JP4835933B2 - Method for quantification of proteins and peptides with constituent amino acids - Google Patents

Method for quantification of proteins and peptides with constituent amino acids Download PDF

Info

Publication number
JP4835933B2
JP4835933B2 JP2006328763A JP2006328763A JP4835933B2 JP 4835933 B2 JP4835933 B2 JP 4835933B2 JP 2006328763 A JP2006328763 A JP 2006328763A JP 2006328763 A JP2006328763 A JP 2006328763A JP 4835933 B2 JP4835933 B2 JP 4835933B2
Authority
JP
Japan
Prior art keywords
peptide
protein
amino acid
amount
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006328763A
Other languages
Japanese (ja)
Other versions
JP2007155738A (en
Inventor
渉 谷
Original Assignee
一般社団法人 検査医学標準物質機構
梅本 雅夫
渉 谷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般社団法人 検査医学標準物質機構, 梅本 雅夫, 渉 谷 filed Critical 一般社団法人 検査医学標準物質機構
Priority to JP2006328763A priority Critical patent/JP4835933B2/en
Publication of JP2007155738A publication Critical patent/JP2007155738A/en
Application granted granted Critical
Publication of JP4835933B2 publication Critical patent/JP4835933B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、蛋白質又はペプチドを構成する特定アミノ酸量から、その蛋白質又はペプチド量を精度良く求める方法に関する。  The present invention relates to a method for accurately determining the amount of a protein or peptide from the amount of a specific amino acid constituting the protein or peptide.

蛋白質を定量する方法としては、ゲルクロマトグラフィーがある。本発明に近い定量方法として、蛋白質を分解して、アミノ酸から求める方法が知られている。
この例として、先行文献 No.1)John W.Baynes,Suzanne R .Thorpe,Martha H.Murtiashaw:Nonenzymatic Glucosylation of Lysine Residues in Alb umin,Methods in Enzymology,106:88−98,198 4.がある。しかし、この方法を修飾アミノ基を有する蛋白質又はペプチドに適用すると した場合、修飾アミノ酸の相当量も様々な形の化合物に分解されてしまうため、修飾基を 有する蛋白質又はペプチドを正しく、かつ精度良く定量する方法は、筆者らが、文献調査 した限り見当たらない。また、分解による効率は立体障害等に影響を受け、生成したアミ ノ酸量から蛋白量を一義的に決められるわけではない。
さらに、臨床検査でグリコアルブミン測定キットとして用いられている、プロテアーゼと ケトアミンオキシダーゼによる酵素的測定法がある。しかし、この方法での蛋白質の酵素 分解生成物は、アミノ酸とペプチドが混在したものであるため、糖化アミノ酸である糖化 リジンだけを得ることができず、かつ、分解も不完全であるため正確な定量が困難である
As a method for quantifying proteins, there is gel chromatography. As a quantitative method close to the present invention, a method is known in which a protein is decomposed and obtained from amino acids.
As an example of this, prior art No. 1) John W. Baynes, Suzanne R. Thorpe, Martha H .; 3. Muthashaw: Nonenzymatic Glucosylation of Lysine Residues in Album, Methods in Enzymology, 106: 88-98, 198 . There is. However, when this method is applied to a protein or peptide having a modified amino group, a considerable amount of the modified amino acid is also decomposed into various forms of compounds, so that the protein or peptide having the modified group is correctly and accurately detected. There is no method for quantification as long as the authors conducted a literature survey . Moreover, efficiency with decomposition influenced by steric hindrance or the like, not uniformly decided amount of protein from the resulting amino acid content.
Furthermore, there is an enzymatic measurement method using protease and ketoamine oxidase , which is used as a glycoalbumin measurement kit in clinical tests . However, since the enzymatic degradation product of the protein by this method is a mixture of amino acids and peptides, it is impossible to obtain only glycated lysine, which is a glycated amino acid , and the degradation is incomplete, so it is accurate. Quantification is difficult .

本発明の最終目的としては、ヘモグロビン、アルブミン等の血中蛋白質の糖化割合が糖尿病診断の指標となることから、その糖化率を高精度に測定する方法を開示することにある。
又、この目的を達成するための技術から、蛋白質、ペプチド等を高精度に測定することができることがわかったので、その方法を開示することにある。
The final object of the present invention is to disclose a method for measuring the saccharification rate with high accuracy since the glycation ratio of blood proteins such as hemoglobin and albumin is an index for diagnosis of diabetes.
Moreover, since it became clear from the technique for achieving this objective that protein, a peptide, etc. can be measured with high precision, it is providing the method.

本発明で対象とする試料は血液、血漿、血清、尿などが主であり、その中のグリコヘモグロビン、グリコアルブミン、アルブミン、グロブリン、C−ペプチド、インシュリンなどが主な測定対象となる。  The sample to be used in the present invention is mainly blood, plasma, serum, urine, etc., and glycohemoglobin, glycoalbumin, albumin, globulin, C-peptide, insulin, etc. therein are mainly measured.

発明が解決しようとする手段Means to be Solved by the Invention

本発明の骨格をなすものは、蛋白質を分解して、それを構成するアミノ酸を得、その中 から特定の修飾アミノ酸量を測定するのであるが、分解時に、目的の修飾アミノ酸の安定 同位体を加えておき、得られた修飾アミノ酸と残存する安定同位体との比を質量分析法で測定し、別に求めた検量線から目的の修飾アミノ酸を定量することを基本とする。
この時、アミノ酸がグルコースにより修飾されており、その糖化アミノ酸量を同様にして同位体比を質量分析法により求めれば、糖化蛋白質が求められる。
修飾基がグルコース以外であっても本発明を適用できる。
Those forming a framework of the present invention is to decompose the protein, to obtain the amino acids constituting them, but it is to measure certain modified amino acids amount among them, upon degradation, stable isotopes of modified amino acids of interest In addition, the ratio of the obtained modified amino acid to the remaining stable isotope is measured by mass spectrometry, and the target modified amino acid is quantified from a separately obtained calibration curve.
At this time, the amino acid is modified with glucose, and if the amount of glycated amino acid is similarly determined by mass spectrometry, the glycated protein is obtained.
The present invention can be applied even when the modifying group is other than glucose.

本発明では蛋白質をアミノ酸に分解しなければならないが、その分解方法には酵素分解、酸分解、アルカリ分解等がある。そのいずれも適用できるが、酵素分解は、特異性が高いものの、分解が不十分なため多くの場合、目的とするアミノ酸又は糖化アミノ酸が得ら れても、それから逆算して蛋白質、ペプチドを求められない。
そこで多くは、酸分解又はアルカリ分解が用いられているが、これらの方法では、修飾アミノ酸の修飾基が分解するため、一般に水素化又はシアノ化して分解率を減少させる方法がとられる。それでも分解が起きるため、目的とする修飾アミノ酸の測定の糖度は極めて悪い。そこで発明者らは、分解時に修飾アミノ酸の安定同位体を加えて、分解を補償し てやれば、それとの比を測定することによって精度が格段に高くなることを見い出した。修飾蛋白質量は一般には、目的蛋白の総量との比で求められる。本発明では、この比を高精度に求める方法についても開示する。
In the present invention, proteins must be decomposed into amino acids, and examples of the decomposition methods include enzyme decomposition, acid decomposition, and alkali decomposition. Its Although both can be applied, enzymatic degradation, specificity is high casting, often for decomposition is insufficient, even amino acid or glycated amino acid and an object is being obtained, et al., Then back-calculated to proteins, peptides It is not required.
Therefore, acid decomposition or alkali decomposition is used in many cases. However, in these methods, since the modifying group of the modified amino acid is decomposed, generally, hydrogenation or cyanation is used to reduce the decomposition rate. However, since decomposition occurs, the sugar content of the target modified amino acid is extremely poor. Thus, the inventors have found that if a stable isotope of a modified amino acid is added at the time of decomposition to compensate for the decomposition, the accuracy is remarkably increased by measuring the ratio . The amount of modified protein is generally determined by the ratio to the total amount of the target protein. The present invention also discloses a method for obtaining this ratio with high accuracy.

血清蛋白質の主成分であるアルブミンの本発明による定量例について述べる。
ゲルろ過クロマトグラフィーまたはイオン交換クロマトグラフィーにより血清からアルブミンをリン酸塩等の溶離液を用いて分離した後、限外ろ過法により溶離液成分を水で洗浄除去してアルブミンの精製溶液を得る。この溶液にアルブミンを構成する主たるアミノ酸の安定同位体を一定量添加して十分に混和、均一化したものを封管用のガラス管に移し、塩酸を加えて窒素等の不活性ガスでパージしてから減圧状態で封管後、加温して加水分解する。
An example of quantification of albumin, which is the main component of serum protein, according to the present invention will be described.
After separating albumin from serum using an eluent such as phosphate by gel filtration chromatography or ion exchange chromatography, the eluent components are washed away with water by ultrafiltration to obtain a purified solution of albumin. Add a certain amount of stable isotopes of the main amino acids constituting albumin to this solution, mix well, transfer to a sealed glass tube, add hydrochloric acid, and purge with an inert gas such as nitrogen. From the sealed tube under reduced pressure, it is heated and hydrolyzed.

加水分解が終了した封管内の塩酸と水を減圧除去した得られた乾固物をギ酸等の液体クロマトグラフィー質量分析法(LC/MS)に適した溶液に溶解したものについて、アルブミン中に含まれていたアミノ酸と添加した安定同位体のアミノ酸それぞれに由来する質量のイオンの同位体強度比をLC/MSで測定する。自然界の同位体組成からなるアミノ酸の標準液にアミノ酸の安定同位体を一定量添加して調製した複数の同位体比組成の検量溶液について、同様に同位体強度比をLC/MSで測定して得られた検量線からアルブミン精製溶液中のアミノ酸のモル濃度を求める。
測定したアミノ酸のモル濃度を、アルブミン1分子を構成するそのアミノ酸の個数で除してアルブミン精製溶液中のアルブミンのモル濃度が求まる。
Hydrolyzed hydrochloric acid and water in a sealed tube that has been hydrolyzed are removed under reduced pressure. The resulting dried product dissolved in a solution suitable for liquid chromatography mass spectrometry (LC / MS) such as formic acid is contained in albumin. The isotope intensity ratio of the ions of mass derived from each of the added amino acid and the added stable isotope amino acid is measured by LC / MS. For a calibration solution with multiple isotope ratio compositions prepared by adding a certain amount of stable isotopes of amino acids to a standard amino acid solution consisting of natural isotope compositions, the isotopic intensity ratios were similarly measured by LC / MS. The molar concentration of amino acid in the albumin purification solution is determined from the obtained calibration curve.
The measured molar concentration of amino acid is divided by the number of amino acids constituting one molecule of albumin to determine the molar concentration of albumin in the purified albumin solution.

アルブミンを構成するアミノ酸の1種であるリジンにグルコースが修飾された糖化アルブミンの本発明による定量例について述べる。  A quantitative example according to the present invention of glycated albumin in which glucose is modified with lysine, which is one of the amino acids constituting albumin, will be described.

ゲルろ過クロマトグラフィーまたはイオン交換クロマトグラフィーにより血清からアルブミンをリン酸塩等の溶離液を用いて分離した後、限外ろ過法により溶離液成分を水で洗浄除去してアルブミンの精製溶液を得る。この溶液に糖化リジンの安定同位体を一定量添加して十分に混和、均一化したものに、水素化ホウ素ナトリウムのアルカリ溶液を加え室温で4時間かけて水素化する。これを封管用のガラス管に移し、塩酸を加えて窒素等の不活性ガスでパージしてから減圧状態で封管後、加温して加水分解する。  After separating albumin from serum using an eluent such as phosphate by gel filtration chromatography or ion exchange chromatography, the eluent components are washed away with water by ultrafiltration to obtain a purified solution of albumin. To this solution, a certain amount of a stable isotope of glycated lysine is added and mixed thoroughly and homogenized, and then an alkali solution of sodium borohydride is added and hydrogenated at room temperature for 4 hours. This is transferred to a glass tube for sealing, added with hydrochloric acid and purged with an inert gas such as nitrogen, sealed in a reduced pressure state, heated and hydrolyzed.

加水分解が終了した封管内の塩酸と水を減圧除去した得られた乾固物をギ酸等のLC/MSに適した溶液に溶解したものについて、アルブミン中に含まれていた糖化リジンと添加した安定同位体の糖化リジンそれぞれに由来する質量のイオンの同位体強度比をLC/MSで測定する。自然界の同位体組成からなる糖化リジンの標準液に糖化リジンの安定同位体を一定量添加して調製した複数の同位体比組成の検量溶液について、同様に同位体強度比をLC/MSで測定して得られた検量線からアルブミン精製溶液中の糖化リジンのモル濃度を求める。  Hydrochloric acid and water in the sealed tube after hydrolysis were removed under reduced pressure, and the resulting dried product dissolved in a solution suitable for LC / MS such as formic acid was added with glycated lysine contained in albumin. The isotope intensity ratio of ions of mass derived from each stable isotope glycated lysine is measured by LC / MS. Similarly, LC / MS measures the isotope intensity ratio of a calibration solution with multiple isotope ratio compositions prepared by adding a fixed amount of a stable isotope of glycated lysine to a standard solution of glycated lysine having a natural isotope composition The molar concentration of glycated lysine in the albumin purification solution is determined from the calibration curve obtained in this way.

測定した糖化リジンのモル濃度をアルブミン精製溶液中のアルブミンのモル濃度で除して、糖化アルブミンをアルブミン1分子当たりの糖化リジン数として求める。  The measured glycated lysine molar concentration is divided by the molar concentration of albumin in the albumin purification solution to determine glycated albumin as the number of glycated lysine per molecule of albumin.

発明の実施態様Embodiment of the Invention

アフィニティクロマトグラフィー、ゲルろ過クロマトグラフィー、イオン交換クロマトグラフィー、逆相クロマトグラフィー、薄相クロマトグラフィー、電気泳動法等により、目的蛋白質(又はペプチド)を他の蛋白質から分離精製する。
そこから、数mg相当量の目的蛋白質を含む液を密封容器に量り取り、定量しようとす る修飾アミノ酸の安定同位体を、すでに量り取った目的たんぱく質に含まれる修飾アミノ 相当量を加える。修飾アミノ酸量は市販日常法の測定値から推定できる。の後、水素 化ホウ素ナトリウムを加えて修飾アミノ酸をより安定な水素化物にする。
そこに、終濃度が4〜6Mになるように塩酸を加え、窒素ガス下で封管し、110〜120℃にて、15〜24時間加熱分解する。
分解後、容器を開封し、温浴中、減圧下で塩酸を含む水を蒸発乾固する。
5mMヘプタフルオロ酪酸(LC/MSの感度が得られ、妨害がなければ他の溶媒でもよい)に溶解し、液体クロマトグラフ質量分析計(LC/MS)に注入し、測定する。
The target protein (or peptide) is separated and purified from other proteins by affinity chromatography, gel filtration chromatography, ion exchange chromatography, reverse phase chromatography, thin phase chromatography, electrophoresis or the like.
From there, weighed liquid containing the desired protein having mg equivalent amount in a sealed container, a stable isotope of the modified amino acids you attempt to quantify added already modified amino acids corresponding amount included in the target protein were weighed. The amount of modified amino acid can be estimated from the measured values of commercially available daily methods. Later, the modified amino acid to the more stable hydride by adding sodium borohydride.
Thereto, hydrochloric acid is added so as to have a final concentration of 4 to 6 M, sealed under nitrogen gas, and thermally decomposed at 110 to 120 ° C. for 15 to 24 hours.
After decomposition, the container is opened, and water containing hydrochloric acid is evaporated to dryness in a warm bath under reduced pressure.
Dissolve in 5 mM heptafluorobutyric acid (LC / MS sensitivity can be obtained, other solvents may be used if there is no interference), inject into a liquid chromatograph mass spectrometer (LC / MS), and measure.

図1 アルブミン中糖化リジンの測定手順
カラム:Shim−pac HP−5(5μm,0.2mm i.d.×150mm L)
溶離液:(A)0.05%HFBA (B)アセトニトリル を混合する溶媒グラジエント
流量:0.2mL/min 試料注入量:1μL イオン化法:ESI
同位体比の測定:SIMモードでの面積比測定 R=311M/317M
R=147M /151M
図2 本法と、市販測定法(酵素法)との一致の度合い
G/A比はアルブミン結合糖化リジンとアルブミンのモル比を示す。
G及びAは実施例1により求めた。
FIG. 1 Procedure for measuring glycated lysine in albumin Column: Shim-pac HP-5 (5 μm, 0.2 mm id × 150 mm L)
Eluent: (A) 0.05% HFBA (B) Solvent gradient mixed with acetonitrile Flow rate: 0.2 mL / min Sample injection amount: 1 μL Ionization method: ESI
Measurement of the isotope ratio: area ratio in the SIM mode measurement R = 311M + / 317M +
R = 147M + / 151M +
FIG. 2 The degree of agreement G / A ratio between this method and a commercial measurement method (enzyme method) indicates the molar ratio of albumin-linked glycated lysine and albumin.
G and A were determined according to Example 1.

ゲルろ過クロマトカラムに溶離液(150mM NaSOを含む30mM りん酸緩衝液,pH6.87)を0.8ml/min流した条件で、血清25uLを注入して波長280nmでモニターしながら分子量6万から7万のアルブミンを含む約8mLの分取液を得た。次に遠心限外ろ過フィルターによりその分取液中の分子量5千以下の溶離液成分を水で洗浄除去して、アルブミンの精製溶液180uLを得た。A gel filtration chromatography column was injected with 25 uL of serum and monitored at a wavelength of 280 nm under the condition that an eluent (30 mM phosphate buffer containing 150 mM Na 2 SO 4 , pH 6.87) was flowed at 0.8 ml / min. An approximately 8 mL aliquot containing 10,000 to 70,000 albumin was obtained. Next, an eluent component having a molecular weight of 5,000 or less in the fractionated solution was washed and removed with water using a centrifugal ultrafiltration filter to obtain 180 uL of a purified albumin solution.

封管用のガラス管に上記アルブミンの精製溶液(アルブミンの推定量1mg相当量)を量り取り、リジンの安定同位体である4,4,5,5−D4−リジン溶液(アルブミン1mg中のリジン量相当分)及び13−グルコースで糖化した糖化リジン安定同位体用(アルブミン1mg中の糖化リジン推定量)を添加して、十分に混和、均一化したものに、水素化ホウ素ナトリウムのアルカリ溶液を加え室温で4時間かけて水素化する。そこに終濃度が5Mになるように10M塩酸を加えガスバーナーによりN2ガス減圧下で封乾後、110度に設定した加温器内で20時間保持してアルブミンのペプチド結合を加水分解する。Weigh the above purified albumin solution (equivalent to 1 mg of estimated albumin amount) into a glass tube for sealed tube, and add 4,4,5,5-D4-lysine solution (lysine amount in 1 mg of albumin) which is a stable isotope of lysine. Saccharified lysine saccharified with 13 C 6 -glucose (estimated amount of saccharified lysine in 1 mg of albumin) and mixed thoroughly and homogenized into an alkaline solution of sodium borohydride And hydrogenated at room temperature over 4 hours. Thereto is added 10M hydrochloric acid so that the final concentration is 5M, and it is sealed and dried under a reduced pressure of N2 gas with a gas burner, and then kept in a heater set at 110 ° C. for 20 hours to hydrolyze the peptide bond of albumin.

加水分解が終了した封管を開封して45℃の水浴中に保ち、水流減圧ポンプに接続して塩酸と水を揮発除去した得られた乾固物を、5mM HFBA(ヘプタフルオロ酪酸)500uLに溶解したものをLC/MS測定溶液とした。  The sealed tube after the hydrolysis was opened and kept in a 45 ° C. water bath, and the dried product obtained by volatilizing and removing hydrochloric acid and water by connecting to a water flow vacuum pump was transferred to 500 μL of 5 mM HFBA (heptafluorobutyric acid). The dissolved one was used as an LC / MS measurement solution.

アルブミン中に含まれていた自然界の同位体組成のリジン及び糖化リジンと添加した安定同位体の4,4,5,5−D−リジン及び13−グルコースで糖化したリジンの 各々がイオン化したプロトン付加分子イオンの同位体強度比をLC/MSで測定した。高純度のリジン(シグマ社、純度98%以上)及び糖化リジン(自家合成、精製品)の混合標準液に4,4,5,5−D4−リジン及び 13 −グルコースで糖化したリジンを添加して調製した3種の同位体比組成(同位体比0.8,1.0,1.2)の検量溶液について、同様に同位体強度比を測定して得られた検量線からアルブミン精製溶液中のリジン及び糖化リジンのモル濃度を求めた。測定したリジンのモル濃度を、アルブミン1分子を構成するリジンの個数59で除してアルブミン精製溶液中のアルブミンのモル濃度を求めた。これらの結果と測定条件をそれぞれ図2、図1に示した。図2は、酵素的方法により 、糖化アルブミン量を求める従来技術と、本法による比較を示したもので、本法と従来法 の間に根源的な矛盾は見られない。
この実施例では、糖化アルブミン量と総アルブミン量とを同時に求めたが、糖化アルブミンのみ、又は総アルブミン量のみを別々に求めることもできる。また、この場合アミノ酸はリジンに限ることはなく、他のアミノ酸を測定対象としてもよい(例えば、アラニン、ロイシンなど安定なアミノ酸がよい)。
Each of lysine glycated with lysine and glycated lysine of natural isotopic composition and added stable isotopes 4,4,5,5-D 4 -lysine and 13 C 6 -glucose contained in albumin is ionized. The isotope intensity ratio of the protonated molecular ions was measured by LC / MS. Lysine glycated with 4,4,5,5-D4-lysine and 13 C 6 -glucose in a mixed standard solution of high-purity lysine (Sigma, purity 98% or more) and glycated lysine (self-synthesized, purified product) For a calibration solution with three isotope ratio compositions (isotope ratios 0.8, 1.0, 1.2) prepared by addition, albumin was obtained from a calibration curve obtained by measuring the isotope intensity ratio in the same manner. The molar concentration of lysine and saccharified lysine in the purified solution was determined. The measured molar concentration of lysine was divided by the number 59 of lysine constituting one molecule of albumin to determine the molar concentration of albumin in the purified albumin solution. These results and measurement conditions are shown in FIGS. 2 and 1, respectively. FIG. 2 shows a comparison between the conventional method for determining the amount of glycated albumin by an enzymatic method and the present method, and there is no fundamental contradiction between the present method and the conventional method .
In this example, the amount of glycated albumin and the total amount of albumin were determined simultaneously, but only the amount of glycated albumin or only the amount of total albumin can also be determined separately. In this case, the amino acid is not limited to lysine, and other amino acids may be measured (for example, stable amino acids such as alanine and leucine may be used).

Claims (6)

蛋白質又はペプチドを含む溶液に、蛋白質又はペプチドを構成する特定の修飾アミノ酸の安定同位体を添加し、次に蛋白質又はペプチドの酸分解又はアルカリ分解操作を行って後に得られるその修飾アミノ酸量と、添加した安定同位体の残存する量との比を質量分析法で測定し、別に目的の修飾アミノ酸量とその安定同位体量の比について求めた検量線より、その修飾アミノ酸量を求め、蛋白質又はペプチド1分子を構成する特定修飾アミノ酸数から逆算して、目的の蛋白質又はペプチド量を求める蛋白質・ペプチドの定量方法。Adding a stable isotope of a specific modified amino acid constituting the protein or peptide to a solution containing the protein or peptide, and then performing an acid decomposition or alkali decomposition operation of the protein or peptide; The ratio of the added stable isotope to the remaining amount is measured by mass spectrometry, and the amount of the modified amino acid is obtained from a calibration curve obtained for the ratio of the desired amount of the modified amino acid and the amount of the stable isotope. A protein / peptide quantification method for calculating the target protein or peptide amount by back-calculating from the number of specific modified amino acids constituting one peptide molecule. 前記分解方法が、酸分解又はアルカリ分解であり、かつ修飾基を水素化物又はシアン化物で還元又はシアノ化した後に、分解操作を行う請求項1記載の蛋白質・ペプチドの定量方法。  The protein / peptide quantification method according to claim 1, wherein the decomposition method is acid decomposition or alkali decomposition, and the decomposition operation is performed after the modifying group is reduced or cyanated with hydride or cyanide. 前記修飾基がグルコースである請求項2記載の蛋白質・ペプチドの定量方法。  The method for quantifying proteins and peptides according to claim 2, wherein the modifying group is glucose. 請求項1の操作によって特定のアミノ酸量及びそのアミノ酸の修飾アミノ酸量を求めて両者の比もしくは、修飾アミノ酸量と両者の和との比を計算し、当該蛋白質又はペプチドのうち、修飾したものの割合を求める蛋白質・ペプチドの定量方法。  The specific amino acid amount and the modified amino acid amount of the amino acid are determined by the operation of claim 1, and the ratio of both or the ratio of the modified amino acid amount and the sum of the two is calculated, and the ratio of the protein or peptide modified. For quantifying proteins and peptides. 前記溶液が混合蛋白質又はペプチドを含む場合、目的の蛋白質又はペプチドと、他の共存する蛋白質又はペプチドとをあらかじめ分離精製後、請求項1ないし4の操作を行う蛋白質又はペプチドの定量方法。  5. A method for quantifying a protein or peptide according to claim 1, wherein when the solution contains a mixed protein or peptide, the target protein or peptide and another coexisting protein or peptide are separated and purified in advance, and then the operation according to any one of claims 1 to 4 is performed. 分離精製法が、イオン交換分離法、ゲルろ過法、沈殿法、電気泳動法、薄層クロマトグラフィー、アフィニティークロマトグラフィーのいずれか又は組合せである請求項5記載の蛋白質・ペプチドの定量方法。  6. The protein / peptide quantification method according to claim 5, wherein the separation / purification method is any one or a combination of ion exchange separation method, gel filtration method, precipitation method, electrophoresis method, thin layer chromatography and affinity chromatography.
JP2006328763A 2005-11-10 2006-11-07 Method for quantification of proteins and peptides with constituent amino acids Expired - Fee Related JP4835933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006328763A JP4835933B2 (en) 2005-11-10 2006-11-07 Method for quantification of proteins and peptides with constituent amino acids

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005355393 2005-11-10
JP2005355393 2005-11-10
JP2006328763A JP4835933B2 (en) 2005-11-10 2006-11-07 Method for quantification of proteins and peptides with constituent amino acids

Publications (2)

Publication Number Publication Date
JP2007155738A JP2007155738A (en) 2007-06-21
JP4835933B2 true JP4835933B2 (en) 2011-12-14

Family

ID=38240259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006328763A Expired - Fee Related JP4835933B2 (en) 2005-11-10 2006-11-07 Method for quantification of proteins and peptides with constituent amino acids

Country Status (1)

Country Link
JP (1) JP4835933B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6298280B2 (en) * 2013-12-05 2018-03-20 株式会社堀場エステック Gas chromatograph and intermediate processing equipment for gas chromatograph

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4183116B2 (en) * 2002-06-18 2008-11-19 旭化成ファーマ株式会社 Calibration material for glycated protein measurement and standard measurement method
JP4183197B2 (en) * 2002-06-18 2008-11-19 旭化成ファーマ株式会社 Method for measuring glycated albumin

Also Published As

Publication number Publication date
JP2007155738A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
EP2098859B1 (en) Method for quantification of peptide and protein
EP3067692B1 (en) Analysis of amino acids in body fluid by liquid chromatography-mass spectrometry (lc-ms)
WO2012111249A1 (en) Method for detecting mass change in mass spectrometry method and method for quantifying absolute amount of stable isotope-labeled protein
JP2006300758A (en) Method for quantitatively determining target protein contained in living body origin sample by using internal standard peptide
Jansson Strategies for analysis of isomeric peptides
CN108445071B (en) High-accuracy glycosylated hemoglobin standard substance valuing method
Gahoual et al. Independent highly sensitive characterization of asparagine deamidation and aspartic acid isomerization by sheathless CZE‐ESI‐MS/MS
JP2010509567A (en) Compounds and methods for double labeling of polypeptides to allow multiplexing in mass spectrometry analysis
US8501487B2 (en) Composition for use as a peptide retention standard and a method of predicting peptide hydrophobicity in liquid chromatography
AU2002240866B2 (en) Inverse labeling method for the rapid identification of marker/target proteins
US20110245461A1 (en) Methods for determining the retention of peptides in reverse phase chromatography using linear solvent strength theory
JPS62209055A (en) Amino acid derivative mixture and production thereof
Song et al. Quantitative analysis of therapeutic proteins in biological fluids: recent advancement in analytical techniques
JP4835933B2 (en) Method for quantification of proteins and peptides with constituent amino acids
JP2008157905A (en) Quantity determination method for protein and peptide in biological sample, by addition method
Zmatliková et al. Non-enzymatic posttranslational modifications of bovine serum albumin by oxo-compounds investigated by high-performance liquid chromatography–mass spectrometry and capillary zone electrophoresis–mass spectrometry
JP4659040B2 (en) In-gel labeling and in-gel isolation method for analysis of phosphorylated protein and protein phosphorylation site identification method using the same
US20230366889A1 (en) Methods of detecting isoaspartic acid
JP7173452B2 (en) Method for analyzing carboxyl-terminal amino acids
JP7419340B2 (en) Use of LC-MS/MS to quantify protein biomarkers
Zhang et al. A novel class of chemically modified iodo‐containing resins: design, synthesis and application to mass spectrometry‐based proteome analysis
JP7318171B2 (en) Method for analyzing carboxyl-terminal amino acids
WO2007122250A1 (en) Method for determing the ratio of two distinct peptides or polynucleic acids
Bults et al. Quantification of biopharmaceuticals and biomarkers in complex biological matrices: a comparison of LC-MS/MS and ligand binding assays
Steckel et al. Detection of protein posttranslational modifications by mass spectrometry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20171007

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees