JP4825094B2 - Resistance welding method and resistance welding apparatus for high carbon steel - Google Patents

Resistance welding method and resistance welding apparatus for high carbon steel Download PDF

Info

Publication number
JP4825094B2
JP4825094B2 JP2006262869A JP2006262869A JP4825094B2 JP 4825094 B2 JP4825094 B2 JP 4825094B2 JP 2006262869 A JP2006262869 A JP 2006262869A JP 2006262869 A JP2006262869 A JP 2006262869A JP 4825094 B2 JP4825094 B2 JP 4825094B2
Authority
JP
Japan
Prior art keywords
welding current
welding
workpiece
storage capacitor
energy storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006262869A
Other languages
Japanese (ja)
Other versions
JP2008080363A (en
Inventor
佐々木  広治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2006262869A priority Critical patent/JP4825094B2/en
Publication of JP2008080363A publication Critical patent/JP2008080363A/en
Application granted granted Critical
Publication of JP4825094B2 publication Critical patent/JP4825094B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高炭素鋼、特に内部まで浸炭焼入れ処理がなされている高炭素―高クロム鋼材などの抵抗溶接に適した抵抗溶接方法及び抵抗溶接装置に関する。   The present invention relates to a resistance welding method and a resistance welding apparatus suitable for resistance welding of high carbon steel, in particular, high carbon-high chromium steel that has been carburized and quenched to the inside.

コンデンサ式抵抗溶接は、エネルギー蓄積用コンデンサに蓄えた電気エネルギーを極く短い期間に被溶接物間に放出し、パルス状溶接電流として流すことにより良好な溶接結果が得られる溶接方法であることで広く知られている。このような溶接にあっては、交流電流を幾サイクルにもわたって流す交流溶接とは違って、通常、ごく短い時間に溶接部及びその周りの小さい領域だけが急激に加熱され、また自然状態で急冷される。このような急熱、急冷の場合、これら被溶接物が炭素の含有率が高い高炭素鋼、あるいは表面を浸炭処理した高炭素鋼などからなると、その溶接部の硬度が増大し、脆弱になって機械的強度が大幅に低下することが知られている。   Capacitor-type resistance welding is a welding method in which good welding results can be obtained by discharging electrical energy stored in an energy storage capacitor between workpieces in a very short period and flowing it as a pulsed welding current. Widely known. In such welding, unlike the AC welding in which an alternating current is passed over several cycles, usually only the weld and a small area around it are rapidly heated in a very short time, and in a natural state. It is cooled rapidly. In the case of such rapid heating and rapid cooling, if these workpieces are made of high carbon steel having a high carbon content, or high carbon steel whose surface is carburized, the hardness of the welded portion increases and becomes brittle. It is known that the mechanical strength is greatly reduced.

したがって、従来では被溶接物間に加圧力を加えた状態で、パルス状溶接電流を被溶接物間に流した後に、数十サイクル、例えば20〜30サイクルにもわたって交流電流を流して後熱処理を行い、溶接部の焼き戻しを行ってその硬度を許容値以下まで戻して強度の低下を抑制することが開示されている。しかし、交流電流を流して後熱処理を行った場合には、発熱時間が長くなるために被溶接物の広い範囲で高温になり、このことが被溶接物の変色、熱歪み、溶接電極の損耗などを招来し、溶接品質を低下させていた。この問題点を解決する方法として、第1のパルス状溶接電流を流した後に、単一の第2のパルス状溶接用電流を流して焼き戻しを行って高い溶接品質が得られる高炭素鋼の抵抗溶接方法も開示されている(例えば、特許文献1参照)。
特開2000−326076
Therefore, conventionally, after applying a pulse welding current between the workpieces while applying a pressure between the workpieces, an AC current is passed over several tens of cycles, for example, 20 to 30 cycles. It is disclosed that heat treatment is performed and the welded portion is tempered to return the hardness to an allowable value or less to suppress a decrease in strength. However, when post-heat treatment is performed by passing an alternating current, the heat generation time becomes longer, so the temperature of the work to be welded becomes high in a wide range, which causes discoloration of the work to be welded, thermal distortion, wear of the welding electrode. Etc., and the welding quality was reduced. As a method for solving this problem, a high-carbon steel is obtained in which high welding quality can be obtained by flowing a first pulsed welding current and then tempering with a single second pulsed welding current. A resistance welding method is also disclosed (see, for example, Patent Document 1).
JP 2000-326076 A

前掲の特許文献1に開示されている抵抗溶接方法は、表面が浸炭焼入れ処理された高炭素鋼と通常の鋼材である低炭素鋼などを抵抗溶接する場合には非常に有効であって、被溶接物の変色、熱歪みなどを生じることなく、高い溶接強度が得られる。しかしながら、例えば、JIS規格でSUJと呼ばれているような高炭素―高クロム鋼材は、内部まで浸炭焼入れ処理されているので、前掲の特許文献1に開示されている抵抗溶接方法をもってしても、高炭素―高クロム鋼材と低炭素鋼との溶接強度は、表面が浸炭焼入れ処理された高炭素鋼の溶接時の溶接強度に比べて大幅に低下してしまうという問題がある。また、前述したような方法、例えば単一のパルス状溶接電流を被溶接物間に流した後に、数十サイクル、例えば20〜30サイクルにもわたって交流電流を通電する抵抗溶接方法によっても同様に溶接強度を向上させることができない。つまり、内部まで浸炭焼入れ処理されている高炭素鋼の抵抗溶接にあっては、外観の問題を別にしても、表面が浸炭焼入れ処理された高炭素鋼の溶接時の溶接強度に到底達しなかった。   The resistance welding method disclosed in the above-mentioned Patent Document 1 is very effective when resistance welding is performed on high carbon steel whose surface is carburized and quenched and low carbon steel which is a normal steel material. High weld strength can be obtained without causing discoloration or thermal distortion of the weldment. However, for example, a high carbon-high chromium steel material called SUJ in the JIS standard has been carburized and quenched to the inside, so even with the resistance welding method disclosed in the above-mentioned Patent Document 1. There is a problem that the welding strength between the high carbon-high chromium steel material and the low carbon steel is greatly reduced compared to the welding strength of the high carbon steel whose surface is carburized and quenched. The same applies to a method as described above, for example, a resistance welding method in which an alternating current is applied for several tens of cycles, for example, 20 to 30 cycles after a single pulse welding current is passed between workpieces. However, the welding strength cannot be improved. In other words, in resistance welding of high-carbon steel that has been carburized and quenched to the inside, the welding strength during welding of high-carbon steel whose surface has been carburized and quenched has not reached its level, regardless of the appearance problem. It was.

本発明は、レーザ溶接装置のような価格の高い溶接装置を用いずに、従来広く行われている抵抗溶接方法によって、内部まで浸炭処理されている高炭素鋼材からなる第1の被溶接物と低炭素鋼又は、表面が浸炭焼入れ処理された高炭素鋼、あるいは内部まで浸炭処理されている高炭素鋼材からなる第2の被溶接物とを簡単に抵抗溶接することができ、しかも溶接強度を大幅に向上させることができる抵抗溶接方法及び抵抗溶接装置を提供することを課題とする。   The present invention provides a first work piece made of a high carbon steel material that has been carburized to the inside by a resistance welding method that has been widely used without using a high-cost welding device such as a laser welding device. It is possible to easily resistance weld a low carbon steel, a high carbon steel whose surface is carburized and hardened, or a second work piece made of a high carbon steel material which has been carburized to the inside. It is an object of the present invention to provide a resistance welding method and a resistance welding apparatus that can be greatly improved.

第1の発明は、内部まで浸炭焼入れ処理されている高炭素鋼からなる第1の被溶接物と、第2の被溶接物との間に加圧力をかけた状態で溶接電流を通電して、前記第1の被溶接物と前記第2の被溶接物とを溶接する高炭素鋼の抵抗溶接方法であって、前記第1の被溶接物と前記第2の被溶接物との間に単一の第1のパルス状溶接電流I1を流して第1回目の接合を行う第1の接合工程と、前記第1のパルス状溶接電流の通電からクーリング時間Tcの経過後に、前記第1のパルス状溶接電流のピーク値の80〜130%のピーク値の単一の第2のパルス状溶接電流I2を前記第1の被溶接物と前記第2の被溶接物との間にして第2回目の接合を行う第2の接合工程と、前記第2のパルス状溶接電流I2を通電した後に、前記第1のパルス状溶接電流I1の通電時間び前記第2のパルス状溶接電流I2の通電時間よりも長い時間、前記第1のパルス状溶接電流I1及び前記第2のパルス状溶接電流I2のピーク値よりも小さなピーク値の交流溶接電流iを前記第1の被溶接物と前記第2の被溶接物との間に通電する第3の接合工程を順次行うことを特徴とする高炭素鋼の抵抗溶接方法を提供する。 1st invention energizes a welding current in the state which applied the pressure between the 1st to-be-welded object which consists of a high carbon steel by which the carburizing hardening process was carried out to the inside, and a 2nd to-be-welded object. A high-carbon steel resistance welding method for welding the first work piece and the second work piece, between the first work piece and the second work piece. a first bonding step of performing the first bonding to flow a single first pulsed welding current I1, after a cooling time Tc from the energization of said first pulsed welding current, the first Shi stream of the second pulsed welding current I2 of a single 80 to 130% of the peak value of the peak value of the pulsed welding current between said first object to be welded and the second object to be welded a second bonding step of performing a second round junction of Te, after energizing the second pulsed welding current I2, the first pulse-like Longer than the energization time of the energization time beauty said second pulsed welding current I2 of contact currents I1, smaller than the peak value of the first pulsed welding current I1 and the second pulsed welding current I2 A resistance welding method for high carbon steel, comprising sequentially performing a third joining step of energizing a peak AC welding current i between the first workpiece and the second workpiece. provide.

の発明は、交流電源からの電力が入力される充電回路と、前記充電回路を介して前記交流電源からの電力により充電されるエネルギー蓄積用コンデンサと、第1の1次巻線と第2の1次巻線及び2次巻線とを有する溶接用トランスと、前記エネルギー蓄積用コンデンサに蓄えられた電荷を前記第1の1次巻線を介して放電する1のスイッチ回路と、前記交流電源からの電力が入力され、かつ前記第2の1次巻線と並列に接続される第2のスイッチ回路とを備え前記2次巻線から、内部まで浸炭焼入れ処理されている高炭素鋼である第1の被溶接物と、第2の被溶接物との間に溶接電流を流して抵抗溶接を行う高炭素鋼の抵抗溶接装置であって、前記充電回路の充電動作によって前記エネルギー蓄積用コンデンサが第1の設定電圧値まで充電された後、前記第1のスイッチ回路はオンして前記第1の被溶接物と前記2の被溶接物との間に単一の第1のパルス状溶接電流I1を通電して第1回目の接合を行った後にオフし、次に、前記充電回路の充電動作によって前記エネルギー蓄積用コンデンサが第2の設定電圧値まで充電された後、前記第1のスイッチ回路は、クーリング時間の経過後に再びオンして前記第1の被溶接物と前記第2の被溶接物との間に、前記第1のパルス状溶接電流のピーク値の80〜130%のピーク値の単一の第2のパルス状溶接電流I2を通電して第2回目の接合を行った後にオフし、前記第2のスイッチ回路は、前記第1のスイッチ回路の第2回目のオフ後にオンして、前記第1のパルス状溶接電流I1の通電時間及び前記第2のパルス状溶接電流I2の通電時間よりも長い時間、前記第1のパルス状溶接電流I1及び前記第2のパルス状溶接電流I2のピーク値よりも小さなピーク値の交流溶接電流iを前記交流電源から前記溶接用トランスを介して前記第1の被溶接物と前記第2の被溶接物との間に通電する第3の接合を行うことを特徴とする高炭素鋼の抵抗溶接装置を提供する。 According to a second aspect of the present invention, there is provided a charging circuit to which electric power from an AC power source is input, an energy storage capacitor charged by the electric power from the AC power source through the charging circuit, a first primary winding, a welding transformer having a second primary winding and a secondary winding, a first switch circuit for discharging the stored energy storage capacitor charges through the first primary winding, A second switch circuit that receives power from the AC power source and is connected in parallel with the second primary winding, and is carburized and quenched from the secondary winding to the inside. A resistance welding apparatus for high carbon steel that performs resistance welding by passing a welding current between a first workpiece to be welded that is carbon steel and a second workpiece to be welded. The energy storage capacitor reaches the first set voltage value. After being charged, the first switch circuit is energized the first pulsed welding current I1 of the single between the object to be welded of the ON to the first object to be welded 2 1 The first switch circuit is turned off after the second joining, and then the first storage circuit is charged with a cooling time after the energy storage capacitor is charged to the second set voltage value by the charging operation of the charging circuit. It is turned on again later, and a single second having a peak value of 80 to 130% of the peak value of the first pulse welding current is between the first workpiece and the second workpiece. of a pulsed welding current I2 is turned off after the second time joining is energized, the second switch circuit is turned on after the second off of the first switch circuit, the first Energizing time of the pulsed welding current I1 and the second pulsed welding current AC welding current i having a peak value smaller than the peak value of the first pulsed welding current I1 and the second pulsed welding current I2 is applied from the AC power source to the welding transformer for a time longer than the energizing time of I2. There is provided a high-carbon steel resistance welding apparatus characterized in that a third joining is performed between the first workpiece and the second workpiece via a wire .

の発明は、交流電源からの電力が入力される第1の充電回路と、前記第1の充電回路を介して前記交流電源からの電力により充電される第1のエネルギー蓄積用コンデンサと、前記交流電源からの電力が入力される第2の充電回路と、前記第2の充電回路を介して前記交流電源からの電力により充電される第2のエネルギー蓄積用コンデンサと、前記第1のエネルギー蓄積用コンデンサに蓄えられた電荷を前記第1の1次巻線を介して放電するための第1のスイッチ回路と、前記第2のエネルギー蓄積用コンデンサに蓄えられた電荷を前記第1のエネルギー蓄積用コンデンサと同様に共通の前記第1の1次巻線介して放電するための第3のスイッチ回路と、前記交流電源からの電力が入力され、かつ前記第2の1次巻線と並列に接続される第2のスイッチ回路とを備えて、前記2次巻線から、内部まで浸炭焼入れ処理されている高炭素鋼である第1の被溶接物と、第2の被溶接物との間に溶接電流を流して抵抗溶接を行う高炭素鋼の抵抗溶接装置であって、前記第1の充電回路の充電動作によって前記第1のエネルギー蓄積用コンデンサが第1の設定電圧まで充電された後、前記第1のスイッチ回路はオンして前記第1のエネルギー蓄積用コンデンサの蓄積電荷を放電することにより、前記第1の被溶接物と前記第2の被溶接物との間に単一の第1のパルス状溶接電流I1を通電して第1回目の接合を行った後にオフし、前記第2の充電回路の充電動作によって前記第2のエネルギー蓄積用コンデンサが第2の設定電圧まで充電された後、前記第3のスイッチ回路はクーリング時間の経過後にオンして前記第2のエネルギー蓄積用コンデンサの蓄積電荷を放電することにより、前記第1の被溶接物と第2の被溶接物との間に、前記第1のパルス状溶接電流のピーク値の80〜130%のピーク値の単一の第2のパルス状溶接電流I2を通電して第2回目の接合を行った後にオフし、前記第2のスイッチ回路は、前記第3のスイッチ回路のオフ後にオンして、前記第1のパルス状溶接電流I1の通電時間及び前記第2のパルス状溶接電流I2の通電時間よりも長い時間、前記第1のパルス状溶接電流I1及び前記第2のパルス状溶接電流I2のピーク値よりも小さなピーク値の交流溶接電流iを前記交流電源から前記溶接用トランスを介して前記第1の被溶接物と第2の被溶接物との間に電する第3の接合を行うことを特徴とする高炭素鋼の抵抗溶接装置を提供する。 According to a third aspect of the present invention, a first charging circuit to which power from an AC power source is input, a first energy storage capacitor that is charged by power from the AC power source through the first charging circuit, A second charging circuit to which electric power from the AC power source is input; a second energy storage capacitor to be charged by electric power from the AC power source via the second charging circuit; and the first energy. A first switch circuit for discharging the charge stored in the storage capacitor via the first primary winding; and the charge stored in the second energy storage capacitor as the first energy. a third switching circuit for discharging through a common said first primary winding similar to the storage capacitor, wherein the power from the AC power supply is input, and said second primary winding Connected in parallel That a second switch circuit, the welding from the secondary winding, a first object to be welded is a high carbon steel that is carburized quenching the inside, between the second object to be welded A resistance welding apparatus for high carbon steel that conducts resistance welding by passing an electric current, and after the first energy storage capacitor is charged to a first set voltage by a charging operation of the first charging circuit, The first switch circuit is turned on to discharge the stored charge of the first energy storage capacitor, thereby providing a single first between the first workpiece and the second workpiece. The first energy storage capacitor was charged to the second set voltage by the charging operation of the second charging circuit. Later, the third switch circuit is cooled. By discharging the charges accumulated in the second energy storage capacitor is turned on after the lapse of time, between the first object to be welded and the second object to be welded, the first pulsed welding A second pulse welding current I2 having a peak value of 80 to 130% of the current peak value is energized and turned off after the second joining, and the second switch circuit 3 is turned on after the switch circuit 3 is turned off, and the first pulse welding current I1 is longer than the energization time of the first pulse welding current I1 and the energization time of the second pulse welding current I2. And an AC welding current i having a peak value smaller than the peak value of the second pulse-shaped welding current I2 from the AC power source through the welding transformer, the first workpiece and the second workpiece. performing the third junction of which conductible between A high carbon steel resistance welding apparatus characterized by the above.

第4の発明は、請求項3の発明において、前記第1の充電回路と前記第2の充電回路がそれぞれ並列に接続される共通の前記第1の1次巻線に対して、前記第1のエネルギー蓄積用コンデンサ及び第2のエネルギー蓄積用コンデンサの蓄積電荷がそれぞれ逆極性で放電されることを特徴とする高炭素鋼の抵抗溶接装置を提供する。
According to a fourth aspect of the present invention, in the first aspect of the present invention, the first primary winding common to the first charging circuit and the second charging circuit connected in parallel with each other is the first first winding. The high carbon steel resistance welding apparatus is characterized in that the stored charges of the first energy storage capacitor and the second energy storage capacitor are discharged with opposite polarities.

前記第1の発明によれば、内部まで浸炭焼入れ処理されている高炭素鋼を、特別な構造のプロジェクションを必要とすることなく、簡便な接合方法で溶接強度を向上させることができる。また、内部まで浸炭焼入れ処理されている高炭素鋼をより安定にかつ大きな溶接強度で抵抗溶接することができる。 According to the first aspect of the present invention, the welding strength of the high carbon steel that has been carburized and quenched to the inside can be improved by a simple joining method without requiring a special structure projection. Also, high carbon steel that has been carburized and quenched to the inside can be more stably resistance-welded with high welding strength.

前記第の発明によれば、内部まで浸炭焼入れ処理されている高炭素鋼を、特別な構造のプロジェクションを必要とすることなく、所期の大きな溶接強度を得ることができる簡単で比較的経済的な抵抗溶接装置を提供できる。 According to the second aspect of the invention, high carbon steel that has been carburized and quenched to the inside can be obtained easily and relatively economically without the need for a special structure projection, and can achieve the desired high welding strength. Resistance welding equipment can be provided.

前記第の発明によれば、内部まで浸炭焼入れ処理されている高炭素鋼を、特別な構造のプロジェクションを必要とすることなく、短い溶接サイクルで、所期の大きな溶接強度を得ることができる抵抗溶接装置を提供できる。 According to the third aspect of the present invention, the high carbon steel that has been carburized and quenched to the inside can be provided with a desired large welding strength in a short welding cycle without the need for a special structure projection. A resistance welding apparatus can be provided.

前記第の発明によれば、前記第の発明により得られる効果の他に、溶接用トランスを偏励磁させないので、特別な偏励磁用抑制手段を施すことなく、内部まで浸炭焼入れ処理されている高炭素鋼を、安定に抵抗溶接できる抵抗溶接装置を提供できる。 According to the fourth aspect of the invention, in addition to the effects obtained by the third aspect of the invention, since the welding transformer is not polarized, the carburizing and quenching process is performed to the inside without applying any special bias excitation suppressing means. It is possible to provide a resistance welding apparatus capable of stably resistance welding high carbon steel.

[実施形態1]
図1ないし図4によって、本発明の第1の実施形態について説明する。図1は本発明にかかる高炭素鋼の抵抗溶接方法を説明するため図であり、溶接電流を示している。図2は本発明にかかる高炭素鋼の抵抗溶接方法を実現するための抵抗溶接装置の第1の実施形態を示す図である。図3は溶接電極と被溶接物とを示す図である。図4は放電電流の極性転換を行えるスイッチ回路の一例を示す図である。図2において、交流電源1は商用交流電源又は交流発電機であり、交流電源1には制御機能を有する整流回路からなる充電回路2が接続されている。充電回路2の出力には複数の電解コンデンサを直並列に接続してなるエネルギー蓄積用コンデンサ3が接続され、エネルギー蓄積用コンデンサ3は第1のスイッチ回路4を通して溶接用トランス5の第1の1次巻線5Aに接続されている。第1のスイッチ回路4については詳細を示さないが、駆動信号でオンオフするサイリスタ又はIGBT、あるいはトランジスタなどのような大電流用半導体スイッチとこれのオンオフ時間を予め決めたシーケンスに従って制御するコントローラなどからなる。
[Embodiment 1]
A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a view for explaining a resistance welding method for high carbon steel according to the present invention, and shows a welding current. FIG. 2 is a view showing a first embodiment of a resistance welding apparatus for realizing the resistance welding method for high carbon steel according to the present invention. FIG. 3 is a view showing a welding electrode and an object to be welded. FIG. 4 is a diagram showing an example of a switch circuit that can change the polarity of the discharge current. In FIG. 2, an AC power source 1 is a commercial AC power source or an AC generator, and a charging circuit 2 composed of a rectifier circuit having a control function is connected to the AC power source 1. The output of the charging circuit 2 is connected to an energy storage capacitor 3 formed by connecting a plurality of electrolytic capacitors in series and parallel. The energy storage capacitor 3 passes through the first switch circuit 4 and the first 1 of the welding transformer 5. It is connected to the next winding 5A. The details of the first switch circuit 4 are not shown, but from a thyristor or IGBT that is turned on / off by a drive signal, or a high-current semiconductor switch such as a transistor and a controller that controls the on / off time of the switch according to a predetermined sequence. Become.

溶接用トランス5は第2の1次巻線5Bを有し、その第2の1次巻線5Bは第2のスイッチ回路6を通して交流電源1に接続されている。第2のスイッチ回路6は第1のスイッチ回路4と同様な構成のものであるが、オンオフする時間が第1のスイッチ回路4と異なり、そのオンオフ動作については後述する。溶接用トランス5は1次巻線5A、5Bに比べて巻数が大幅に少ない1〜2ターン程度の巻数を有する2次巻線5Cを備える。2次巻線5Cには溶接電極7、8が接続されており、溶接時にはこれら溶接電極7と8との間に第1の被溶接物W1と第2の被溶接物W2とが挟まれ、図示しない加圧機構が溶接電極7と8とを加圧することにより、第1の被溶接物W1と第2の被溶接物W2とが加圧される。その加圧機構は一般的なものを用いているので、図示するのを省略し、説明しないが、図1に示しているような加圧力Pを溶接電極7と8との間に印加できるようなものである。   The welding transformer 5 has a second primary winding 5 </ b> B, and the second primary winding 5 </ b> B is connected to the AC power source 1 through the second switch circuit 6. The second switch circuit 6 has the same configuration as that of the first switch circuit 4, but the ON / OFF time is different from that of the first switch circuit 4, and the ON / OFF operation thereof will be described later. The welding transformer 5 includes a secondary winding 5C having a number of turns of about 1 to 2 turns, which is significantly smaller than the number of primary windings 5A and 5B. Welding electrodes 7 and 8 are connected to the secondary winding 5C. During welding, the first workpiece W1 and the second workpiece W2 are sandwiched between the welding electrodes 7 and 8, A pressurizing mechanism (not shown) pressurizes the welding electrodes 7 and 8 to pressurize the first workpiece W1 and the second workpiece W2. Since the pressurizing mechanism is a general mechanism, it is not shown and will not be described. However, the pressurizing force P as shown in FIG. 1 can be applied between the welding electrodes 7 and 8. Is something.

ここで第1の被溶接物W1は、従来の抵抗溶接方法では所期の溶接強度を得ることができない高炭素―高クロム鋼材からなり、第2の被溶接物W2は通常の低炭素鋼からなる。JIS規格でSUJと称されている高炭素―高クロム鋼材からなる第1の被溶接物W1は、表面浸炭焼入れ処理が施された高炭素鋼に比べて少なくとも表面よりも内部まで浸炭焼入れ処理が行われたものである。高炭素―高クロム鋼材は、ラジアルベアリング又はスラストベアリングのような軸受などに用いられている材料で、硬度が高く、耐摩耗性が非常に大きい。なお、第1、第2のスイッチ回路4、6はそれぞれ大電力用半導体スイッチであって、これら大電力用半導体スイッチを予め決められたシーケンスでオンオフ制御する共通の制御回路を別に備えても良い。また、第1、第2のスイッチ回路4、6はインバータ回路であってもよい。   Here, the first workpiece W1 is made of a high carbon-high chromium steel material that cannot obtain the desired welding strength by the conventional resistance welding method, and the second workpiece W2 is made of ordinary low carbon steel. Become. The first work piece W1 made of a high carbon-high chromium steel material called SUJ in the JIS standard is carburized and quenched from the surface to the inside at least as compared with the high carbon steel subjected to surface carburizing and quenching. It has been done. High carbon-high chromium steel is a material used for bearings such as radial bearings and thrust bearings, and has high hardness and very high wear resistance. Each of the first and second switch circuits 4 and 6 is a high-power semiconductor switch, and a common control circuit for controlling on / off of the high-power semiconductor switch in a predetermined sequence may be provided. . Further, the first and second switch circuits 4 and 6 may be inverter circuits.

ここで本発明を説明する前に図3を用いて、溶接電極7と8及び第1の被溶接物W1と第2の被溶接物W2の具体例について述べる。図3(A)において、第1の被溶接物W1は例えばJIS規格でSUJと称されている高炭素―高クロム鋼材からなる丸棒であり、先端部分が断面で示されているように、その先端面には一般的なリングプロジェクションAが形成されている。第2の被溶接物W2は、低炭素鋼又は表面が浸炭焼入れ処理されている高炭素鋼からなる。図面で上側の溶接電極7は、詳細は示さないが、複数個、例えば縦方向に等しく3分割されている一般的な構造のものであり、それら3個の把持部7A、7B(他の1個は陰になるために図示されていない。)が放射方向に動くことによって、3個の把持部の内面が縮径又は拡径し、第1の被溶接物W1を把持又は開放する。下部側の溶接電極8の上には第2の被溶接物W2が載置されており、溶接電極7がリングプロジェクションAを下側にして第1の被溶接物W1を把持した状態で、溶接電極7が下降、又は溶接電極8が上昇し、第1の被溶接物W1のリングプロジェクションAが第2の被溶接物W2の上面に当接する。そして、図示しない加圧機構が動作して溶接電極7と溶接電極8との間に、図1に示すような加圧力Pを加える。なお、プロジェクションはリングプロジェクションに制限されることなく、他の一般的なプロジェクションでも勿論よい。   Before describing the present invention, specific examples of the welding electrodes 7 and 8 and the first workpiece W1 and the second workpiece W2 will be described with reference to FIG. In FIG. 3 (A), the first workpiece W1 is a round bar made of a high carbon-high chromium steel material called SUJ in the JIS standard, for example, and the tip portion is shown in cross section. A general ring projection A is formed on the front end surface. The second workpiece W2 is made of low carbon steel or high carbon steel whose surface is carburized and quenched. Although not shown in detail in the drawing, the upper welding electrode 7 has a general structure in which a plurality of, for example, the vertical welding direction is equally divided into three parts, and these three gripping portions 7A, 7B (other ones) Are not shown in the figure because they are shaded), the inner surfaces of the three gripping portions are reduced or expanded in diameter, thereby gripping or releasing the first workpiece W1. A second workpiece W2 is placed on the welding electrode 8 on the lower side, and the welding electrode 7 welds the first workpiece W1 with the ring projection A facing downward. The electrode 7 is lowered or the welding electrode 8 is raised, and the ring projection A of the first workpiece W1 comes into contact with the upper surface of the second workpiece W2. Then, a pressure mechanism (not shown) is operated to apply a pressure P as shown in FIG. 1 between the welding electrode 7 and the welding electrode 8. Note that the projection is not limited to the ring projection, and may be another general projection.

図3(B)に示す第1の被溶接物W1は、先端が球状面Bなっている前述の高炭素―高クロム鋼からなる丸棒であり、その球状面Bの先端が第2の被溶接物W2の上面に当接している。この第1の被溶接物W1の場合には球状面Bの先端がプロジェクションの役割を果たしている。溶接電極7は図3(A)に示したものと同様な構造である。第2の被溶接物W2は低炭素鋼などの金属材料からなる丸棒であり、その上端面の中央面域は少なくとも平坦であり、その平坦な面に第1の被溶接物W1の球状面Bが当接される。下側の溶接電極8も溶接電極7と同様な構造であり、例えば縦方向に等しく3分割されている3個の把持部8A、8B(他の1個は陰になるために図示されていない。)からなる。溶接電極8も溶接電極7と同様に、縮径と拡径との拡縮動作を行うことにより、第2の被溶接物W2の把持、開放を行う。なお、第1の被溶接物W1がボールベアリングのボールなどの玉球であっても、同様な形態で抵抗溶接することができる。図示しないが、この場合には、一例として溶接電極7はその玉球の上半分を収容できる半球状凹所を備えており、玉球を吸着保持できる吸引口又は磁石をその半球状凹所に有する。又は、下側の溶接電極8が前述の半球状凹所を有し、下側の溶接電極8に玉球を保持させても良い。   The first workpiece W1 shown in FIG. 3B is a round bar made of the above-mentioned high carbon-high chromium steel having a spherical surface B at the tip, and the tip of the spherical surface B is at the second workpiece. It is in contact with the upper surface of the weldment W2. In the case of the first workpiece W1, the tip of the spherical surface B plays a role of projection. The welding electrode 7 has the same structure as that shown in FIG. The second workpiece W2 is a round bar made of a metal material such as low carbon steel, and the central surface area of the upper end surface is at least flat, and the spherical surface of the first workpiece W1 is formed on the flat surface. B comes into contact. The lower welding electrode 8 has the same structure as the welding electrode 7, for example, three gripping portions 8 </ b> A and 8 </ b> B equally divided in the vertical direction (the other one is not shown because it is shaded). .). As with the welding electrode 7, the welding electrode 8 grips and releases the second workpiece W <b> 2 by performing an expansion / contraction operation with a reduced diameter. Even if the first workpiece W1 is a ball such as a ball bearing ball, resistance welding can be performed in the same manner. Although not illustrated, in this case, as an example, the welding electrode 7 has a hemispherical recess that can accommodate the upper half of the ball, and a suction port or magnet that can hold the ball is attracted to the hemispherical recess. Have. Alternatively, the lower welding electrode 8 may have the aforementioned hemispherical recess, and the lower welding electrode 8 may hold the ball.

また、本発明の抵抗溶接方法によれば、第1の被溶接物W1が高炭素―高クロム鋼材などからなる内部まで深く浸炭焼入れ処理されている高炭素鋼からなる他の形状の高炭素鋼材であっても、第1の被溶接物W1又は第2の被溶接物W2の溶接箇所に一般的なプロジェクションが形成されていれば、従来の抵抗溶接方法に比べて大幅に高い溶接強度を得ることができる。ただし、第1の被溶接物W1に比べて第2の被溶接物W2の硬度がかなり低い金属材料からなる場合には、前述の高炭素鋼材からなる第1の被溶接物W1にプロジェクションが形成されているのが好ましい。この場合には、抵抗溶接時にそのプロジェクションが第2の被溶接物W2に食い込み易いので、逆の場合に比べて大きな溶接強度が得られる。   Further, according to the resistance welding method of the present invention, the high-carbon steel material of another shape made of high-carbon steel in which the first workpiece W1 is carburized and quenched deeply into the inside made of high-carbon-high-chromium steel material or the like. Even so, if a general projection is formed at the welding location of the first workpiece W1 or the second workpiece W2, a significantly higher welding strength can be obtained compared to the conventional resistance welding method. be able to. However, when the second workpiece W2 is made of a metal material whose hardness is considerably lower than that of the first workpiece W1, a projection is formed on the first workpiece W1 made of the above-mentioned high carbon steel material. It is preferable. In this case, since the projection is likely to bite into the second workpiece W2 during resistance welding, a larger welding strength can be obtained compared to the reverse case.

次に溶接動作について説明しながら、本発明に係る抵抗溶接方法について説明する。先ず、充電回路2は交流電源1からの交流電力を整流して直流電力に変換し、エネルギー蓄積用コンデンサ3を第1の設定電圧まで充電する。この第1の設定電圧は、例えば400〜450Vである。充電回路2は、予め決められた時間だけオンする構成、あるいは図示しない電圧検出器がエネルギー蓄積用コンデンサ3の充電電圧が第1の設定電圧に達したことを検出するときオフする構成のいずれであっても良い。エネルギー蓄積用コンデンサ3の充電電圧が第1の設定電圧値に達するときに、第1のスイッチ回路4がオンし、エネルギー蓄積用コンデンサ3の充電電荷を放電して溶接用トランス4の第1の1次巻線5Aにパルス状溶接電流を流す。この溶接電流は図1に示す電流I1であり、例えば数万から数十万アンペアの電流ピーク値を有し、パルス幅は10〜100ミリ秒である。このパルス状溶接電流I1は、図1に示すように、溶接電極間の加圧力Pがほぼ直線的に増大している過程で通電され、第1の接合工程が行われる。なお、充電回路2の動作によってエネルギー蓄積用コンデンサ3の充電電圧の値を制御することにより、第1のパルス状溶接電流I1のピーク値と後述する第2のパルス状溶接電流I2のピーク値とを調整することができる。   Next, the resistance welding method according to the present invention will be described while explaining the welding operation. First, the charging circuit 2 rectifies AC power from the AC power source 1 and converts it into DC power, and charges the energy storage capacitor 3 to the first set voltage. This 1st setting voltage is 400-450V, for example. The charging circuit 2 is either turned on only for a predetermined time or turned off when a voltage detector (not shown) detects that the charging voltage of the energy storage capacitor 3 has reached the first set voltage. There may be. When the charge voltage of the energy storage capacitor 3 reaches the first set voltage value, the first switch circuit 4 is turned on, and the charge of the energy storage capacitor 3 is discharged to discharge the first transformer 4 for welding. A pulsed welding current is passed through the primary winding 5A. This welding current is the current I1 shown in FIG. 1, for example, having a current peak value of tens of thousands to hundreds of thousands of amperes and a pulse width of 10 to 100 milliseconds. As shown in FIG. 1, the pulse welding current I1 is energized while the pressure P between the welding electrodes increases substantially linearly, and the first joining step is performed. By controlling the value of the charging voltage of the energy storage capacitor 3 by the operation of the charging circuit 2, the peak value of the first pulse welding current I1 and the peak value of the second pulse welding current I2 to be described later are obtained. Can be adjusted.

この第1の接合工程では、ごく短時間に大電流を被溶接物に流して第1回目の接合を行うので、他の抵抗溶接方法と同様に接合時に一緒に焼き入れが行われてしまうが、交流抵抗溶接に比べて溶接部とその周りの狭い範囲が高温になるだけであり、接合部において焼き入れされる範囲は大幅に狭いが、接合部は脆く、溶接強度は低い。ここで第1のスイッチ回路4は、予め決めたオン時間が経過した後にオフし、エネルギー蓄積用コンデンサ3の蓄積電荷の放電を止める。例えば、溶接電流I1が溶接にあまり寄与しないピーク値の数十%程度の電流値まで減少する時点で第1のスイッチ回路4がオフするようにオフ時間の設定がなされていれば、エネルギー蓄積用コンデンサ3にある程度の量の電荷が残留し、次の第2回目の接合工程の開始時刻を早めることが可能となる。ここで、第1のスイッチ回路4のオフの直後に充電回路2はオン動作を始めて、エネルギー蓄積用コンデンサ3の充電を開始する。   In this first joining step, a large current is passed through the work piece in a very short time, and the first joining is performed. Therefore, as with other resistance welding methods, quenching is performed at the time of joining. Compared with AC resistance welding, the welded portion and the narrow range around it are only high in temperature, and the range quenched at the joined portion is significantly narrow, but the joined portion is brittle and the welding strength is low. Here, the first switch circuit 4 is turned off after a predetermined on-time has elapsed, and stops the discharge of the accumulated charge in the energy storage capacitor 3. For example, if the off time is set so that the first switch circuit 4 is turned off when the welding current I1 decreases to a current value of about several tens of percent of the peak value that does not contribute much to welding, the energy storage is performed. A certain amount of electric charge remains in the capacitor 3, and the start time of the next second bonding step can be advanced. Here, immediately after the first switch circuit 4 is turned off, the charging circuit 2 starts an on operation and starts charging the energy storage capacitor 3.

次に、第1のパルス状溶接電流I1の通電後、第1のクーリング時間Tc1の経過直後に、第2回目の接合工程を行う。第1のクーリング時間Tc1は、パルス状溶接電流I1の通電によって塑性流動化(軟化)した溶接部が凝固するまでに要する時間であり、第2回目の接合工程で接合効果を向上させるが、あまり焼入れ処理が行われないように第1のクーリング時間Tc1が必要とされる。しかし、第2のパルス状溶接電流I2をできるだけ小さくするためには、溶接部の硬化直後の方がその温度が十分に高いので最も有利であるので、第1のクーリング時間Tc1は必要最小限であることが好ましい。しかしながら、この実施形態1では第1のパルス状溶接電流I1を流した後、エネルギー蓄積用コンデンサ3を第2の設定電圧値まで充電しなければならないので、実施形態1ではエネルギー蓄積用コンデンサ3を第2の設定電圧値まで充電するのに要する時間が最小限でも必要であるので、第1のクーリング時間Tcを前記最小限の時間よりは短くできない。   Next, a second joining step is performed immediately after the first cooling time Tc1 after the first pulse welding current I1 is energized. The first cooling time Tc1 is a time required for the welded portion plasticized (softened) to be solidified by energization with the pulsed welding current I1, and improves the joining effect in the second joining step. The first cooling time Tc1 is required so that the quenching process is not performed. However, in order to make the second pulsed welding current I2 as small as possible, the first cooling time Tc1 is the minimum necessary since the temperature is sufficiently high immediately after hardening of the welded portion because the temperature is sufficiently high. Preferably there is. However, in the first embodiment, after the first pulsed welding current I1 is passed, the energy storage capacitor 3 must be charged to the second set voltage value. Therefore, in the first embodiment, the energy storage capacitor 3 is Since the time required to charge to the second set voltage value is required even at the minimum, the first cooling time Tc cannot be shorter than the minimum time.

第1のスイッチ回路4がオフすると、充電回路2がオンし、エネルギー蓄積用コンデンサ3を充電し始める。そして、エネルギー蓄積用コンデンサ3がほぼ第2の設定電圧値まで充電され、第1のクーリング時間Tc1が経過すると、第1のスイッチ回路4がオンし、エネルギー蓄積用コンデンサ3の蓄積電荷を放電する。これにより単一の第2のパルス状溶接電流I2が、継続して加圧力Pが印加されている溶接電極7、8間に流れる。この単一のパルス状溶接電流I2はパルス状溶接電流I1のピーク値の80〜130%のピーク値を有し、パルス状溶接電流I1の波形と類似である。前述のように、溶接部の硬化直後から時間が経過するのに伴い第2のパルス状溶接電流I2のピーク値を大きくする必要があるという傾向はあるが、種々の実験の結果、第2のパルス状溶接電流I2のピーク値はパルス状溶接電流I2のピーク値のほぼ80%から130%の範囲が良いという結果が得られた。   When the first switch circuit 4 is turned off, the charging circuit 2 is turned on to start charging the energy storage capacitor 3. Then, when the energy storage capacitor 3 is charged to substantially the second set voltage value and the first cooling time Tc1 has elapsed, the first switch circuit 4 is turned on, and the stored charge in the energy storage capacitor 3 is discharged. . As a result, a single second pulse welding current I2 flows between the welding electrodes 7 and 8 to which the pressure P is continuously applied. This single pulsed welding current I2 has a peak value of 80 to 130% of the peak value of the pulsed welding current I1, and is similar to the waveform of the pulsed welding current I1. As described above, there is a tendency that the peak value of the second pulsed welding current I2 needs to be increased as time elapses immediately after hardening of the welded portion. As a result, the peak value of the pulsed welding current I2 is preferably in the range of about 80% to 130% of the peak value of the pulsed welding current I2.

パルス状溶接電流I2のピーク値がパルス状溶接電流I1のピーク値のほぼ80%よりも小さい場合には、後述する第3の接合工程を行っても、溶接強度の向上が十分でなくなる。この原因は、高炭素―高クロム鋼材からなる第1の被溶接物W1と第2の被溶接物W2との接合部における焼き戻しが行われないことと、第1の被溶接物W1と第2の被溶接物W2との接合部における実質的な接合深さが微調整されないことにある。他方、第2のパルス状溶接電流I2のピーク値を第1のパルス状溶接電流I1のピーク値のほぼ130%よりも大きくなると、第1の被溶接物W1と第2の被溶接物W2との接合部における実質的な接合深さ向上し、接合面で双方の金属が互いになじむが、接合部に注入されるエネルギーが大きすぎるために焼入れが行われ、接合部の硬度が再び上昇して脆くなり、このことが総合的には溶接強度を低下させる原因になっている。   When the peak value of the pulse-shaped welding current I2 is smaller than about 80% of the peak value of the pulse-shaped welding current I1, the welding strength cannot be sufficiently improved even if the third joining step described later is performed. The cause of this is that tempering is not performed at the joint between the first workpiece W1 and the second workpiece W2 made of high carbon-high chromium steel, and the first workpiece W1 and the second workpiece W1. That is, the substantial joint depth at the joint portion with the work piece W2 is not finely adjusted. On the other hand, when the peak value of the second pulsed welding current I2 becomes larger than about 130% of the peak value of the first pulsed welding current I1, the first workpiece W1 and the second workpiece W2 are welded. The joint depth of the joint is substantially improved, and both metals are compatible with each other at the joint surface. However, since the energy injected into the joint is too large, quenching is performed, and the hardness of the joint increases again. It becomes brittle, and this causes a decrease in the weld strength overall.

この点についてもう少し詳しく述べる。第1回目の接合工程を行う前と行った後とを比較すると、第1回目の接合工程を行う前は第1の被溶接物W1と第2の被溶接物W2とが当接されているだけであるので接触抵抗があるが、第1回目の接合工程を行った後では接触抵抗がゼロである。したがって、第1の被溶接物W1と第2の被溶接物W2との接合部分の抵抗は材料の抵抗だけになるので、当然に第1回目の接合工程を行った後の方が抵抗は小さくなる。したがって、第2回目の接合工程で、第1のパルス状溶接電流I1と同じ大きさのピーク値を有する第2のパルス状溶接電流I2を通電しても、接合部における発熱は第1回目の接合工程のときよりも小さくなる。このことから、第2のパルス状溶接電流I2は第1のパルス状溶接電流I1のピーク値より大きくてもよいが、第2のパルス状溶接電流I2が大きすぎると、接合部に焼入れが行われる。したがって、その焼入れによる硬度の上昇の程度と第2のパルス状溶接電流I2の増大に伴う接合部の実質的な接合深さの微調整との兼ね合いで、総合的に溶接強度を低下させない第2のパルス状溶接電流I2の上限は、種々の実験結果から第1のパルス状溶接電流I1のピーク値のほぼ130%となる。   I will explain this point in more detail. Comparing before and after the first joining step, the first workpiece W1 and the second workpiece W2 are in contact with each other before the first joining step. However, the contact resistance is zero after the first joining step. Therefore, since the resistance of the joint portion between the first workpiece W1 and the second workpiece W2 is only the resistance of the material, the resistance is naturally smaller after the first joining step. Become. Therefore, even if the second pulsed welding current I2 having the same peak value as the first pulsed welding current I1 is supplied in the second joining step, the heat generation at the joined portion is the first time. It becomes smaller than in the joining process. Therefore, the second pulse welding current I2 may be larger than the peak value of the first pulse welding current I1, but if the second pulse welding current I2 is too large, the joint is quenched. Is called. Therefore, the welding strength is not lowered comprehensively in consideration of the degree of increase in hardness due to the quenching and the fine adjustment of the substantial joining depth of the joined portion accompanying the increase in the second pulsed welding current I2. From the results of various experiments, the upper limit of the pulsed welding current I2 is approximately 130% of the peak value of the first pulsed welding current I1.

しかしながら、高炭素―高クロム鋼材のような内部まで浸炭処理されている高炭素鋼からなる第1の被溶接物W1と第2の被溶接物W2との抵抗溶接にあっては、前述の第1、第2の溶接工程を行っても、同じ条件で表面が浸炭処理されている高炭素鋼と低炭素鋼とを抵抗溶接したときの溶接強度の半分強から2/3程度になるだけであり、期待する溶接強度を得ることができない。したがって、本発明では前述の第2の接合工程の後に、第2のクーリング時間Tc2を経て第3の接合工程を行う。前記第2の接合工程で第1のスイッチ回路4がオフし、第2のパルス状溶接電流I2の通電が終了した後、第2のクーリング時間Tc2が経つと、第2のスイッチ回路6がオンして第3の接合工程が行われる。第2のスイッチ回路6がオンすると、交流電源1から交流電流がスイッチ回路6を通して溶接用トランス5の第2の1次巻線5Bを通して流れ、第2の1次巻線5Bの巻数と2次巻線5Cの巻数との比率で決まる交流電流が第3の交流溶接電流iとして第1の被溶接物W1と第2の被溶接物W2とを通して流れる。   However, in the resistance welding of the first workpiece W1 and the second workpiece W2 made of high carbon steel that has been carburized to the inside, such as a high carbon-high chromium steel material, the aforementioned first welding is performed. Even if the 1st and 2nd welding processes are performed, it is only about 2/3 from a little over half of the welding strength when high carbon steel and low carbon steel whose surfaces are carburized under the same conditions are resistance welded. Yes, the expected weld strength cannot be obtained. Accordingly, in the present invention, after the second bonding step described above, the third bonding step is performed after the second cooling time Tc2. In the second joining step, the first switch circuit 4 is turned off and the second pulse circuit welding current I2 is turned on. After the second cooling time Tc2 has passed, the second switch circuit 6 is turned on. Then, the third joining step is performed. When the second switch circuit 6 is turned on, an alternating current flows from the AC power source 1 through the switch circuit 6 through the second primary winding 5B of the welding transformer 5, and the number of turns and the secondary winding of the second primary winding 5B. An alternating current determined by a ratio to the number of turns of the winding 5C flows through the first workpiece W1 and the second workpiece W2 as the third AC welding current i.

第3の交流溶接電流iの通電期間は、第1のパルス状溶接電流I1、第2のパルス状溶接電流I2それぞれの通電期間よりも大幅に長く、例えば商用周波数の10〜30サイクル、つまり200〜600ミリ秒である。また、第3の交流溶接電流iのピーク値は第1、第2のパルス状溶接電流I1、I2に比べて大幅に小さい。したがって、第1、第2の接合工程に比べて徐々に温度を上げて行くことになり、第1の被溶接物W1と第2の被溶接物W2の広い範囲が高温になり、接合部分は十分に焼き戻しが行われ、外観上は質が低下するが、第1の被溶接物W1と第2の被溶接物W2との材料が互いに十分になじみあうので、接合部の溶接強度は大幅に向上する。第2回目の接合工程の後の溶接強度と第3回目の接合工程の後の溶接強度を比較すると、例えば溶接強度がほぼ1.9倍程度に増大し、表面が浸炭処理された高炭素鋼と低炭素鋼との溶接強度と同程度の所期の溶接強度が得られた。ここで、第2回目の接合工程を省略し、第1の接合工程の後で種々の長さのクーリング時間を設けて、種々の通電期間で交流電流を通電しても接合強度がほとんど向上しなかった。   The energizing period of the third AC welding current i is significantly longer than the energizing periods of the first pulsed welding current I1 and the second pulsed welding current I2, for example, 10 to 30 cycles of the commercial frequency, that is, 200 ~ 600 milliseconds. The peak value of the third AC welding current i is significantly smaller than the first and second pulse welding currents I1 and I2. Accordingly, the temperature is gradually increased as compared with the first and second joining steps, the wide range of the first workpiece W1 and the second workpiece W2 becomes high temperature, and the joining portion is Although the tempering is sufficiently performed and the quality is deteriorated in appearance, since the materials of the first workpiece W1 and the second workpiece W2 are sufficiently compatible with each other, the welding strength of the joint is greatly increased. To improve. When the welding strength after the second joining step is compared with the welding strength after the third joining step, for example, the high carbon steel whose welding strength has increased to about 1.9 times and whose surface has been carburized. The desired weld strength was comparable to that of low carbon steel. Here, the second bonding step is omitted, and a cooling time of various lengths is provided after the first bonding step, so that the bonding strength is almost improved even if an alternating current is applied in various energization periods. There wasn't.

なお、抵抗溶接方法としては第1のパルス状溶接電流I1と第2のパルス状溶接電流I2とが同極性又は異極性であっても同じ溶接結果が得られるので、抵抗溶接装置としては溶接用トランスの偏励磁の心配がない極性転換機能を有するものが好ましい。図4に示すスイッチ回路4は、前述したような制御型の半導体スイッチ素子4A〜4Dからなる、極性転換機能を有する回路の一例である。図1に示したように、第1のパルス状溶接電流I1と第2のパルス状溶接電流I2とを溶接用トランス5の第1の1次巻線5Aに同極性で流すと、溶接用トランス5の磁心が一方向に強く励磁されてしまうので偏励磁を起こし、溶接装置が正常に動作できなくなることがある。この溶接用トランス5の偏励磁現象を防止又は緩和するために、第1のパルス状溶接電流I1と第2のパルス状溶接電流I2とが第1の1次巻線5Aを流れる方向を逆にすればよい。図4に示すスイッチ回路4では、例えば、第1の接合工程で半導体スイッチ素子4Aと4Bとがオンし、第2の接合工程で半導体スイッチ素子4Cと4Dとを対でオンさせることにより、溶接用トランス5の第1の1次巻線5Aに交互に逆方向のパルス状溶接電流I1、I2を流すことができる。このように1次巻線5Aに極性の異なるパルス状溶接電流I1、I2を交互に流すことにより、第1、第2の接合工程毎に溶接用トランス5の磁心の磁束をほぼゼロ、あるいは固定値まで低減させることができるので、偏励磁現象を防止又は緩和するための特別なリセット回路が不要になる。なお、図4において、4Xは半導体スイッチ素子4A〜4Dを前述のように予め決められたシーケンスで動作させるコントローラである。   As the resistance welding method, the same welding result can be obtained even if the first pulsed welding current I1 and the second pulsed welding current I2 are the same polarity or different polarity. It is preferable to have a polarity conversion function without worrying about partial excitation of the transformer. The switch circuit 4 shown in FIG. 4 is an example of a circuit having a polarity changing function, which is composed of the control type semiconductor switch elements 4A to 4D as described above. As shown in FIG. 1, when the first pulse welding current I1 and the second pulse welding current I2 are passed through the first primary winding 5A of the welding transformer 5 with the same polarity, the welding transformer Since the magnetic core 5 is strongly excited in one direction, partial excitation may occur, and the welding apparatus may not operate normally. In order to prevent or alleviate the partial excitation phenomenon of the welding transformer 5, the direction in which the first pulsed welding current I1 and the second pulsed welding current I2 flow through the first primary winding 5A is reversed. do it. In the switch circuit 4 shown in FIG. 4, for example, the semiconductor switch elements 4 </ b> A and 4 </ b> B are turned on in the first joining process, and the semiconductor switch elements 4 </ b> C and 4 </ b> D are turned on in pairs in the second joining process. Pulse-shaped welding currents I1 and I2 in opposite directions can be alternately passed through the first primary winding 5A of the transformer 5 for use. Thus, by alternately supplying pulsed welding currents I1 and I2 having different polarities to the primary winding 5A, the magnetic flux of the magnetic core of the welding transformer 5 is almost zero or fixed for each of the first and second joining processes. Therefore, a special reset circuit for preventing or mitigating the partial excitation phenomenon becomes unnecessary. In FIG. 4, 4X is a controller that operates the semiconductor switch elements 4A to 4D in a predetermined sequence as described above.

[実施形態2]
実施形態1の抵抗溶接装置に比べて構成が複雑にはなるが、実施形態1に比べて図1に示した第1のクーリング時間Tc1をエネルギー蓄積用コンデンサの充電時間に影響されることなく必要最初限度まで短縮できる抵抗溶接回路の実施形態2について図1及び図5により説明する。図5において、図2で用いた記号と同じ記号は同一の名称の部材を示すものとする。抵抗溶接方法は実施形態1で述べた方法とほぼ同じであるので、詳しくは説明しない。実施形態2では、第1の充電回路2とは別に第2の充電回路10、第2の充電回路10の充電動作によって充電される第2のエネルギー蓄積用コンデンサ11、第2のエネルギー蓄積用コンデンサ11の充電電荷を放電する第3のスイッチ回路12を別途備える。第1の充電回路2と第1のエネルギー蓄積用コンデンサ3と第1のスイッチ回路4とからなる第1の給電回路20に対して、付加された第2の充電回路10と第2のエネルギー蓄積用コンデンサ11と第3のスイッチ回路12とからなる第2の給電回路30は並列配置になっている。
[Embodiment 2]
Although the configuration is complicated as compared with the resistance welding apparatus according to the first embodiment, the first cooling time Tc1 shown in FIG. 1 is required without being influenced by the charging time of the energy storage capacitor as compared with the first embodiment. A second embodiment of the resistance welding circuit that can be shortened to the initial limit will be described with reference to FIGS. In FIG. 5, the same symbols as those used in FIG. 2 indicate members having the same names. Since the resistance welding method is almost the same as the method described in the first embodiment, it will not be described in detail. In the second embodiment, in addition to the first charging circuit 2, the second charging circuit 10, the second energy storage capacitor 11 that is charged by the charging operation of the second charging circuit 10, and the second energy storage capacitor And a third switch circuit 12 for discharging the 11 charged charges. The second charging circuit 10 and the second energy storage added to the first power feeding circuit 20 including the first charging circuit 2, the first energy storage capacitor 3, and the first switch circuit 4. The second power feeding circuit 30 including the capacitor 11 for use and the third switch circuit 12 is arranged in parallel.

次に、実施形態2に係る抵抗溶接装置の動作説明を行う。第1の給電回路20の動作は実施形態1とほぼ同様であるので詳しい説明は省略するが、第1のエネルギー蓄積用コンデンサ3に充電された電荷は第1のスイッチ回路4のオンにより、溶接用トランス5の第1の1次巻線5Aに矢印方向a1に放出される。これによって、図1に示した第1のパルス状溶接電流I1が溶接電極7と第1、第2の被溶接物W1、W2と溶接電極8とを介して流れ、第1の接合工程が行われる。このとき、第2の給電回路30にあっては、クーリング時間Tc1の経過前までに第2のエネルギー蓄積用コンデンサ11が第2の設定電圧値になるように予め充電しておく。したがって、第2のエネルギー蓄積用コンデンサ11は、第1のパルス状溶接電流I1の通電後、クーリング時間Tc1の経過前に必ず第2の設定電圧値まで充電されているので、クーリング時間Tc1が必要最小限に短くても、第3のスイッチ回路12のオンにより、クーリング時間Tc1の経過直後に所定のピーク値の第2のパルス状溶接電流I2を第1、第2の被溶接物W1、W2に通電し、第2の接合工程を行うことができる。   Next, the operation of the resistance welding apparatus according to the second embodiment will be described. Since the operation of the first power supply circuit 20 is almost the same as that of the first embodiment, detailed description thereof is omitted. However, the charge charged in the first energy storage capacitor 3 is welded by turning on the first switch circuit 4. It is emitted to the first primary winding 5A of the transformer 5 for use in the arrow direction a1. As a result, the first pulse welding current I1 shown in FIG. 1 flows through the welding electrode 7, the first and second workpieces W1 and W2 and the welding electrode 8, and the first joining step is performed. Is called. At this time, the second power supply circuit 30 is charged in advance so that the second energy storage capacitor 11 has the second set voltage value before the cooling time Tc1 elapses. Therefore, the second energy storage capacitor 11 is always charged to the second set voltage value after the first pulsed welding current I1 is applied and before the cooling time Tc1 elapses. Therefore, the cooling time Tc1 is necessary. Even if it is as short as possible, when the third switch circuit 12 is turned on, the second pulsed welding current I2 having a predetermined peak value is applied to the first and second workpieces W1 and W2 immediately after the cooling time Tc1 has elapsed. Can be energized to perform the second bonding step.

この際、第3のスイッチ回路12のオンによって、第2のエネルギー蓄積用コンデンサ11の電荷は溶接用トランス5の第1の1次巻線5Aを矢印a1とは逆の矢印a2方向に放出される。したがって、第1のパルス状溶接電流I1が正極性であるとすると、第2のパルス状溶接電流I2は負極性となるので、前述したように、第1、第2のパルス状溶接電流I1、I2によって溶接用トランス5の磁心が一方向のみに励磁されることがなく、溶接用トランス5が偏励磁されることがない。このため、第1のスイッチ回路4及び第3のスイッチ回路12を図4に示したような極性転換機能を有する回路構成にする必要は無いので、半導体スイッチ素子の個数を少なくでき、また駆動シーケンスも簡便にでき、コストの低減と信頼性の向上を達成できる。   At this time, when the third switch circuit 12 is turned on, the electric charge of the second energy storage capacitor 11 is discharged through the first primary winding 5A of the welding transformer 5 in the direction of the arrow a2 opposite to the arrow a1. The Therefore, if the first pulsed welding current I1 is positive, the second pulsed welding current I2 is negative. Therefore, as described above, the first and second pulsed welding currents I1, The magnetic core of the welding transformer 5 is not excited only in one direction by I2, and the welding transformer 5 is not biased. For this reason, the first switch circuit 4 and the third switch circuit 12 do not have to have a circuit configuration having a polarity switching function as shown in FIG. 4, so that the number of semiconductor switch elements can be reduced, and the drive sequence The cost can be reduced and the reliability can be improved.

そして、第2のパルス状溶接電流I2の通電終了後、第2のクーリング時間Tc2の経過直後に第2のスイッチ回路6がオンし、所定時間、交流溶接電流iを溶接電極7と8との間の第1、第2の被溶接物W1、W2に通電し、第2の接合工程を行う。この抵抗溶接装置によっても、前述の高炭素鋼材からなる第1の被溶接物W1と低炭素鋼又は表面が浸炭処理された高炭素鋼からなる第2の被溶接物W2とを抵抗溶接することができ、実施形態1と同様に満足できる溶接強度を得ることができた。なお、この抵抗溶接装置では、第1のパルス状溶接電流I1を通電するための第1の給電回路20、第2のパルス状溶接電流I2を通電するための第2の給電回路30を別個に設けているので、第1のパルス状溶接電流I1と第2のパルス状溶接電流I2のピーク値及び蓄積エネルーを別々に任意に決めることができ、溶接工程のサイクルタイムを短くできるばかりでなく、より最適な抵抗溶接を行うことができ、より高い溶接強度を得ることができる。   Then, after the energization of the second pulsed welding current I2, the second switch circuit 6 is turned on immediately after the second cooling time Tc2 has elapsed, and the AC welding current i is switched between the welding electrodes 7 and 8 for a predetermined time. The first and second workpieces W1 and W2 in between are energized to perform the second joining step. Also with this resistance welding apparatus, resistance welding is performed between the first workpiece W1 made of the above-described high-carbon steel material and the second workpiece W2 made of low-carbon steel or high-carbon steel whose surface is carburized. As with the first embodiment, satisfactory weld strength was obtained. In this resistance welding apparatus, a first power supply circuit 20 for supplying the first pulsed welding current I1 and a second power supply circuit 30 for supplying the second pulsed welding current I2 are separately provided. Since it is provided, the peak value and accumulated energy of the first pulsed welding current I1 and the second pulsed welding current I2 can be determined arbitrarily and arbitrarily, and the cycle time of the welding process can be shortened, More optimal resistance welding can be performed, and higher welding strength can be obtained.

なお、実施形態2では、溶接工程のサイクルタイムをより短くするために、第1の充電回路2は第1のスイッチ回路4のオフ直後にオン動作を開始できるように、また、第2の充電回路10は第3のスイッチ回路12のオフ直後にオン動作を開始できるように、シーケンスが組まれていることが望ましい。また、図示しないが、第1の1次巻線5Aと逆極性に巻かれた第3の1次巻線を溶接用トランス5に設け、その第3の1次巻線に第2のエネルギー蓄積用コンデンサ11の蓄積電荷を放出してもよい。また、以上の実施形態1、2ではスイッチ回路4と6、及びスイッチ回路12が半導体スイッチ素子とこれらを駆動するコントローラとからなるものとして説明したが、スイッチ回路4と6、及びスイッチ回路12をそれぞれ半導体スイッチ素子とスナバ回路などから構成し、これら半導体スイッチ素子をシーケンスに従って共通に、つまり総合的に制御する制御回路をスイッチ回路4と6、及びスイッチ回路12とは別に備えても良い。   In the second embodiment, in order to shorten the cycle time of the welding process, the first charging circuit 2 can start the on operation immediately after the first switch circuit 4 is turned off, and the second charging is performed. It is desirable that the circuit 10 is sequenced so that the ON operation can be started immediately after the third switch circuit 12 is turned OFF. Although not shown, a third primary winding wound in the opposite polarity to the first primary winding 5A is provided in the welding transformer 5, and a second energy storage is provided in the third primary winding. The accumulated charge in the capacitor 11 may be discharged. In the first and second embodiments described above, the switch circuits 4 and 6 and the switch circuit 12 are described as including the semiconductor switch elements and the controller that drives them. However, the switch circuits 4 and 6 and the switch circuit 12 are Each of them may be composed of a semiconductor switch element and a snubber circuit, and a control circuit that controls these semiconductor switch elements in common, that is, in a comprehensive manner, separately from the switch circuits 4 and 6 and the switch circuit 12 may be provided.

以上述べた実施形態1、2においては、第1の被溶接物W1は、内部まで浸炭焼入れ処理されている高炭素鋼材からなり、第2の被溶接物W2は低炭素鋼又は表面が浸炭処理された高炭素鋼からからなるものとして説明したが、第2の被溶接物W2が第1の被溶接物W1と同様な内部まで深く浸炭処理されている高炭素鋼材からなるものであってもよい。この場合には、前記第1の被溶接物と前記第2の被溶接物双方が、内部まで浸炭焼入れ処理されている高炭素鋼からなるので、第1の被溶接物W1と第2の被溶接物W2との間に低炭素鋼からなる金属部材を介在させ、第1、第2の被溶接物間に挟み、加圧力Pをかけた状態で、前記第1、第2、第3の接合工程を順次行うことによって、前述高炭素鋼材からなる第1の被溶接物と第2の被溶接物同士を所期の溶接強度で抵抗溶接することが可能になる。実施形態1、2では電極間の加圧力Pを継続して印加した状態で第1から第3の接合工程を行っているので、被溶接物が熱ひずみによる変形などを抑制することができ、また、塑性流動化した高炭素鋼材と塑性流動化した低炭素鋼とが接合部において互いによりなじむので、溶接強度がより大きくなる。   In the first and second embodiments described above, the first workpiece W1 is made of a high carbon steel material that has been carburized and quenched to the inside, and the second workpiece W2 is low carbon steel or the surface is carburized. Although it explained as what consists of the made high carbon steel, even if it consists of high carbon steel materials in which the 2nd work piece W2 is carburized deeply to the inside similar to the 1st work piece W1. Good. In this case, since both the first workpiece and the second workpiece are made of high carbon steel that has been carburized and quenched to the inside, the first workpiece W1 and the second workpiece are welded. A metal member made of low-carbon steel is interposed between the welded product W2 and sandwiched between the first and second workpieces to be welded. By sequentially performing the joining process, it becomes possible to resistance-weld the first and second workpieces made of the above-mentioned high carbon steel material with the desired welding strength. In the first and second embodiments, since the first to third joining steps are performed in a state where the pressure P between the electrodes is continuously applied, the workpiece can be prevented from being deformed due to thermal strain, and the like. Moreover, since the plastic fluidized high carbon steel and the plastic fluidized low carbon steel are more compatible with each other at the joint, the welding strength is further increased.

本発明に係る高炭素鋼の抵抗溶接方法を説明するための図である。It is a figure for demonstrating the resistance welding method of the high carbon steel which concerns on this invention. 本発明に係る抵抗溶接方法を実現し得る抵抗溶接装置の実施形態1を示す図である。It is a figure which shows Embodiment 1 of the resistance welding apparatus which can implement | achieve the resistance welding method which concerns on this invention. 本発明に係る高炭素鋼の抵抗溶接方法を実施するための溶接電極と被溶接物との一例を示す図である。It is a figure which shows an example of the welding electrode for implementing the resistance welding method of the high carbon steel which concerns on this invention, and a to-be-welded object. 本発明に係る抵抗溶接装置に用いられるスイッチ回路の具体的な一例を示す図である。It is a figure which shows a specific example of the switch circuit used for the resistance welding apparatus which concerns on this invention. 本発明に係る抵抗溶接方法を実現し得る抵抗溶接装置の実施形態2を示す図である。It is a figure which shows Embodiment 2 of the resistance welding apparatus which can implement | achieve the resistance welding method which concerns on this invention.

符号の説明Explanation of symbols

1・・・交流電源
2・・・第1の充電回路
3・・・第1のエネルギー蓄積用コンデンサ
4・・・第1のスイッチ回路
5・・・溶接用トランス
5A、5B・・・溶接用トランス5の第1、第2の1次巻線
5C・・・溶接用トランス5の2次巻線
6・・・第2のスイッチ回路
7、8・・・溶接電極
10・・・第2の充電回路
11・・・第2のエネルギー蓄積用コンデンサ
12・・・第のスイッチ回路
20・・・第1の給電回路
30・・・第2の給電回路
W1、W2・・・第1、第2の被溶接物
I1・・・第1のパルス状溶接電流
I2・・・第2のパルス状溶接電流
i・・・交流溶接電流
Tc1・・第1のクーリング時間
Tc2・・第2のクーリング時間
P・・・溶接電極間加圧力
DESCRIPTION OF SYMBOLS 1 ... AC power supply 2 ... 1st charging circuit 3 ... 1st energy storage capacitor 4 ... 1st switch circuit 5 ... Welding transformer 5A, 5B ... For welding First, second primary winding 5C of transformer 5 ... Secondary winding 6 of welding transformer 5 ... Second switch circuit 7, 8 ... Welding electrode 10 ... Second Charging circuit 11 ... second energy storage capacitor 12 ... third switch circuit 20 ... first feeding circuit 30 ... second feeding circuit W1, W2 ... first, first 2 to-be-welded object I1 ... 1st pulse-shaped welding current I2 ... 2nd pulse-shaped welding current i ... AC welding current Tc1 ... first cooling time Tc2 ... second cooling time P: Pressure between welding electrodes

Claims (4)

内部まで浸炭焼入れ処理されている高炭素鋼からなる第1の被溶接物と、第2の被溶接物との間に加圧力をかけた状態で溶接電流を通電して、前記第1の被溶接物と前記第2の被溶接物とを溶接する高炭素鋼の抵抗溶接方法であって、
前記第1の被溶接物と前記第2の被溶接物との間に単一の第1のパルス状溶接電流I1を流して第1回目の接合を行う第1の接合工程と、
前記第1のパルス状溶接電流の通電からクーリング時間Tcの経過後に、前記第1のパルス状溶接電流のピーク値の80〜130%のピーク値の単一の第2のパルス状溶接電流I2を前記第1の被溶接物と前記第2の被溶接物との間にして第2回目の接合を行う第2の接合工程と、
前記第2のパルス状溶接電流I2を通電した後に、前記第1のパルス状溶接電流I1の通電時間び前記第2のパルス状溶接電流I2の通電時間よりも長い時間、前記第1のパルス状溶接電流I1及び前記第2のパルス状溶接電流I2のピーク値よりも小さなピーク値の交流溶接電流iを前記第1の被溶接物と前記第2の被溶接物との間に通電する第3の接合工程を順次行うことを特徴とする高炭素鋼の抵抗溶接方法。
A welding current is applied with pressure applied between the first work piece made of high carbon steel that has been carburized and quenched to the inside, and the second work piece, and the first work piece is energized. met method of the resistance welding high carbon steel welding weldment and said second object to be welded,
A first bonding step of performing the first bonding to flow the first pulsed welding current I1 of the single between the first object to be welded and the second object to be welded,
A single second pulsed welding current I2 having a peak value of 80 to 130% of the peak value of the first pulsed welding current after elapse of the cooling time Tc from the energization of the first pulsed welding current. a second bonding step of performing a second round junction to flow between the first object to be welded and the second object to be welded,
Wherein the second pulsed welding current I2 after energization, said first pulsed welding current longer than the energization time of the energization time beauty said second pulsed welding current I2 of I1, the first pulse A first AC welding current i having a peak value smaller than the peak value of the second welding current I1 and the second pulse welding current I2 is energized between the first workpiece and the second workpiece . 3. A high-carbon steel resistance welding method characterized by sequentially performing the joining step 3.
交流電源からの電力が入力される充電回路と、前記充電回路を介して前記交流電源からの電力により充電されるエネルギー蓄積用コンデンサと、第1の1次巻線と第2の1次巻線及び2次巻線とを有する溶接用トランスと、前記エネルギー蓄積用コンデンサに蓄えられた電荷を前記第1の1次巻線を介して放電する1のスイッチ回路と、前記交流電源からの電力が入力され、かつ前記第2の1次巻線と並列に接続される第2のスイッチ回路とを備え前記2次巻線から、内部まで浸炭焼入れ処理されている高炭素鋼である第1の被溶接物と、第2の被溶接物との間に溶接電流を流して抵抗溶接を行う高炭素鋼の抵抗溶接装置であって、
前記充電回路の充電動作によって前記エネルギー蓄積用コンデンサが第1の設定電圧値まで充電された後、前記第1のスイッチ回路はオンして前記第1の被溶接物と前記2の被溶接物との間に単一の第1のパルス状溶接電流I1を通電して第1回目の接合を行った後にオフし、
次に、前記充電回路の充電動作によって前記エネルギー蓄積用コンデンサが第2の設定電圧値まで充電された後、前記第1のスイッチ回路は、クーリング時間の経過後に再びオンして前記第1の被溶接物と前記第2の被溶接物との間に、前記第1のパルス状溶接電流のピーク値の80〜130%のピーク値の単一の第2のパルス状溶接電流I2を通電して第2回目の接合を行った後にオフし、
前記第2のスイッチ回路は、前記第1のスイッチ回路の第2回目のオフ後にオンして、前記第1のパルス状溶接電流I1の通電時間及び前記第2のパルス状溶接電流I2の通電時間よりも長い時間、前記第1のパルス状溶接電流I1及び前記第2のパルス状溶接電流I2のピーク値よりも小さなピーク値の交流溶接電流iを前記交流電源から前記溶接用トランスを介して前記第1の被溶接物と前記第2の被溶接物との間に通電する第3の接合を行うことを特徴とする高炭素鋼の抵抗溶接装置。
A charging circuit to which electric power from an AC power source is input; an energy storage capacitor to be charged by the electric power from the AC power source through the charging circuit; a first primary winding and a second primary winding; and a welding transformer having a secondary winding, a first switch circuit for discharging the charge stored in the energy storage capacitor through the first primary winding, the power from the AC power source And a second switch circuit connected in parallel with the second primary winding, and is a high carbon steel that is carburized and quenched from the secondary winding to the inside. A high-carbon steel resistance welding apparatus that conducts resistance welding by passing a welding current between the workpiece and the second workpiece,
After the energy storage capacitor is charged to the first set voltage value by the charging operation of the charging circuit, the first switch circuit is turned on, and the first workpiece and the second workpiece are Between the first pulse welding current I1 during the first and the first joining is performed ,
Next, after the energy storage capacitor is charged to the second set voltage value by the charging operation of the charging circuit, the first switch circuit is turned on again after the cooling time has elapsed and the first covered circuit is turned on. between the weldments and the second object to be welded, by energizing the single second pulsed welding current I2 80 to 130% of the peak value of the peak value of the first pulsed welding current Turn off after the second bonding ,
The second switch circuit is turned on after the second turn-off of the first switch circuit, and the energization time of the first pulsed welding current I1 and the energization time of the second pulsed welding current I2 For a longer time, an AC welding current i having a peak value smaller than the peak values of the first pulsed welding current I1 and the second pulsed welding current I2 is supplied from the AC power source through the welding transformer. A high-carbon steel resistance welding apparatus , wherein a third joining is performed between the first work piece and the second work piece .
交流電源からの電力が入力される第1の充電回路と、前記第1の充電回路を介して前記交流電源からの電力により充電される第1のエネルギー蓄積用コンデンサと、前記交流電源からの電力が入力される第2の充電回路と、前記第2の充電回路を介して前記交流電源からの電力により充電される第2のエネルギー蓄積用コンデンサと、前記第1のエネルギー蓄積用コンデンサに蓄えられた電荷を前記第1の1次巻線を介して放電するための第1のスイッチ回路と、前記第2のエネルギー蓄積用コンデンサに蓄えられた電荷を前記第1のエネルギー蓄積用コンデンサと同様に共通の前記第1の1次巻線介して放電するための第3のスイッチ回路と、前記交流電源からの電力が入力され、かつ前記第2の1次巻線と並列に接続される第2のスイッチ回路とを備えて、前記2次巻線から、内部まで浸炭焼入れ処理されている高炭素鋼である第1の被溶接物と、第2の被溶接物との間に溶接電流を流して抵抗溶接を行う高炭素鋼の抵抗溶接装置であって、
前記第1の充電回路の充電動作によって前記第1のエネルギー蓄積用コンデンサが第1の設定電圧まで充電された後、前記第1のスイッチ回路はオンして前記第1のエネルギー蓄積用コンデンサの蓄積電荷を放電することにより、前記第1の被溶接物と前記第2の被溶接物との間に単一の第1のパルス状溶接電流I1を通電して第1回目の接合を行った後にオフし、
前記第2の充電回路の充電動作によって前記第2のエネルギー蓄積用コンデンサが第2の設定電圧まで充電された後、前記第3のスイッチ回路はクーリング時間の経過後にオンして前記第2のエネルギー蓄積用コンデンサの蓄積電荷を放電することにより、前記第1の被溶接物と第2の被溶接物との間に、前記第1のパルス状溶接電流のピーク値の80〜130%のピーク値の単一の第2のパルス状溶接電流I2を通電して第2回目の接合を行った後にオフし、
前記第2のスイッチ回路は、前記第3のスイッチ回路のオフ後にオンして、前記第1のパルス状溶接電流I1の通電時間及び前記第2のパルス状溶接電流I2の通電時間よりも長い時間、前記第1のパルス状溶接電流I1及び前記第2のパルス状溶接電流I2のピーク値よりも小さなピーク値の交流溶接電流iを前記交流電源から前記溶接用トランスを介して前記第1の被溶接物と第2の被溶接物との間に電する第3の接合を行うことを特徴とする高炭素鋼の抵抗溶接装置。
A first charging circuit to which power from an AC power source is input; a first energy storage capacitor that is charged by power from the AC power source via the first charging circuit; and power from the AC power source. Is stored in the second energy storage capacitor, the second energy storage capacitor charged by the power from the AC power supply via the second charging circuit, and the first energy storage capacitor. The first switch circuit for discharging the charged charge through the first primary winding and the charge stored in the second energy storage capacitor in the same manner as the first energy storage capacitor a third switching circuit for discharging through a common said first primary winding, the power from the AC power supply is inputted and connected in parallel with said second primary winding 2 Sui A welding current is passed between the first workpiece to be welded and the second workpiece to be carburized and quenched from the secondary winding to the inside. A resistance welding apparatus for high carbon steel that performs resistance welding,
After the first energy storage capacitor is charged to the first set voltage by the charging operation of the first charging circuit, the first switch circuit is turned on to store the first energy storage capacitor. After discharging a charge, a first first pulsed welding current I1 is applied between the first workpiece and the second workpiece to perform the first joining. Turn off,
After the second energy storage capacitor is charged to the second set voltage by the charging operation of the second charging circuit, the third switch circuit is turned on after the elapse of the cooling time to turn on the second energy. By discharging the stored charge of the storage capacitor, a peak value of 80 to 130% of the peak value of the first pulse welding current between the first workpiece and the second workpiece. off the single second pulsed welding current I2 after the second round junction energized,
The second switch circuit is turned on after the third switch circuit is turned off, and is longer than the energizing time of the first pulse welding current I1 and the energizing time of the second pulse welding current I2. The AC welding current i having a peak value smaller than the peak values of the first pulsed welding current I1 and the second pulsed welding current I2 is supplied from the AC power source through the welding transformer. welded a second resistance welding apparatus with a high carbon steel and performing a third junction of which conductible between the object to be welded.
請求項3において、
前記第1の充電回路と前記第2の充電回路がそれぞれ並列に接続される共通の前記第1の1次巻線に対して、前記第1のエネルギー蓄積用コンデンサ及び第2のエネルギー蓄積用コンデンサの蓄積電荷がそれぞれ逆極性で放電されることを特徴とする高炭素鋼の抵抗溶接装置。
In claim 3,
The first energy storage capacitor and the second energy storage capacitor with respect to the common first primary winding in which the first charging circuit and the second charging circuit are respectively connected in parallel. The high carbon steel resistance welding apparatus is characterized in that the accumulated charges of each are discharged with opposite polarities.
JP2006262869A 2006-09-27 2006-09-27 Resistance welding method and resistance welding apparatus for high carbon steel Expired - Fee Related JP4825094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006262869A JP4825094B2 (en) 2006-09-27 2006-09-27 Resistance welding method and resistance welding apparatus for high carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006262869A JP4825094B2 (en) 2006-09-27 2006-09-27 Resistance welding method and resistance welding apparatus for high carbon steel

Publications (2)

Publication Number Publication Date
JP2008080363A JP2008080363A (en) 2008-04-10
JP4825094B2 true JP4825094B2 (en) 2011-11-30

Family

ID=39351740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006262869A Expired - Fee Related JP4825094B2 (en) 2006-09-27 2006-09-27 Resistance welding method and resistance welding apparatus for high carbon steel

Country Status (1)

Country Link
JP (1) JP4825094B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108698157A (en) * 2016-08-29 2018-10-23 欧利生电气株式会社 The manufacturing method and joint element manufacturing device of joint element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8895887B2 (en) * 2011-08-05 2014-11-25 General Electric Company Resistance weld repairing of casing flange holes
MX2015014507A (en) * 2013-04-17 2016-02-26 Nippon Steel & Sumitomo Metal Corp Spot welding method.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780652A (en) * 1993-09-13 1995-03-28 Mitsubishi Materials Corp Production by welding of machine structural parts made of high-carbon fe-base alloy
JP3648092B2 (en) * 1999-05-24 2005-05-18 オリジン電気株式会社 Capacitor type resistance welding method and apparatus
JP2004050280A (en) * 2002-07-24 2004-02-19 Aisin Takaoka Ltd Projection welding method
JP2004278666A (en) * 2003-03-14 2004-10-07 Nhk Spring Co Ltd Ball stud, ball joint using the same ball stud, and method for manufacturing ball stud

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108698157A (en) * 2016-08-29 2018-10-23 欧利生电气株式会社 The manufacturing method and joint element manufacturing device of joint element
CN108698157B (en) * 2016-08-29 2020-08-21 株式会社欧利生 Method and apparatus for manufacturing joined member

Also Published As

Publication number Publication date
JP2008080363A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP4950819B2 (en) AC consumable electrode short-circuit arc welding method
US8253056B2 (en) Resistance welding method and resistance welding apparatus
JP4825094B2 (en) Resistance welding method and resistance welding apparatus for high carbon steel
WO2014045113A2 (en) Systems and methods providing controlled ac arc welding processes
JP3648092B2 (en) Capacitor type resistance welding method and apparatus
CN108698157B (en) Method and apparatus for manufacturing joined member
JP5580840B2 (en) Capacitor-type welding apparatus and capacitor-type welding method
JP5514505B2 (en) Resistance welding power supply apparatus, resistance welding apparatus using the power supply, and power supply control method
JP2012045569A (en) Resistance welding method and resistance welding device
JP4643113B2 (en) Welding method and power supply device for welding
JP7094374B2 (en) Spot welding method
JP2010149143A (en) Resistance welding control method
WO2010023709A1 (en) Welding machine power supply apparatus and welding machine
JP2013166162A (en) Welding tip and resistance welding equipment
JP6331198B2 (en) Welding equipment
JP4994982B2 (en) Diffusion bonding method for copper thin-walled pipe
JP2006181627A (en) Method for diffusion bonding of ferrous material to aluminum material
JP5732161B2 (en) Power supply device and power supply control method
CN100339173C (en) Welding process and welding electric power unit
Chaturvedi et al. Time Controlled Power Supply Design for Magnetically Impelled Arc Butt Welding
JP2017035707A5 (en)
JP4570444B2 (en) Arc welding equipment
JP2556076B2 (en) DC arc welding power supply
JP2001252768A (en) Control method and welding device for multiple electrode pulse arc welding
JP2009269088A (en) Consumable electrode type ac arc welding power unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080910

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees