188A JP4836103B2 (en) 2001-07-19 2001-07-19 Pump flow rate measuring method and pump flow rate measuring device

Publications (2)

Publication Number Publication Date
JP2003035575A JP2003035575A (en) 2003-02-07
JP4836103B2 true JP4836103B2 (en) 2011-12-14

Family

ID=19054046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001220188A Expired - Lifetime JP4836103B2 (en) 2001-07-19 2001-07-19 Pump flow rate measuring method and pump flow rate measuring device

Country Status (1)

Country Link
JP (1) JP4836103B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102386A (en) * 1988-10-11 1990-04-13 Meidensha Corp Flow rate measuring device
JP2794992B2 (en) * 1991-07-10 1998-09-10 富士電機株式会社 Liquid level control method and liquid level control device
JPH10185635A (en) * 1996-12-26 1998-07-14 Nec Eng Ltd Flow rate measuring system
JP3046558B2 (en) * 1997-03-25 2000-05-29 和夫 灘岡 Oscillating flow generator

Also Published As

Publication number Publication date
JP2003035575A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
US7757554B2 (en) High accuracy mass flow verifier with multiple inlets
US10094185B2 (en) Coriolis flow meter having flow tube with equalized pressure differential
JP6047738B1 (en) Open channel flow measuring device
Clemmens et al. Calibration of submerged radial gates
US5827977A (en) Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend
US20110022335A1 (en) Real-time non-stationary flowmeter
KR20090026136A (en) Critical flow based mass flow verifier
CN102016519A (en) Method for generating a diagnostic from a deviation of a flow meter parameter
BR112017017804B1 (en) METHOD FOR OPERATING A VIBRATORY FLOW METER, AND, METER ELECTRONICS
TW201937322A (en) Mass flow controller with absolute and differential pressure transducer
US20090055119A1 (en) System and method for flow profile calibration correction for ultrasonic flowmeters
JP2024023472A (en) Vapor pressure verification using fluid density measurement value
Safwat et al. Experimental and analytic data correlation study of water column separation
JP4836103B2 (en) Pump flow rate measuring method and pump flow rate measuring device
Adamkowski et al. Uncertainty analysis of liquid flow rate measurement with the pressure–time method
WO2020218138A1 (en) Flow rate control device
McCloy et al. Paper 23: Some Static and Dynamic Characteristics of Poppet Valves
CN109781445B (en) Method for determining flow area of thermostatic expansion valve
US11982556B2 (en) Wet gas flow rate metering method based on a coriolis mass flowmeter and device thereof
Kourakos et al. Two-phase flow modelling within expansion and contraction singularities
US11536598B2 (en) Time-accurate CFD enhanced interpretation of strain-based flow measurement
JPS6256354B2 (en)
JPS63195396A (en) Measuring method for pump performance
Yuan et al. Hydraulic design procedure for bypass flow meters using a pipe bend
NAKAO et al. Some Consideration on the Unsteady Flow Rate Measurement Using Wave Propagation Model in Pipeline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term