JP4830091B2 - Gas-liquid mixed cleaning apparatus and gas-liquid mixed cleaning method - Google Patents
Gas-liquid mixed cleaning apparatus and gas-liquid mixed cleaning method Download PDFInfo
- Publication number
- JP4830091B2 JP4830091B2 JP2001275554A JP2001275554A JP4830091B2 JP 4830091 B2 JP4830091 B2 JP 4830091B2 JP 2001275554 A JP2001275554 A JP 2001275554A JP 2001275554 A JP2001275554 A JP 2001275554A JP 4830091 B2 JP4830091 B2 JP 4830091B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- liquid
- liquid mixed
- plate
- mixed cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Cleaning By Liquid Or Steam (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Nozzles (AREA)
- Coating Apparatus (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は洗浄装置に適用される気液混合洗浄装置に係わり、より詳細にはある面積の被洗浄物に均一に気体と液体を混合した霧状の気液混合流体を均一に照射することを特徴とする気液混合洗浄装置及び気液混合洗浄方法に関する。
【0002】
【従来の技術】
気体と液体を混合した洗浄ノズルはスポット形状をしており、その混合方式には一流体混合方式と二流体混合方式がある。
従来のスポット形状の気液混合洗浄ノズルは、照射面積が限られており、特に大面積の被洗浄物を洗浄する場合、短時間で効率良く洗浄することができない。この問題に対処するため、被洗浄物を回転させ被洗浄物を洗浄する枚葉式洗浄装置やいくつかのスポット形状の気液混合洗浄ノズルを組み合わせたノズルを用い被洗浄物を移動させながら当該被洗浄物を洗浄する洗浄装置が開発されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記のように改善した洗浄装置を用いて超微細な電子部品のような被洗浄物を洗浄した場合、その照射圧力や被洗浄物に発生する静電気により超微細な電子部品を破壊してしまい、製品の歩留まりに深刻な影響を与えるという問題がある。
【0004】
そこで本発明は、前記課題に鑑みてなされたものであり、ある面積の被洗浄部に気体と液体が混合した気液混合流体を均一照射し、微小な外力等により極めて影響の受け易い超微細な電子部品等が洗浄対象である場合でも、製品の性能劣化を起こすことなく、短時間に効率良く洗浄することを可能とする気液混合洗浄装置及び気液混合洗浄方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者は、鋭意検討の結果、以下に示す発明の諸態様に想到した。
【0006】
本発明の気液混合洗浄装置は、面状の噴霧部を有し、気体と液体を混合した気液混合流体を前記噴霧部から当該噴霧部の全域にわたって噴霧し、ある面積の被洗浄部を照射する気液混合洗浄ノズルを備え、前記噴霧部は、液体を浸した整流板を有しており、前記整流板の裏面に気体を前記整流板の板厚方向に平行に供給すると共に、先端が密着するように前記裏面に垂直に液体供給管を配置して、液体を、気体を前記整流板の裏面に供給するときの気体圧よりも小さい液体圧で前記整流板の板厚方向に平行に供給し、前記整流板の表面から前記整流板の板厚方向に平行に霧状の気液混合流体を噴霧することを特徴とする。
【0008】
本発明の気液混合洗浄装置の一態様では、前記整流板が、液体を保有することのできる熱伝導度の高い材料からなるものである。
【0009】
本発明の気液混合洗浄装置の一態様では、前記整流板を加熱できる加熱装置を付帯する。
【0012】
本発明の気液混合洗浄装置の一態様では、流体噴出ノズルを付帯する。
【0013】
本発明の気液混合洗浄装置の一態様では、流体吸込みノズルを付帯する。
【0014】
本発明の気液混合洗浄装置の一態様では、前記噴霧部から照射されている前記気液混合流体の有する静電気を除去する除電機構を付帯する。
【0015】
本発明の気液混合洗浄方法は、液体を浸した整流板を用いて、前記整流板の裏面に対して気体を前記整流板の板厚方向に平行に供給すると共に、先端が密着するように前記裏面に垂直に液体供給管を配置して、液体を、気体を前記整流板の裏面に供給するときの気体圧よりも小さい液体圧で前記整流板の板厚方向に平行に供給し、ある面積の被洗浄部に対して、前記整流板の表面から前記整流板の板厚方向に平行に霧状の気液混合流体を照射することを特徴とする。
【0017】
本発明の気液混合洗浄方法の一態様では、前記整流板が、液体を保有することのできる熱伝導度の高い材料からなるものである。
【0018】
本発明の気液混合洗浄方法の一態様では、前記整流板を所定温度に加熱する。
【0021】
本発明の気液混合洗浄方法の一態様では、流体噴出ノズルを付帯する。
【0022】
本発明の気液混合洗浄方法の一態様では、流体吸込みノズルを付帯する。
【0023】
本発明の気液混合洗浄方法の一態様では、噴霧部から照射されている前記気液混合流体の有する静電気を除去する除電機構を付帯する。
【0024】
【発明の実施の形態】
以下、本発明を適用した好適な実施形態について、図面を参照しながら詳細に説明する。
【0025】
図1は、本実施形態の気液混合洗浄装置の概略構成を示す模式図であり、図2は、気液混合洗浄装置の主要な構成要素である気液混合洗浄ノズルを示す断面図である。
【0026】
この気液混合洗浄装置は、プロセスチャンバー11内に、被洗浄物、ここでは半導体ウエーハ21が設置されるステージ12と、設置された半導体ウエーハ21に洗浄液を噴霧する気液混合洗浄ノズル13と、半導体ウエーハ21の近傍に設けられた除電機構14とを備えて構成されている。
【0027】
気液混合洗浄ノズル13は、ノズル筐体1を備え、液体流入口2及び気体流入口3が設けられ、底部に液体を浸した面状(ここでは矩形状)の整流板4が設けられ、液体流入口2から整流板4に接続された液体供給配管5を有して構成されている。ノズル筐体1は、所定温度に耐え得るものであれば特に制限はないが、熱伝導性及び清浄度及び耐薬品性を考慮すると表面処理が施された金属筐体が好ましい。また、液体供給配管5について特に制限はないが、耐薬品性を考慮すると、フッ素樹脂系材料が好ましい。
【0028】
除電機構14は、気液混合洗浄ノズル13から照射されている気液混合流体の有する静電気やプロセスチャンバー11内の雰囲気の有する静電気を除去するためのものであり、例えば比較的長波長で透過能の低い軟X線を照射する軟X線発生装置として構成される。
【0029】
この気液混合洗浄ノズル13では、液体流入口2から導入された液体が液体供給配管5を通って整流板4に到達するとともに、気体流入口3からノズル筐体1の内部に導入された気体が整流板4に到達し、液体と気体が混合されて気液混合流体を構成し、この気液混合流体を整流板4を介して、毛細管現象により当該整流板4の表面からその全域にわたって均一に噴霧し、ある面積の被洗浄部に高圧をかけることなく緩やかに気液混合流体を均一に照射する。
【0030】
ここで、図3に示すように、液体供給配管5を整流板4に密着させる必要がある。この場合、必要であれば液体供給口を複数設けるようにしても良い。これは、毛細管現象により霧状の気液混合流体を生成するため、両者が密着していないとガス圧以上の液体圧を要し、気液混合流体を均一な霧状とすることができなくなるからである。ここで、必要であればガス供給口をノズル筐体1に複数設けるようにしても良い。この事情は、後述する変形例でも同様である。
【0031】
整流板4は、液体を浸すことができ、気体と液体を混合した霧状の気液混合流体を75℃〜100℃に制御できる熱伝導度の高い材料、ここでは多孔質セラミックス材料で構成されている。整流板4に浸す液体は、整流板4の材質を破壊しないものであれば特に制限はなく、水、有機および無機の薬品、水と前記記載の薬品の混合物のいずれであってもよい。なお、この整流板4は、液体を浸すことができ、所定温度に加熱できるものであれば特に制限はない。
【0032】
気液混合流体を75℃〜100℃の所定温度に制御する必要のある場合には、整流板4に所定の加熱装置を設置する。
【0033】
気液混合洗浄で液体と混合する気体は、被洗浄体の洗浄において75℃〜100℃に制御した霧状の気液混合流体を必要とする場合、液体と混合する気体に水蒸気又は水分を含んだ気体を用いる。なお、水蒸気の発生方法は特に制限はない。また、被洗浄部の洗浄において霧状の気液混合流体の温度制御を必要としない場合、液体と混合する気体に特に制限はない。
【0034】
本実施形態の気液混合洗浄で液体として使用する水は、整流板4の目詰まりの要因となる濁質成分が除去されていれば特に制限はなく、例えば活性炭、凝集、膜処理などを用いて処理することによって得ることができる。但し、特に超微細な電子部品のような精密部品を洗浄する場合、水溶液中の濁質成分以外のイオン、金属、有機物、微粒子などの不純物を取り除いた純水および超純水を用いる。
【0035】
本実施形態で用いる純水の製造方法には特に制限はなく、例えば脱イオン水、蒸留水などの一次純水を逆浸透膜、限外ろ過膜、精密ろ過膜、イオン吸着膜などを用いて処理することによって得ることができる。
【0036】
また、本実施形態で用いる純水は25℃における比抵抗率が18.0MΩ・cm以上であること、全有機体炭素量が10μg/リットル以下であること、銅及び鉄などの金属成分がそれぞれ0.02μg/リットル以下であること、0.05μm以上の微粒子が10個/リットル以下であることが好ましい。
【0037】
なお、ノズル筐体1に、整流板4の近傍に流体噴出ノズルや流体吸込みノズル、或いはこれら双方を設けるようにしても良い。ここで、当該流体は、前記気液混合流体とは異なり、所定の液体又は気体とする。
【0038】
以上説明したように、本実施形態の気液混合洗浄装置によれば、ある面積の被洗浄部に気体と液体が混合した霧状の気液混合流体を整流板4の表面から均一照射し、微小な外力等により極めて影響の受け易い超微細な電子部品等が洗浄対象である場合でも、製品の性能劣化を起こすことなく、短時間に効率良く洗浄することが可能となる。
【0039】
(変形例)
以下、本実施形態の諸変形例について説明する。
【0040】
−変形例1−
図4は、変形例1の気液混合洗浄ノズルの概略構成を示す模式図である。
ここでは、整流板4をライン状の長手方向に沿って一方側に設け、整流板4の露出部位をノズル筐体1でシート材6を用いて調節し、整流板4を適当な液体供給セルを設け、液体で浸し、壁で仕切られた整流板4のある一方に気体と液体を混合した気液混合流体をある長さのライン状となるように均一噴霧し、被照射部に当該ライン状に照射する。この場合でも、必要であればガス供給口をノズル筐体1に複数設けるようにしても良い。
【0041】
なお、整流板4の幅(ライン幅ではなく、流体供給セル方向への幅)、厚みは材質を破壊しない限度内であれば特に制限はないが、好ましくは厚みが薄く幅の狭い整流板4が良い。
【0042】
本変形例の気液混合洗浄ノズルによれば、ある面積の被洗浄部に噴出し圧力を制御した気体と液体が混合した霧状の気液混合流体を整流板4の表面からライン状に均一照射し、微小な外力等により極めて影響の受け易い超微細な電子部品等が洗浄対象である場合でも、製品の性能劣化を起こすことなく、短時間に効率良く洗浄することが可能となる。
【0043】
−変形例2−
図5は、変形例2の気液混合洗浄ノズルの概略構成を示す模式図である。
ここでは、整流板4をライン状の長手方向に沿って双方側に対称となるように設け、整流板4の露出部位をノズル筐体1でシート材6を用いて調節し、整流板4を適当な液体供給セルを設け、液体で浸し、壁で仕切られた整流板4のある一方に気体と液体を混合した気液混合流体をある長さのライン状となるように均一噴霧し、被照射部に当該ライン状に照射する。この場合でも、必要であればガス供給口をノズル筐体1に複数設けるようにしても良い。
【0044】
なお、整流板4の幅(ライン幅ではなく、流体供給セル方向への幅)、厚みは材質を破壊しない限度内であれば特に制限はないが、好ましくは厚みが薄く幅の狭い整流板4が良い。
【0045】
本変形例の気液混合洗浄ノズルによれば、ある面積の被洗浄部に噴出し圧力を制御した気体と液体が混合した霧状の気液混合流体を整流板4の表面からライン状に均一照射し、微小な外力等により極めて影響の受け易い超微細な電子部品等が洗浄対象である場合でも、製品の性能劣化を起こすことなく、短時間に効率良く洗浄することが可能となる。特に本例では、整流板4がライン状の長手方向に沿って双方側に対称となるように設けられているため、気液混合流体の噴射の更なる均一性が確保される。
【0046】
【実施例】
ここで、本発明の気液混合洗浄ノズルと従来のスポット状ノズルとの洗浄比較について調べた実施例について説明する。
【0047】
(実施例1)
面積24cm2(30mm×80mm)のSi基板上にレジストが塗布してある被洗浄物をスポット状および面積状気液混合洗浄ノズルを用いて洗浄した時の除去効果を評価した。使用したスポット状洗浄ノズルの非洗浄物への照射面積はおおよそ0.28cm2であり、面積状気液混合洗浄ノズルの被洗浄物への照射面積はおおよそ24cm2である。また、整流板の材料として多孔質セラミックスを用い、照射面積は噴出し口10mm下での測定、洗浄は噴出し口10mm下で行なった。
【0048】
実験の結果、以下の表1に示すように、本発明の気液混合洗浄ノズルでは、従来のスポット状ノズルに比して1/4の時間でレジスト除去が可能であり、洗浄速度の大幅な向上が確認された。
【0049】
【表1】
【0050】
(実施例2)
面積24cm2(30mm×80mm)のSi基板上にレジストが塗布してある被洗浄物をスポット状および流体噴出しノズルを付帯した面積状気液混合洗浄ノズルを用いて洗浄した時の除去効果を評価した。使用したスポット状洗浄ノズルの非洗浄物への照射面積はおおよそ0.28cm2であり、流体噴出しノズルを付帯した面積状気液混合洗浄ノズルの被洗浄物への照射面積はおおよそ24cm2である。なお、噴き出し流体として純水を使用した。また、整流板の材料として多孔質セラミックスを用い、照射面積は噴出し口10mm下での測定、洗浄は噴出し口10mm下で行なった。
【0051】
実験の結果、以下の表2に示すように、流体噴出しノズルを付帯した本発明の気液混合洗浄ノズルでは、従来のスポット状ノズルに比して1/8の時間でレジスト除去が可能であり、更なる洗浄速度の大幅な向上が確認された。
【0052】
【表2】
【0053】
【発明の効果】
本発明によれば、ある面積の被洗浄部に気体と液体が混合した気液混合流体を均一照射し、微小な外力等により極めて影響の受け易い超微細な電子部品等が洗浄対象である場合でも、製品の性能劣化を起こすことなく、短時間に効率良く洗浄することが可能となる。
【図面の簡単な説明】
【図1】本実施形態の気液混合洗浄装置の概略構成を示す模式図である。
【図2】気液混合洗浄装置の主要な構成要素である気液混合洗浄ノズルを示す断面図である。
【図3】液体供給配管と整流板との関係を説明するための模式図である。
【図4】本実施形態の変形例1におけるライン気液混合洗浄ノズルの気体及び液体の供給方法と整流板との関係を説明するための模式図である。
【図5】本実施形態の変形例2におけるライン気液混合洗浄ノズルの気体及び液体の供給方法と整流板との関係を説明するための模式図である。
【符号の説明】
1 ノズル筐体
2 液体流入口
3 気体流入口
4 整流板
5 液体供給配管
6 シート材
11 プロセスチャンバー
12 ステージ
13 気液混合洗浄ノズル
14 除電機構
21 半導体ウエーハ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas-liquid mixed cleaning apparatus applied to a cleaning apparatus, and more specifically, to uniformly irradiate an object to be cleaned of a certain area with a mist-like gas-liquid mixed fluid in which gas and liquid are mixed uniformly. The present invention relates to a gas-liquid mixed cleaning apparatus and a gas-liquid mixed cleaning method.
[0002]
[Prior art]
The cleaning nozzle in which gas and liquid are mixed has a spot shape, and there are a single fluid mixing method and a two fluid mixing method.
Conventional spot-shaped gas-liquid mixed cleaning nozzles have a limited irradiation area. In particular, when cleaning an object to be cleaned of a large area, it cannot be efficiently cleaned in a short time. In order to cope with this problem, the object to be cleaned is moved while the object to be cleaned is moved using a single wafer type cleaning device that rotates the object to be cleaned and a nozzle combined with several spot-shaped gas-liquid mixed cleaning nozzles. A cleaning apparatus for cleaning an object to be cleaned has been developed.
[0003]
[Problems to be solved by the invention]
However, when an object to be cleaned such as an ultra-fine electronic component is cleaned using the cleaning device improved as described above, the ultra-fine electronic component is destroyed by the irradiation pressure or static electricity generated in the object to be cleaned. Therefore, there is a problem of seriously affecting the product yield.
[0004]
Therefore, the present invention has been made in view of the above-described problems, and uniformly irradiates a gas-liquid mixed fluid in which a gas and a liquid are mixed to a portion to be cleaned, and is extremely sensitive to a minute external force. The object is to provide a gas-liquid mixed cleaning apparatus and a gas-liquid mixed cleaning method that enable efficient cleaning in a short time without causing deterioration of product performance even when a clean electronic component or the like is an object to be cleaned And
[0005]
[Means for Solving the Problems]
As a result of intensive studies, the present inventor has conceived the following aspects of the invention.
[0006]
The gas-liquid mixed cleaning apparatus of the present invention has a planar spray unit, and sprays a gas-liquid mixed fluid obtained by mixing gas and liquid from the spray unit over the entire area of the spray unit. A gas-liquid mixed cleaning nozzle for irradiation is provided, and the spray unit has a current plate immersed in the liquid, and supplies gas to the back surface of the current plate in parallel with the plate thickness direction of the current plate. A liquid supply pipe is arranged perpendicularly to the back surface so that the liquid is in close contact, and the liquid is parallel to the plate thickness direction of the current plate with a liquid pressure smaller than the gas pressure when supplying gas to the back surface of the current plate. It is supplied to, characterized by spraying the parallel atomized liquid mixed fluid from the surface of the current plate in the thickness direction of the current plate.
[0008]
In one aspect of the gas-liquid mixed cleaning apparatus of the present invention, the rectifying plate is made of a material having a high thermal conductivity capable of holding a liquid.
[0009]
In one aspect of the gas-liquid mixed cleaning apparatus of the present invention, a heating apparatus capable of heating the rectifying plate is attached.
[0012]
In one aspect of the gas-liquid mixed cleaning apparatus of the present invention, a fluid ejection nozzle is attached.
[0013]
In one aspect of the gas-liquid mixed cleaning apparatus of the present invention, a fluid suction nozzle is attached.
[0014]
In one aspect of the gas-liquid mixed cleaning apparatus of the present invention, a static elimination mechanism for removing static electricity of the gas-liquid mixed fluid irradiated from the spray unit is attached.
[0015]
The gas-liquid mixed cleaning method of the present invention uses a rectifying plate soaked with liquid to supply gas in parallel to the thickness direction of the rectifying plate with respect to the back surface of the rectifying plate so that the tip is in close contact therewith. A liquid supply pipe is arranged perpendicularly to the back surface, and the liquid is supplied in parallel to the plate thickness direction of the rectifying plate with a liquid pressure smaller than the gas pressure when supplying gas to the back surface of the rectifying plate, for the cleaning target section of the area, and irradiating the parallel atomized liquid mixed fluid from the surface of the current plate in the thickness direction of the current plate.
[0017]
In one aspect of the gas-liquid mixed cleaning method of the present invention, the rectifying plate is made of a material having a high thermal conductivity capable of holding a liquid.
[0018]
In one aspect of the gas-liquid mixed cleaning method of the present invention, the rectifying plate is heated to a predetermined temperature.
[0021]
In one aspect of the gas-liquid mixed cleaning method of the present invention, a fluid ejection nozzle is attached.
[0022]
In one aspect of the gas-liquid mixed cleaning method of the present invention, a fluid suction nozzle is attached.
[0023]
In one aspect of the gas-liquid mixed cleaning method of the present invention, a static elimination mechanism for removing static electricity of the gas-liquid mixed fluid irradiated from the spray unit is attached.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments to which the present invention is applied will be described in detail with reference to the drawings.
[0025]
FIG. 1 is a schematic diagram showing a schematic configuration of the gas-liquid mixed cleaning apparatus of the present embodiment, and FIG. 2 is a cross-sectional view showing a gas-liquid mixed cleaning nozzle that is a main component of the gas-liquid mixed cleaning apparatus. .
[0026]
The gas-liquid mixed cleaning apparatus includes a stage 12 on which an object to be cleaned, here a semiconductor wafer 21 is installed, a gas-liquid mixed cleaning nozzle 13 for spraying a cleaning liquid on the installed semiconductor wafer 21, and a process chamber 11. The static elimination mechanism 14 provided in the vicinity of the semiconductor wafer 21 is provided.
[0027]
The gas-liquid mixed cleaning nozzle 13 includes a nozzle housing 1, a liquid inlet 2 and a gas inlet 3 are provided, and a planar (here rectangular) rectifying plate 4 in which liquid is immersed at the bottom is provided. The liquid supply pipe 5 is connected from the liquid inlet 2 to the rectifying plate 4. The nozzle housing 1 is not particularly limited as long as it can withstand a predetermined temperature, but a metal housing subjected to surface treatment is preferable in consideration of thermal conductivity, cleanliness, and chemical resistance. Moreover, although there is no restriction | limiting in particular about the liquid supply piping 5, when chemical resistance is considered, a fluororesin type material is preferable.
[0028]
The static elimination mechanism 14 is for removing static electricity in the gas-liquid mixed fluid irradiated from the gas-liquid mixing and cleaning nozzle 13 and static electricity in the atmosphere in the process chamber 11. It is comprised as a soft X-ray generator which irradiates soft X-rays with low.
[0029]
In the gas-liquid mixed cleaning nozzle 13, the liquid introduced from the liquid inlet 2 reaches the rectifying plate 4 through the liquid supply pipe 5, and the gas introduced into the nozzle housing 1 from the gas inlet 3. Reaches the rectifying plate 4, and a liquid and a gas are mixed to form a gas-liquid mixed fluid, and this gas-liquid mixed fluid is uniformly distributed from the surface of the rectifying plate 4 to the entire region through the rectifying plate 4 by capillary action. The gas-liquid mixed fluid is gently and uniformly irradiated without applying high pressure to the area to be cleaned.
[0030]
Here, as shown in FIG. 3, the liquid supply pipe 5 needs to be in close contact with the rectifying plate 4. In this case, if necessary, a plurality of liquid supply ports may be provided. This generates a mist-like gas-liquid mixed fluid by capillary action, so if both are not in close contact, a liquid pressure higher than the gas pressure is required, and the gas-liquid mixed fluid cannot be made into a uniform mist shape. Because. Here, if necessary, a plurality of gas supply ports may be provided in the nozzle housing 1. This situation is the same in the modification described later.
[0031]
The rectifying plate 4 is made of a material having high thermal conductivity, which can immerse a liquid and can control a mist-like gas-liquid mixed fluid in which a gas and a liquid are mixed to 75 ° C. to 100 ° C., here, a porous ceramic material. ing. The liquid immersed in the rectifying plate 4 is not particularly limited as long as it does not destroy the material of the rectifying plate 4, and may be any of water, organic and inorganic chemicals, and a mixture of water and the chemicals described above. The rectifying plate 4 is not particularly limited as long as it can immerse liquid and can be heated to a predetermined temperature.
[0032]
When it is necessary to control the gas-liquid mixed fluid to a predetermined temperature of 75 ° C. to 100 ° C., a predetermined heating device is installed on the rectifying plate 4.
[0033]
The gas to be mixed with the liquid in the gas-liquid mixed cleaning includes water vapor or moisture in the gas mixed with the liquid when a mist-like gas-liquid mixed fluid controlled at 75 ° C. to 100 ° C. is required for cleaning the object to be cleaned. Use gas. The method for generating water vapor is not particularly limited. Further, when the temperature of the mist-like gas-liquid mixed fluid is not required for cleaning the portion to be cleaned, there is no particular limitation on the gas mixed with the liquid.
[0034]
The water used as the liquid in the gas-liquid mixed cleaning of the present embodiment is not particularly limited as long as the turbid component that causes clogging of the rectifying plate 4 is removed. For example, activated carbon, agglomeration, membrane treatment, or the like is used. Can be obtained by processing. However, when cleaning precision parts such as ultrafine electronic parts in particular, pure water and ultrapure water from which impurities such as ions, metals, organic substances, and fine particles other than turbid components in the aqueous solution are removed are used.
[0035]
The method for producing pure water used in the present embodiment is not particularly limited. For example, primary pure water such as deionized water and distilled water is used by using a reverse osmosis membrane, an ultrafiltration membrane, a microfiltration membrane, an ion adsorption membrane, and the like. It can be obtained by processing.
[0036]
The pure water used in this embodiment has a specific resistivity at 25 ° C. of 18.0 MΩ · cm or more, a total organic carbon content of 10 μg / liter or less, and metal components such as copper and iron, respectively. It is preferably 0.02 μg / liter or less and 0.05 μm or more of fine particles of 10 particles / liter or less.
[0037]
The nozzle housing 1 may be provided with a fluid ejection nozzle , a fluid suction nozzle, or both in the vicinity of the rectifying plate 4. Here, unlike the gas-liquid mixed fluid, the fluid is a predetermined liquid or gas.
[0038]
As described above, according to the gas-liquid mixed cleaning apparatus of the present embodiment, the mist-like gas-liquid mixed fluid in which the gas and the liquid are mixed in the area to be cleaned is uniformly irradiated from the surface of the rectifying plate 4, Even when an ultra-fine electronic component that is extremely affected by a minute external force or the like is an object to be cleaned, the product can be efficiently cleaned in a short time without causing deterioration of product performance.
[0039]
(Modification)
Hereinafter, various modifications of the present embodiment will be described.
[0040]
-Modification 1-
FIG. 4 is a schematic diagram showing a schematic configuration of the gas-liquid mixed cleaning nozzle of Modification 1. As shown in FIG.
Here, the rectifying plate 4 is provided on one side along the longitudinal direction of the line, and the exposed portion of the rectifying plate 4 is adjusted by using the sheet material 6 in the nozzle housing 1, and the rectifying plate 4 is adjusted to an appropriate liquid supply cell. A gas-liquid mixed fluid obtained by mixing gas and liquid is sprayed uniformly on one side of the rectifying plate 4 partitioned by a wall and partitioned by a wall so as to form a line of a certain length, and the line is applied to the irradiated portion. Irradiate in a shape. Even in this case, if necessary, a plurality of gas supply ports may be provided in the nozzle housing 1.
[0041]
The width (thickness in the direction of the fluid supply cell, not the line width) and thickness of the current plate 4 are not particularly limited as long as they are within the limits that do not destroy the material, but preferably the current plate 4 is thin and narrow. Is good.
[0042]
According to the gas-liquid mixed cleaning nozzle of this modified example, the mist-like gas-liquid mixed fluid in which the gas and the liquid whose jet pressure is controlled is mixed into the portion to be cleaned in a certain area is uniformly formed in a line from the surface of the rectifying plate 4 Even when an ultra-fine electronic component or the like that is extremely affected by irradiation and a minute external force is an object to be cleaned, the product can be efficiently cleaned in a short time without causing deterioration of product performance.
[0043]
-Modification 2-
FIG. 5 is a schematic diagram showing a schematic configuration of a gas-liquid mixed cleaning nozzle of Modification 2.
Here, the rectifying plate 4 is provided so as to be symmetrical on both sides along the linear longitudinal direction, and the exposed portion of the rectifying plate 4 is adjusted using the sheet material 6 in the nozzle housing 1, and the rectifying plate 4 is An appropriate liquid supply cell is provided, and a gas-liquid mixed fluid obtained by mixing gas and liquid is uniformly sprayed into a certain length of line on one side of the rectifying plate 4 which is immersed in the liquid and partitioned by the wall, and is covered. Irradiate the irradiating part in the line shape. Even in this case, if necessary, a plurality of gas supply ports may be provided in the nozzle housing 1.
[0044]
The width (thickness in the direction of the fluid supply cell, not the line width) and thickness of the current plate 4 are not particularly limited as long as they are within the limits that do not destroy the material, but preferably the current plate 4 is thin and narrow. Is good.
[0045]
According to the gas-liquid mixed cleaning nozzle of this modified example, the mist-like gas-liquid mixed fluid in which the gas and the liquid whose jet pressure is controlled is mixed into the portion to be cleaned in a certain area is uniformly formed in a line shape from the surface of the rectifying plate 4. Even when an ultra-fine electronic component or the like that is extremely affected by irradiation and a minute external force is an object to be cleaned, the product can be efficiently cleaned in a short time without causing deterioration of product performance. In particular, in this example, since the rectifying plate 4 is provided so as to be symmetrical on both sides along the linear longitudinal direction, further uniformity of the injection of the gas-liquid mixed fluid is ensured.
[0046]
【Example】
Here, the Example investigated about the cleaning comparison with the gas-liquid mixing washing nozzle of this invention and the conventional spot-shaped nozzle is described.
[0047]
Example 1
The removal effect when an object to be cleaned, in which a resist was coated on a Si substrate having an area of 24 cm 2 (30 mm × 80 mm), was cleaned using a spot-shaped and area-shaped gas-liquid mixed cleaning nozzle was evaluated. The irradiation area of the spot-like cleaning nozzle used on the non-cleaning object is approximately 0.28 cm 2 , and the irradiation area of the area-like gas-liquid mixed cleaning nozzle on the object to be cleaned is approximately 24 cm 2 . Moreover, porous ceramics were used as the material of the current plate, the irradiation area was measured under 10 mm of the ejection port, and the cleaning was performed under 10 mm of the ejection port.
[0048]
As a result of the experiment, as shown in Table 1 below, in the gas-liquid mixed cleaning nozzle of the present invention, the resist can be removed in ¼ time compared to the conventional spot-like nozzle, and the cleaning speed is greatly increased. Improvement was confirmed.
[0049]
[Table 1]
[0050]
(Example 2)
The removal effect when an object to be cleaned, which is coated with a resist on a Si substrate having an area of 24 cm 2 (30 mm × 80 mm), is cleaned using an area-like gas-liquid mixed cleaning nozzle with spot-like and fluid ejection nozzles. evaluated. The irradiation area of the spot-like cleaning nozzle used on the non-cleaning object is approximately 0.28 cm 2 , and the irradiation area of the area-shaped gas-liquid mixed cleaning nozzle attached with the fluid ejection nozzle is approximately 24 cm 2 . is there. Pure water was used as the ejection fluid. Moreover, porous ceramics were used as the material of the current plate, the irradiation area was measured under 10 mm of the ejection port, and the cleaning was performed under 10 mm of the ejection port.
[0051]
As a result of the experiment, as shown in Table 2 below, the gas-liquid mixed cleaning nozzle of the present invention with the fluid ejection nozzle can remove the resist in 1/8 time compared to the conventional spot-like nozzle. There was a significant improvement in the cleaning speed.
[0052]
[Table 2]
[0053]
【The invention's effect】
According to the present invention, when an object to be cleaned of a certain area is uniformly irradiated with a gas-liquid mixed fluid in which gas and liquid are mixed, and an ultrafine electronic component that is extremely affected by a minute external force or the like is an object to be cleaned However, it is possible to efficiently clean in a short time without causing deterioration of product performance.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a schematic configuration of a gas-liquid mixed cleaning apparatus of the present embodiment.
FIG. 2 is a cross-sectional view showing a gas-liquid mixed cleaning nozzle which is a main component of the gas-liquid mixed cleaning apparatus.
FIG. 3 is a schematic diagram for explaining a relationship between a liquid supply pipe and a current plate.
FIG. 4 is a schematic diagram for explaining a relationship between a gas and liquid supply method of a line gas-liquid mixed cleaning nozzle and a rectifying plate in Modification 1 of the present embodiment.
FIG. 5 is a schematic diagram for explaining a relationship between a gas and liquid supply method of a line gas-liquid mixed cleaning nozzle and a rectifying plate in a second modification of the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Nozzle housing | casing 2 Liquid inlet 3 Gas inlet 4 Current plate 5 Liquid supply piping 6 Sheet material 11 Process chamber 12 Stage 13 Gas-liquid mixed washing nozzle 14 Static elimination mechanism 21 Semiconductor wafer
Claims (12)
前記噴霧部は、液体を浸した整流板を有しており、
前記整流板の裏面に気体を前記整流板の板厚方向に平行に供給すると共に、先端が密着するように前記裏面に垂直に液体供給管を配置して、液体を、気体を前記整流板の裏面に供給するときの気体圧よりも小さい液体圧で前記整流板の板厚方向に平行に供給し、前記整流板の表面から前記整流板の板厚方向に平行に霧状の前記気液混合流体を噴霧することを特徴とする気液混合洗浄装置。A gas-liquid mixed cleaning nozzle that has a planar spray part, sprays a gas-liquid mixed fluid in which a gas and a liquid are mixed from the spray part over the entire area of the spray part, and irradiates a part to be cleaned.
The spray unit has a current plate dipped in liquid,
A gas is supplied to the back surface of the rectifying plate in parallel with the plate thickness direction of the rectifying plate, and a liquid supply pipe is arranged perpendicularly to the back surface so that the tip is in close contact with the liquid, and the gas is supplied to the rectifying plate. a small liquid pressure than the gas pressure in parallel supplied to the plate thickness direction of the current plate, the gas-liquid mixture in parallel with mist from the surface of the current plate in the thickness direction of the rectifier plate at the time of supply to the back surface A gas-liquid mixed cleaning apparatus characterized by spraying a fluid.
前記整流板の裏面に対して気体を前記整流板の板厚方向に平行に供給すると共に、先端が密着するように前記裏面に垂直に液体供給管を配置して、液体を、気体を前記整流板の裏面に供給するときの気体圧よりも小さい液体圧で前記整流板の板厚方向に平行に供給し、
ある面積の被洗浄部に対して、前記整流板の表面から前記整流板の板厚方向に平行に霧状の気液混合流体を照射することを特徴とする気液混合洗浄方法。Using a baffle plate dipped in liquid,
A gas is supplied to the back surface of the rectifying plate in parallel with the plate thickness direction of the rectifying plate, and a liquid supply pipe is arranged perpendicularly to the back surface so that the tip is in close contact with the liquid, and the gas is rectified. Supply in parallel to the plate thickness direction of the current plate with a liquid pressure smaller than the gas pressure when supplying to the back side of the plate,
For to be cleaned of certain area, the gas-liquid mixed cleaning method and then irradiating the parallel atomized liquid mixed fluid from the surface of the current plate in the thickness direction of the current plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001275554A JP4830091B2 (en) | 2000-09-11 | 2001-09-11 | Gas-liquid mixed cleaning apparatus and gas-liquid mixed cleaning method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-275287 | 2000-09-11 | ||
JP2000275287 | 2000-09-11 | ||
JP2000275287 | 2000-09-11 | ||
JP2001275554A JP4830091B2 (en) | 2000-09-11 | 2001-09-11 | Gas-liquid mixed cleaning apparatus and gas-liquid mixed cleaning method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002153826A JP2002153826A (en) | 2002-05-28 |
JP4830091B2 true JP4830091B2 (en) | 2011-12-07 |
Family
ID=26599673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001275554A Expired - Fee Related JP4830091B2 (en) | 2000-09-11 | 2001-09-11 | Gas-liquid mixed cleaning apparatus and gas-liquid mixed cleaning method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4830091B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4599112B2 (en) * | 2004-07-30 | 2010-12-15 | 京セラキンセキ株式会社 | Cleaning device using carbon dioxide snow |
JP6378890B2 (en) * | 2013-03-01 | 2018-08-22 | 株式会社荏原製作所 | Substrate processing method |
CN109590265A (en) * | 2018-12-26 | 2019-04-09 | 苏州晶洲装备科技有限公司 | A kind of adjustable two-fluid plate cleaning structure |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56102967A (en) * | 1980-01-19 | 1981-08-17 | Matsushita Electric Ind Co Ltd | Atomizer |
JPH0353784A (en) * | 1989-07-21 | 1991-03-07 | Fujitsu General Ltd | Video telephone set |
JPH0457555U (en) * | 1990-09-17 | 1992-05-18 | ||
JP3012210B2 (en) * | 1996-02-20 | 2000-02-21 | スピードファムクリーンシステム株式会社 | Running water type washing equipment |
JPH09270412A (en) * | 1996-04-01 | 1997-10-14 | Canon Inc | Cleaning device and method |
JPH1092784A (en) * | 1996-09-10 | 1998-04-10 | Toshiba Microelectron Corp | Wafer treatment equipment and wafer treatment method |
JP3315611B2 (en) * | 1996-12-02 | 2002-08-19 | 三菱電機株式会社 | Two-fluid jet nozzle for cleaning, cleaning device, and semiconductor device |
-
2001
- 2001-09-11 JP JP2001275554A patent/JP4830091B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002153826A (en) | 2002-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW506009B (en) | Wet treatment apparatus | |
TW501198B (en) | Method and device for processing substrate | |
TW582065B (en) | Apparatus for cleaning semiconductor wafer and method for cleaning wafer using the same | |
KR101256972B1 (en) | Method and device for treating substrates and corresponding nozzle unit | |
KR100453415B1 (en) | Cleaning solution and cleaning method | |
WO2007063987A1 (en) | Method for processing/washing with ultra-pure water plasma foams and apparatus for the method | |
WO2000030165A1 (en) | Method and device for removing photoresist film | |
JP2001223206A (en) | Substrate treating method and device | |
JP2003309100A (en) | Resist film removing device and method and organic matter removing device and method therefor | |
JP3261683B2 (en) | Semiconductor cleaning method and cleaning apparatus | |
JP4830091B2 (en) | Gas-liquid mixed cleaning apparatus and gas-liquid mixed cleaning method | |
JP3508789B2 (en) | Substrate surface treatment method | |
WO2018034317A1 (en) | Hydrogencarbonate water and cleaning method using same | |
KR20190084472A (en) | Liquid plasma continuous coating apparatus and method thereof | |
JP2010530130A (en) | How to prevent premature drying | |
JP4519234B2 (en) | Article surface cleaning method and cleaning apparatus therefor | |
JP2002141326A (en) | Method and device of liquid treatment of plate material | |
KR100224929B1 (en) | Wet processing method and apparatus therefor | |
KR100387757B1 (en) | Apparatus and method for removing contaminants from the surface of a substrate | |
JP2003103201A (en) | Gas-liquid mixing nozzle and method for supplying gas- liquid mixed fluid | |
KR20180124279A (en) | Apparatus for cleaning | |
JPS62204531A (en) | Removing method for organic film | |
JP3118201B2 (en) | Advanced cleaning method for organic dirt | |
JP2005328075A (en) | Surface treatment method and surface treatment apparatus | |
KR100262462B1 (en) | Hydrogen gas removal device on wet etching |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070525 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100713 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100910 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110111 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110310 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110809 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110825 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |