JP4831656B2 - Thin wood pieces for electrolyte membranes such as fuel cells impregnated with inorganic ion exchangers - Google Patents

Thin wood pieces for electrolyte membranes such as fuel cells impregnated with inorganic ion exchangers Download PDF

Info

Publication number
JP4831656B2
JP4831656B2 JP2005134761A JP2005134761A JP4831656B2 JP 4831656 B2 JP4831656 B2 JP 4831656B2 JP 2005134761 A JP2005134761 A JP 2005134761A JP 2005134761 A JP2005134761 A JP 2005134761A JP 4831656 B2 JP4831656 B2 JP 4831656B2
Authority
JP
Japan
Prior art keywords
wood
piece
plate
water
acid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005134761A
Other languages
Japanese (ja)
Other versions
JP2006313650A5 (en
JP2006313650A (en
Inventor
肇 佐々木
鈴木  寛
秀武 垣花
厚 松下
Original Assignee
株式会社クリエイティックジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クリエイティックジャパン filed Critical 株式会社クリエイティックジャパン
Priority to JP2005134761A priority Critical patent/JP4831656B2/en
Publication of JP2006313650A publication Critical patent/JP2006313650A/en
Publication of JP2006313650A5 publication Critical patent/JP2006313650A5/ja
Application granted granted Critical
Publication of JP4831656B2 publication Critical patent/JP4831656B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

燃料電池の電解膜と直接メタノール燃料電池(DMFC)の電解膜に関する。イオンの移動を可能にして燃料のメタノールのクロスオーバーをなくする膜に関する。燃料電池の酸化極で「発生した水」の遮水性を有する膜に関する。電気分解における電解膜などのより高いイオン移動性膜に関する。   The present invention relates to an electrolytic membrane of a fuel cell and an electrolytic membrane of a direct methanol fuel cell (DMFC). The present invention relates to a membrane that allows ion migration and eliminates methanol methanol crossover. The present invention relates to a membrane having a water shielding property of “generated water” at an oxidation electrode of a fuel cell. It relates to higher ion mobility membranes such as electrolytic membranes in electrolysis.

現在、展開されている燃料電池の電解膜がNafion(登録商標)などの有機材料である。これらの膜はもともと工業用電解の分離膜として使用されてきた。この膜は有機高分子から成り親水性とともに親メタノール性でありメタノールを透してしまう。このメタノールの透過はクロスオーバーと呼ばれている。これを低減する開発研究が進められている。   Currently, the electrolyte membranes of fuel cells that are being developed are organic materials such as Nafion (registered trademark). These membranes have been originally used as separation membranes for industrial electrolysis. This membrane is made of an organic polymer and is hydrophilic as well as amphiphilic and permeates methanol. This methanol permeation is called crossover. Development research is underway to reduce this.

現在の研究段階でのメタノールクロスオーバーを低減する方法としては、シリコーン系樹脂の配合や、あるいは放射線照射して枝ポリマーをつけてネット状にして、メタノールの透過性を抑制している。いろいろと改善されつつあるものの、本格的にメタノールのクロスオーバーをなくする方法はなかった。
特願2002−177095(P2002−177095)
As a method for reducing methanol crossover at the present research stage, the permeability of methanol is suppressed by blending a silicone resin or by irradiating with a branch polymer to form a net. Although various improvements have been made, there has been no real way to eliminate methanol crossover.
Japanese Patent Application No. 2002-177095 (P2002-177095)

今回、発明者らは鋭意研究の結果、100%メタノールのクロスオーバーを皆無に近い状態とし、また、酸化極からの透水も非常に小さい方法と材料を発明した。しかも良好なイオン電導性を持つもので本出願に到ったものである。   As a result of intensive studies, the inventors have invented a method and a material in which the crossover of 100% methanol is almost completely eliminated and the water permeability from the oxidation electrode is very small. In addition, the present application has been achieved with good ionic conductivity.

燃料電池についての、リン酸ジルコニウムを利用した最近の出願に次のようなものがあるが本願とは大きく異なっている。また、高分子膜の電極との接合性を向上させるためにリン酸ジルコニウムを配合する出願がなされているが、木材を利用した本願とは大きく異なっている。また、燃料電池性能を維持しつつ、プロトン交換材料の耐久性を向上させるために、リン酸ジルコニウムを混合する出願がなされているが、木材を利用した本願とは大きく異なっている。
特願2001−159066(P2001−159066) 特願2003−175029(P2003−175029)
Recent applications using zirconium phosphate for fuel cells include the following, which are very different from the present application. In addition, there has been an application for blending zirconium phosphate in order to improve the bonding property with the electrode of the polymer film, but this is greatly different from the present application using wood. Further, in order to improve the durability of the proton exchange material while maintaining the fuel cell performance, an application for mixing zirconium phosphate has been filed, but this is greatly different from the present application using wood.
Japanese Patent Application No. 2001-159066 (P2001-159066) Japanese Patent Application No. 2003-175029 (P2003-175029)

燃料電池の電解膜での問題点として、プロトンの移動を可能にしながら燃料のメタノールの対極への漏れ(クロスオーバー)をなくする課題があった。また「水」が出来る酸化極からの「水漏れ」防止できるものが求められていた。一方、電気分解おいては電解膜のガス分離の難しさやコスト的に高く、安価で強度的に勝り取り扱いの容易なものより高いイオン移動性のあるものが望まれていた。   As a problem in an electrolyte membrane of a fuel cell, there is a problem of eliminating leakage (crossover) of fuel to a counter electrode of methanol while allowing proton transfer. In addition, there has been a demand for what can prevent “water leakage” from the oxidation electrode capable of producing “water”. On the other hand, in electrolysis, it has been desired to have a higher ion mobility than that which is difficult in terms of gas separation and cost of an electrolytic membrane, is inexpensive, is superior in strength, and is easy to handle.

薄板木材片中で無機イオン交換体を生成することで、課題を解決することができた。すなわち、アルコールや水を遮蔽分離するために木材の厚みを可能な限り薄くして遮蔽効果を出し、加えて、この薄板木材片に金属酸塩化物を含浸させて後リン酸などで処理すると、不定形にしか生成しなかった無機イオン交換体が、安定なガラス状にコートできることを発見した。   The problem could be solved by producing an inorganic ion exchanger in the thin wood piece. That is, in order to shield and separate alcohol and water, the thickness of the wood is made as thin as possible to give a shielding effect, and in addition, when this thin wood piece is impregnated with metal acid chloride and then treated with phosphoric acid, It was discovered that inorganic ion exchangers that were produced only in irregular shapes could be coated into a stable glass.

しかもこの膜は非常に化学的に安定で酸化雰囲気や高温にも耐えることから薄板木材片を保護する効果も出現した。また、分離膜の形状が補強なしに独立できる板状であることから取扱いの良さや発生気体の誘導性の良さも加わり、上記課題を解決することができたものである。   Moreover, this film is very chemically stable and withstands oxidizing atmospheres and high temperatures, so that it also has the effect of protecting thin wood pieces. In addition, since the shape of the separation membrane is a plate shape that can be independent without reinforcement, the handling problem and the inductiveness of the generated gas are added, thereby solving the above-mentioned problems.

本発明によって、薄板木材片とガラス状無機イオン交換体によって遮水やメタノールの移動を格段に小さくすることで、今まで十分に電気エネルギーとして実力を発揮できなかった「直接メタノール方式の燃料電池の展開」を確実に進めることが出来る。しかも、原材料と加工費コストは低減できるし、強度も木材の薄板から想像できるように優れた強度を持っている。   According to the present invention, by reducing the water shielding and the movement of methanol by a thin piece of wood and a glassy inorganic ion exchanger, the ability of electric fuel cells of the direct methanol system that has not been able to sufficiently demonstrate electric energy until now has been achieved. Unfolding "can be done reliably. In addition, raw materials and processing costs can be reduced, and the strength is excellent as can be imagined from a thin plate of wood.

薄板木材片中で無機イオン交換体を生成することで、アルコールや水を遮蔽分離するために木材の厚みを可能な限り薄くして遮蔽効果を出し、いままで不定形にしか生成しなかった無機イオン交換体が、安定なガラス状にコートできることを発見した。しかもこの膜は非常に化学的に安定で酸化雰囲気や高温にも耐えることから木材を保護する効果も出現した。   By producing an inorganic ion exchanger in a thin piece of wood, the thickness of the wood is made as thin as possible in order to shield and separate alcohol and water. It has been discovered that ion exchangers can be coated into a stable glass. In addition, this film is very chemically stable and withstands oxidizing atmospheres and high temperatures, so it also protects wood.

リン酸ジルコニウムは、無機陽イオン交換体として知られている。酸性塩の代表として、リン酸ジルコニウムの合成法、性質、イオン交換性、応用については非特許文献1に述べられている。このように陽イオンの捕捉交換についての知見は以前より得られていた。
垣花秀武・成田耕造著「最新イオン交換」株式会社廣川書店、7版発行昭和43年(1968年)10月20日(初版は 昭和35年(1960年)7月15日)
Zirconium phosphate is known as an inorganic cation exchanger. As a representative of acid salts, Non-Patent Document 1 describes the synthesis method, properties, ion exchange properties, and applications of zirconium phosphate. Thus, knowledge about the capture exchange of cations has been obtained for some time.
Published by Hidetake Kakibana and Kozo Narita “Latest Ion Exchange”, Yodogawa Shoten Co., Ltd., 7th Edition October 20, 1968 (first edition is July 15, 1960)

今回のリン酸ジルコニウムの合成は次のごとくである。1N硝酸(または塩酸)に溶解した硝酸ジルコニル(又は塩化ジルコニル)溶液にリン酸(またはリン酸塩)溶液を木片に浸み込ませてリン酸溶液で処理するとガラス状の皮膜が生成させる。反応にあずかるリン酸とジルコニウムの比率は0.5(モル比)より大きいところではかなり広範囲に変えることができる。PO/Zr=0.5以下ではコロイド溶液になり沈殿ができないのでリン酸が常にモル比で2より多くあるような状態にして反応させる。リン酸の液温は室温より高いほうが確実な反応ができる。 The synthesis of zirconium phosphate this time is as follows. When a phosphoric acid (or phosphate) solution is immersed in a piece of wood in a zirconyl nitrate (or zirconyl chloride) solution dissolved in 1N nitric acid (or hydrochloric acid) and treated with the phosphoric acid solution, a glassy film is formed. The ratio of phosphoric acid and zirconium involved in the reaction can vary considerably over a range greater than 0.5 (molar ratio). When PO 4 /Zr=0.5 or less, a colloidal solution is formed and precipitation is not possible. Therefore, the phosphoric acid is always allowed to react in a molar ratio of more than 2. A more reliable reaction is possible when the liquid temperature of phosphoric acid is higher than room temperature.

ところでリン酸ジルコニウムの使用法では通常は粉体をカラム充填して使用するが、本願のように板状にすると容器は不要となる。
また、リン酸ジルコニウム皮膜化のコストでは、本願の方法によって現在の有機電極膜よりも格段に安い価格で提供できる見通しが出てきた。
By the way, in the usage method of zirconium phosphate, the powder is usually packed in a column and used. However, if it is made into a plate shape as in the present application, the container becomes unnecessary.
In addition, the cost of forming a zirconium phosphate film has come to be expected to be provided at a much lower price than the current organic electrode film by the method of the present application.

次に木材について述べる。木材の利点は、比重が小さい、加工の容易性、価格の安さ、資源が広範囲にある、熱や電気を伝えにくいことがあげられている。一方、欠点としては、温湿度の変化で膨張・収縮を繰り返す、繊維の方向が均一でない、腐朽する、燃えやすい、薬品に対して抵抗力がないことがあげられている。
成澤潔水著「木材」パワー社 2000年
Next, wood is described. The advantages of wood include low specific gravity, ease of processing, low cost, extensive resources, and difficulty in transferring heat and electricity. On the other hand, disadvantages include repeated expansion and contraction due to changes in temperature and humidity, non-uniform fiber orientation, decay, flammability, and no resistance to chemicals.
Narusawa Kiyomizu "Wood" Power Company 2000

その用途としては、器具・什器として、桶、樽、水槽、椀、杓、杓子、曲げ物の民芸品に使われている。特筆すべきことは、酒や水や味噌・醤油など、アルコールや水、そして高濃度の塩分を含有していても什器の中身を隔離保存できることである。ところで、この木材のより広い利用のためにいろいろと加工法が提案されている。   As its use, it is used as an instrument and fixtures for pottery, barrels, aquariums, pots, pots, eggplants, and folk crafts. What should be noted is that the contents of the bowl can be isolated and preserved even if it contains alcohol, water, and high concentrations of salt, such as sake, water, miso and soy sauce. By the way, various processing methods have been proposed for wider use of this wood.

たとえば、木材の加工法として、難燃化、防腐・防虫、安定性を付与するために、無機薬品を含浸させるいろいろな技術が開発されている。木材の薬品処理する出願もされている。しかし、今回の出願は、内容や目的、薬品の種類と使用方法などこれらの出願とは大きく異なっており、特許性・新規性あるものである。
特願平4−227605号公報
For example, as a method of processing wood, various techniques for impregnating with inorganic chemicals have been developed in order to impart flame retardancy, antiseptic / insect repellent, and stability. There are also applications for chemical treatment of wood. However, this application is very different from these applications in terms of content, purpose, type of medicine and usage, and is patentable and novel.
Japanese Patent Application No. 4-227605

今回使用したヒノキ材の一般的な強度を示す。
気乾比重0.44
圧縮強度39.2MPa(400kg/平方cm)
引張り強度117.7MPa(1,200Kg/平方cm)
曲げ強度73.5MPa(750Kg/平方cm)
剪断強度7.4MPa(75Kg/平方cm)
成澤潔水著「木材」パワー社 2000年
The general strength of the cypress wood used this time is shown.
Air-dry specific gravity 0.44
Compressive strength 39.2 MPa (400 kg / square cm)
Tensile strength 117.7 MPa (1,200 Kg / square cm)
Bending strength 73.5MPa (750Kg / square cm)
Shear strength 7.4 MPa (75 Kg / square cm)
Narusawa Kiyomizu "Wood" Power Company 2000

木材は、針葉樹、広葉樹などの樹種や草本類の中にも板状に出来るものもあるので、植物で板状に加工できるものであれば、木本・草本類の樹種を特定しなくても良い。木材の厚みは液の浸透が可能な厚みであれば限定されないが、桐などは10mmでも浸透するので10mm以下に設定した。薄さの限度は液を透しにくくできる100ミクロン以上が望ましい。また、大きさは板材の加工反応の際に液層の大きさに支障が無ければ特に制限は無い。今回はヒノキのフシ無し板材から、試料を削りだした。   Some types of wood such as conifers and broadleaf trees and herbs can be made into a plate, so if wood can be processed into a plate with plants, it is not necessary to specify the species of wood and herbs. good. The thickness of the wood is not limited as long as the liquid can permeate, but paulownia and the like can penetrate even 10 mm. The thinness limit is desirably 100 microns or more, which can prevent the liquid from passing through. The size is not particularly limited as long as there is no problem with the size of the liquid layer in the processing reaction of the plate material. This time, the sample was cut out from a cypress-free sheet material.

薄板木材片中と表面に無機イオン交換体の皮膜を生成する試験である。木材はヒノキの板を400〜500ミクロン以下の薄い板にする。25mmWx50mmLの大きさに切り出した。これをアセトンで洗浄し油脂分を除去し乾燥する。硝酸ジルコニルZrO(NO)/1NHNO溶液(107gのZrO(NO・2HO/L)を100ml中に入れて、これ全体を20分間程度減圧する。減圧することで液を薄板木材片中に充分浸み込ませる。 This is a test for producing a film of an inorganic ion exchanger in and on a thin wood piece. Wood turns the cypress plate into a thin plate of 400-500 microns or less. It cut out to a size of 25 mmW × 50 mmL. This is washed with acetone to remove oils and fats and dried. Zirconyl nitrate ZrO (NO 3 ) / 1NHNO 3 solution (107 g of ZrO (NO 3 ) 2 .2H 2 O / L) is put in 100 ml and the whole is depressurized for about 20 minutes. By reducing the pressure, the liquid is sufficiently immersed in the thin wood piece.

大気圧に戻して、室温以上に加温したHPO溶液(リン酸100ml/水l)200mL中に入れて1時間反応させる。リン酸溶液から出して蒸留水で洗う。薄板木材片の中と表面にリン酸ジルコニウムがガラス状に浸み込んだ「材料」を得る。厚みの増加は平均50ミクロン程度であった。 The pressure is returned to atmospheric pressure, and the mixture is placed in 200 mL of a H 3 PO 4 solution (phosphoric acid 100 ml / water 1) heated to room temperature or higher and allowed to react for 1 hour. Remove from phosphate solution and wash with distilled water. A “material” is obtained in which zirconium phosphate is soaked in a glass state in and on the surface of a thin wood piece. The increase in thickness was about 50 microns on average.

100%メタノールと水とメタノール水の等モル溶液の透過試験を行う。この試験は次のような試験装置を作り行った。60mmWx150mmLx10mmtの塩ビの板2枚の同位置に7mmの貫通穴を作っておく。塩ビの単管パイプ(内径22mmφ30mmL)を1ヶ準備して厚板の7mm貫通口が単管パイプの内部側となるように垂直に接着する。この塩ビ単管パイプ付き厚板と、貫通口だけの塩ビ厚板との間に実施例1で作成した試料をはさみ、単管パイプに液体を入れて重力だけの液体透過試験をする。   A permeation test of an equimolar solution of 100% methanol, water and methanol water is performed. This test was performed by making the following test equipment. A 7 mm through hole is made in the same position on two sheets of 60 mmW × 150 mmL × 10 mmt PVC. A single PVC pipe (inner diameter: 22mmφ30mmL) is prepared and bonded vertically so that the 7mm through hole of the thick plate is on the inside of the single pipe. The sample prepared in Example 1 is sandwiched between the thick plate with a PVC single pipe and the PVC thick plate having only a through-hole, and a liquid is put into the single pipe to conduct a liquid permeation test using only gravity.

塩ビ単管パイプ付き厚板のパイプが上面になるようにしてこの下面に、リン酸ジルコニウムを析出させた薄板木材片を内径12mmのEPDMのリング状パッキンとともにもう一枚の塩ビ厚板の貫通口が合致するようにセットして挟み、2枚の塩ビ厚板を複数のバネクランプで固定する。EPDMが変形しても変形に追従できるバネ方式のほうがよい。   A sheet of thin wood with zirconium phosphate deposited on the lower surface so that a thick pipe with a single PVC pipe is on the upper surface, along with an EPDM ring packing with an inner diameter of 12 mm, and another PVC thick plate through-hole Set them so that they match, and fix the two PVC thick plates with multiple spring clamps. Even if the EPDM is deformed, a spring system that can follow the deformation is better.

このようにセットしたものを、水平において、塩ビの単管パイプ部に100%のメタノールをいれて、48時間以上放置して液体のレベルで変化から透過量を測定する。なお、メタノールの蒸発損失を無くすためにラップフィルムで塩ビ単管開口部をふさぎゴムバンドで固定した。   In this horizontal set, 100% methanol is put into a single pipe pipe portion of polyvinyl chloride and left for 48 hours or more, and the amount of permeation is measured from the change at the liquid level. In addition, in order to eliminate the evaporation loss of methanol, the PVC single tube opening was covered with a wrap film and fixed with a rubber band.

水中に溶解してくるメタノールを測定観察する従来の方法とは異なるが、実際の電極膜としての使い方に近い方法での観察を行った。通過面積、0.7x0.7xπ/4=0.38平方cm、液体深さ、3〜4cm(塩ビ厚板の板厚分とパイプ長さ分)、メタノールの比重は0.8とする。   Although different from the conventional method of measuring and observing methanol dissolved in water, the observation was performed by a method close to the actual use as an electrode film. Passage area, 0.7 × 0.7 × π / 4 = 0.38 square cm, liquid depth, 3-4 cm (the thickness of the PVC thick plate and the length of the pipe), and the specific gravity of methanol is 0.8.

51時間経過したメタノールの減量レベルは3mmであった。1時間1平方cm当たりの透過重量を算出する。0.047g/時間・平方cmとの結果を得る。   The weight loss level of methanol after 51 hours was 3 mm. The permeation weight per 1 cm 2 per hour is calculated. A result of 0.047 g / hr.cm 2 is obtained.

同じ装置で、市販されているNafion(登録商標)5重量%溶解液から製膜した厚さが約100ミクロンのNafion(登録商標)膜のメタノール100%での透過量を測定した。膨潤して48時間以内に透過してしまって測定不能であった。   With the same apparatus, the permeation amount at 100% methanol of a Nafion® membrane having a thickness of about 100 microns formed from a commercially available Nafion® 5 wt% solution was measured. It swelled and permeated within 48 hours, and measurement was impossible.

同じ装置と要領で、水の透過試験も行う。水の減量レベルは1.5mmであった。水の比重を1.0とする。1時間1平方cmの透過重量は0.029g/1時間・平方cmとの結果となる。   Perform the water permeation test using the same equipment and procedure. The weight loss level of water was 1.5 mm. The specific gravity of water is 1.0. A permeation weight of 1 cm 2 per hour results in 0.029 g / 1 hour · cm 2.

同じ装置で、市販されているNafion(登録商標)5重量%溶解液から製膜した厚さが約100ミクロンの膜の水の透過量を測定した。同じく膨潤して48時間以内に透過してしまって測定不能であった。   With the same apparatus, the amount of water permeated through a membrane having a thickness of about 100 microns formed from a commercially available Nafion® 5 wt% solution was measured. Similarly, it swelled and permeated within 48 hours, and measurement was impossible.

同じ装置と要領で、水とメタノールの等モル溶液の透過試験も行ったが、結果は水と同じであった。   A permeation test of an equimolar solution of water and methanol was performed using the same equipment and procedure, but the results were the same as for water.

化学的安定性の確認試験を行う。独立行政法人新エネルギー・産業技術総合開発機構(NEDO)によって申し合せた電導度測定にあたっての前処理法がある。今回の実施例1で作成した試料をこの方法で前処理を行った。
1)3%過酸化水素水中煮沸(1時間)
2)蒸留水中煮沸(1時間)
3)1M硫酸中煮沸(1時間)
4)蒸留水中煮沸(1時間)
5)室温の蒸留水中に保管
Conduct a chemical stability confirmation test. There is a pre-processing method for electrical conductivity measurement, which was submitted by the New Energy and Industrial Technology Development Organization (NEDO). The sample prepared in Example 1 was pretreated by this method.
1) Boiling in 3% hydrogen peroxide water (1 hour)
2) Boiling in distilled water (1 hour)
3) Boiling in 1M sulfuric acid (1 hour)
4) Boiling in distilled water (1 hour)
5) Store in distilled water at room temperature

実施例1で作成した試料を本条件で処理する。薄板木材片だけの場合には、3)の段階でこぐち部分の繊維がばらついてくるが、化学的に安定なリン酸ジルコニウムでコートした実施例1のものに異常は無かった。   The sample prepared in Example 1 is processed under these conditions. In the case of only a thin piece of wood, the fibers in the edge portion vary at the stage of 3), but there was no abnormality in Example 1 coated with chemically stable zirconium phosphate.

電導度測定試験を行う。電導度測定の電源は低周波発信器KENWOODYMIAG−203Dによる発振したものを、株式会社高砂製作所のBMS120−2.5で増幅した。設定周波数は5000Hzの正弦波を試料に流し電気抵抗を求めた。電圧電流測定はSANWACD800aおよび株式会社マザーツールのMT−31による測定をした。電極は白金メッキしたチタン板2枚を電極間距離1〜2cmと変化させて行った。試料の幅は2cmである。気温20℃である。   Conduct conductivity measurement test. The power source for the conductivity measurement was amplified by BMS120-2.5 of Takasago Seisakusho Co., Ltd., which was oscillated by the low-frequency transmitter KENWOODYMIAG-203D. A set frequency of 5000 Hz was passed through the sample to obtain the electrical resistance. The voltage / current measurement was performed with SANWACD800a and MT-31 of Mother Tool Co., Ltd. The electrodes were made by changing two platinum-plated titanium plates with an interelectrode distance of 1 to 2 cm. The width of the sample is 2 cm. The temperature is 20 ° C.

試料は実施例1のものと実施例3の処理したものでその電導度測定結果は次のとおりである。
実施例1のものは、膜厚450ミクロン、電導度=0.040S/cmである。
実施例3の前処理したもの、膜厚450ミクロン、電導度=0.020S/cmである。
良いイオン伝導性があることがわかる。
なお、Nafion(登録商標)が紹介されているカタログ値はS/cm=0.083である。
The samples were processed in Example 1 and Example 3, and the conductivity measurement results are as follows.
In Example 1, the film thickness is 450 microns, and the conductivity is 0.040 S / cm.
Example 3 pre-processed, film thickness 450 microns, conductivity = 0.020 S / cm.
It turns out that there is good ionic conductivity.
The catalog value introducing Nafion (registered trademark) is S / cm = 0.083.

他の薬品での生成試験を行う。薄板木材片を硝酸ジルコニルZrO(NO)/1NHNO溶液(107gのZrO(NO・2HO/L)を100ml中に入れて、これ全体を20分間程度減圧する。減圧することで液を薄板木材片中に充分浸み込ませる。 Perform production tests with other chemicals. A thin piece of wood is put in 100 ml of a zirconyl nitrate ZrO (NO 3 ) / 1NHNO 3 solution (107 g of ZrO (NO 3 ) 2 .2H 2 O / L), and the whole is depressurized for about 20 minutes. By reducing the pressure, the liquid is sufficiently immersed in the thin wood piece.

大気圧に戻して、室温以上に加温したタングステン酸ナトリウム溶液(タングステン酸ナトリウム2水和物73グラム/水250グラム)に入れて1時間反応させる。溶液から出して蒸留水でPHが3程度になるまでデカンテーションで洗う。薄板木材片中にタングステン酸ジルコニウムがガラス状に皮膜化し浸み込んだ「木片」を得る。モリブデン酸ジルコニウムも同様に生成した。   It is returned to atmospheric pressure and placed in a sodium tungstate solution (73 grams of sodium tungstate dihydrate / 250 grams of water) heated to room temperature or higher and allowed to react for 1 hour. Remove from solution and decant with distilled water until pH is about 3. A “wood piece” is obtained, in which zirconium tungstate is formed into a glassy film and immersed in a thin piece of wood. Zirconium molybdate was similarly produced.

タングステン酸ナトリウム2水和物73グラムを250グラムの水に溶解したものに薄板木材片を入れて十分に浸み込ませる。この木片を濃硝酸中にいれると、タングステン酸が木片の表面や内部にコロイド状に生成する。デカンテーションでPHが3程度になるまで十分に水洗する。室温で乾燥すると緑色のタングステン酸の皮膜が確認できる。このタングステン酸は両イオン交換体で、水酸化ジルコニウムと同じ挙動を示す。またモリブデン酸も同様に薄板木材片中に生成させることが出来た。   A thin piece of wood is placed in a solution of 73 grams of sodium tungstate dihydrate in 250 grams of water and thoroughly soaked. When this piece of wood is placed in concentrated nitric acid, tungstic acid is formed in a colloidal form on the surface and inside of the piece of wood. Wash thoroughly with decantation until the pH reaches about 3. When dried at room temperature, a green tungstic acid film can be confirmed. This tungstic acid is a both ion exchanger and behaves the same as zirconium hydroxide. Molybdic acid could also be produced in the thin wood piece.

イオン交換特性の確認のためのPHと水酸基等量の測定。木片を含まないリン酸ジルコニウムを実施例1と同じ条件で作成して試料1グラムあたりの水酸基の量とPHの変化を観察した。各試料に所定量の水酸基を入れ、試料を同一水量にしてPHを測定した。PH計はコンボイHI98129型で測定した。   Measurement of equivalent amount of PH and hydroxyl group for confirmation of ion exchange characteristics. Zirconium phosphate containing no wood chips was prepared under the same conditions as in Example 1, and the amount of hydroxyl groups per gram of sample and the change in PH were observed. A predetermined amount of hydroxyl group was added to each sample, and the pH was measured with the same water amount. The PH meter was measured with a Convoy HI98129 type.

結果はリン酸の3塩基酸のものとはまったく異なるもので、イオン交換体としての中性域での1塩基酸と同様の変化が確認された。水温20℃。
リン酸ジルコニウム1グラムあたりのOH等量とPH値の測定結果。
The result was completely different from that of tribasic acid of phosphoric acid, and changes similar to those of monobasic acid in the neutral region as an ion exchanger were confirmed. Water temperature 20 ° C.
Measurement results of OH equivalent and PH value per gram of zirconium phosphate.

0meqでのPHは1.20
1meqでのPHは2.39
2meqでのPHは6.53
3meqでのPHは10.26
4meqでのPHは11.94
5meqでのPHは11.94
The PH at 0 meq is 1.20
The PH at 1 meq is 2.39
PH at 2 meq is 6.53
The PH at 3 meq is 10.26
The PH at 4 meq is 11.94.
The PH at 5 meq is 11.94.

分離膜のイオン透過性と隔離性を確認する試験である。リン酸酸性(リン酸1mL水3L)での直流による通電試験を実施した。内径50mm50mmLの塩ビ単管パイプの先端のキャップ部分に7mmの開口を作り、実施例1で作成した薄板木材片を分離膜として装填してパイプの内部と外部が混ざらないように固定した。電極はチタン白金電極2cm幅、長さ10cmで隔離内部のPHの変化を測定した。陰極は塩ビパイプ側として通電した通電条件は40vDC、0.02Aである。
This test confirms the ion permeability and separability of the separation membrane. An energization test by direct current using phosphoric acid acid (phosphoric acid 1 mL water 3 L) was performed. A 7 mm opening was made in the cap portion at the tip of a polyvinyl chloride single pipe pipe with an inner diameter of 50 mm and 50 mmL, and the thin wood piece prepared in Example 1 was loaded as a separation membrane and fixed so that the inside and outside of the pipe were not mixed. The electrode was a titanium platinum electrode 2 cm wide and 10 cm long, and the change in PH inside the isolation was measured. The energization conditions for energizing the cathode on the PVC pipe side are 40 vDC, 0.02 A.

PH計はコンボイHI98129型で測定した。
開始PHは4.2で本試料の1時間後のPHは2.1であった。開始3時間30分後には1.9程度になった。ここで通電を停止して24時間後のPHを観察した結果は1.9と変わらなかった。このように水素イオンの戻りも無く分離膜として機能していることを示している。
The PH meter was measured with a Convoy HI98129 type.
The starting PH was 4.2, and the pH after 1 hour of this sample was 2.1. It became about 1.9 after 3 hours and 30 minutes from the start. Here, the result of observing the PH after 24 hours from stopping energization was the same as 1.9. Thus, it shows that it functions as a separation membrane with no return of hydrogen ions.

燃料電池としての電位発生試験をした。実施例1で作成した無機イオン交換体を含浸コートしてある薄板木材片に白金めっきを施した。発明者らは日常からチタンなどに白金メッキを行っておりこの経験をノウハウ化している。実施例1の試料の白金付着量は1mg/平方cmである。   A potential generation test as a fuel cell was conducted. The thin plate wood piece impregnated with the inorganic ion exchanger prepared in Example 1 was subjected to platinum plating. The inventors have been platinum-plated on titanium etc. on a daily basis to make this experience a know-how. The platinum adhesion amount of the sample of Example 1 is 1 mg / square cm.

板のこぐち部分の白金を1mmほど切落として両面同士の電気導電性をなくする。この板を実施例7で使用したキャップ部に装填して、塩ビ単管パイプにメタノール水の等モル溶液を入れるとメタノール水側に大量のガスの発生が認められ、空気側の酸化極との間で0.7v程度の電位が発生していることを確認した。これで燃料電池としての効果が確認できた。   The platinum on the edge of the plate is cut off by about 1 mm to eliminate the electrical conductivity between the two surfaces. When this plate was loaded into the cap part used in Example 7 and an equimolar solution of methanol water was put into a single PVC pipe, a large amount of gas was observed on the methanol water side, and the oxidation electrode on the air side It was confirmed that a potential of about 0.7 V was generated between them. This confirmed the effect as a fuel cell.

本発明は直接メタノール燃料電池の問題点の解決につながり、モバイル電源を必要とするパソコンなどの電気品業界や通信などの情報関連業種のみならず、木材との複合材料であり木材産業の発展に貢献できる。   The present invention has led to the solution of the problems of direct methanol fuel cells, and is not only an electrical industry such as personal computers that require a mobile power supply, but also information related industries such as communications, as well as a composite material with wood, which contributes to the development of the wood industry. Can contribute.

自然災害時の電気エネルギーの調達などに多岐にわたった貢献ができるものである。
また、いろいろな材料で問題解決を試みられているが、自然の恵みを活かした「木」によって達成できたことは幅広い産業界で利用展開できるものである。
It can make a wide range of contributions to the procurement of electrical energy during natural disasters.
In addition, various materials have been tried to solve problems, but what has been achieved with “wood” that makes use of nature's bounty can be used and deployed in a wide range of industries.

Claims (4)

木本類又は草本類に属する植物の板状木片の内部及び表面にガラス状無機イオン交換体が生成されていることを特徴とする燃料電池用電解質膜。An electrolyte membrane for a fuel cell, characterized in that a glassy inorganic ion exchanger is produced inside and on the surface of a plate-like piece of a plant belonging to woods or herbs. 木本類又は草本類に属する植物の板状木片の内部及び表面にガラス状無機イオン交換体が生成されていることを特徴とする電気分解用電解質膜。An electrolytic membrane for electrolysis, characterized in that a glassy inorganic ion exchanger is produced inside and on the surface of a plate-like piece of a plant belonging to trees or herbs. 10mm厚み以下の板状木片にオキシ塩化ジルコニウムの塩酸溶液もしくはオキシ硝酸ジルコニウムの硝酸溶液を含浸させた後、リン酸溶液で処理することで前記板状木片の内部及び表面にガラス状のリン酸ジルコニウムを生成してメチルアルコール及び水を通しにくい液体遮蔽特性を有する電解質膜を製造することを特徴とする電解質膜の製造方法。A plate-like piece of wood having a thickness of 10 mm or less is impregnated with a hydrochloric acid solution of zirconium oxychloride or a nitric acid solution of zirconium oxynitrate, and then treated with a phosphoric acid solution, whereby glassy zirconium phosphate is formed inside and on the surface of the plate-like piece of wood. Producing an electrolyte membrane having a liquid shielding property that hardly causes methyl alcohol and water to pass therethrough. 10mm厚み以下の板状木片にオキシ塩化ジルコニウムの塩酸溶液もしくはオキシ硝酸ジルコニウムの硝酸溶液を含浸させた後、タングステン酸ナトリウム溶液で処理することで前記板状木片の内部及び表面に水和化したガラス状のタングステン酸ジルコニウムが生成してメチルアルコール及び水を通しにくい液体遮蔽特性を有する電解質膜を製造することを特徴とする電解質膜の製造方法。After impregnating a plate-like piece of wood having a thickness of 10 mm or less with a hydrochloric acid solution of zirconium oxychloride or a nitric acid solution of zirconium oxynitrate, the glass is hydrated inside and on the surface of the plate-like piece by treating with a sodium tungstate solution. A method for producing an electrolyte membrane comprising producing an electrolyte membrane having a liquid shielding property in which methyl zirconate tungstate is formed to prevent methyl alcohol and water from passing therethrough.
JP2005134761A 2005-05-06 2005-05-06 Thin wood pieces for electrolyte membranes such as fuel cells impregnated with inorganic ion exchangers Expired - Fee Related JP4831656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134761A JP4831656B2 (en) 2005-05-06 2005-05-06 Thin wood pieces for electrolyte membranes such as fuel cells impregnated with inorganic ion exchangers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134761A JP4831656B2 (en) 2005-05-06 2005-05-06 Thin wood pieces for electrolyte membranes such as fuel cells impregnated with inorganic ion exchangers

Publications (3)

Publication Number Publication Date
JP2006313650A JP2006313650A (en) 2006-11-16
JP2006313650A5 JP2006313650A5 (en) 2008-07-03
JP4831656B2 true JP4831656B2 (en) 2011-12-07

Family

ID=37535055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134761A Expired - Fee Related JP4831656B2 (en) 2005-05-06 2005-05-06 Thin wood pieces for electrolyte membranes such as fuel cells impregnated with inorganic ion exchangers

Country Status (1)

Country Link
JP (1) JP4831656B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210503A (en) * 2010-03-30 2011-10-20 Kurieiteitsuku Japan:Kk Membrane electrode conjugant and direct alcohol fuel cell using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603464A (en) * 1983-06-22 1985-01-09 Yanmar Diesel Engine Co Ltd Cooling water intake passage of internal-combustion engine for outboard motor
JPH0373304A (en) * 1989-05-09 1991-03-28 Ain:Kk Lumber having deodorizing property, antibacterial property, far infrared rays radiative property and antistatic effect
JPH10211110A (en) * 1997-01-28 1998-08-11 Hoshino Kogyo Kk Antibacterial wooden cutting board and manufacture therefor
JPH11165303A (en) * 1997-12-04 1999-06-22 Showa Denko Kk Timber treating agent and method for treating
JP2001239157A (en) * 2000-02-28 2001-09-04 Rengo Co Ltd Inorganic ion exchanger-hydrophilic polymer active carbon composite and its production method
JP2003335895A (en) * 2002-05-22 2003-11-28 Ube Ind Ltd Composite material comprising polyimide porous membrane and proton-conducting membrane

Also Published As

Publication number Publication date
JP2006313650A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
Sun et al. Composite membranes for high temperature PEM fuel cells and electrolysers: a critical review
Chen et al. Nanoscale ion regulation in wood‐based structures and their device applications
Chen et al. A highly conductive cationic wood membrane
JP5099412B2 (en) Membrane using modified clay
US8206814B2 (en) Film made from denatured clay
D’Epifanio et al. Composite nafion/sulfated zirconia membranes: effect of the filler surface properties on proton transport characteristics
Tripathi et al. 3-[[3-(Triethoxysilyl) propyl] amino] propane-1-sulfonic acid− poly (vinyl alcohol) cross-linked zwitterionic polymer electrolyte membranes for direct methanol fuel cell applications
Ebrahimi et al. A review on ionic liquids-based membranes for middle and high temperature polymer electrolyte membrane fuel cells (PEM FCs)
Gorgieva et al. Efficient chitosan/nitrogen-doped reduced graphene oxide composite membranes for direct alkaline ethanol fuel cells
Khalid et al. Properties of anion exchange membranes with a focus on water electrolysis
Gouda et al. Synthesis and characterization of novel green hybrid nanocomposites for application as proton exchange membranes in direct borohydride fuel cells
Beatty et al. Controlling the relative fluxes of protons and oxygen to electrocatalytic buried interfaces with tunable silicon oxide overlayers
García-Cruz et al. High performance of alkaline anion-exchange membranes based on chitosan/poly (vinyl) alcohol doped with graphene oxide for the electrooxidation of primary alcohols
Chaudhury et al. Ion transport in laser-induced graphene cation-exchange membrane hybrids
JP4831656B2 (en) Thin wood pieces for electrolyte membranes such as fuel cells impregnated with inorganic ion exchangers
Aburabie et al. Proton conductive, low methanol crossover cellulose-based membranes
McHugh et al. An Investigation of a (vinylbenzyl) trimethylammonium and N-vinylimidazole-substituted poly (vinylidene fluoride-co-hexafluoropropylene) copolymer as an anion-exchange membrane in a lignin-oxidising electrolyser
Yang et al. Cation exchange membranes coated with polyethyleneimine and crown ether to improve monovalent cation electrodialytic selectivity
Souza et al. Lignin-incorporated bacterial nanocellulose for proton exchange membranes in microbial fuel cells
EP2773458B1 (en) Catalytic membranes and applications thereof
JP5190905B2 (en) Surface treated clay film
Palanisamy et al. Fabrication of cellulose acetate-based proton exchange membrane with sulfonated SiO2 and plasticizers for microbial fuel cell applications
Sun et al. MOF-derived nanoporous carbon incorporated in the cation exchange membrane for gradient power generation
ITMI941905A1 (en) PROCESS OF MANUFACTURING A BIPOLAR MEMBRANE AND PROCESS FOR PREPARING AN AQUEOUS SOLUTION OF AN HYDROXIDE OF AN ALKALINE METAL BY ELECTRODIALYSIS
Swaby et al. Synthesis and characterization of novel anion exchange membranes based on semi-interpenetrating networks of functionalized polysulfone: effect of ionic crosslinking

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110915

R150 Certificate of patent or registration of utility model

Ref document number: 4831656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees