JP4835326B2 - Method for producing grain-oriented electrical steel sheet - Google Patents

Method for producing grain-oriented electrical steel sheet Download PDF

Info

Publication number
JP4835326B2
JP4835326B2 JP2006230845A JP2006230845A JP4835326B2 JP 4835326 B2 JP4835326 B2 JP 4835326B2 JP 2006230845 A JP2006230845 A JP 2006230845A JP 2006230845 A JP2006230845 A JP 2006230845A JP 4835326 B2 JP4835326 B2 JP 4835326B2
Authority
JP
Japan
Prior art keywords
steel sheet
oriented electrical
electrical steel
grain
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006230845A
Other languages
Japanese (ja)
Other versions
JP2008050676A (en
Inventor
高島  稔
多津彦 平谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006230845A priority Critical patent/JP4835326B2/en
Publication of JP2008050676A publication Critical patent/JP2008050676A/en
Application granted granted Critical
Publication of JP4835326B2 publication Critical patent/JP4835326B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/33Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、方向性電磁鋼板の製造方法に関し、特に方向性電磁鋼板の仕上焼鈍板の表面に適切な張力付与型絶縁被膜を形成することにより、磁歪の圧縮応力特性を改善しようとするものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet, and in particular, to improve the compressive stress characteristic of magnetostriction by forming an appropriate tension-imparting insulating coating on the surface of the finish-annealed sheet of the grain-oriented electrical steel sheet. is there.

方向性電磁鋼板の磁歪は、鋼板を交流電流にて磁化する際に鋼板が伸縮振動する現象で、変圧器騒音の最も大きな原因となっている。
この磁歪の原因は、鋼板の磁化過程が90°磁壁移動と回転磁化を含むことに起因しており、鋼板に圧縮応力が付加されると磁歪は一層増大する。通常、変圧器組み立て時には鋼板に不可避的に圧縮応力が付加されるため、予め鋼板に引っ張り応力を与えておくことで、騒音は改善される。
Magnetostriction of a grain-oriented electrical steel sheet is a phenomenon in which the steel sheet expands and contracts when the steel sheet is magnetized with an alternating current, and is the largest cause of transformer noise.
The cause of this magnetostriction is that the magnetization process of the steel sheet includes 90 ° domain wall motion and rotational magnetization, and the magnetostriction further increases when compressive stress is applied to the steel sheet. Usually, when a transformer is assembled, a compressive stress is inevitably applied to the steel plate, so that the noise is improved by applying a tensile stress to the steel plate in advance.

一般に、方向性電磁鋼板は、フォルステライト被膜とリン酸塩被膜の二重被膜を有している。
このうち、フォルステライト被膜は、表面にサブスケール(SiO2)が形成された脱炭焼鈍板の表面にマグネシアを含有する焼鈍分離剤を塗布し、1200℃程度のバッチ焼鈍(以下、仕上焼鈍とよぶ)を施すことにより、形成される。
一方、リン酸塩被膜は、リン酸塩を含有する塗布液をフォルステライト被膜上に塗布し、焼き付けることにより形成される。
In general, a grain-oriented electrical steel sheet has a double film of a forsterite film and a phosphate film.
Among these, forsterite coating is applied with an annealing separator containing magnesia on the surface of a decarburized annealing plate with subscale (SiO 2 ) formed on the surface, and batch annealing at about 1200 ° C (hereinafter referred to as finish annealing). Formed).
On the other hand, the phosphate coating is formed by applying and baking a coating solution containing phosphate on the forsterite coating.

従来、磁歪の応力特性を改善するために、鋼板に張力を付与する方法がいくつか提案されている。
例えば、特許文献1には、コロイド状シリカ、リン酸アルミニウムおよび無水クロム酸を有する塗布液を、フォルステライト被膜を有する仕上焼鈍板の表面に塗布し、800℃から900℃で焼き付ける方法が提案されている。
また、特許文献2には、コロイド状シリカおよびリン酸マグネシウムを有する塗布液を、フォルステライト被膜を有する仕上焼鈍板の表面に塗布し、800℃から900℃で焼き付ける方法が提案されている。
特開昭48−39338号公報 特開昭50−79442号公報
Conventionally, several methods for applying tension to a steel sheet have been proposed in order to improve the stress characteristics of magnetostriction.
For example, Patent Document 1 proposes a method in which a coating liquid containing colloidal silica, aluminum phosphate and chromic anhydride is applied to the surface of a finish annealing plate having a forsterite coating and baked at 800 ° C. to 900 ° C. ing.
Patent Document 2 proposes a method in which a coating liquid containing colloidal silica and magnesium phosphate is applied to the surface of a finish annealing plate having a forsterite film and baked at 800 to 900 ° C.
JP-A-48-39338 JP-A-50-79442

近年、変圧器の低騒音化に対する要求は、益々厳しくなっており、上記したような従来の磁歪の圧縮応力特性改善技術では、対応が不十分となってきた。
本発明は、上記の実情に鑑み開発されたもので、方向性電磁鋼板における磁歪の圧縮応力特性を大幅に改善することができる方向性電磁鋼板の新規な製造方法を提案することを目的とする。
In recent years, the demand for transformer noise reduction has become increasingly severe, and the conventional techniques for improving compressive stress characteristics of magnetostriction as described above have been insufficiently supported.
The present invention has been developed in view of the above circumstances, and an object thereof is to propose a novel method for producing a grain-oriented electrical steel sheet capable of greatly improving the compressive stress characteristic of magnetostriction in the grain-oriented electrical steel sheet. .

以下、本発明の解明経緯について説明する。
さて、発明者らは、上記の課題を解決するために、まず、りん酸塩被膜の焼付け条件について検討した。
その結果、通常800〜900℃程度であるリン酸塩被膜の焼付け温度を、900℃以上 1100℃以下程度、望ましくは960℃以上 1070℃以下まで高温化し、焼付け時間を制御することによって、磁歪の圧縮応力特性が大幅に改善されることを見出した。
The elucidation process of the present invention will be described below.
Now, in order to solve the above-mentioned problems, the inventors first examined the baking conditions for the phosphate coating.
As a result, the baking temperature of the phosphate coating, which is usually about 800 to 900 ° C., is increased to 900 ° C. or more and about 1100 ° C. or less, preferably 960 ° C. or more and 1070 ° C. or less. It has been found that the compressive stress properties are greatly improved.

しかしながら、一方で、磁歪の圧縮応力特性が改善される焼付け条件では、鉄損が著しく劣化することも明らかとなった。
そこで、発明者らは、次にその原因について詳細な検討を行った。
その結果、フォルステライト被膜中やフォルステライト被膜と地鉄の界面に存在するSが鉄損劣化の原因であること、すなわち方向性電磁鋼板の組成にも鉄損劣化の一因があることが明らかになった。
However, on the other hand, it was also found that the iron loss is significantly deteriorated under the baking condition in which the compressive stress characteristic of magnetostriction is improved.
Therefore, the inventors then performed a detailed study on the cause.
As a result, it is clear that S present in the forsterite film or at the interface between the forsterite film and the ground iron is the cause of iron loss deterioration, that is, the composition of the grain-oriented electrical steel sheet also contributes to iron loss deterioration. Became.

すなわち、Sは、インヒビターとして製鋼段階で鋼中に添加され、また積極的に添加しなくても不純物としてある程度鋼中に存在する。さらに、焼鈍分離剤中にも不純物として存在する。フォルステライト被膜・地鉄界面のSは、このようなSが仕上焼鈍後も残留したものであり、積極的に添加しなくても25ppm超存在し、インヒビターとして用いる場合にはさらに多量に残留する。
焼付け温度が900℃以上になると、この界面に存在するSが地鉄中に拡散・固溶し、焼き付け後の冷却時に地鉄中に微細に析出して、鉄損を劣化させるものと考えられる。
本発明は、上記の知見に立脚するものである。
That is, S is added to the steel as an inhibitor in the steel making stage, and is present to some extent as an impurity in the steel even if not actively added. Furthermore, it exists as an impurity in the annealing separator. The S at the forsterite coating / steel interface remains after the finish annealing, and even if it is not actively added, it exists in excess of 25 ppm. When used as an inhibitor, it remains in a larger amount. .
When the baking temperature is 900 ° C. or higher, S existing at this interface diffuses and dissolves in the steel, and is finely precipitated in the steel during cooling after baking, thereby deteriorating iron loss. .
The present invention is based on the above findings.

本発明は、上記の知見に立脚して開発されたものである。
すなわち、本発明は、表面にフォルステライト被膜を有する方向性電磁鋼板の仕上焼鈍板の表面に、張力付与型絶縁被膜処理液を塗布、焼き付けることからなる方向性電磁鋼板の製造方法において、
(1) フォルステライト被膜を含む仕上焼鈍板の板厚平均S濃度を25ppm以下とすること、
(2) 張力付与型絶縁被膜処理液が、金属リン酸塩とシリカを主成分とする水溶液であって、リン酸とシリカのモル比(P205/SiO2)が0.15〜4.0であること、
(3) 焼付け温度が900℃以上 1100℃以下であって、該温度域に5秒以上 600秒以下の時間保持すること、
を特徴とする方向性電磁鋼板の製造方法である。
The present invention has been developed based on the above findings.
That is, the present invention is a method for producing a grain-oriented electrical steel sheet comprising applying and baking a tension-imparting insulating coating treatment liquid on the surface of a finish annealing plate of a grain-oriented electrical steel sheet having a forsterite coating on the surface,
(1) The thickness average S concentration of the finish annealed sheet containing the forsterite film should be 25 ppm or less,
(2) The tension-imparting insulating coating solution is an aqueous solution mainly composed of metal phosphate and silica, and the molar ratio of phosphoric acid to silica (P 2 0 5 / SiO 2 ) is 0.15 to 4.0 thing,
(3) The baking temperature is 900 ° C. or more and 1100 ° C. or less, and the temperature range is maintained for 5 seconds or more and 600 seconds or less,
This is a method for producing a grain-oriented electrical steel sheet characterized by the following.

本発明に従い、フォルステライト被膜を含む仕上焼鈍板の板厚平均S濃度を25ppm以下に抑制した上で、リン酸塩被膜処理液の焼付け温度を、従来より高温でかつ所定時間に制御することにより、鉄損を劣化させることなしに、磁歪の圧縮応力特性を大幅に改善することができる。   In accordance with the present invention, by controlling the sheet thickness average S concentration of the finish annealed plate containing the forsterite coating to 25 ppm or less, and controlling the baking temperature of the phosphate coating treatment liquid at a higher temperature and for a predetermined time than before. The compressive stress characteristic of magnetostriction can be greatly improved without deteriorating iron loss.

以下、本発明を具体的に説明する。
本発明によれば、フォルステライト被膜を含む仕上焼鈍板の板厚平均S濃度を25ppm以下とすることが重要である。というのは、このS濃度が25ppm超では、リン酸塩被膜の焼付け工程において、Sが地鉄中に固溶したのち微細に析出するため、鉄損の著しい劣化を招く。
このSは、インヒビターとして製鋼段階で添加されたり、不純物として鋼に存在するだけでなく、焼鈍分離剤中のマグネシア中にも不可避不純物として存在する。従って、これらのS量を十分に抑制することにより、板厚平均のS濃度を25ppm以下とすることが重要である。
なお、S濃度を25ppm以下に低減するには、
a)鋼の製鋼段階で十分な脱硫を行う、
b)マグネシア製造プロセスでSの混入を阻止する
ことなどにより、達成することができる。
Hereinafter, the present invention will be specifically described.
According to the present invention, it is important that the average thickness S concentration of the finish annealed plate including the forsterite film is 25 ppm or less. This is because when the S concentration exceeds 25 ppm, S is deposited in the ground iron and then finely precipitated in the baking process of the phosphate coating, resulting in significant deterioration of iron loss.
This S is not only added as an inhibitor in the steelmaking stage, but also present in steel as an impurity, and also present as an inevitable impurity in magnesia in the annealing separator. Therefore, it is important that the S concentration of the sheet thickness average is 25 ppm or less by sufficiently suppressing these S amounts.
In order to reduce the S concentration to 25 ppm or less,
a) Sufficient desulfurization at the steel making stage
b) It can be achieved, for example, by preventing the incorporation of S in the magnesia production process.

また、張力付与型絶縁被膜処理液としては、金属リン酸塩とシリカを主成分とする水溶液であって、リン酸とシリカのモル比(P205/SiO2)を0.15以上 4.0以下に調整したものを用いる必要がある。というのは、(P205/SiO2)が0.15未満または4.0超では、被膜により発生する張力が低減するため、磁歪の圧縮応力特性の劣化を招く。 In addition, the tension-providing insulating coating treatment liquid is an aqueous solution mainly composed of metal phosphate and silica, and the molar ratio of phosphoric acid to silica (P 2 0 5 / SiO 2 ) is 0.15 or more and 4.0 or less. It is necessary to use an adjusted one. This is because when (P 2 0 5 / SiO 2 ) is less than 0.15 or more than 4.0, the tension generated by the coating is reduced, which leads to deterioration of compressive stress characteristics of magnetostriction.

ここに、金属リン酸塩の種類としては、リン酸マグネシウム、リン酸アルミニウム、リン酸バリウム、リン酸ストロンチウム、リン酸カルシウム、リン酸鉄およびリン酸亜鉛などいずれもが適合する。また、シリカは、コロイダルシリカとして添加することにより、処理液中に安定に分散させることができる。
なお、この張力付与型絶縁被膜処理液には、塗布性を向上させるために、金属リン酸塩およびシリカ以外に、クロム酸や無水クロム酸、クロム酸塩等を添加することもできる。
Here, magnesium phosphate, aluminum phosphate, barium phosphate, strontium phosphate, calcium phosphate, iron phosphate and zinc phosphate are all suitable as the type of metal phosphate. Silica can be stably dispersed in the treatment liquid by adding it as colloidal silica.
In addition to the metal phosphate and silica, chromic acid, chromic anhydride, chromate, and the like can be added to the tension-providing insulating coating solution in order to improve the coating property.

次に、上記した張力付与型絶縁被膜処理液を、仕上焼鈍板の表面に塗布したのち、焼き付ける。このとき、焼付け温度は900℃以上 1100℃以下とし、この温度域に5秒以上 600秒以下の時間保持することが肝要である。というのは、焼付け温度が900℃未満では、焼付け温度上昇による磁歪の圧縮応力特性の向上効果が不十分であり、一方1100℃超では、ガラス質である絶縁被膜の結晶化が起こり、やはり磁歪の圧縮応力特性の改善効果が得られないからである。最も良好な結果が得られるのは、焼付け温度を960℃以上 1070℃以下とした場合である。また、該温度城での保持時間が、5秒未満では、焼付け温度上昇による磁歪の圧縮応力特性の向上効果が不十分であり、一方600秒超では、効果が飽和するだけでなく、コストの増加を招く。   Next, after apply | coating the above-mentioned tension | tensile_strength type insulating-film process liquid to the surface of a finish annealing board, it bakes. At this time, it is important that the baking temperature is 900 ° C. or higher and 1100 ° C. or lower and the temperature is maintained for 5 seconds or longer and 600 seconds or shorter. This is because if the baking temperature is less than 900 ° C, the effect of improving the compressive stress characteristic of magnetostriction due to the increase in the baking temperature is insufficient, whereas if it exceeds 1100 ° C, crystallization of the glassy insulating film occurs, which is also magnetostrictive. This is because the effect of improving the compressive stress characteristics cannot be obtained. The best results are obtained when the baking temperature is between 960 ° C and 1070 ° C. Further, if the holding time in the temperature castle is less than 5 seconds, the effect of improving the compressive stress characteristic of magnetostriction due to the increase in the baking temperature is insufficient, while if it exceeds 600 seconds, not only the effect is saturated but also the cost is reduced. Incurs an increase.

本発明に従い、焼付け温度を上昇することによって、磁歪の圧縮応力特性が改善される理由については、まだ明確に解明されたわけではないが、発明者らは次のように推察している。
すなわち、900℃未満の焼付け温度では、金属リン酸塩とシリカの相互の拡散による均一化が不十分なのに対して、900℃以上に焼付け温度を上昇させることにより、金属リン酸塩とシリカが十分に拡散して均一な被膜となり、被膜の弾性率が向上し、その結果、高い被膜張力が発生して磁歪の圧縮応力特性が改善されるものと考えられる。
The reason why the compressive stress characteristic of magnetostriction is improved by increasing the baking temperature according to the present invention has not yet been clearly clarified, but the inventors presume as follows.
That is, when the baking temperature is less than 900 ° C, the metal phosphate and silica are not sufficiently homogenized by mutual diffusion, but by increasing the baking temperature to 900 ° C or higher, the metal phosphate and silica are sufficient. The film is diffused to form a uniform film, and the elastic modulus of the film is improved. As a result, a high film tension is generated and the compressive stress characteristic of magnetostriction is improved.

本発明において、張力付与型絶縁被膜の膜厚は1〜5μm程度とするのが好適である。
また、本発明における方向性電磁鋼板の仕上焼鈍板について、その成分組成が特に限定されることはなく、従来公知のもの全てが適合する。
さらに、上記仕上焼鈍板の製造方法についても、特に限定されることはなく、従来公知の製造方法いずれもが適合する。
In the present invention, the thickness of the tension-imparting insulating coating is preferably about 1 to 5 μm.
Moreover, about the finish annealing board of the grain-oriented electrical steel sheet in this invention, the component composition is not specifically limited, All the conventionally well-known things fit.
Further, the method for producing the finish annealed plate is not particularly limited, and any conventionally known production method is suitable.

C:0.04mass%、Si:3.2mass%、Mn:0.1mass%、sol.Al:0.02mass%、Se:0.02mass%およびS:5ppmを含有し、残部はFeおよび不可避的不純物の組成になる鋼スラブを、熱間圧延し、ついで熱延板焼鈍後、中間焼鈍を挟む2回の冷間圧延により、0.30mmの最終板厚に仕上げた。ついで、850℃、1分間の脱炭焼鈍後、鋼板表面にマグネシアを主成分とする焼鈍分離剤を塗布したのち、1200℃、5時間の仕上焼鈍を施して、フォルステライト被膜付きの方向性電磁鋼板を作製した。得られたフォルステライト被膜付き仕上焼鈍板の板厚平均S濃度について調べた結果を表1に示す。なお、この板厚平均S濃度は、焼鈍分離剤中のS濃度を変更することにより、変化させた。
ついで、この仕上焼鈍板の表面に、金属リン酸塩とコロカダイルシリカを含有する張力付与型絶縁被膜処理液を塗布し、焼き付けて、張力付与型絶縁被膜を形成した。
上記処理液中におけるリン酸とシリカのモル比(P205/SiO2)および被膜焼付け条件を表1に示す。
Contains C: 0.04 mass%, Si: 3.2 mass%, Mn: 0.1 mass%, sol.Al: 0.02 mass%, Se: 0.02 mass%, and S: 5 ppm, with the balance being Fe and inevitable impurities The steel slab was hot-rolled, then annealed by hot rolling, and then finished to a final thickness of 0.30 mm by cold rolling twice with intermediate annealing. Next, after decarburization annealing at 850 ° C for 1 minute, an annealing separator containing magnesia as the main component is applied to the steel sheet surface, and then finish annealing is performed at 1200 ° C for 5 hours to produce a directional electromagnetic with forsterite coating. A steel plate was produced. Table 1 shows the results of examining the thickness average S concentration of the obtained forsterite-coated finish annealed plate. The plate thickness average S concentration was changed by changing the S concentration in the annealing separator.
Next, a tension-imparting insulating coating treatment liquid containing metal phosphate and corocadyl silica was applied to the surface of the finish annealed plate and baked to form a tension-imparting insulating coating.
Table 1 shows the molar ratio of phosphoric acid and silica (P 2 0 5 / SiO 2 ) and film baking conditions in the treatment solution.

かくして得られた張力付与型絶縁被膜を有する方向性電磁鋼板の鉄損(W17/50)および圧縮応力:7MPa付与下での磁歪λについて測定した結果を、表1に併記する。 Table 1 shows the results of the measurement of the iron loss (W 17/50 ) and the magnetostriction λ under compression stress: 7 MPa of the grain- oriented electrical steel sheet having the tension-imparting type insulating coating thus obtained.

Figure 0004835326
Figure 0004835326

同表に示したとおり、本発明に従い得られた発明例はいずれも、低い鉄損と、良好な磁歪の圧縮応力特性が得られている。   As shown in the table, all of the inventive examples obtained according to the present invention have low iron loss and good compressive stress characteristics of magnetostriction.

Claims (1)

表面にフォルステライト被膜を有する方向性電磁鋼板の仕上焼鈍板の表面に、張力付与型絶縁被膜処理液を塗布、焼き付けることからなる方向性電磁鋼板の製造方法において、
(1) フォルステライト被膜を含む仕上焼鈍板の板厚平均S濃度を25ppm以下とすること、
(2) 張力付与型絶縁被膜処理液が、金属リン酸塩とシリカを主成分とする水溶液であって、リン酸とシリカのモル比(P205/SiO2)が0.15〜4.0であること、
(3) 焼付け温度が900℃以上 1100℃以下であって、該温度域に5秒以上 600秒以下の時間保持すること、
を特徴とする方向性電磁鋼板の製造方法。
In the method for producing a grain-oriented electrical steel sheet, comprising applying and baking a tension-imparting insulating coating treatment liquid to the surface of the finish annealing plate of the grain-oriented electrical steel sheet having a forsterite coating on the surface
(1) The thickness average S concentration of the finish annealed sheet containing the forsterite film should be 25 ppm or less,
(2) The tension-imparting insulating coating solution is an aqueous solution mainly composed of metal phosphate and silica, and the molar ratio of phosphoric acid to silica (P 2 0 5 / SiO 2 ) is 0.15 to 4.0 thing,
(3) The baking temperature is 900 ° C. or more and 1100 ° C. or less, and the temperature range is maintained for 5 seconds or more and 600 seconds or less,
A method for producing a grain-oriented electrical steel sheet characterized by the above.
JP2006230845A 2006-08-28 2006-08-28 Method for producing grain-oriented electrical steel sheet Expired - Fee Related JP4835326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230845A JP4835326B2 (en) 2006-08-28 2006-08-28 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230845A JP4835326B2 (en) 2006-08-28 2006-08-28 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2008050676A JP2008050676A (en) 2008-03-06
JP4835326B2 true JP4835326B2 (en) 2011-12-14

Family

ID=39234998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230845A Expired - Fee Related JP4835326B2 (en) 2006-08-28 2006-08-28 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4835326B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099455A1 (en) 2011-12-28 2013-07-04 Jfeスチール株式会社 Directional electromagnetic steel sheet with coating, and method for producing same
JP5907257B2 (en) * 2012-05-24 2016-04-26 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
KR102177038B1 (en) 2014-11-14 2020-11-10 주식회사 포스코 Insulation coating composite for oriented electrical steel steet, oriented electrical steel steet formed insulation coating film on using the same insulation coating composite, and method of manufacturing the same oriented electrical steel steet
EP3476976B1 (en) * 2016-09-13 2021-04-14 JFE Steel Corporation Grain-oriented magnetic steel sheet having chrome-free insulating tension coating, and methods for producing such steel sheets
US20230106127A1 (en) * 2020-02-28 2023-04-06 Jfe Steel Corporation Grain-oriented electrical steel sheet with insulating film and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917521B2 (en) * 1975-08-22 1984-04-21 川崎製鉄株式会社 Method for forming a heat-resistant top insulating film on grain-oriented silicon steel sheets
JP2000124020A (en) * 1998-08-10 2000-04-28 Kawasaki Steel Corp Unidirectionally-oriented silicon steel plate having superior magnetic properties, and its manufacture
JP4075258B2 (en) * 1999-12-06 2008-04-16 Jfeスチール株式会社 Manufacturing method of bi-directional electrical steel sheet

Also Published As

Publication number Publication date
JP2008050676A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP6451967B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6156646B2 (en) Oriented electrical steel sheet with excellent magnetic properties and coating adhesion
KR101421393B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
KR101963990B1 (en) Grain-oriented electrical steel sheet and method of manufacturing same
JP6610789B2 (en) Hot-rolled steel sheet for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP5907257B2 (en) Method for producing grain-oriented electrical steel sheet
US9396850B2 (en) Grain oriented electrical steel sheet and method for manufacturing the same
JP6463458B2 (en) Preliminary coating composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet containing the same, and method for producing the same
JP5130488B2 (en) Oriented electrical steel sheet with excellent magnetic properties and coating adhesion and method for producing the same
JP6191529B2 (en) Primary recrystallization annealing plate for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP5790953B2 (en) Non-oriented electrical steel sheet and its hot-rolled steel sheet
JP2019507239A (en) INSULATION COATING COMPOSITION FOR DIRECTIONAL ELECTRIC STEEL STEEL, INSULATION COATING FORMATION METHOD FOR DIRECTIONAL ELECTRIC STEEL STEEL
JP4835326B2 (en) Method for producing grain-oriented electrical steel sheet
JP2017122247A (en) Production method of grain oriented magnetic steel sheet
JP2014196558A (en) Method of producing grain-oriented electrical steel sheet
KR20210111279A (en) Method for manufacturing grain-oriented electrical steel sheet
WO2016111088A1 (en) Non-oriented electromagnetic steel sheet and method for producing same
JP2000144249A (en) Production of grain oriented silicon steel sheet excellent in coating film characteristic and magnetic property
JP5633178B2 (en) Annealing separator for grain-oriented electrical steel sheet
JP5862582B2 (en) Method for producing grain-oriented electrical steel sheet, grain-oriented electrical steel sheet and surface glass coating for grain-oriented electrical steel sheet
JP2019099839A (en) Manufacturing method of oriented electromagnetic steel sheet
JP3562433B2 (en) Grain-oriented silicon steel sheet with excellent magnetic and coating properties
JP3536776B2 (en) Magnesia for annealing separator of grain-oriented electrical steel and method for producing grain-oriented electrical steel sheet with excellent magnetic and coating properties
JP6863310B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2019002039A (en) Directional electromagnetic steel sheet for controlling laser magnetic domain and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4835326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees