JP4829649B2 - Method for producing silicon quantum dot activated layer of silicon quantum dot activated solar cell - Google Patents

Method for producing silicon quantum dot activated layer of silicon quantum dot activated solar cell Download PDF

Info

Publication number
JP4829649B2
JP4829649B2 JP2006070457A JP2006070457A JP4829649B2 JP 4829649 B2 JP4829649 B2 JP 4829649B2 JP 2006070457 A JP2006070457 A JP 2006070457A JP 2006070457 A JP2006070457 A JP 2006070457A JP 4829649 B2 JP4829649 B2 JP 4829649B2
Authority
JP
Japan
Prior art keywords
layer
silicon quantum
quantum dot
silicon
activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006070457A
Other languages
Japanese (ja)
Other versions
JP2007250717A (en
Inventor
林明璋
楊村農
籃山明
魏聰揚
邱志鵬
馬維揚
Original Assignee
行政院原子能委員会核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員会核能研究所 filed Critical 行政院原子能委員会核能研究所
Priority to JP2006070457A priority Critical patent/JP4829649B2/en
Publication of JP2007250717A publication Critical patent/JP2007250717A/en
Application granted granted Critical
Publication of JP4829649B2 publication Critical patent/JP4829649B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells

Description

本発明は、シリコン量子点活性化太陽電池のシリコン量子点活性化層の製造方法に関し、特に、形成されたシリコン量子点構造により、電子の運動や方向を制限することにより、光電変換効率が向上されるものに関する。 The present invention relates to a method for producing a silicon quantum dot activation layer of a silicon quantum dot activated solar cell, and in particular, the photoelectric conversion efficiency is improved by limiting the movement and direction of electrons by the formed silicon quantum dot structure. About what will be done.

従来の半導体太陽電池は、III−V族やシリコンのバルク或いはシリコン薄膜等を、光電材料とするのが一般的であり、それは、光電性が実現されるが、工程が複雑で、コストが高いため、実用的ではない。 Conventional semiconductor solar cells generally use a group III-V, silicon bulk or silicon thin film as a photoelectric material, which realizes photoelectricity, but has a complicated process and high cost. Therefore, it is not practical.

故に、関係業者が有機染料(dye)を光電材料とする半導体太陽電池を提案し、例えば、中華民国特許公報第093114773号「太陽電池ユニットとそのモジュール」は、上表面と下表面とがある光電変換層と、当該光電変換層の上表面に形成され、当該光電変換層の縁から伸ばす陽極導通部が含有される陽極層と、当該光電変換層の下表面に形成され、当該光電変換層の縁から伸ばす陰極導通部が含有される陰極層と、当該光電変換層を封止し、当該陽極導通部と当該陰極導通部が、それぞれ、外部へ露出するように、当該光電変換層の縁に設置される一つ以上のスペーサと、が含有され、当該光電変換層は、染料光電層と電解質と含有、当該染料光電層が、当該陽極層の上に設置され、当該電解質が、当該染料光電層と当該陰極層との間に充填される。 Therefore, a related contractor has proposed a semiconductor solar cell using an organic dye (dye) as a photoelectric material. For example, the Chinese Patent Publication No. 093114773 “Solar cell unit and its module” has an upper surface and a lower surface. A conversion layer, an anode layer formed on the upper surface of the photoelectric conversion layer and containing an anode conducting portion extending from an edge of the photoelectric conversion layer; and formed on the lower surface of the photoelectric conversion layer, The cathode layer containing the cathode conduction part extending from the edge and the photoelectric conversion layer are sealed, and the anode conduction part and the cathode conduction part are respectively exposed on the edge of the photoelectric conversion layer so as to be exposed to the outside. and one or more spacers to be installed, is contained, the photoelectric conversion layer contains a dye photoelectric layer and an electrolyte, the dye photoelectric layer is placed on top of the anode layer, the electrolyte, the filled between the dye photoelectric layer and the cathode layer It is.

当該「太陽電池ユニットとそのモジュール」によれば、従来の、工程が複雑であり、コストが高い欠点が改善されるが、当該有機染料が、高分子有機物からなるため、長期間に太陽光に照射されると、当該材料が、変質し、そして、光電作用の効果が失ってしまう。そのため、上記の従来の「太陽電池ユニットとそのモジュール」も、実用的ではない。
中華民国特許公報第093114773号
According to the “solar cell unit and its module”, the conventional drawbacks of complicated process and high cost are improved. However, since the organic dye is composed of a polymer organic substance, When irradiated, the material is altered and the photoelectric effect is lost. Therefore, the above-mentioned conventional “solar cell unit and its module” are also not practical.
Taiwan Patent Publication No. 093114773

本発明の主な目的は、太陽光を吸収すると、厚さが100ナノメートル(nanometer)より小さいシリコン量子点分布層により、電子正孔対が生成され、形成されたシリコン量子点構造により、電子の運動や方向を制限し、光電変換効率が向上されるシリコン量子点活性化太陽電池のシリコン量子点活性化層の製造方法を提供する。 The main object of the present invention is to generate electron-hole pairs by a silicon quantum dot distribution layer having a thickness of less than 100 nanometers upon absorption of sunlight, and by the formed silicon quantum dot structure, electrons The manufacturing method of the silicon quantum point activation layer of the silicon quantum point activation solar cell which restrict | limits the motion and direction of this and can improve photoelectric conversion efficiency is provided.

本発明は、上記の目的を達成するため、酸化インジウムスズ(ITO)層と二酸化チタン(TiO2)層とが積層された基板を反応チャンバーの中へ入れ込み、当該反応チャンバーの中において、シラン(SiH4)を前駆物質体(precursor)として、アルゴン(Argon)を希釈あるいはキャリヤーガスとし、複数回のパルス蒸着法により、基板の二酸化チタン層の表面において、シリコン量子点核生成層(nucleation)とシリコン量子点成長生長層(growth)及びシリコン量子点不活性化層(passivation)の形成を行い、直接に複数のシリコン量子点が分布される構造が形成され、また、一回のパルス蒸着法により、直接に、シリコン量子点構造以外に、炭化ケイ素(SiCx)量子点薄膜を沈着し、これにより、当該基板の二酸化チタン層の表面に、厚さが100ナノメートルより小さいシリコン量子点分布層が形成されるシリコン量子点活性化太陽電池のシリコン量子点活性化層の製造方法である。 In order to achieve the above object, the present invention puts a substrate in which an indium tin oxide (ITO) layer and a titanium dioxide (TiO 2 ) layer are stacked into a reaction chamber, and in the reaction chamber , silane ( SiH 4 ) as a precursor, Argon as a dilution or carrier gas, and a plurality of pulsed deposition methods to form a silicon quantum dot nucleation layer on the surface of the titanium dioxide layer of the substrate. silicon quantum dot growth growth layer (growth) and silicon quantum dots passivation layer performs the formation of (passivation), the structure directly plurality of silicon quantum point is the distribution is formed, also, a single pulse deposition Directly deposits a silicon carbide (SiCx) quantum dot thin film in addition to the silicon quantum dot structure, so that the thickness of the substrate is 100 nanometers on the surface of the titanium dioxide layer. Is a manufacturing method of the silicon quantum dot active layer of the silicon quantum dots activated solar cells smaller silicon quantum point distribution layer is formed.

図1〜5は、それぞれ、本発明の基板の断面概念図と本発明の工程cのシリコン量子点核層概念図、本発明の工程cのシリコン量子点生長層概念図、本発明の工程cのシリコン量子点不活性化層概念図及び本発明の工程dのシリコン量子点分布層概念図である。本発明は、図のように、シリコン量子点活性化太陽電池のシリコン量子点活性化層の製造方法であって、
a、少なくとも酸化インジウムスズ(ITO)層11と二酸化チタン(TiO2)層12とが積層された基板であって、導電ガラス板やプラスチック板である基板1を用意し、
b、当該基板1を反応チャンバーの中へ入れ込み、
c、当該反応チャンバーの中において、シラン(SiH4)を前駆物質体(precursor)として、アルゴン(Argon)を希釈あるいはキャリヤーガス(carrier gas)とし、また、当該反応チャンバーの内部において、シランの濃度比または流量比が1%乃至20%の間にあり、処理ガス圧力が1ミリトール(mTorr)乃至2000ミリトールの間にあり、基板の処理温度が室温乃至350℃の間にあり、その後、プラズマCVD(Plasma-enhanced chemical vapor deposition、PECVD)での複数回のパルス(multi-pulses)蒸着により、当該基板1の二酸化チタン層12の表面において、シリコン量子点核生成層211(nucleation)と成長生長層212(growth)及び不活性化層213(passivation)の形成を行い、直接に複数のシリコン量子点が分布される構造21が形成され、
d、一回のパルス蒸着により、直接に、当該複数のシリコン量子点が分布される構造21以外に、炭化ケイ素(SiCx)量子点薄膜22を沈着し、これにより、当該基板の二酸化チタン層12の表面に、厚さが100ナノメートル(nanometer)より小さいシリコン量子点分布層2が形成される。
1 to 5 are a cross-sectional conceptual diagram of the substrate of the present invention, a silicon quantum dot nucleus conceptual diagram of the step c of the present invention, a silicon quantum dot growth layer conceptual diagram of the step c of the present invention, and a process c of the present invention, respectively. FIG. 2 is a conceptual diagram of a silicon quantum point deactivation layer and a silicon quantum point distribution layer conceptual diagram of step d of the present invention. The present invention, as shown in the figure, is a method for producing a silicon quantum dot activated layer of a silicon quantum dot activated solar cell,
a, a substrate in which at least an indium tin oxide (ITO) layer 11 and a titanium dioxide (TiO 2 ) layer 12 are laminated, and a substrate 1 which is a conductive glass plate or a plastic plate is prepared,
b, putting the substrate 1 into the reaction chamber;
c, Silane (SiH 4 ) as a precursor, Argon as dilution or carrier gas in the reaction chamber, and the concentration of silane in the reaction chamber The ratio or flow ratio is between 1% and 20%, the process gas pressure is between 1 mTorr and 2000 mTorr, the substrate processing temperature is between room temperature and 350 ° C., and then plasma CVD A silicon quantum dot nucleation layer 211 (nucleation) and a growth growth layer are formed on the surface of the titanium dioxide layer 12 of the substrate 1 by multi-pulses deposition by plasma-enhanced chemical vapor deposition (PECVD). 212 perform formation of the (growth) and passivation layer 213 (passivation), the structure 21 directly plurality of silicon quantum point is the distribution is formed,
d. In addition to the structure 21 in which the plurality of silicon quantum dots are directly distributed, a silicon carbide (SiCx) quantum dot thin film 22 is deposited by one pulse deposition, whereby the titanium dioxide layer 12 of the substrate is deposited. A silicon quantum dot distribution layer 2 having a thickness of less than 100 nanometers is formed on the surface of the substrate.

上記のように、新規のシリコン量子点活性化太陽電池のシリコン量子点活性化層の製造方法が構成される。 As mentioned above, the manufacturing method of the silicon quantum point activation layer of a novel silicon quantum point activation solar cell is comprised.

また、当該工程cにおいて、シリコン量子点不活性化層工程は、シリコン原子表面のダングリングボンド(dangling bonds)にSi-HとSi-C連鎖が形成され、また、当該シリコン量子点不活性化層工程のガス材料は、水素ガス(H2)やメタン(CH4)或いは他の水素原子や炭素原子を生成できるガスであり、目的として、シリコン量子点の酸化や化学反応或いは機械摩擦等の問題を解消することでありながら、光電流と光電圧とが向上される。 Further, in the step c, the silicon quantum point deactivation layer step includes the formation of Si-H and Si-C linkages in the dangling bonds on the silicon atom surface, and the silicon quantum point deactivation. The gas material of the layer process is hydrogen gas (H 2 ), methane (CH 4 ), or other gas that can generate hydrogen atoms or carbon atoms. For the purpose, oxidation of silicon quantum dots, chemical reaction, mechanical friction, etc. While eliminating the problem, the photocurrent and photovoltage are improved.

上記のように、本発明に係わるシリコン量子点活性化太陽電池のシリコン量子点活性化層の製造方法によれば、有効に、従来の様々の欠点を改善でき、厚さが100ナノメートルより小さいシリコン量子点分布層が、太陽光を吸収すると、電子正孔対が生成され、また、形成されたシリコン量子点構造により、電子の運動や方向を制限することにより、光電変換効率が向上され、そのため、本発明は、より進歩的且つ実用的なものであるため、法に従って特許請求を出願する。 As described above, according to the method for producing a silicon quantum dot activated layer of a silicon quantum dot activated solar cell according to the present invention, various conventional defects can be effectively improved, and the thickness is less than 100 nanometers. When the silicon quantum dot distribution layer absorbs sunlight, electron-hole pairs are generated, and by the formed silicon quantum dot structure, the movement and direction of electrons are restricted, thereby improving the photoelectric conversion efficiency, Therefore, since the present invention is more advanced and practical, a patent claim is filed according to the law.

以上は、ただ、本発明のより良い実施例であり、本発明に係わる特許請求の範囲は、それによって制限されず、また、本発明に係わる特許請求の範囲や明細書内容に従う、等価の変更や修正は、全てが本発明の特許請求の範囲に含まれる。 The above is merely a better embodiment of the present invention, and the scope of the claims related to the present invention is not limited thereby, and equivalent modifications according to the scope of the claims and the description of the present invention are not limited thereto. All modifications and variations are within the scope of the claims.

本発明の基板の断面概念図Cross-sectional conceptual diagram of the substrate of the present invention 本発明の工程cのシリコン量子点核層概念図Conceptual diagram of silicon quantum dot nucleus layer in step c of the present invention 本発明の工程cのシリコン量子点生長層概念図Conceptual diagram of silicon quantum dot growth layer in step c of the present invention 本発明の工程cのシリコン量子点不活性化層概念図Conceptual diagram of silicon quantum point deactivation layer in step c of the present invention 本発明の工程dのシリコン量子点分布層概念図Conceptual diagram of silicon quantum dot distribution layer in step d of the present invention

1 基板
11 酸化インジウムスズ層
12 二酸化チタン層
2 シリコン量子点分布層
21 シリコン量子点構造
211 シリコン量子点核生成層
212 シリコン量子点成長生長層
213 シリコン量子点不活性化層
22 炭化ケイ素量子点薄膜


DESCRIPTION OF SYMBOLS 1 Substrate 11 Indium tin oxide layer 12 Titanium dioxide layer 2 Silicon quantum dot distribution layer 21 Silicon quantum dot structure 211 Silicon quantum dot nucleation layer 212 Silicon quantum dot growth growth layer 213 Silicon quantum dot inactivation layer 22 Silicon carbide quantum dot thin film


Claims (7)

a、少なくとも酸化インジウムスズ(ITO)層と二酸化チタン(TiO2)層とが積層され基板を用意し、
b、当該基板を反応チャンバーの中へ入れ込み、
c、当該反応チャンバーの中において、シラン(SiH4)を前駆物質体(precursor)として、アルゴン(Argon)を希釈あるいはキャリヤーガス(carrier gas)とし、また、複数回のパルス(multi-pulses)蒸着法により、基板の二酸化チタン層の表面において、シリコン量子点核生成層(nucleation)と成長生長層(growth)及び不活性化層(passivation)の形成を行い、直接に、複数のシリコン量子点が分布される構造が形成され、
d、一回のパルス蒸着法により、直接に、当該複数のシリコン量子点が分布される構造以外に、炭化ケイ素(SiCx)量子点薄膜を沈着して、当該基板の二酸化チタン層の表面に、シリコン量子点分布層が形成される、
ことを特徴とするシリコン量子点活性化太陽電池のシリコン量子点活性化層の製造方法。
a. Preparing a substrate on which at least an indium tin oxide (ITO) layer and a titanium dioxide (TiO 2 ) layer are laminated,
b, putting the substrate into the reaction chamber,
c. In the reaction chamber, silane (SiH 4 ) is used as a precursor, argon (Argon) is used as a dilution or carrier gas, and multi-pulses deposition is performed. by law, the surface of the titanium dioxide layer of a substrate, subjected to formation of a silicon quantum dot nucleation layer (nucleation) and growth growth layer (growth) and passivation layer (passivation), directly, a plurality of silicon quantum dots structures the distribution is formed,
d, by depositing a silicon carbide (SiCx) quantum dot thin film directly on the surface of the titanium dioxide layer of the substrate, in addition to the structure in which the plurality of silicon quantum dots are distributed directly by a single pulse deposition method, A silicon quantum dot distribution layer is formed,
A method for producing a silicon quantum dot activated layer of a silicon quantum dot activated solar cell.
当該基板は、導電ガラスであることを特徴とする請求項1に記載のシリコン量子点活性化太陽電池のシリコン量子点活性化層の製造方法。 The method for producing a silicon quantum dot activated layer of a silicon quantum dot activated solar cell according to claim 1, wherein the substrate is conductive glass. 当該基板は、プラスチック板であることを特徴とする請求項1に記載のシリコン量子点活性化太陽電池のシリコン量子点活性化層の製造方法。 The method for producing a silicon quantum dot activated layer of a silicon quantum dot activated solar cell according to claim 1, wherein the substrate is a plastic plate. 当該蒸着法は、プラズマCVD(Plasma-enhanced chemical vapor deposition、PECVD)であることを特徴とする請求項1に記載のシリコン量子点活性化太陽電池のシリコン量子点活性化層の製造方法。 2. The method for producing a silicon quantum point activated layer of a silicon quantum dot activated solar cell according to claim 1, wherein the vapor deposition method is plasma CVD (Plasma-enhanced chemical vapor deposition, PECVD). 当該シリコン量子点不活性化層工程は、シリコン原子表面のダングリングボンド(dangling bonds)にSi-HとSi-C連鎖が形成されることを特徴とする請求項1に記載のシリコン量子点活性化太陽電池のシリコン量子点活性化層の製造方法。 2. The silicon quantum point activation method according to claim 1, wherein in the silicon quantum point deactivation layer step, Si—H and Si—C linkages are formed in dangling bonds on a silicon atom surface. 3. For producing a silicon quantum dot activation layer of a solar cell. 当該シリコン量子点不活性化層工程のガス材料は、水素ガス(H2)やメタン(CH4)或いは他の水素原子や炭素原子を生成できるガスであることを特徴とする請求項1に記載のシリコン量子点活性化太陽電池のシリコン量子点活性化層の製造方法。 2. The gas material of the silicon quantum dot deactivation layer step is hydrogen gas (H 2 ), methane (CH 4 ), or another gas capable of generating hydrogen atoms or carbon atoms. A method for producing a silicon quantum dot activated layer of a silicon quantum dot activated solar cell. 当該シリコン量子点分布層は、厚さが100ナノメートル(nanometer)より小さいことを特徴とする請求項1に記載のシリコン量子点活性化太陽電池のシリコン量子点活性化層の製造方法。 2. The method of claim 1, wherein the silicon quantum dot distribution layer has a thickness of less than 100 nanometers.
JP2006070457A 2006-03-15 2006-03-15 Method for producing silicon quantum dot activated layer of silicon quantum dot activated solar cell Expired - Fee Related JP4829649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070457A JP4829649B2 (en) 2006-03-15 2006-03-15 Method for producing silicon quantum dot activated layer of silicon quantum dot activated solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070457A JP4829649B2 (en) 2006-03-15 2006-03-15 Method for producing silicon quantum dot activated layer of silicon quantum dot activated solar cell

Publications (2)

Publication Number Publication Date
JP2007250717A JP2007250717A (en) 2007-09-27
JP4829649B2 true JP4829649B2 (en) 2011-12-07

Family

ID=38594709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070457A Expired - Fee Related JP4829649B2 (en) 2006-03-15 2006-03-15 Method for producing silicon quantum dot activated layer of silicon quantum dot activated solar cell

Country Status (1)

Country Link
JP (1) JP4829649B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100937799B1 (en) 2008-04-01 2010-01-20 재단법인서울대학교산학협력재단 Double layer titanium dioxide electrode for dye-sensitized solar cell, Method of preparing the same and Dye-sensitized solar cell prepared by using the same
CN103346266B (en) * 2013-06-21 2016-03-30 深圳市华星光电技术有限公司 A kind of luminescent device, display floater and manufacture method thereof

Also Published As

Publication number Publication date
JP2007250717A (en) 2007-09-27

Similar Documents

Publication Publication Date Title
Yang et al. Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting
Jian et al. A review of recent progress on silicon carbide for photoelectrochemical water splitting
JP6685896B2 (en) Solar cell and manufacturing method thereof
JP2008177539A5 (en)
KR20130023608A (en) Solar cell comprising bulk heterojunction inorganic thin film and fabrication of the solar cell
KR20140003776A (en) Preparation of a high resistivity zno thin film
Sivagurunathan et al. Strategies and implications of atomic layer deposition in photoelectrochemical water splitting: recent advances and prospects
TW200947729A (en) Semiconductor structure combination for thin-film solar cell and manufacture thereof
Fu et al. An efficient and stable solar flow battery enabled by a single-junction GaAs photoelectrode
KR20130045516A (en) Thin film solar cell and method of manufacturing the same
TWI299577B (en)
JP2011176225A (en) Optical conversion device and electronic equipment including the optical converter device
WO2016136374A1 (en) Photocatalyst structure and photocell
WO2012177384A1 (en) Ohmic contact between thin film solar cell and carbon-based transparent electrode
WO2021104528A1 (en) Solar-blind ultraviolet photoelectrochemical light detector and product thereof
TW201547041A (en) Solar cell including multiple buffer layer formed by atomic layer deposition and method of fabricating the same
Liu et al. Back-illuminated photoelectrochemical flow cell for efficient CO2 reduction
CN203573989U (en) Crystalline silicon having aluminium oxide passive film
EP1830412A1 (en) Method for fabricating an optical sensitive layer of a solar cell having silicon quantum dots
JP4829649B2 (en) Method for producing silicon quantum dot activated layer of silicon quantum dot activated solar cell
Ren et al. 50° C low-temperature ALD SnO2 driven by H2O2 for efficient perovskite and perovskite/silicon tandem solar cells
US20120325284A1 (en) Thin-film silicon tandem solar cell and method for manufacturing the same
Lin et al. Graphene‐Based Nanomaterials for Solar‐Driven Overall Water Splitting
Zhao et al. Advanced applications of atomic layer deposition in perovskite‐based solar cells
US7399654B2 (en) Method for fabricating optical sensitive layer of solar cell having silicon quantum dots

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101001

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101112

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees