JP4825972B2 - Method for obtaining the relationship between leakage surface acoustic wave velocity, chemical composition ratio and linear expansion coefficient of material having striae, and TiO2 concentration measuring method and linear expansion coefficient measuring method of TiO2-SiO2 glass using the relationship - Google Patents

Method for obtaining the relationship between leakage surface acoustic wave velocity, chemical composition ratio and linear expansion coefficient of material having striae, and TiO2 concentration measuring method and linear expansion coefficient measuring method of TiO2-SiO2 glass using the relationship Download PDF

Info

Publication number
JP4825972B2
JP4825972B2 JP2005263339A JP2005263339A JP4825972B2 JP 4825972 B2 JP4825972 B2 JP 4825972B2 JP 2005263339 A JP2005263339 A JP 2005263339A JP 2005263339 A JP2005263339 A JP 2005263339A JP 4825972 B2 JP4825972 B2 JP 4825972B2
Authority
JP
Japan
Prior art keywords
lsaw
cte
chemical composition
relationship
composition ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005263339A
Other languages
Japanese (ja)
Other versions
JP2007078384A (en
Inventor
淳一 櫛引
元孝 荒川
雄二 大橋
光二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2005263339A priority Critical patent/JP4825972B2/en
Publication of JP2007078384A publication Critical patent/JP2007078384A/en
Application granted granted Critical
Publication of JP4825972B2 publication Critical patent/JP4825972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超音波材料特性解析装置を用いてTiO2-SiO2超低膨張ガラスを評価する上で不可欠な、漏洩弾性表面波(Leaky Surface Acoustic Wave: LSAW)速度と化学組成比や線膨張係数(Coefficient of Thermal Expansion: CTE)との間の正確な関係を求める方法およびその関係を使ってTiO2-SiO2ガラスのTiO2濃度および線膨張係数を求める方法に関する。 The present invention is essential for evaluating TiO 2 --SiO 2 ultra-low expansion glass using an ultrasonic material characterization apparatus, leaky surface acoustic wave (LSAW) velocity, chemical composition ratio and linear expansion. The present invention relates to a method for obtaining an accurate relationship between a coefficient (Coefficient of Thermal Expansion: CTE) and a method for obtaining a TiO 2 concentration and a linear expansion coefficient of TiO 2 —SiO 2 glass using the relationship.

極端紫外線露光 (Extreme Ultra-Violet Lithography: EUVL)は超集積回路を大量生産するための次世代半導体製造技術として有望視されている。この露光装置は反射光学系となり、フォトマスクや光学ミラー用基体材料として、CTE が所望の温度(例えば、マスク基板に対して22±3℃)において±5 ppb/K以下となる究極的な超低膨張ガラスが要求されている[非特許文献1]。現在、いくつかのガラスメーカーにより、EUVLグレードのガラスの開発が行われている。   Extreme Ultra-Violet Lithography (EUVL) is promising as a next-generation semiconductor manufacturing technology for mass production of super-integrated circuits. This exposure apparatus becomes a reflective optical system, and as the base material for photomasks and optical mirrors, the ultimate super CT is less than ± 5 ppb / K at the desired temperature (for example, 22 ± 3 ° C with respect to the mask substrate). Low expansion glass is required [Non-patent Document 1]. Currently, several glass manufacturers are developing EUVL grade glass.

そのガラスの開発、作製プロセスやロット間の品質管理を行うためには、CTE特性を高精度に解析することが重要である。従来の評価法には、線膨張計によりCTEを直接測定する方法[非特許文献2]と化学組成比、縦波音速、屈折率[非特許文献1]などの測定により間接的にCTEを求める方法がある。しかし、測定精度が不十分である、基板厚さ方向の平均的な特性の測定しか行えずEUVLで重要となる表面近傍の評価が行えない、などの問題があり、いずれもEUVLグレードのガラスの評価に適用できない。   It is important to analyze the CTE characteristics with high accuracy in order to develop the glass, the production process, and quality control between lots. In the conventional evaluation method, CTE is obtained indirectly by a method of directly measuring CTE with a linear dilatometer [Non-Patent Document 2] and measuring chemical composition ratio, longitudinal wave velocity, refractive index [Non-Patent Document 1], and the like. There is a way. However, there are problems such as insufficient measurement accuracy, measurement of average characteristics in the thickness direction of the substrate, and evaluation of the vicinity of the surface, which is important for EUVL. Not applicable to evaluation.

CTEの新しい評価技術として、超音波材料特性解析装置([非特許文献3]、[非特許文献4])を用いた方法が開発されている。この評価技術は上記課題を克服できる可能性がある。とりわけ集束超音波を用いた定量計測法(V(z)曲線解析法[非特許文献3])が有効である。これは、水を負荷した試料表面に励起される漏洩弾性表面波(LSAW)の位相速度(VLSAW)を計測することにより材料評価を行う。本手法によれば、非破壊・非接触的にガラス基板表面の特性分布の高精度測定が可能である。計測のためには、点集束超音波ビーム(PFB)と直線集束超音波ビーム(LFB)が使用できるが、ここでは、LFB超音波材料特性解析装置をとりあげて説明を進める([非特許文献3]、[非特許文献4]参照)。 As a new evaluation technology for CTE, a method using an ultrasonic material characteristic analysis apparatus ([Non-patent Document 3], [Non-Patent Document 4]) has been developed. This evaluation technique may be able to overcome the above problems. In particular, a quantitative measurement method (V (z) curve analysis method [Non-Patent Document 3]) using focused ultrasound is effective. This is a material evaluation by measuring the phase velocity (V LSAW ) of a leaky surface acoustic wave (LSAW) excited on the surface of a sample loaded with water. According to this method, it is possible to measure the characteristic distribution of the glass substrate surface with high accuracy in a non-destructive and non-contact manner. For measurement, a point-focused ultrasonic beam (PFB) and a linearly-focused ultrasonic beam (LFB) can be used. Here, an explanation will be given using an LFB ultrasonic material property analyzer ([Non-Patent Document 3]. ] And [Non-Patent Document 4]).

LFB超音波材料特性解析装置によるLSAW速度の測定方法と測定システムは文献([非特許文献3]、[非特許文献4])に詳しい。LFB超音波材料特性解析装置は、LFB超音波デバイスと試料間の相対距離zを変化させたときに得られるV(z)曲線を解析することにより、水/試料境界を伝搬する漏洩弾性波の伝搬特性を求めることができる。図1は、超音波トランスデューサ1とLFB音響レンズ2とから成る超音波デバイスとガラス試料3系の断面図であり、計測の原理を示すものである。水中における焦点を原点Oxyとして座標軸を図に示すようにとる。超音波トランスデューサ1により励振した平面超音波を、LFB音響レンズ2によりくさび状に集束し、水カプラ4を介してガラス試料3表面に照射する。試料を焦点面5より超音波デバイス側へ近づけた場合、ガラス試料3からの反射波のうち、超音波トランスデューサ1の出力に支配的に寄与する成分は、音響レンズ2の開口面の効果により近似的に図1に示すP0、P1の経路をとる成分のみとなる。P0の成分は試料からの直接反射成分であり、P1の成分は、LSAWの励振臨界角θLSAWでガラス試料3に入射し、ガラス試料3表面をLSAWとして伝搬する成分である。トランスデューサ出力V(z)は、これら2つの成分の干渉波形として得られる。V(z)曲線解析モデル(非特許文献5)において近似的に次式のように表される。
V(z) = VI(z)(LSAW) + VL(z) (1)
ただし、
VL(z) = VL'(z) + ΔVL(z) (2)
ここで、VI(z)(LSAW)はLSAWの干渉成分であり、VL(z)は超音波デバイスの特性を反映した成分である。また、ΔVL(z)は漏洩弾性波が励振されない試料(例えばテフロン(登録商標))のVL'(z)に対するVL(z)のずれである。VI(z)(LSAW)をV(z)曲線解析法に基づいて抽出し[非特許文献3]、その干渉周期ΔzLSAWを求め、次式(3)のΔzに代入してLSAW速度VLSAWを求める。

Figure 0004825972
ここで、fは超音波周波数、VWは水中の縦波音速である。VWは、V(z)曲線測定時に熱電対により測定される水カプラ温度から[非特許文献5]により得ることができる。
このように、LFB音響レンズと試料の相対距離zを変化させたときのトランスデューサ出力V(z)曲線を測定・解析することによりLSAW速度VLSAWが求められる。図2Aに、市販のTiO2-SiO2ガラス試料(C-7972, Corning社製)に対して、超音波周波数fを225 MHzとして測定したV(z)曲線を示す。V(z)曲線解析法[非特許文献3]に基づいて解析することにより、図2Bに示すようなスペクトラム分布が最終的に得られる。図2Bのスペクトラム分布のピーク波数から干渉周期Dz を求め、式(3)に代入して、LSAW速度を求める。 The LSAW velocity measurement method and measurement system using the LFB ultrasonic material characteristic analyzer are well known in the literature ([Non-Patent Document 3], [Non-Patent Document 4]). The LFB ultrasonic material characterization analyzer analyzes the V (z) curve obtained when the relative distance z between the LFB ultrasonic device and the sample is changed, so that the leakage elastic wave propagating through the water / sample boundary is analyzed. Propagation characteristics can be obtained. FIG. 1 is a cross-sectional view of an ultrasonic device composed of an ultrasonic transducer 1 and an LFB acoustic lens 2 and a glass sample 3 system, and shows the principle of measurement. The focal point in water is the origin Oxy, and the coordinate axes are taken as shown in the figure. The plane ultrasonic wave excited by the ultrasonic transducer 1 is focused in a wedge shape by the LFB acoustic lens 2 and irradiated onto the surface of the glass sample 3 through the water coupler 4. When the sample is brought closer to the ultrasonic device side than the focal plane 5, the component dominantly contributing to the output of the ultrasonic transducer 1 in the reflected wave from the glass sample 3 is approximated by the effect of the aperture surface of the acoustic lens 2. Thus, only the components taking the paths P0 and P1 shown in FIG. The component P0 is a component directly reflected from the sample, and the component P1 is a component that is incident on the glass sample 3 at the LSAW excitation critical angle θ LSAW and propagates as LSAW on the surface of the glass sample 3. The transducer output V (z) is obtained as an interference waveform of these two components. In the V (z) curve analysis model (Non-patent Document 5), it is approximately expressed as the following equation.
V (z) = V I (z) (LSAW) + V L (z) (1)
However,
V L (z) = V L '(z) + ΔV L (z) (2)
Here, V I (z) (LSAW) is an LSAW interference component, and V L (z) is a component reflecting the characteristics of the ultrasonic device. ΔV L (z) is a deviation of V L (z) from V L ′ (z) of a sample (for example, Teflon (registered trademark)) in which a leaky elastic wave is not excited. V I (z) (LSAW) is extracted based on the V (z) curve analysis method [Non-Patent Document 3], its interference period Δz LSAW is obtained, and is substituted into Δz in the following equation (3) to obtain the LSAW velocity V Find LSAW .
Figure 0004825972
Here, f is the ultrasonic frequency, and V W is the longitudinal wave velocity in water. V W can be obtained from [Non-Patent Document 5] from the water coupler temperature measured by a thermocouple when measuring the V (z) curve.
Thus, the LSAW velocity V LSAW is obtained by measuring and analyzing the transducer output V (z) curve when the relative distance z between the LFB acoustic lens and the sample is changed. FIG. 2A shows a V (z) curve measured for a commercially available TiO 2 —SiO 2 glass sample (C-7972, manufactured by Corning) at an ultrasonic frequency f of 225 MHz. By analyzing based on the V (z) curve analysis method [Non-Patent Document 3], a spectrum distribution as shown in FIG. 2B is finally obtained. The interference period Dz is obtained from the peak wave number of the spectrum distribution of FIG. 2B, and is substituted into equation (3) to obtain the LSAW speed.

V(z)曲線に寄与するLSAWが試料表面上を伝搬する領域(超音波測定領域;WxD)は、集束方向の幅(LSAW伝搬距離)をW、非集束方向の幅をDとすると、Wは2|z|tan θLSAWLSAWはLSAWの臨界角であり、θLSAW = sin-1VW/VLSAW)とzの関数で表され、Dは非集束方向の実効的なビーム幅であり、超音波デバイスの動作パラメータに依存する。ここで用いる200 MHz帯の超音波デバイスの音響レンズは、曲率半径が1 mm、集束方向のトランスデューサの幅が1.73 mm、非集束方向のそれは1.50 mmであり、この場合、Dは約900 μmとなる。f = 225 MHzで測定された図2Aより、C-7972に対してLSAWの解析に用いることができる最大の|z|は約275 μmであり、Wは最大で280 μmとなる。また、基板深さ方向に対してはLSAWの一波長程度の領域の特性が反映され、VLSAW = 3308 m/s、 f = 225 MHzのとき、約15 μmとなる。 The area where the LSAW contributing to the V (z) curve propagates on the sample surface (ultrasonic measurement area; WxD) is W, where W is the width in the focusing direction (LSAW propagation distance) and D is the width in the non-focusing direction. 2 | z | tan θ LSAWLSAW is the critical angle of LSAW , θ LSAW = sin -1 V W / V LSAW ) and a function of z, and D is the effective beamwidth in the unfocused direction And depends on the operating parameters of the ultrasonic device. The acoustic lens of the 200 MHz band ultrasonic device used here has a radius of curvature of 1 mm, the width of the transducer in the focusing direction is 1.73 mm, and that in the non-focusing direction is 1.50 mm. In this case, D is about 900 μm. Become. From FIG. 2A measured at f = 225 MHz, the maximum | z | that can be used for LSAW analysis for C-7972 is about 275 μm, and W is 280 μm at the maximum. In addition, the characteristics of a region of about one wavelength of LSAW are reflected in the substrate depth direction, and when V LSAW = 3308 m / s and f = 225 MHz, it is about 15 μm.

LFB超音波材料特性解析装置を周期的な脈理が存在する材料に適用する場合、試料内に脈理に対応した音響特性の分布が存在するため、一般に測定位置により測定値が異なる。周期的な脈理を有するTiO2-SiO2ガラスに対して、図3Aに示すようなガラスインゴット6から、図3Bと図3Cのように、脈理面に対して基板面が平行な試料(z軸に対して垂直)と垂直な試料(z軸に対して平行)を切り出して測定したLSAW速度に対する検討が行われている[非特許文献6]。この結果、脈理面に対して基板面が平行な試料(図3B)の場合、基板表面の切り出し位置によってLSAW速度測定値が大きく変化する。また、脈理面は完全な平面ではなく一般には曲面なので、測定位置によってもLSAW速度測定値は大きく変化する。一方、脈理面に対して基板面が垂直な試料(図3C)に対しては、LSAWの伝搬方向によりLSAW速度の大きさとその分布は見かけ上異なって測定される。これは試料面上の脈理周期(ここでは約160μm)と超音波測定領域との関係に依存している。LSAWの伝搬方向を脈理面と垂直にした場合には、Wが脈理周期と同程度であるため脈理を反映してLSAW速度が周期的に変化し、その正確な周期を測定できる。LSAWの伝搬方向を脈理面と平行にした場合には、Dが脈理周期よりも十分大きいため局所的な脈理による影響のない十分平均的なLSAW速度値を捉えることができ、基板試料面上の特性分布を測定できる。 When the LFB ultrasonic material characteristic analyzer is applied to a material having periodic striae, since the distribution of acoustic characteristics corresponding to the striae exists in the sample, the measured value generally differs depending on the measurement position. For a TiO 2 —SiO 2 glass having periodic striae, from a glass ingot 6 as shown in FIG. 3A, a sample whose substrate surface is parallel to the striae as shown in FIGS. 3B and 3C ( Studies have been conducted on the LSAW velocity measured by cutting a sample (perpendicular to the z-axis) and a sample (parallel to the z-axis) [Non-Patent Document 6]. As a result, in the case of a sample (FIG. 3B) in which the substrate surface is parallel to the striatal surface, the LSAW velocity measurement value varies greatly depending on the cut-out position of the substrate surface. In addition, since the striae is not a perfect plane but is generally a curved surface, the LSAW velocity measurement value varies greatly depending on the measurement position. On the other hand, for the sample whose substrate surface is perpendicular to the striae (FIG. 3C), the magnitude and distribution of the LSAW velocity are apparently different depending on the LSAW propagation direction. This depends on the relationship between the striae period on the sample surface (here, about 160 μm) and the ultrasonic measurement region. When the LSAW propagation direction is perpendicular to the striae plane, W is approximately the same as the striae period, so the LSAW speed changes periodically reflecting the striae, and the exact period can be measured. When the LSAW propagation direction is parallel to the striae plane, D is sufficiently larger than the striae period, so a sufficiently average LSAW velocity value that is not affected by local striae can be captured. The characteristic distribution on the surface can be measured.

ガラスの化学組成量が変化することによりガラスの様々な物理量(物理定数)が変化する。例えばLSAW速度が単位量変化したときのある物理量または化学量の変化量は、その物理量又は化学量に対するLSAW速度の感度と定義される。化学組成量の異なるガラスA及びBの線膨張係数とLSAW速度をそれぞれCTEA, VLSAWA及びCTEB, VLSAWBとすると、線膨張係数に対するLSAW速度の感度は(CTEA-CTEB)/(VLSAWA-VLSAWB)で表され、分解能はLSAW速度の測定精度にこの感度を乗算して得られる。同様にして、密度、特定成分(例えばTiO2)の濃度、あるいは他の物理量に対するLSAW速度の感度及び分解能が定義できる。
TiO2-SiO2ガラスのCTEは、TiO2濃度により調整できる。また、LSAW速度はTiO2濃度の変化に対して線形に変化する[非特許文献7]。したがって、LFB超音波材料特性解析装置を用いてCTEの精密な評価を行なうためには、LSAW速度とCTEとの間の関係はもちろん、LSAW速度とTiO2濃度との間の正確な関係を求める必要がある。これまで、音響ファイバ用のガラス材料の実験的検討という観点から、TiO2濃度の変化に対するLSAW速度の感度が-0.065 wt%/(m/s)と求められた[非特許文献7]。また、市販TiO2-SiO2ガラス(C-7971, Corning社製)と合成石英ガラス(C-7980, Corning社製)の化学組成比とLSAW速度を比較することにより、TiO2濃度の変化に対するLSAW速度の感度を-0.058 wt%/(m/s)と求めた([非特許文献8]、[非特許文献9])。しかし、このときには脈理による不確かさが含まれているため、EUVLグレードのガラスのためのCTE評価という観点では不十分と考えられる。
K. E. Hrdina, B. G. Ackerman, A. W. Fanning, C. E. Heckle, D. C. Jenne and W. D. Navan, "Measuring and tailoring CTE within ULE glass," Proc. SPIE, Emerging Lithographic Technologies VII, ed. R. L. Engelstad (SPIE--The International Society for Optical Engineering, Bellingham, WA, 2003) Vol. 5037, pp. 227-235. V. G. Badami and M. Linder, "Ultra-high accuracy measurement of the coefficient of thermal expansion for ultra-low expansion materials," Proc. SPIE Emerging Lithographic Technologies VI, ed. R. L. Engelstad (SPIE--The International Society for Optical Engineering, Bellingham, WA, 2002) Vol. 4688, pp. 469-480. J. Kushibiki and N. Chubachi, "Material characterization by line-focus-beam acoustic microscope," IEEE Trans. Sonics Ultrason., Vol. SU-32, pp. 189-212 (1985). J. Kushibiki, Y. Ono, Y. Ohashi, and M. Arakawa, "Development of the line-focus-beam ultrasonic material characterization system," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 49, pp. 99-113 (2002). W. Kroebel and K.-H. Mahrt, "Recent results of absolute sound velocity measurements in pure water and sea water at atmospheric pressure," Acustica, Vol. 35, pp. 154-164 (1976). 櫛引, 荒川, 大橋, 鈴木, 丸山, "脈理のある超低膨張ガラス評価のためのLFB超音波材料解析システム用標準試料とその音響特性," 信学技報, Vol. US2005-4, pp. 19-26 (2005). C. K. Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, "Acoustic characterization of silica glassses," J. Am. Ceram. Soc., Vol. 76, pp. 712-716 (1993). J. Kushibiki, M. Arakawa, Y. Ohashi, K. Suzuki, and T. Maruyama, "A promising evaluation method of ultra-low-expansion glasses for the extreme ultra-violet lithography system by the line-focus-beam ultrasonic material characterization system," Jpn. J. Appl. Phys., Vol. 43, pp. L1455-L1457 (2004). J. Kushibiki, M. Arakawa, Y. Ohashi, K. Suzuki, and T. Maruyama, "A super-precise CTE evaluation method for ultra-low-expansion glasses using the LFB ultrasonic material characterization system," Jpn. J. Appl. Phys., Vol. 44, pp. 4374-4380 (2005). K. E. Hrdina, B. Z. Hanson, P. M. Fenn, and R. Sabia, "Characterization and characteristics of a ULE(登録商標) glass tailored for the EUVL needs," in Proc. SPIE, Emerging Lithographic Technologies VI, Vol. 4688, 2002, pp. 454-461. J. Kushibiki and M. Arakawa, "A method for calibrating the line-focus-beam acoustic microscopy system," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 45, pp. 421-430 (1998). J. Kushibiki, M. Arakawa, and R. Okabe, "High-accuracy standard specimens for the line-focus-beam ultrasonic material characterization system," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 49, pp. 827-835 (2002). J. E. Shelby, Introduction to glass science and technology (The Royal Society of Chemistry, Cambridge, 1997) pp. 78-90. R. B. Greegor, F. W. Lytle, D. R. Sandstrom, J. Wong, and P. Schultz, "Investigation of TiO2-SiO2 glasses by X-ray absorption spectroscopy," J. Non-Cryst. Solids, Vol. 55, pp. 27-43 (1983).
Various physical quantities (physical constants) of the glass change as the chemical composition of the glass changes. For example, a change amount of a physical quantity or a chemical quantity when the LSAW speed is changed by a unit amount is defined as a sensitivity of the LSAW speed to the physical quantity or the chemical quantity. If the linear expansion coefficients and LSAW velocities of glasses A and B with different chemical compositions are CTE A , V LSAWA and CTE B , V LSAWB , respectively, the sensitivity of the LSAW speed to the linear expansion coefficient is (CTE A -CTE B ) / ( V LSAWA -V LSAWB ), and the resolution is obtained by multiplying the LSAW velocity measurement accuracy by this sensitivity. Similarly, the sensitivity and resolution of the LSAW speed for density, concentration of specific components (eg TiO 2 ), or other physical quantities can be defined.
The CTE of TiO 2 —SiO 2 glass can be adjusted by the TiO 2 concentration. Also, the LSAW speed changes linearly with changes in TiO 2 concentration [Non-Patent Document 7]. Therefore, in order to perform an accurate evaluation of CTE using the LFB ultrasonic material characterization apparatus, not only the relationship between LSAW velocity and CTE but also the exact relationship between LSAW velocity and TiO 2 concentration is obtained. There is a need. So far, from the viewpoint of experimental examination of glass materials for acoustic fibers, the sensitivity of the LSAW rate to changes in TiO 2 concentration has been determined to be -0.065 wt% / (m / s) [Non-Patent Document 7]. Further, by comparing the chemical composition and LSAW velocity of commercial TiO 2 -SiO 2 glass (C-7971, Corning Inc.) and the synthetic quartz glass (C-7980, Corning Inc.), with respect to the change of the TiO 2 concentration The sensitivity of the LSAW speed was determined to be -0.058 wt% / (m / s) ([Non-patent document 8], [Non-patent document 9]). However, at this time, uncertainties due to striae are included, so it is considered inadequate in terms of CTE evaluation for EUVL grade glass.
KE Hrdina, BG Ackerman, AW Fanning, CE Heckle, DC Jenne and WD Navan, "Measuring and tailoring CTE within ULE glass," Proc.SPIE, Emerging Lithographic Technologies VII, ed.RL Engelstad (SPIE--The International Society for Optical Engineering, Bellingham, WA, 2003) Vol. 5037, pp. 227-235. VG Badami and M. Linder, "Ultra-high accuracy measurement of the coefficient of thermal expansion for ultra-low expansion materials," Proc. SPIE Emerging Lithographic Technologies VI, ed.RL Engelstad (SPIE--The International Society for Optical Engineering, Bellingham, WA, 2002) Vol. 4688, pp. 469-480. J. Kushibiki and N. Chubachi, "Material characterization by line-focus-beam acoustic microscope," IEEE Trans. Sonics Ultrason., Vol. SU-32, pp. 189-212 (1985). J. Kushibiki, Y. Ono, Y. Ohashi, and M. Arakawa, "Development of the line-focus-beam ultrasonic material characterization system," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 49, pp. 99-113 (2002). W. Kroebel and K.-H. Mahrt, "Recent results of absolute sound velocity measurements in pure water and sea water at atmospheric pressure," Acustica, Vol. 35, pp. 154-164 (1976). Kushibiki, Arakawa, Ohashi, Suzuki, Maruyama, "Standard sample for LFB ultrasonic material analysis system for evaluation of ultralow expansion glass with striae and its acoustic properties," IEICE Tech. Report, Vol. US2005-4, pp 19-26 (2005). CK Jen, C. Neron, A. Shang, K. Abe, L. Bonnell, and J. Kushibiki, "Acoustic characterization of silica glassses," J. Am. Ceram. Soc., Vol. 76, pp. 712-716 (1993). J. Kushibiki, M. Arakawa, Y. Ohashi, K. Suzuki, and T. Maruyama, "A promising evaluation method of ultra-low-expansion glasses for the extreme ultra-violet lithography system by the line-focus-beam ultrasonic material characterization system, "Jpn. J. Appl. Phys., Vol. 43, pp. L1455-L1457 (2004). J. Kushibiki, M. Arakawa, Y. Ohashi, K. Suzuki, and T. Maruyama, "A super-precise CTE evaluation method for ultra-low-expansion glasses using the LFB ultrasonic material characterization system," Jpn. J. Appl Phys., Vol. 44, pp. 4374-4380 (2005). KE Hrdina, BZ Hanson, PM Fenn, and R. Sabia, "Characterization and characteristics of a ULE® glass tailored for the EUVL needs," in Proc. SPIE, Emerging Lithographic Technologies VI, Vol. 4688, 2002, pp 454-461. J. Kushibiki and M. Arakawa, "A method for calibrating the line-focus-beam acoustic microscopy system," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 45, pp. 421-430 (1998) . J. Kushibiki, M. Arakawa, and R. Okabe, "High-accuracy standard specimens for the line-focus-beam ultrasonic material characterization system," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., Vol. 49, pp. 827-835 (2002). JE Shelby, Introduction to glass science and technology (The Royal Society of Chemistry, Cambridge, 1997) pp. 78-90. RB Greegor, FW Lytle, DR Sandstrom, J. Wong, and P. Schultz, "Investigation of TiO2-SiO2 glasses by X-ray absorption spectroscopy," J. Non-Cryst. Solids, Vol. 55, pp. 27-43 (1983).

超音波材料特性解析装置によりTiO2-SiO2ガラスの評価を行う場合、LSAW速度と化学組成比やCTEとの間の正確な関係を求める必要がある。しかし、このガラスには脈理が存在するために、どの領域を測定するかにより測定値が大きく変化するため、それらの間の正確な関係を求めることができない可能性がある。
そこで、本発明においては、適切な試料の準備とLSAWの伝搬方向の選択、および正確な化学組成比の分析を行なうことにより、LSAW速度とTiO2濃度やCTEとの間の正確な関係を求める方法を与える。
When evaluating TiO 2 —SiO 2 glass with an ultrasonic material property analyzer, it is necessary to obtain an accurate relationship between the LSAW speed and the chemical composition ratio or CTE. However, since striae exist in this glass, the measurement value varies greatly depending on which region is measured, and therefore there is a possibility that an accurate relationship between them cannot be obtained.
Therefore, in the present invention, an accurate relationship between the LSAW speed and the TiO 2 concentration or CTE is obtained by preparing an appropriate sample, selecting the LSAW propagation direction, and analyzing the exact chemical composition ratio. Give way.

この発明によるLSAW速度と化学組成比およびCTEとの間の関係を求める方法は、
(a) 化学組成比の異なる少なくとも2つのガラスインゴットのそれぞれから、ガラスインゴットの脈理面に対して垂直な面で試料基板と、それに隣接してCTE測定試料板を切り出す工程と、
(b) 各上記試料基板の予め決めた領域に対して、上記脈理面と平行な方向に伝搬するLSAW速度の測定値を得る工程と、
(c) 各上記試料基板の上記予め決めた領域の化学組成比を測定する工程と、
(d) 各上記CTE測定試料板のCTEを測定する工程と、
(e) 測定した上記LSAW速度と上記化学組成比および上記CTEからLSAW速度の変化量に対する化学組成比の変化量およびCTEの変化量の関係を決定する工程、
とを含む。
The method for determining the relationship between the LSAW rate and the chemical composition ratio and CTE according to the present invention is as follows:
(a) cutting a sample substrate and a CTE measurement sample plate adjacent to each other at a surface perpendicular to the striae of the glass ingot from each of at least two glass ingots having different chemical composition ratios;
(b) obtaining a measured value of the LSAW velocity that propagates in a direction parallel to the striae plane for a predetermined region of each sample substrate;
(c) measuring a chemical composition ratio of the predetermined region of each sample substrate;
(d) measuring the CTE of each of the above CTE measurement sample plates;
(e) determining the relationship between the measured LSAW rate and the chemical composition ratio and the change amount of the chemical composition ratio and the change amount of the CTE from the CTE to the change amount of the LSAW rate;
Including.

この発明によるLSAW速度と化学組成比およびCTEとの間の関係を求める方法は、
上記工程(c) は上記試料基板及び上記CTE測定試料板の一方の化学組成比を蛍光X線分析(X-ray Fluorescence: XRF)法により測定する工程と、上記ガラスインゴットの一部から高周波誘導結合プラズマ-発光分析法 (Inductively Coupled Plasma-Optical Emission Spectrometry: ICP-OES)により化学組成比を測定する工程と、上記XRF法による測定結果を上記ICP-OES法による測定結果により絶対校正した化学組成比を求める工程とを含む。
The method for determining the relationship between the LSAW rate and the chemical composition ratio and CTE according to the present invention is as follows:
The step (c) includes a step of measuring the chemical composition ratio of one of the sample substrate and the CTE measurement sample plate by X-ray Fluorescence (XRF) method, and high-frequency induction from a part of the glass ingot. The chemical composition of the chemical composition ratio measured by the ICP-OES method and the step of measuring the chemical composition ratio by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) Determining the ratio.

この発明によるLSAW速度と化学組成比およびCTEとの間の関係を求める方法は、
上記少なくとも2つのガラスインゴットの1つとしてSiO2が100%である石英ガラスを使用する。
さらに、上記方法において、上記石英ガラスのCTEとして既知のデータを使用してもよい。
The method for determining the relationship between the LSAW rate and the chemical composition ratio and CTE according to the present invention is as follows:
As one of the at least two glass ingots, quartz glass having 100% SiO 2 is used.
Further, in the above method, data known as the CTE of the quartz glass may be used.

以上のように、本発明によれば、TiO2-SiO2ガラスに対して、LSAW速度と化学組成比やCTEとの間の正確な関係を求めることができるようになり、LSAW速度を用いた高精度な評価が行えるようになる。 As described above, according to the present invention, an accurate relationship between the LSAW speed and the chemical composition ratio or CTE can be obtained for the TiO 2 —SiO 2 glass, and the LSAW speed was used. High-precision evaluation can be performed.

この発明においても、前述のように例えばTiO2-SiO2ガラスの化学組成比(例えばTiO2濃度)の変化量に対するLSAW速度の変化量、CTEの変化量などの物理変化量が直線関係にあることを利用し、化学組成比と、物理量の関係を決定する。そのために、複数の異なる化学組成比のガラスインゴットから切出した複数の試料基板の化学組成比と、LSAW速度とを測定し、それらの測定結果から例えば最小2乗法により化学組成比とLSAW速度の関係を表す直線の式を決める。さらにそれぞれのガラスインゴットから切出したCTE測定用基板のCTEを測定することにより、化学組成比、LSAW速度、CTE間の関係を同様に決めることができる。
この発明では、試料基板をガラスインゴットの脈理面と垂直な面で切出し、脈理面と平行に伝搬するLSAW速度を測定することにより脈理の影響の少ない平均的なLSAWを測定する。もっとも単純化した方法としては、2つの化学組成比の異なる試料基板についての上記測定を行うことにより、最小2乗法を用いないで化学組成比、LSAW速度、CTE間の関係を表す直線をそれぞれ決めてもよい。更に、この2つの試料基板のうちの1つとして例えばTiO2濃度が0%、即ち、SiO2が100%のガラス(即ち、石英ガラス)を使用してもよい。その場合、SiO2ガラスのCTEとして既知の値を使用してもよい。以下の実施例では試料基板の1つとして石英ガラスを使用する場合を説明する。
Also in this invention, as described above, for example, the amount of physical change such as the amount of change in LSAW speed and the amount of change in CTE is linearly related to the amount of change in the chemical composition ratio (for example, TiO 2 concentration) of TiO 2 -SiO 2 glass. To determine the relationship between the chemical composition ratio and the physical quantity. For this purpose, the chemical composition ratio and LSAW velocity of a plurality of sample substrates cut out from a plurality of glass ingots having different chemical composition ratios are measured, and the relationship between the chemical composition ratio and the LSAW velocity is measured by, for example, the least square method. Determine the straight line expression for. Further, by measuring the CTE of the CTE measurement substrate cut out from each glass ingot, the relationship among the chemical composition ratio, the LSAW speed, and the CTE can be determined in the same manner.
In the present invention, an average LSAW with little influence of striae is measured by cutting a sample substrate along a plane perpendicular to the striae surface of the glass ingot and measuring the LSAW velocity propagating parallel to the striae surface. The simplest method is to determine the straight lines representing the relationship between the chemical composition ratio, LSAW speed, and CTE without using the least squares method by performing the above measurements on two sample substrates with different chemical composition ratios. May be. Further, as one of the two sample substrates, for example, glass having a TiO 2 concentration of 0%, that is, SiO 2 of 100% (that is, quartz glass) may be used. In that case, a known value may be used as the CTE of SiO 2 glass. In the following examples, a case where quartz glass is used as one of the sample substrates will be described.

TiO2-SiO2ガラスインゴットには、一般に脈理7、すなわち製造プロセス条件等に依存したTiO2濃度の分布が存在し、その周期は約0.16 mmである[非特許文献10]。TiO2-SiO2ガラス基板は、図3Aに示すような脈理を有するガラスインゴット6から切り出すことで得られる。基板試料としては、図3Cのように、z軸に対して平行に切り出すことにより得られる、脈理面に対して基板面が垂直な試料を用意する。 A TiO 2 —SiO 2 glass ingot generally has a TiO 2 concentration distribution depending on the striae 7, that is, the manufacturing process conditions, and its period is about 0.16 mm [Non-patent Document 10]. A TiO 2 —SiO 2 glass substrate is obtained by cutting out from a glass ingot 6 having striae as shown in FIG. 3A. As a substrate sample, as shown in FIG. 3C, a sample obtained by cutting parallel to the z-axis and having a substrate surface perpendicular to the striatal surface is prepared.

LFB超音波材料特性解析装置により、上記の基板に対して測定を行うときには、LSAWの伝搬方向を脈理面と平行にして測定することにより、測定領域内の平均的な特性の測定が可能である。基板面内で特性の不均一が存在する場合、LSAW速度を化学分析により得られる値と正確に比較するためには、化学分析を行う領域と同じ領域に対してLSAW速度の測定を行わなければならない。   When performing measurements on the above substrates using the LFB ultrasonic material property analyzer, it is possible to measure the average characteristics in the measurement area by measuring the LSAW propagation direction parallel to the striae. is there. In order to accurately compare the LSAW speed with the value obtained by chemical analysis when there is non-uniformity of characteristics in the substrate surface, the LSAW speed must be measured in the same area as the chemical analysis area. Don't be.

次に、同じ基板に対して、化学組成比の測定を行う。化学分析を行う方法として、例えば、XRF分析法がある。この方法は、試料表面のある面積(例えば、25 mmφ)に対して平均的な化学組成比の分析を行うことが可能である。しかしながら、この方法により分析濃度の絶対値を正確に求めるためには、他の分析法により校正された標準試料を用いなければならない。その方法の一つとして、濃度が既知の標準試料を用いて検量線を作製して分析を行うICP-OESにより分析を行い、XRF法による分析値との関係を求め、XRF法による分析値を校正すればよい。
CTEの測定には、一般に特別な形状の試料(例えば、6 mmφ×100 mm長)を必要とすることから、LSAW速度測定用の基板を切り出したインゴットのその基板を切り出した領域近傍から、CTE測定用の試料を切り出し、線膨張計などにより測定する。
Next, the chemical composition ratio is measured for the same substrate. As a method for performing chemical analysis, for example, there is an XRF analysis method. This method can analyze an average chemical composition ratio for a certain area of the sample surface (for example, 25 mmφ ). However, in order to accurately determine the absolute value of the analytical concentration by this method, a standard sample calibrated by another analytical method must be used. One method is to create a calibration curve using a standard sample with a known concentration, perform analysis using ICP-OES, obtain the relationship with the analysis value by the XRF method, and obtain the analysis value by the XRF method. Just calibrate.
CTE measurement generally requires a specially shaped sample (for example, 6 mm φ x 100 mm long), so from the vicinity of the area of the ingot where the substrate for LSAW velocity measurement was cut, A sample for CTE measurement is cut out and measured with a linear dilatometer.

上で得られるLSAW速度と化学組成比やCTEとを比較することにより、同一インゴットにおける平均的な特性が得られるため、正確な検量線が求められる。   By comparing the LSAW speed obtained above with the chemical composition ratio and CTE, average characteristics in the same ingot can be obtained, so an accurate calibration curve is required.

複数の市販のTiO2-SiO2ガラス(C-7972, Corning社製)インゴット(1500 mmφ×150 mmt)から、試料を抽出した。このガラスは、その作製プロセスにおいて、約0.16 mmの周期の脈理が形成され[非特許文献10]、その方向は図3Aに示すようにz軸方向に垂直である。LSAW速度とTiO2濃度との間の正確な関係を求めるために、図3Cのように試料面が脈理面と垂直な基板を切り出した。4種類の異なるインゴット(A, B, C, D)から7枚の試料基板(インゴットAから1枚 (A1)、インゴットBから2枚 (B1, B2)、インゴットCから1枚 (C1)、インゴットDから3枚 (D1, D2, D3))を用意した。すべての試料基板は、その大きさが50 mm×50 mm×4.8 mmtであり、両面平行光学研磨されている。 Samples were extracted from a plurality of commercially available TiO 2 —SiO 2 glass (C-7972, Corning) ingots (1500 mm φ × 150 mm t ). In this glass, striae having a period of about 0.16 mm are formed in the manufacturing process [Non-Patent Document 10], and the direction is perpendicular to the z-axis direction as shown in FIG. 3A. In order to obtain an accurate relationship between the LSAW speed and the TiO 2 concentration, a substrate whose sample surface was perpendicular to the striatal surface was cut out as shown in FIG. 3C. 7 sample substrates from 4 different ingots (A, B, C, D) (1 from ingot A (A1), 2 from ingot B (B1, B2), 1 from ingot C (C1), Three pieces (D1, D2, D3) from Ingot D were prepared. All the sample substrates have a size of 50 mm × 50 mm × 4.8 mm t and are subjected to double-sided parallel optical polishing.

各試料基板の中心付近の24 mm×24 mmの二次元領域を2 mmおきに169点において測定を行なった。この領域は、後で述べるXRF分析法による化学組成比の測定領域に対応する。LSAWは垂直試料表面のy方向(図3C)に伝搬する。一例として、試料A1に対する測定結果を図4に示す。LSAW速度の平均値は3308.29 m/sとなり、領域内の速度の最大差は1.23 m/sとなった。すべての試料に対する測定結果を図5に示す。また、測定値は文献([非特許文献6])で求めたTiO2-SiO2ガラス標準試料を用いて絶対校正を行なった([非特許文献11]、[非特許文献12])。7枚の試料間のLSAW速度の平均値の最大差は4.07 m/sとなり、同一試料面内での最大速度分布は最大1.87 m/sとなった。 Measurement was performed at 169 points every 2 mm in a 24 mm × 24 mm two-dimensional area near the center of each sample substrate. This region corresponds to a chemical composition ratio measurement region by XRF analysis described later. LSAW propagates in the y direction (FIG. 3C) on the vertical sample surface. As an example, the measurement results for sample A1 are shown in FIG. The average value of LSAW speed was 3308.29 m / s, and the maximum speed difference in the region was 1.23 m / s. The measurement results for all the samples are shown in FIG. In addition, the measured value was subjected to absolute calibration using a TiO 2 —SiO 2 glass standard sample obtained in the literature ([Non-Patent Document 6]) ([Non-Patent Document 11], [Non-Patent Document 12]). The maximum difference in the average value of the LSAW velocities among the seven samples was 4.07 m / s, and the maximum velocity distribution in the same sample plane was 1.87 m / s at maximum.

次に、蛍光X線分析装置により7枚の試料の化学組成の分析を行なった。測定治具の制限により、試料を直径50 mmの円板に成形し、各試料の中心付近の直径25 mmの領域に対して測定を行なった。その結果、主成分はSiO2とTiO2であり、その他にわずかにV2O5 (0.019 wt%〜0.024 wt%)とP2O5(0.0012 wt%〜0.0020 wt%)が検出された。SiO2ガラスにP2O5が添加されたときのLSAW速度の変化は-14.0 (m/s)/wt%であり([非特許文献7])、0.002 wt%のP2O5に対するLSAW速度への影響は -0.03 m/sと非常に小さい。V2O5はP2O5よりも濃度が一桁大きいものの、TiO2濃度に比べて2桁小さく、これらの元素の影響は無視できる。1枚の試料に対して、20回の繰り返し測定を行なった結果、TiO2濃度の再現性は0.02 wt%以内であった。この結果をC(XRF)として図5に示す。 Next, the chemical composition of seven samples was analyzed using a fluorescent X-ray analyzer. Due to the limitation of the measurement jig, the sample was formed into a disk having a diameter of 50 mm, and the measurement was performed on a 25 mm diameter region near the center of each sample. As a result, the main components were SiO 2 and TiO 2 , and a small amount of V 2 O 5 (0.019 wt% to 0.024 wt%) and P 2 O 5 (0.0012 wt% to 0.0020 wt%) were detected. The change of LSAW rate when P 2 O 5 is added to SiO 2 glass is −14.0 (m / s) / wt% ([Non-patent Document 7]), and LSAW for 0.002 wt% of P 2 O 5 The impact on speed is very small at -0.03 m / s. Although V 2 O 5 is one order of magnitude higher than P 2 O 5 , it is two orders of magnitude smaller than the TiO 2 concentration, and the influence of these elements is negligible. As a result of repeating 20 measurements on one sample, the reproducibility of the TiO 2 concentration was within 0.02 wt%. The result is shown as C (XRF) in FIG.

XRF分析法による分析値の絶対値を得るためには、標準試料を用いて校正する必要がある。そこで、それぞれの試料に対して、成形した試料の残りの部分を用いて、ICP-OESによりTiO2濃度の分析を行なった。 約100 mgの試料を酸(フッ酸、硝酸、硫酸)により溶解して試料溶液を作成した。溶液を用意する過程において、SiをSiFとして気化させ、溶液を蒸留水により正確に100 mlに希釈した。内標準試料としてイットリウム(1 mg)を加えることにより、プラズマの強度変動などによるシステムの感度ドリフトの影響を補正した。Ti濃度が既知の標準溶液をいくつか用意し、XRFで得られるTiO2濃度を十分カバーするように検量線を作成した。測定結果をC(ICP)として図5に併せて示す。同じ試料から2つずつの試料溶液を作製し、測定を行なったが、それらの差は最大0.02 wt%であった。ICP-OESによるTiO2濃度は、XRF分析法によるものよりも0.23〜0.38 wt%大きくなった。 In order to obtain the absolute value of the analysis value by the XRF analysis method, it is necessary to calibrate using a standard sample. Therefore, for each sample, the TiO 2 concentration was analyzed by ICP-OES using the remaining part of the molded sample. About 100 mg of sample was dissolved with acid (hydrofluoric acid, nitric acid, sulfuric acid) to prepare a sample solution. In the process of preparing the solution, Si was vaporized as SiF, and the solution was diluted to exactly 100 ml with distilled water. By adding yttrium (1 mg) as an internal standard sample, the effect of system sensitivity drift due to plasma intensity fluctuations was corrected. Several standard solutions with known Ti concentrations were prepared, and a calibration curve was prepared to sufficiently cover the TiO 2 concentration obtained by XRF. The measurement results are also shown in FIG. 5 as C (ICP). Two sample solutions were prepared from the same sample and measured, and the difference between them was a maximum of 0.02 wt%. The TiO 2 concentration by ICP-OES was 0.23-0.38 wt% higher than that by XRF analysis.

XRF分析法とICP-OESによるTiO2濃度とLSAW速度との間の関係を図6に示す。TiO2濃度が高くなるにしたがい、LSAW速度VLSAWは小さくなった。225 MHzにおけるLSAW速度の測定再現性は±0.14 m/s (±2σ, σ: 標準偏差)[非特許文献6]であり、測定値の変動は主にTiO2濃度の測定精度が低いことによるものと考えられる。最小二乗法により直線近似を行った結果、XRF法により分析したデータに対しては、傾きは-17.04 (m/s)/wt%、σは0.010 wt%となり、ICP-OESにより分析したデータに対しては、傾きは-12.15 (m/s)/wt%、σは0.043 wt%となった。ICP-OESにおけるsはXRF分析法によるものと比較して4倍以上大きくなった。2つの傾きの違いは、ICP-OESにより求めたTiO2濃度のばらつきが大きいためと考えられる。この結果より、XRF分析法による分析値は、ICP-OESによる値よりも相対精度が高いと考えられる。しかしながら、絶対値に関しては、Ti濃度が既知の検量線を用いて分析していることから、ICP-OESによる値のほうが正確である。そこで、C(ICP)を用いてC(XRF)を校正する。原点通過を仮定した一次式に近似することにより、C(ICP) = 1.047×C(XRF)という関係が得られた。よって、XRF分析法により求めたTiO2濃度を1.047倍することにより、図5に併せて示すように校正されたTiO2濃度CCAL(XRF)を求めることができる。 FIG. 6 shows the relationship between the XRF analysis method and ICP-OES TiO 2 concentration and LSAW velocity. As the TiO 2 concentration increased, the LSAW velocity V LSAW decreased. The measurement reproducibility of the LSAW velocity at 225 MHz is ± 0.14 m / s (± 2σ, σ: standard deviation) [Non-Patent Document 6], and the variation in the measured value is mainly due to the low measurement accuracy of the TiO 2 concentration. It is considered a thing. As a result of performing linear approximation by the least square method, the slope of the data analyzed by the XRF method is -17.04 (m / s) / wt% and σ is 0.010 wt%, and the data analyzed by ICP-OES On the other hand, the slope was -12.15 (m / s) / wt% and σ was 0.043 wt%. The s in ICP-OES was more than 4 times larger than that obtained by XRF analysis. The difference between the two slopes is thought to be due to the large variation in TiO 2 concentration obtained by ICP-OES. From this result, it is considered that the analysis value by the XRF analysis method has higher relative accuracy than the value by the ICP-OES. However, the absolute value is analyzed using a calibration curve with a known Ti concentration, so the ICP-OES value is more accurate. Therefore, C (XRF) is calibrated using C (ICP). By approximating to a linear equation assuming passing through the origin, the relationship C (ICP) = 1.047 × C (XRF) was obtained. Therefore, the TiO 2 concentration C CAL (XRF) calibrated as shown in FIG. 5 can be obtained by multiplying the TiO 2 concentration obtained by the XRF analysis method by 1.047.

校正したTiO2濃度とLSAW速度との関係は、傾きが-16.27 (m/s)/wt%となり、σは 0.010 wt%となった。SiO2が100%である合成石英ガラス(C-7980, Corning社製)標準試料のLSAW速度は3426.18 m/sである[非特許文献12]。7枚のC-7972試料にC-7980のデータを加えたときの、LSAW速度と校正したTiO2濃度との関係は図7Aのように表される。また、LSAW速度が3310 m/s 付近のみのデータを拡大して図7Bに示す。直線近似により、より正確な傾き-16.65 (m/s)/wt%が得られ、このときσは 0.009 wt%となり、VLSAW [m/s]とCCAL(XRF) [wt%]の間に、次の関係式が得られる。

VLSAW=-16.65×CCAL(XRF) + 3426.18 (4)

式 (4)を変形した以下の式(5)より、VLSAW [m/s]からTiO2濃度C(VLSAW) [wt%]が求められることになる。

C(VLSAW)=-0.06006×(VLSAW - 3426.18) (5)

式(5)より、LSAW速度のTiO2濃度に対する感度は-0.06006 wt%/(m/s)と求められた。7枚の試料間のLSAW速度の平均値の最大差4.07 m/sは0.244 wt%のTiO2濃度の差に相当する。LSAW速度が3308.18 m/sとなるTiO2-SiO2超低膨張ガラス標準試料[非特許文献6]のTiO2濃度は7.09 wt%と求められる。SiO2ガラス中のSiは4配位となる[非特許文献13]。一方、TiO2-SiO2ガラスにおいては、TiO2が0.05-9 wt%の範囲ではSiO2中のSiと同様に4配位となるTiが支配的となる[非特許文献14]。このため、LSAW速度とTiO2濃度の関係は、EUVL用で重要となる7 wt%付近を含め、少なくとも約9 wt%までは比例していると考えられる。
Regarding the relationship between the calibrated TiO 2 concentration and the LSAW velocity, the slope was −16.27 (m / s) / wt%, and σ was 0.010 wt%. The LSAW speed of a standard sample of synthetic quartz glass (C-7980, manufactured by Corning) with 100% SiO 2 is 3426.18 m / s [Non-patent Document 12]. The relationship between the LSAW speed and the calibrated TiO 2 concentration when C-7980 data is added to seven C-7972 samples is shown in FIG. 7A. In addition, FIG. 7B shows an enlarged view of data only when the LSAW speed is around 3310 m / s. The linear approximation gives a more accurate slope of -16.65 (m / s) / wt%, where σ is 0.009 wt%, between V LSAW [m / s] and C CAL (XRF) [wt%]. Then, the following relational expression is obtained.

V LSAW = -16.65 × C CAL (XRF) + 3426.18 (4)

TiO 2 concentration C (V LSAW ) [wt%] is obtained from V LSAW [m / s] from the following equation (5) obtained by modifying equation (4).

C (V LSAW ) =-0.06006 × (V LSAW -3426.18) (5)

From equation (5), the sensitivity of the LSAW rate to the TiO 2 concentration was determined to be -0.06006 wt% / (m / s). The maximum difference of 4.07 m / s in the average value of LSAW velocities among the seven samples corresponds to the difference in TiO 2 concentration of 0.244 wt%. The TiO 2 concentration of the TiO 2 —SiO 2 ultra-low expansion glass standard sample [Non-Patent Document 6] having an LSAW speed of 3308.18 m / s is determined to be 7.09 wt%. Si in the SiO 2 glass is tetracoordinated [Non-patent Document 13]. On the other hand, in the TiO 2 —SiO 2 glass, in the range of 0.05-9 wt% of TiO 2 , Ti that is four-coordinated is dominant like Si in SiO 2 [Non-patent Document 14]. For this reason, it is considered that the relationship between the LSAW speed and the TiO 2 concentration is proportional to at least about 9 wt%, including around 7 wt%, which is important for EUVL.

ここで、本発明によるLSAW速度と化学組成比の間の正確な関係を求める方法の効果を見積もるために、式(5)の傾きの不確かさを見積もる。式(5)の傾きの不確かさの原因として、LSAW速度と化学組成比の影響があるが、ここではLSAW速度の試料面内の変動による影響について考える。図5より同一試料面内におけるLSAW速度の最大差は、0.70〜1.87 m/sであり、7枚の試料に対するその平均値は1.13 m/s(±3σに対して±0.57 m/s)である。7枚の試料を用いることによりLSAW速度値の不確かさは低減され、±2σで±0.14 m/sと考えられる。図5より、7枚の試料のTiO2濃度の平均値は7.04 wt%であり、式(4)よりLSAW速度は3308.95 m/sとなる。式(5)の傾きは、7.04/(3308.95±0.14 -3426.18) = -(0.06006±0.00008) [wt%/(m/s)]となり、±2σで±0.00008 wt%/(m/s)の不確かさを含むことになる。[非特許文献9]より、従前の図3Bに示すような脈理面と基板面が平行な標準試料を用いた場合の基板面内のLSAW速度の変動は2.39 m/sであり、この速度変動を脈理による最大のLSAW速度変化とするとLSAW速度の変動は±3σに対して±1.19 m/sとなる。このとき、LSAW速度の不確かさは±2σに対して±0.80 m/sとなり、式(5)の傾きの不確かさは、±2σで±0.0004 wt%/(m/s)となる。よって、LSAW速度と化学組成比の間の関係を求める際に、適切な基板面やLSAW速度の伝搬方向を選択することにより、それを正確に求めることができるということがわかる。もし、試料内およびその表面において特性の変動が十分小さい(すなわち脈理のない)TiO2-SiO2ガラスが作製でき、それを試料に用いた場合には、上記の試料面内のLSAW速度の変動の影響はなくなり、LSAW速度の誤差は、その測定の再現性である±0.14 m/s (±2σ)[非特許文献6]のみと考えられる。このとき、式(5)の傾きの不確かさは、±0.00008 wt%/(m/s) (±2σ)と見積もられる。 Here, in order to estimate the effect of the method for obtaining an accurate relationship between the LSAW rate and the chemical composition ratio according to the present invention, the uncertainty of the slope of equation (5) is estimated. The cause of the uncertainty of the slope of equation (5) is the influence of the LSAW speed and the chemical composition ratio. Here, the influence of fluctuations in the sample surface of the LSAW speed is considered. From Fig. 5, the maximum difference in LSAW velocity within the same sample surface is 0.70 to 1.87 m / s, and the average value for seven samples is 1.13 m / s (± 0.57 m / s for ± 3σ). is there. By using seven samples, the uncertainty of the LSAW velocity value is reduced, and ± 0.14 m / s at ± 2σ. From FIG. 5, the average value of the TiO 2 concentration of the seven samples is 7.04 wt%, and the LSAW speed is 3308.95 m / s from equation (4). The slope of formula (5) is 7.04 / (3308.95 ± 0.14 -3426.18) =-(0.06006 ± 0.00008) [wt% / (m / s)], and ± 0.00008 wt% / (m / s) at ± 2σ It will include uncertainty. From [Non-Patent Document 9], the variation of the LSAW speed in the substrate surface when using a standard sample with the striae surface parallel to the substrate surface as shown in FIG. 3B is 2.39 m / s. If the fluctuation is the maximum LSAW speed change due to striae, the LSAW speed fluctuation is ± 1.19 m / s for ± 3σ. At this time, the uncertainty of the LSAW speed is ± 0.80 m / s with respect to ± 2σ, and the uncertainty of the slope of equation (5) is ± 0.0004 wt% / (m / s) with ± 2σ. Therefore, it can be seen that when determining the relationship between the LSAW velocity and the chemical composition ratio, it is possible to accurately determine the relationship by selecting an appropriate substrate surface and the LSAW velocity propagation direction. If a TiO 2 -SiO 2 glass with a sufficiently small variation in characteristics in the sample and its surface (ie, without striae) can be produced and used for the sample, the LSAW velocity of the sample surface above can be reduced. The influence of the fluctuation is eliminated, and the error of the LSAW speed is considered to be only ± 0.14 m / s (± 2σ) [Non-Patent Document 6] which is the reproducibility of the measurement. At this time, the uncertainty of the slope of equation (5) is estimated to be ± 0.00008 wt% / (m / s) (± 2σ).

次にLSAW速度とCTEの間の関係について求める。合成石英ガラスのCTEはカタログ値である520 ppb/Kとし、C-7972のそれは7枚の試料の平均値が 0 ppb/Kであると仮定する。このとき、直線近似により、CTE(VLSAW) [ppb/K]とVLSAW [m/s]の間に以下の関係式が得られる。

CTE(VLSAW) = 4.436×(VLSAW - 3308.95) (6)

式(6)より、LSAW速度のCTEに対する感度は4.436 (ppb/K)/(m/s)と求められた。式(6)のVLSAWとCTEの関係を、図7においてスケール変換を行うことにより併せて示す(CTEを右側の軸に示す)。より正確なCTEとLSAW速度の関係を求めるためには、CTE測定試料板に対して、CTEの絶対計測を行えばよい。
Next, the relationship between LSAW speed and CTE is obtained. The CTE of synthetic quartz glass is assumed to be 520 ppb / K which is a catalog value, and that of C-7972 is assumed that the average value of 7 samples is 0 ppb / K. At this time, the following relational expression is obtained between CTE (V LSAW ) [ppb / K] and V LSAW [m / s] by linear approximation.

CTE (V LSAW ) = 4.436 × (V LSAW -3308.95) (6)

From the equation (6), the sensitivity of the LSAW speed to CTE was determined to be 4.436 (ppb / K) / (m / s). The relationship between V LSAW and CTE in Equation (6) is also shown by performing scale conversion in FIG. 7 (CTE is shown on the right axis). In order to obtain a more accurate relationship between CTE and LSAW speed, CTE absolute measurement may be performed on a CTE measurement sample plate.

f = 225 MHzにおけるLSAW速度の再現性は±0.14 (m/s) (±2σ)[非特許文献6]より、この値にLSAW速度のTiO2濃度やCTEに対する感度をかけることにより、LSAW速度のTiO2濃度、CTEに対する分解能は、それぞれ±0.0084 wt%、±0.62 ppb/K (±2σ)と求められる。このことから、LSAW速度測定値を式(5)や式(6)に代入することにより、従来法よりも高精度にTiO2濃度やCTEを求めることができる。 The reproducibility of the LSAW rate at f = 225 MHz is ± 0.14 (m / s) (± 2σ) [Non-Patent Document 6]. By applying this value to the TiO 2 concentration and CTE sensitivity of the LSAW rate, the LSAW rate The resolution for TiO 2 concentration and CTE is determined to be ± 0.0084 wt% and ± 0.62 ppb / K (± 2σ), respectively. From this, the TiO 2 concentration and CTE can be obtained with higher accuracy than the conventional method by substituting the LSAW velocity measurement value into the equations (5) and (6).

以上のように説明した実施例に基づいて、この発明によるTiO2-SiO2ガラスの評価を行うためのLSAW速度と化学組成比やCTEとの間の正確な関係を求めるための基本的な処理手順を図8に示すフローチャートを参照にして以下に説明する。
ステップS1:TiO2-SiO2ガラスインゴットから、脈理面に対して基板面が垂直な試料基板と、それに隣接してCTE測定試料板を切り出す。
ステップS2:ステップS1で用意した試料基板に対して、ステップS3で化学組成比を測定する領域と同じ領域を、LSAWの伝搬方向を脈理面に平行として、LSAW速度を測定する。
ステップS3:ステップS1で用意した試料基板に対して、ステップS2と同じ領域で化学組成比を測定する。また、CTE測定用試料基板に対してCTEを測定する。
ステップS4:ステップS2で得られたLSAW速度とステップS3で得られた化学組成比やCTEより、それらの間の関係を得る。
TiO2-SiO2ガラスが均一に製造され、インゴットに脈理が存在しない場合には、上記ステップS1において試料を任意に切り出し、上記ステップS2において任意の方向に伝搬するLSAWを測定すればよい。
Based on the embodiment described above, a basic process for obtaining an accurate relationship between the LSAW speed and the chemical composition ratio or CTE for evaluating the TiO 2 —SiO 2 glass according to the present invention. The procedure will be described below with reference to the flowchart shown in FIG.
Step S1: From a TiO 2 —SiO 2 glass ingot, a sample substrate whose substrate surface is perpendicular to the striatal surface and a CTE measurement sample plate adjacent thereto are cut out.
Step S2: The LSAW velocity is measured with respect to the sample substrate prepared in step S1, with the same region as the region where the chemical composition ratio is measured in step S3, with the LSAW propagation direction parallel to the striae.
Step S3: The chemical composition ratio is measured in the same region as in Step S2 for the sample substrate prepared in Step S1. Moreover, CTE is measured with respect to the sample substrate for CTE measurement.
Step S4: The relationship between them is obtained from the LSAW speed obtained in Step S2 and the chemical composition ratio and CTE obtained in Step S3.
When the TiO 2 —SiO 2 glass is uniformly manufactured and there is no striae in the ingot, the sample is arbitrarily cut out in step S1, and the LSAW propagating in an arbitrary direction may be measured in step S2.

本発明を用いることにより得られるLSAW速度とTiO2濃度やCTEとの間の正確な関係により、LSAW速度測定値からTiO2濃度やCTEを従来法よりも高精度に求めることができるため、将来のEUVLグレードのガラスの開発、ガラス作製プロセスおよび製品の品質管理を行うためにLFB超音波材料特性解析装置を超高精度CTE測定装置として用いるために有用である。 The accurate relationship between the LSAW rate obtained by using the present invention and the TiO 2 concentration and CTE enables the TiO 2 concentration and CTE to be determined from the LSAW rate measurement value with higher accuracy than the conventional method. It is useful to use LFB ultrasonic material characterization equipment as ultra-high precision CTE measuring equipment to develop EUVL grade glass, glass manufacturing process and product quality control.

V(z)曲線の形成原理を説明する図。The figure explaining the formation principle of a V (z) curve. C-7972試料に対するV(z)曲線とその解析結果を示す図であり、Aはf = 225 MHzとして測定したV(z)曲線、BはV(z)曲線解析法により得られる波数スペクトラムを示す図。It is a figure showing the V (z) curve and its analysis result for the C-7972 sample, A is the V (z) curve measured at f = 225 MHz, B is the wave number spectrum obtained by the V (z) curve analysis method. FIG. TiO2-SiO2ガラス試料の準備方法を説明する図であり、Aはインゴットの概観を示す図、Bはインゴットから切り出した試料面が脈理面に対して平行な試料を示す図、Cはインゴットから切り出した試料面が脈理面に対して垂直な試料を示す図。It is a figure explaining the preparation method of a TiO 2 -SiO 2 glass sample, A is a figure showing an overview of the ingot, B is a figure showing a sample surface cut out from the ingot is parallel to the striatal plane, C is The figure which shows the sample with the sample surface cut out from the ingot perpendicular | vertical with respect to the striae surface. C-7972試料(A1)に対して、f = 225 MHzとし、LSAWの伝搬方向をy方向として、24 mm×24 mmの領域をy, z 方向とも2 mmおきに2次元分布の測定を行った結果を示す図。For C-7972 sample (A1), f = 225 MHz, the LSAW propagation direction is the y direction, and a 24 mm x 24 mm region is measured every 2 mm in the y and z directions. FIG. C-7972試料に対するLSAW速度とTiO2濃度を示す図。It shows the LSAW velocity and TiO 2 concentration on C-7972 sample. C-7972試料に対するTiO2濃度とLSAW速度との間の関係を示す図であり、AはXRF分析により求めたTiO2濃度とLSAW速度との関係を示す図であり、BはICP発光分析法により求めたTiO2濃度とLSAW速度との関係を示す図である。Is a diagram showing the relationship between the TiO 2 concentration and LSAW velocity for C-7972 sample, A is a diagram showing the relationship between the TiO 2 concentration and LSAW speed obtained by XRF analysis, B is ICP emission spectrometry It is a figure which shows the relationship between the TiO2 density | concentration calculated | required by ( 3) and the LSAW speed | rate. C-7972試料に対するLSAW速度とTiO2濃度およびCTEとの間の関係を示す図であり、Aは3300 m/s〜3440 m/sのLSAW速度におけるデータを示す図であり、Bは3305 m/s〜3315 m/sのLSAW速度のみのデータを示す図である。FIG. 7 shows the relationship between LSAW velocity and TiO 2 concentration and CTE for the C-7972 sample, A shows data at LSAW velocity from 3300 m / s to 3440 m / s, and B shows 3305 m It is a figure which shows the data of only the LSAW speed of / s-3315 m / s. 脈理を有する材料に対してLSAW速度と化学組成比の間の正確な方法を求める方法のブロック図。FIG. 3 is a block diagram of a method for obtaining an accurate method between LSAW velocity and chemical composition ratio for a striae material.

符号の説明Explanation of symbols

1:超音波トランスデューサ、2:LFB音響レンズ、3:ガラス試料、4:水カプラ、5:焦点面、6:ガラスインゴット、7:脈理、8:ガラス基板 1: ultrasonic transducer, 2: LFB acoustic lens, 3: glass sample, 4: water coupler, 5: focal plane, 6: glass ingot, 7: striae, 8: glass substrate

Claims (6)

漏洩弾性表面波速度、以下LSAW速度と呼ぶ、と化学組成比および線膨張係数、以下CTEと呼ぶ、との間の関係を求める方法であり、
(a) 化学組成比の異なる少なくとも2つのガラスインゴットのそれぞれから、ガラスインゴットの脈理面に対して垂直な面で試料基板と、それに隣接してCTE測定試料板を切り出す工程と、
(b) 各上記試料基板の予め決めた領域に対して、上記脈理面と平行な方向に伝搬するLSAW速度の測定値を得る工程と、
(c) 各上記試料基板の上記予め決めた領域の化学組成比を測定する工程と、
(d) 各上記CTE測定試料板のCTEを測定する工程と、
(e) 測定した上記LSAW速度と上記化学組成比および上記CTEからLSAW速度の変化量に対する化学組成比の変化量およびCTEの変化量の関係を決定する工程、
とを含むことを特徴とするLSAW速度と化学組成比およびCTEとの間の関係を求める方法。
Leakage surface acoustic wave velocity, hereinafter referred to as LSAW velocity, and the chemical composition ratio and coefficient of linear expansion, hereinafter referred to as CTE, is a method for determining the relationship between,
(a) cutting a sample substrate and a CTE measurement sample plate adjacent to each other at a surface perpendicular to the striae of the glass ingot from each of at least two glass ingots having different chemical composition ratios;
(b) obtaining a measured value of the LSAW velocity that propagates in a direction parallel to the striae plane for a predetermined region of each sample substrate;
(c) measuring a chemical composition ratio of the predetermined region of each sample substrate;
(d) measuring the CTE of each of the above CTE measurement sample plates;
(e) determining the relationship between the measured LSAW rate and the chemical composition ratio and the change amount of the chemical composition ratio and the change amount of the CTE from the CTE to the change amount of the LSAW rate;
A method for determining a relationship between an LSAW rate, a chemical composition ratio, and a CTE characterized by comprising:
請求項1記載の方法において、上記ステップ(c) は上記試料基板及び上記CTE測定試料板の一方の化学組成比を蛍光X線分析法、以下XRF法と呼ぶ、により測定する工程と、上記ガラスインゴットの一部から高周波誘導結合プラズマ-発光分析法、以下ICP-OES法と呼ぶ、により化学組成比を測定する工程と、上記XRF法による測定結果を上記ICP-OES法による測定結果により絶対校正した化学組成比を求める工程とを含むことを特徴とするLSAW速度と化学組成比及びCTEとの関係を求める方法2. The method according to claim 1, wherein said step (c) comprises measuring a chemical composition ratio of one of said sample substrate and said CTE measurement sample plate by fluorescent X-ray analysis, hereinafter referred to as XRF method, and said glass A step of measuring the chemical composition ratio from a part of an ingot using a high frequency inductively coupled plasma-emission analysis method, hereinafter referred to as ICP-OES method, and absolute calibration of the measurement result by the XRF method with the measurement result by the ICP-OES method A method for determining the relationship between the LSAW speed, the chemical composition ratio, and the CTE . 請求項1記載の方法において、上記少なくとも2つのガラスインゴットの1つとしてはSiO2が100%である石英ガラスを使用することを特徴とする、LSAW速度と化学組成比およびCTEとの間の関係を求める方法。 2. The method according to claim 1, wherein quartz glass with 100% SiO 2 is used as one of the at least two glass ingots, the relationship between the LSAW rate and the chemical composition ratio and CTE. How to ask. 請求項3記載の方法において、上記石英ガラスのCTEとして既知のデータを使用することを特徴とするLSAW速度と化学組成比およびCTEとの間の関係を求める方法。   4. The method according to claim 3, wherein the known data is used as CTE of the quartz glass, and the relationship between the LSAW speed, the chemical composition ratio, and the CTE is obtained. TiO2-SiO2超低膨張ガラスのTiO2濃度の測定方法であり、
(a) LSAW速度を測定する工程と、
(b)上記工程(a)で得られたLSAW速度VLSAW[m/s] を使って請求項1記載の方法により求めたLSAW速度と化学組成比の関係を表す次式
C(VLSAW)=0.06006×(VLSAW - 3426.18)
からTiO2濃度C(VLSAW) [wt%]を求める工程、
とを含むことを特徴とするTiO2濃度測定方法。
TiO 2 -SiO 2 is a method for measuring the TiO 2 concentration of ultra-low expansion glass,
(a) measuring the LSAW speed;
(b) Using the LSAW velocity V LSAW [m / s] obtained in the above step (a), the following equation expressing the relationship between the LSAW velocity obtained by the method of claim 1 and the chemical composition ratio :
C (V LSAW ) = 0.06006 × (V LSAW -3426.18)
Obtaining TiO 2 concentration C (V LSAW ) [wt%] from
TiO 2 concentration measuring method characterized by including.
TiO2-SiO2超低膨張ガラスの線膨張係数の測定方法であり、
(a) LSAW速度を測定する工程と、
(b)上記工程(a)で得られたLSAW速度VLSAW[m/s] を使って請求項1記載の方法により求めたLSAW速度とCTEの関係を表す次式
CTE(VLSAW) = 4.436×(VLSAW - 3308.95)
から線膨張係数CTE(VLSAW) [wt%]を求める工程、
とを含むことを特徴とする線膨張係数測定方法。
TiO 2 -SiO 2 is a method for measuring the linear expansion coefficient of ultra-low expansion glass,
(a) measuring the LSAW speed;
(b) Using the LSAW velocity V LSAW [m / s] obtained in step (a) above, the following equation representing the relationship between the LSAW velocity and CTE determined by the method of claim 1
CTE (V LSAW ) = 4.436 × (V LSAW -3308.95)
Obtaining the linear expansion coefficient CTE (V LSAW ) [wt%] from
And a linear expansion coefficient measuring method.
JP2005263339A 2005-09-12 2005-09-12 Method for obtaining the relationship between leakage surface acoustic wave velocity, chemical composition ratio and linear expansion coefficient of material having striae, and TiO2 concentration measuring method and linear expansion coefficient measuring method of TiO2-SiO2 glass using the relationship Active JP4825972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005263339A JP4825972B2 (en) 2005-09-12 2005-09-12 Method for obtaining the relationship between leakage surface acoustic wave velocity, chemical composition ratio and linear expansion coefficient of material having striae, and TiO2 concentration measuring method and linear expansion coefficient measuring method of TiO2-SiO2 glass using the relationship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263339A JP4825972B2 (en) 2005-09-12 2005-09-12 Method for obtaining the relationship between leakage surface acoustic wave velocity, chemical composition ratio and linear expansion coefficient of material having striae, and TiO2 concentration measuring method and linear expansion coefficient measuring method of TiO2-SiO2 glass using the relationship

Publications (2)

Publication Number Publication Date
JP2007078384A JP2007078384A (en) 2007-03-29
JP4825972B2 true JP4825972B2 (en) 2011-11-30

Family

ID=37938876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263339A Active JP4825972B2 (en) 2005-09-12 2005-09-12 Method for obtaining the relationship between leakage surface acoustic wave velocity, chemical composition ratio and linear expansion coefficient of material having striae, and TiO2 concentration measuring method and linear expansion coefficient measuring method of TiO2-SiO2 glass using the relationship

Country Status (1)

Country Link
JP (1) JP4825972B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5314901B2 (en) * 2008-02-13 2013-10-16 国立大学法人東北大学 Silica / titania glass, method for producing the same, and method for measuring linear expansion coefficient

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004565A (en) * 1999-06-24 2001-01-12 Fuji Electric Co Ltd Analytical method for metal in petroleum-based lubricating oil
JP3510201B2 (en) * 2000-10-20 2004-03-22 淳一 櫛引 LSAW propagation characteristic measuring method and measuring device
JP3719653B2 (en) * 2001-03-12 2005-11-24 淳一 櫛引 Material evaluation method by sound velocity measurement
JP2003028843A (en) * 2001-07-13 2003-01-29 Toshiba Ceramics Co Ltd Measuring method for impurities in glass by using ultrasonic waves
JP3793873B2 (en) * 2001-10-26 2006-07-05 日本ITeS株式会社 Apparatus for measuring elastic parameters of material surfaces and coating layers
JP4340542B2 (en) * 2002-02-27 2009-10-07 株式会社オハラ Manufacturing method and quality control method of glass ceramics
JP2004325986A (en) * 2003-04-28 2004-11-18 Nikon Corp Reflection mirror and exposure device having the same

Also Published As

Publication number Publication date
JP2007078384A (en) 2007-03-29

Similar Documents

Publication Publication Date Title
US7124635B2 (en) Evaluation method for coefficient of thermal expansion of ultra-low-expansion glass material
JP5742833B2 (en) Method for producing ultra-low expansion glass
JP4898266B2 (en) Method for measuring thin film Poisson's ratio
Beghi et al. Precision and accuracy in film stiffness measurement by Brillouin spectroscopy
CN114543690A (en) Optical characteristic modeling method, photoacoustic measurement method and device
Hrdina et al. Characterization and characteristics of a ULE glass tailored for EUVL needs
JP2007071831A (en) Method and device for evaluating optical material
JP4825972B2 (en) Method for obtaining the relationship between leakage surface acoustic wave velocity, chemical composition ratio and linear expansion coefficient of material having striae, and TiO2 concentration measuring method and linear expansion coefficient measuring method of TiO2-SiO2 glass using the relationship
JP2007501392A (en) Method and apparatus for quantifying surface-coupled optical resonance profiles
Kushibiki et al. A super-precise CTE evaluation method for ultra-low-expansion glasses using the LFB ultrasonic material characterization system
Edwards et al. Improved precision of absolute thermal-expansion measurements for ULE glass
Arakawa et al. Accurate calibration line for super-precise coefficient of thermal expansion evaluation technology of TiO2-doped SiO2 ultra-low-expansion glass using the line-focus-beam ultrasonic material characterization system
Ohashi et al. Improvement of velocity measurement accuracy of leaky surface acoustic waves for materials with highly attenuated waveform of the V (z) curve by the line-focus-beam ultrasonic material characterization system
JP4560625B2 (en) Preparation method of standard material for calibration of ultrasonic material property analyzer for materials with striae
Shepard et al. Measurement of internal stress in glass articles
Kushibiki et al. A promising evaluation method of ultra-low-expansion glasses for the extreme ultra-violet lithography system by the line-focus-beam ultrasonic material characterization system
JP2007521476A (en) Method for evaluating submicron groove structures
Arakawa et al. Striae evaluation of TiO 2-SiO 2 ultra-low expansion glasses using the line-focus-beam ultrasonic material characterization system
Kushibiki et al. Development of an ultrasonic system for super-precise measurement of zero-CTE temperature of EUVL-grade TiO2-SiO2 ultra-low-expansion glasses
Wei et al. Determination of the coefficient of thermal expansion of ultra-low-expansion glass using an ultrasonic immersion testing method
Takeichi et al. High-precision (< 1ppb/° C) optical heterodyne interferometric dilatometer for determining absolute CTE of EUVL materials
Kushibiki et al. Evaluation method of TiO/sub 2/-SiO/sub 2/ultra-low-expansion glasses with periodic striae using the LFB ultrasonic material characterization system
Arakawa et al. Evaluation and selection of EUVL-grade TiO2-SiO2 ultra-low-expansion glasses using the line-focus-beam ultrasonic material characterization system
Müller et al. Refinement of the 200 structure factor for GaAs using parallel and convergent beam electron nanodiffraction data
Kushibiki Development of Super-Precise Evaluation Method for

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150