JP4822746B2 - Carbon dioxide supply device for greenhouse for horticulture - Google Patents

Carbon dioxide supply device for greenhouse for horticulture Download PDF

Info

Publication number
JP4822746B2
JP4822746B2 JP2005170709A JP2005170709A JP4822746B2 JP 4822746 B2 JP4822746 B2 JP 4822746B2 JP 2005170709 A JP2005170709 A JP 2005170709A JP 2005170709 A JP2005170709 A JP 2005170709A JP 4822746 B2 JP4822746 B2 JP 4822746B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
air
passage
greenhouse
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005170709A
Other languages
Japanese (ja)
Other versions
JP2006340683A (en
Inventor
隆雄 中垣
勝也 山下
幸繁 前沢
康博 加藤
喜一 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005170709A priority Critical patent/JP4822746B2/en
Publication of JP2006340683A publication Critical patent/JP2006340683A/en
Application granted granted Critical
Publication of JP4822746B2 publication Critical patent/JP4822746B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Landscapes

  • Greenhouses (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cultivation Of Plants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for supplying carbon dioxide for a nursery horticultural green house, capable of supplying the carbon dioxide necessary for photosynthesis effectively to horticultural crops for obtaining a high quality horticultural crops, also reducing the fuel consumption necessary for producing the carbon dioxide widely and having a high energy-saving effect. <P>SOLUTION: This device for supplying the carbon dioxide for the nursery horticultural green house 1 is characterized by being equipped with a carbon dioxide-absorbing means 3 containing a carbon dioxide-absorbing material 2 for absorbing and storing the carbon dioxide, a wind-blowing means 4 for blowing air containing the carbon dioxide or combustion exhaust gas to the carbon dioxide-absorbing means 3, and a heating means 5 for releasing the carbon dioxide gas into the green house by heating the carbon dioxide-absorbing material 2. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は施設園芸用温室の二酸化炭素供給装置に係り、特に光合成に必要な二酸化炭素を効果的に園芸作物に供給でき高品質の園芸作物を得ることが可能であり、しかも二酸化炭素を製造するために必要な燃料の消費量を大幅に低減でき省エネルギー効果が高い施設園芸用温室の二酸化炭素供給装置に関する。 The present invention is capable of obtaining a facility horticultural relates to carbon dioxide subjected KyuSo location of the greenhouse, high-quality horticultural be particularly provided to effectively horticultural carbon dioxide necessary for photosynthesis, yet carbon dioxide The present invention relates to a carbon dioxide supply device for greenhouses for horticultural horticulture that can greatly reduce the consumption of fuel necessary for manufacturing and has a high energy saving effect.

蔬菜、果実、庭樹、花卉などの園芸作物を普通の時季以外にも成長結実させる目的で、上記園芸作物を温室等の施設内で栽培する施設園芸農法が都市近郊等において広く実施されている。この施設園芸の温室では、特に冬季夜間の冷温時に温室内を暖房するために、として加温機(暖房機)を稼動させている。この加温機は、重油や灯油のほか液化石油ガス(LPG)や都市ガスを燃料とし、バーナーで燃焼させて熱源としている。   In order to grow and produce horticultural crops such as sugar beets, fruits, garden trees, and flower buds in addition to normal seasons, a facility horticulture farming method for cultivating the horticultural crops in a greenhouse or other facility is widely practiced in suburbs of cities. In the greenhouse of this facility horticulture, a heater (heater) is operated to heat the inside of the greenhouse particularly during cold nights in winter. This warmer uses liquefied petroleum gas (LPG) and city gas as fuel as well as heavy oil and kerosene, and burns it with a burner as a heat source.

一方で、高品質な園芸作物を生産するために、温室内で植物が光合成を行う際の原料の一つとなる二酸化炭素(以下CO)濃度を高めるCO施用装置も普及している。加温機から排出される排気ガスは、炭化水素である燃料を燃焼させるため大気中よりも高濃度のCOを含有しており、この排気ガスをCO施用として直接温室内に供給する装置が実用化されており、例えば特開2004−344154号公報、特開2004−169937号公報など多数の技術文献にて公開されている。
特開2004−344154号公報 特開2004−169937号公報
On the other hand, in order to produce high-quality horticultural crops, CO 2 application devices that increase the concentration of carbon dioxide (hereinafter referred to as CO 2 ), which is one of the raw materials used when plants perform photosynthesis in a greenhouse, are also in widespread use. The exhaust gas discharged from the warmer contains CO 2 having a higher concentration than that in the atmosphere in order to burn fuel, which is a hydrocarbon, and the exhaust gas is supplied directly into the greenhouse as CO 2 application. Has been put into practical use, and is disclosed in many technical documents such as Japanese Patent Application Laid-Open Nos. 2004-344154 and 2004-169937.
JP 2004-344154 A JP 2004-169937 A

しかしながら、上記従来の二酸化炭素供給装置において、寒冷時に暖房のために加温機が稼動する夜間は植物の光合成反応は進行せず、CO施用を行う必要性は無い。施用するCOガスを製造するために加温機を稼動させることは、消費する燃料等の無駄に直結しエネルギーコストが増大化する問題点があった。現状では、CO施用が実施されている時間帯は、日の出の早朝から温室内換気が実施されるまでの数時間であり、この時間帯は加温機で暖房する必要性が少ない。 However, in the above-mentioned conventional carbon dioxide supply apparatus, the photosynthesis reaction of the plant does not proceed at night when the warmer is operated for heating during cold weather, and there is no need to perform CO 2 application. Operating the heater to produce the CO 2 gas to be applied has a problem in that energy costs are increased due to wasteful consumption of fuel and the like. At present, the period of time during which CO 2 application is carried out is several hours from the early morning of sunrise until the ventilation in the greenhouse is carried out, and there is little need for heating with a warmer during this period of time.

すなわち、従来の二酸化炭素供給装置においては、暖房が必要な時間帯とCO施用が必要な時間帯は合致していないために、暖房が不必要な時間帯にCOを得るためにのみ加温機を稼動させる必要があり、本来の暖房用に消費されるべき貴重な燃料が無駄に消費され省エネルギー化に逆行する問題点を生じていた。また、夏季は夜間でも温暖であり加温機で温室内の温度を上昇させる必要がない場合が多く、CO施用のためにのみ化石燃料を焚くことによって、燃料コストが増大化する問題点があった。 In other words, in the conventional carbon dioxide supply device, the time zone in which heating is required and the time zone in which CO 2 application is required do not match, and therefore, only to obtain CO 2 in a time zone in which heating is unnecessary. It is necessary to operate the warmer, and the precious fuel that should be consumed for the original heating is consumed wastefully, causing a problem that goes against energy saving. In summer, it is warm even at night, and it is often unnecessary to raise the temperature in the greenhouse with a heater, and there is a problem that fuel costs increase by burning fossil fuel only for CO 2 application. there were.

本発明は、このような背景に基づいてなされたものであり、光合成に必要な二酸化炭素を効果的に園芸作物に供給でき高品質の園芸作物を得ることが可能であり、しかも二酸化炭素を製造するために必要な燃料の消費量を大幅に低減でき省エネルギー効果が高い施設園芸用温室の二酸化炭素供給方法および供給装置を提供することを目的とする。   The present invention has been made based on such a background, and can effectively supply carbon dioxide necessary for photosynthesis to horticultural crops, and can obtain high quality horticultural crops. An object of the present invention is to provide a carbon dioxide supply method and supply device for greenhouses for horticultural horticulture, which can greatly reduce the amount of fuel consumption required for the purpose, and have a high energy saving effect.

上記目的を達成するために本発明に係る施設園芸用温室の二酸化炭素供給装置は、二酸化炭素吸収材を含有し二酸化炭素を吸収貯留する二酸化炭素吸収手段と、この二酸化炭素吸収手段による吸収貯留過程において空気あるいは燃焼排ガスを上記二酸化炭素吸収材に供給し、かつ二酸化炭素を吸収された空気または燃焼排ガスを温室に供給する送風通路と、この送風通路を介して二酸化炭素を含有する空気あるいは燃焼排ガスを上記二酸化炭素吸収手段に送風する送風手段と、上記二酸化炭素吸収材を加熱して二酸化炭素を放出させる加熱手段と、この加熱手段による二酸化炭素放出過程において、前記送風手段により送風される空気が、上記二酸化炭素吸収手段を通らずに上記二酸化炭素吸収手段の一次側から二次側にバイパスするように上記送風通路に並列に設けられたバイパス通路と、上記送風手段により送風される空気の通路を前記送風通路と前記バイパス通路とに切り替える切替弁とを備えることを特徴とする。 In order to achieve the above object, a carbon dioxide supply device for greenhouses for horticultural use according to the present invention includes a carbon dioxide absorbing means that contains a carbon dioxide absorbent and absorbs and stores carbon dioxide, and an absorption and storage process by the carbon dioxide absorbing means. A supply passage for supplying air or combustion exhaust gas to the carbon dioxide absorber and supplying air or combustion exhaust gas absorbed with carbon dioxide to a greenhouse, and air or combustion exhaust gas containing carbon dioxide through the ventilation passage A blowing means for blowing air to the carbon dioxide absorbing means, a heating means for heating the carbon dioxide absorbing material to release carbon dioxide, and in the carbon dioxide releasing process by the heating means, air blown by the blowing means is And bypass the carbon dioxide absorbing means from the primary side to the secondary side without passing through the carbon dioxide absorbing means. A bypass passage provided in parallel with the serial air passage, characterized in that it comprises a switching valve for switching a passage of air blown by the blowing means and the bypass passage and the air passage.

上記本発明に係る施設園芸用温室の二酸化炭素供給装置によれば、空気または排ガス中に含有される二酸化炭素(CO)を吸収・貯留する一方、必要に応じて二酸化炭素を放出する二酸化炭素吸収手段を設けているために、暖房が必要な時間帯とは別に二酸化炭素を施用する時間帯を設定することが可能となり、光合成に必要な二酸化炭素を効果的に園芸作物に最適時間帯に供給でき高品質の園芸作物を得ることが可能となる。また、施用する二酸化炭素を製造するためにのみに貴重な化石燃料等を焚くことがなくなり、燃料コストが低減され省エネルギー効果を高めることができる。 According to the carbon dioxide supply device for greenhouses for horticulture according to the present invention, carbon dioxide that absorbs and stores carbon dioxide (CO 2 ) contained in air or exhaust gas, while releasing carbon dioxide as necessary. Since the absorption means are provided, it becomes possible to set the time zone to apply carbon dioxide separately from the time zone that requires heating, effectively making the carbon dioxide necessary for photosynthesis optimal for horticultural crops High quality horticultural crops can be obtained. In addition, precious fossil fuel or the like is not burned only for producing carbon dioxide to be applied, and the fuel cost is reduced and the energy saving effect can be enhanced.

次に本発明に係る施設園芸用温室の二酸化炭素供給装置の実施例について添付図面を参照して以下に具体的に説明する。 Next, an embodiment of the carbon dioxide supply device for greenhouses for horticultural use according to the present invention will be specifically described below with reference to the accompanying drawings.

[実施例1]
図1および図2は本発明に係る施設園芸温室の二酸化炭素供給方法を実施するための供給装置のシステム構成およびその運用方法を示すブロック図である。図1は加温機の稼動がない夏季における運用方法を示し、二酸化炭素(炭酸ガス)の吸収過程(図1(a))と放出過程(図1(b))とに分けてそれぞれ示している。
[Example 1]
FIG. 1 and FIG. 2 are block diagrams showing the system configuration of a supply apparatus for carrying out the carbon dioxide supply method for a greenhouse for horticulture according to the present invention and the operation method thereof. FIG. 1 shows an operation method in summer when the heater is not operated, and is divided into a carbon dioxide (carbon dioxide) absorption process (FIG. 1 (a)) and a release process (FIG. 1 (b)). Yes.

一方、図2は加温機を稼動する冬季における運用方法を示し、炭酸ガスの吸収過程(図2(a))と放出過程(図2(b))とに分けてそれぞれ示している。   On the other hand, FIG. 2 shows an operation method in the winter season in which the heater is operated, and shows a carbon dioxide absorption process (FIG. 2A) and a discharge process (FIG. 2B) separately.

図1および図2に示す施設園芸用温室の二酸化炭素供給装置1は、リチウム複合酸化物を二酸化炭素吸収材2として含有し二酸化炭素を吸収貯留する二酸化炭素吸収手段3と、二酸化炭素を含有する空気あるいは燃焼排ガスを上記二酸化炭素吸収手段3に送風する送風手段4と、上記二酸化炭素吸収材2を加熱して二酸化炭素を温室内に放出させるための加熱手段5としてのヒータとを備えて構成される。また、各二酸化炭素供給装置1には、冬季に温室内を暖房するための加温機(暖房機)6が付設されている。   A carbon dioxide supply device 1 for greenhouses for horticultural use shown in FIGS. 1 and 2 contains carbon dioxide absorbing means 3 that contains lithium composite oxide as a carbon dioxide absorbent 2 and absorbs and stores carbon dioxide, and carbon dioxide. It comprises air blowing means 4 for blowing air or combustion exhaust gas to the carbon dioxide absorbing means 3, and a heater as heating means 5 for heating the carbon dioxide absorbing material 2 and releasing carbon dioxide into the greenhouse. Is done. Further, each carbon dioxide supply device 1 is provided with a heater (a heater) 6 for heating the inside of the greenhouse in winter.

すなわち、図1および図2に示すシステムは、基本的には加温機6とCO供給装置1とで構成されるが、図1に示すように夏季において加温機6は休止状態にあり、冬季の寒冷時期のみに燃料を焚いて温めた空気を温室に供給するように構成される。CO供給装置1は、主にリチウム複合酸化物を含む二酸化炭素吸収材2を内蔵しており、この吸収材2は下記(1)式に示す反応に基づいてCOを吸収したり、または放出したりする。
[数1]
LiSiO+CO⇔LiSiO+LiCO+Q ……(1)
That is, the system shown in FIG. 1 and FIG. 2 is basically composed of the warmer 6 and the CO 2 supply device 1, but as shown in FIG. In addition, it is configured to supply fuel to the greenhouse with air that has been sprinkled with fuel only during the cold season of winter. The CO 2 supply device 1 has a built-in carbon dioxide absorbent 2 mainly containing a lithium composite oxide. The absorbent 2 absorbs CO 2 based on the reaction shown in the following formula (1), or Or release.
[Equation 1]
Li 4 SiO 4 + CO 2 ⇔Li 2 SiO 3 + Li 2 CO 2 + Q (1)

この反応は可逆反応であり、650℃程度に加熱すると逆反応によりCOを放出し、吸収材が再使用できる。反応に伴う化学エンタルピ変化により右方向への反応が発熱反応であり、左方向への反応が吸熱反応となる。この吸収材のCO吸収可能温度範囲は常温から600℃までであり、この特徴を利用して施設園芸用温室のCO供給装置1が構築される。 This reaction is a reversible reaction, and when heated to about 650 ° C., CO 2 is released by the reverse reaction, and the absorbent material can be reused. Due to the chemical enthalpy change accompanying the reaction, the reaction in the right direction is an exothermic reaction, and the reaction in the left direction is an endothermic reaction. The CO 2 absorbing temperature range of this absorbent material is from room temperature to 600 ° C., and the CO 2 supply device 1 of the greenhouse for horticulture is constructed using this feature.

上記のように構成されたCO供給装置1は下記のように運転される。すなわち、図1(a)に示すように加温機6による暖房を必要としない夏季においては、温室内外の大気中に300ppm程度含有される炭酸ガスをCO源として取り込み、前記(1)式の右方向への反応によりCO吸収材2中にCOを吸収し蓄積する。 The CO 2 supply device 1 configured as described above is operated as follows. That is, in the summer when heating by the heater 6 is not required as shown in FIG. 1 (a), carbon dioxide contained in the atmosphere inside and outside the greenhouse is taken in as a CO 2 source, and the equation (1) The CO 2 is absorbed and accumulated in the CO 2 absorbent 2 by the reaction in the right direction.

夏季においてCOを温室に供給する時には、図1(b)に示すように加熱手段としてのヒータ5によってCO吸収材2を所定の温度まで加熱してCOを放出させ、放出されたCOを空気で希釈してCOリッチな空気を温室に送り込む。 When supplying CO 2 to the greenhouse in summer, as shown in FIG. 1B, the CO 2 absorbent 2 is heated to a predetermined temperature by a heater 5 as a heating means to release CO 2, and the released CO 2 is discharged. Dilute 2 with air and send CO 2 rich air into the greenhouse.

一方、冬季においては、図2(a)に示すように温室暖房用の加温機6が稼動するため、空気より高濃度のCOが含有される加温機6からの排気ガスをCO源として吸収し貯留する。前記リチウム複合酸化物から成るCO吸収材2の特性として、高濃度・高温であればCO吸収速度が速く、短時間の運転で十分な量のCOを吸収し蓄積することができる。 On the other hand, in the winter season, as shown in FIG. 2 (a), the warmer 6 for greenhouse heating is operated, so that the exhaust gas from the warmer 6 containing CO 2 having a higher concentration than air is used as CO 2. Absorb and store as a source. As a characteristic of the CO 2 absorbent 2 made of the lithium composite oxide, the CO 2 absorption rate is fast at a high concentration and high temperature, and a sufficient amount of CO 2 can be absorbed and stored in a short time operation.

冬季においてCOを温室内に供給する時は、図1(b)に示す夏季と同様に図2(b)に示すように、加熱手段としてのヒータ5によってCO吸収材2を所定の温度まで加熱してCOを放出させ、空気で希釈してCOリッチな空気を温室に送り込む。 When supplying CO 2 into the greenhouse in winter, as shown in FIG. 2B, the CO 2 absorbent 2 is heated to a predetermined temperature by a heater 5 as heating means, as in the summer shown in FIG. 1B. To release CO 2 and dilute with air to send CO 2 rich air into the greenhouse.

図3および図4は、それぞれ夏季および冬季におけるCO供給装置1の1昼夜(24時間)にわたる運転ダイヤグラムの典型例を示し、各図の上段から順に日照量の時間変化、COの蓄積量の時間変化および温室内のおけるCOの平均濃度の時間変化を相対的に示している。 3 and 4, respectively show a typical example of operation diagram over one day and night of the CO 2 supply device 1 in summer and winter (24 hours), the time variation of the amount of sunshine in order from the top of each figure, the CO 2 storage amount And the time change of the average concentration of CO 2 in the greenhouse.

図3に示す夏季の運転ダイヤグラムの場合、日の出が6時であり日の入りが18時であったと仮定すれば、ある園芸作物に対して図3の中段に示すダイヤグラムの通り、6時から温室を換気するまでの数時間の時間帯にCOを供給すればよい。図3では夜間(22時〜3時)に大気を取り込み、大気中に含有されるCOを吸収材2内に吸収蓄積させる運転をしているが、COを供給しない時間帯を選択して吸収する時間帯を適宜変更することも可能である。COは日の出の時刻から温室を換気する時刻までの時間帯に最も枯渇すると考えられるが、この時間にCO施用を実行することにより、温室内におけるCOの平均濃度が、光合成の可能範囲の下限値を常時上回るように制御することができる。 In the case of the summer driving diagram shown in FIG. 3, assuming that the sunrise is 6 o'clock and the sunset is 18 o'clock, the greenhouse is ventilated from 6 o'clock for a certain horticultural crop as shown in the middle diagram of FIG. the CO 2 may be supplied to the time zone of a few hours up to. Takes in air in FIG. 3 at night (22:00 pm to 3), although the operation of absorbing accumulated CO 2 contained in the atmosphere absorber 2, select the time zone is not supplied CO 2 It is also possible to appropriately change the time period for absorption. CO 2 is thought to be most depleted during the time period from sunrise to the time of ventilating the greenhouse. By executing CO 2 application during this time, the average concentration of CO 2 in the greenhouse is within the possible range of photosynthesis. It can be controlled to always exceed the lower limit of.

一方、図4に示す冬季の運転ダイヤグラムの場合、7時から16時までの時間帯に日照があり、開放換気を実施しない温室で栽培する園芸作物に対しては、図4の中段に示すダイヤグラムで日の出から日没までCO施用する。温室内が冷え込んでくる夕刻(18時頃)から早朝(7時頃)にかけて温室内温度を一定に保つために、図4の中段に示すダイヤグラム通りに加温機6が間欠的に運転されたとすると、その排気ガスを有効に利用してCOを吸収した吸収材2は、図4の中段に示すようなCOの蓄積量曲線を辿ることになる。このような運転を実行すれば、温室内におけるCOの平均濃度は光合成可能範囲の下限値を下回ることはなく、昼間の日照時間中で加温の必要がない時間帯にCO施用のためだけに貴重な燃料を焚いて加温機6を稼動させる必要がない。 On the other hand, in the winter driving diagram shown in FIG. 4, for the horticultural crops cultivated in the greenhouse where there is sunshine in the time zone from 7:00 to 16:00 and no open ventilation is performed, the diagram shown in the middle of FIG. Apply CO 2 from sunrise to sunset. In order to keep the temperature in the greenhouse constant from evening (around 18:00) to early morning (around 7:00) when the inside of the greenhouse cools down, the heater 6 was operated intermittently as shown in the diagram in the middle of FIG. Then, the absorbent 2 that has absorbed CO 2 by effectively using the exhaust gas follows a CO 2 accumulation amount curve as shown in the middle of FIG. If such operation is carried out, the average concentration of CO 2 in the greenhouse will not fall below the lower limit of the photosynthesizable range, and CO 2 is applied during the daylight hours when heating is not necessary. It is not necessary to burn the precious fuel and operate the heater 6.

以上の実施例1に係る施設園芸用温室の二酸化炭素供給方法および供給装置によれば、大気あるいは加温機の排気ガス中に含有されるCOを吸収蓄積しておき、最適な時間帯に合わせてCOを温室に供給する効果的なCO施用により、高品質な園芸作物の育成が期待できると共に、施設園芸分野における省エネルギー化も実現できる。 According to the carbon dioxide supply method and supply apparatus for greenhouses for horticulture according to the first embodiment, CO 2 contained in the atmosphere or the exhaust gas of the warmer is absorbed and accumulated, and the optimum time zone is obtained. In addition, effective CO 2 application that supplies CO 2 to the greenhouse can be expected to nurture high-quality horticultural crops, and energy saving in the field of horticulture can be realized.

すなわち、空気または排ガス中の含有される二酸化炭素(CO)を吸収・貯留する一方、必要に応じて二酸化炭素を放出する二酸化炭素吸収手段3を設けているために、暖房が必要な時間帯とは別に二酸化炭素を施用する時間帯を設定することが可能となり、光合成に必要な二酸化炭素を効果的に園芸作物に最適時間帯に供給でき、高品質の園芸作物を得ることが可能となる。また、施用する二酸化炭素を製造するためにのみに貴重な化石燃料等を焚くことがなくなり、燃料コストが低減され省エネルギー効果を高めることができる。 That is, since carbon dioxide absorbing means 3 that absorbs and stores carbon dioxide (CO 2 ) contained in air or exhaust gas and releases carbon dioxide as necessary is provided, it is a time zone in which heating is required. In addition to this, it is possible to set the time zone for applying carbon dioxide, effectively supplying the carbon dioxide necessary for photosynthesis to the horticultural crops in the optimal time zone, and obtaining high-quality horticultural crops. . In addition, precious fossil fuel or the like is not burned only for producing carbon dioxide to be applied, and the fuel cost is reduced and the energy saving effect can be enhanced.

なお上記実施例において、送風手段4とCO吸収手段3との位置関係としては、図5(a)に示すようにCO吸収材2とヒータ5とから成るCO吸収手段3の1次側に押込み型ブロワ−4aを配置して構成することも可能であるが、図5(b)に示すようにCO吸収材2とヒータ5とから成るCO吸収手段3の2次側に吸込み型ブロワ−4bを配置して構成することも可能である。 Note in the above embodiment, the positional relationship between the blower means 4 and CO 2 absorption means 3, primary CO 2 absorption means 3 consisting of CO 2 absorbing material 2 and a heater 5 which as shown in FIG. 5 (a) it is also possible to configure by arranging the push-type blowers -4a the side, the secondary side of the CO 2 absorption means 3 consisting of CO 2 absorbing material 2 and a heater 5 which as shown in FIG. 5 (b) It is also possible to arrange the suction type blower-4b.

CO吸収過程においては、図5(a)に示すように押込み型ブロワ4aによってCO吸収手段3に押込むように供給された空気または排気ガス中の炭酸ガスはCO吸収材2によって吸収蓄積される一方、炭酸ガスを除かれた空気または排気ガスが温室に供給される。また、図5(b)に示すように吸込み型ブロワ4bによってCO吸収手段3に吸込まれるように供給された空気または排気ガス中の炭酸ガスはCO吸収材2によって吸収蓄積される一方、炭酸ガスを除かれた空気または排気ガスが温室に供給される。 In the CO 2 absorption process, as shown in FIG. 5A, carbon dioxide in the air or exhaust gas supplied to be pushed into the CO 2 absorbing means 3 by the push-type blower 4a is absorbed and accumulated by the CO 2 absorbent 2. Meanwhile, air or exhaust gas from which carbon dioxide has been removed is supplied to the greenhouse. Further, as shown in FIG. 5B, the carbon dioxide in the air or exhaust gas supplied so as to be sucked into the CO 2 absorbing means 3 by the suction type blower 4b is absorbed and accumulated by the CO 2 absorbent 2. Then, air or exhaust gas from which carbon dioxide has been removed is supplied to the greenhouse.

これに対して、CO放出過程においては、図6(a)に示すように押込み型ブロワ4aによってCO吸収手段3に押込むように供給された空気と、ヒータ5によるCO吸収材2の加熱によって放出された炭酸ガスとが混合されてCOリッチな空気が温室に供給される。また、図6(b)に示すように吸込み型ブロワ4bによってCO吸収手段3に吸込まれるように供給された空気と、ヒータ5によるCO吸収材2の加熱によって放出された炭酸ガスとが混合されてCOリッチな空気が温室に供給される。 On the other hand, in the CO 2 releasing process, as shown in FIG. 6A, the air supplied to be pushed into the CO 2 absorbing means 3 by the pushing type blower 4 a and the heating of the CO 2 absorbent 2 by the heater 5. CO 2 enriched air is supplied to the greenhouse is mixed with carbon dioxide gas which is released by. Further, as shown in FIG. 6B, air supplied so as to be sucked into the CO 2 absorbing means 3 by the suction type blower 4b, and carbon dioxide gas released by the heating of the CO 2 absorbent 2 by the heater 5 Are mixed to supply CO 2 rich air to the greenhouse.

このように実施例1に係るCO供給装置は、CO吸収材2と、空気あるいは加温機から排出される排気ガスを送風する送風手段4としてのブロワと、CO吸収材2を加熱して炭酸ガスを放出するための加熱手段5としてのヒータとで構成され、CO吸収材2とブロワ4とは適当な配管やダクトで連結されている。CO供給装置1は、最低限これらの機器を具備していれば、COの吸収・蓄積と放出とが可能である。 Thus example CO 2 supply device according to 1, heating the CO 2 absorbing material 2, and the blower as blower means 4 for blowing exhaust gas discharged from the air or heating unit, a CO 2 absorber 2 The CO 2 absorbent 2 and the blower 4 are connected by an appropriate pipe or duct. The CO 2 supply device 1 can absorb, store, and release CO 2 as long as it includes these devices.

[実施例2]
図7および図8は、本発明に係るCO供給装置の他の実施例およびその動作を示す要部断面図である。すなわち実施例2に係るCO供給装置は、二酸化炭素吸収手段3aが、二酸化炭素吸収過程において空気あるいは燃焼排ガスを前記二酸化炭素吸収材2に供給し、かつ二酸化炭素を吸収された空気または燃焼排ガスを温室に供給する送風通路7と、二酸化炭素放出過程において送風する空気が、前記二酸化炭素吸収材2を通らずに前記二酸化炭素吸収手段3aの一次側から二次側にバイパスするバイパス通路8とを具備するように構成される。すなわち、バイパス通路8は、送風通路7のうち二酸化炭素吸収材2を備える部分と並列に設けられている。さらに、送風通路7からバイパス通路8分岐する部位には、切替弁9が設けられており、運転過程によってこれらの通路の切り替えができるようになっている。
[Example 2]
7 and 8 are cross-sectional views showing the main part of another embodiment of the CO 2 supply device according to the present invention and its operation. That is, in the CO 2 supply device according to the second embodiment, the carbon dioxide absorbing means 3a supplies air or combustion exhaust gas to the carbon dioxide absorbent 2 in the carbon dioxide absorption process, and the air or combustion exhaust gas absorbed with carbon dioxide. A bypass passage 8 for supplying air to the greenhouse, and a bypass passage 8 for bypassing the air blown in the carbon dioxide release process from the primary side to the secondary side of the carbon dioxide absorbing means 3a without passing through the carbon dioxide absorbent 2 It is comprised so that it may comprise. That is, the bypass passage 8 is provided in parallel with the portion of the blower passage 7 that includes the carbon dioxide absorbent 2. Further, a switching valve 9 is provided at a portion where the air passage 7 branches from the bypass passage 8 so that these passages can be switched depending on the operation process.

ところで実施例1に係る二酸化炭素供給装置のように、送風手段4によってCO吸収手段3に供給通気される空気または排気ガスの全量がCO吸収材2を通過する構成を採用した場合には、炭酸ガスの放出過程においてCO吸収材2を650℃の高温度に保持して放出効率を高く維持すると共に、放出反応に必要な熱を加熱した空気の対流によって供給するためには大容量のヒータが必要で、電力消費量も多くなる。したがって、電力使用量に起因する運転コストが大幅に増加する恐れがある。 By the way, when the configuration in which the entire amount of air or exhaust gas supplied and ventilated by the blowing unit 4 to the CO 2 absorbing unit 3 passes through the CO 2 absorbent 2 as in the carbon dioxide supply device according to the first embodiment is adopted. In the process of releasing carbon dioxide, the CO 2 absorbent 2 is maintained at a high temperature of 650 ° C. to maintain a high release efficiency, and the heat required for the release reaction is large enough to be supplied by convection of heated air. Heater is required, and power consumption is also increased. Therefore, there is a risk that the operating cost due to the amount of power used will increase significantly.

そこで、図7および図8に示すように、炭酸ガスの吸収過程と放出過程とにおいて空気が流れる経路(通路)を別々に設けている。そして炭酸ガスの吸収過程では、図7に示すように、バイパス通路8が切替弁9によって閉止された状態で、送風手段4から送出された空気または排気ガスの全量がCO吸収材2に通気され、ガス中に含有される炭酸ガスがCO吸収材2中に吸収・蓄積される。一方、炭酸ガスの放出過程では図8に示すように、CO吸収手段3aに向かう送風通路7が切替弁9によって閉止される一方、バイパス通路8が開放された状態になる。そして、送風手段4から送出された空気はCO吸収材2に通されず、バイパス通路8を通りCO吸収手段3aの二次側に供給される。バイパス通路8が送風通路7に合流する部位には通路の切替弁は設けられていないので、バイパス通路を通りCO吸収手段3aの二次側に供給された空気は、ヒータ5の加熱により放出されたCOを希釈して施用ガスとして用いられる。 Therefore, as shown in FIGS. 7 and 8, paths (passages) through which air flows in the carbon dioxide absorption process and the discharge process are provided separately. In the carbon dioxide absorption process, as shown in FIG. 7, the entire amount of air or exhaust gas sent from the blower 4 is vented to the CO 2 absorbent 2 with the bypass passage 8 closed by the switching valve 9. The carbon dioxide gas contained in the gas is absorbed and accumulated in the CO 2 absorbent 2. On the other hand, in the carbon dioxide gas release process, as shown in FIG. 8, the air passage 7 toward the CO 2 absorbing means 3a is closed by the switching valve 9, while the bypass passage 8 is opened. And the air sent out from the ventilation means 4 is not passed through the CO 2 absorbent 2, but is supplied to the secondary side of the CO 2 absorbent 3a through the bypass passage 8. Since the passage switching valve is not provided at the portion where the bypass passage 8 joins the blower passage 7, the air supplied to the secondary side of the CO 2 absorbing means 3 a through the bypass passage is released by the heating of the heater 5. Diluted CO 2 is used as application gas.

この場合、炭酸ガスの放出過程におけるCO吸収材2への伝熱形態は、吸収材2の充填層内における熱伝導が主体であるので、一旦充填層が650℃まで高温度に加熱されれば、以後は放熱分と反応熱のみの熱供給で済むため、熱供給コストが大幅に削減される。また、低温度である大量の空気によってCO吸収材2が冷却される恐れもないために、放出過程において炭酸ガスの放出効率が低下することもなく、効果的なCO施用が可能になる。 In this case, the heat transfer form to the CO 2 absorbent 2 in the process of releasing carbon dioxide is mainly heat conduction in the packed bed of the absorbent 2, so that the packed bed is once heated to a high temperature up to 650 ° C. In this case, since only heat supply with heat radiation and reaction heat is required thereafter, the heat supply cost is greatly reduced. Further, since there is no fear that the CO 2 absorbent 2 is cooled by a large amount of air at a low temperature, the CO 2 release efficiency is not lowered in the release process, and effective CO 2 application is possible. .

なお、図5および図6と、図7および図8とでは、CO吸収材2の配置が縦置きと横置きとで異なるが、CO吸収材2の置き方や向きは本発明に何ら制限を加えるものではなく、例えば図5に示すCO吸収材2を斜めに配置したり、図7に示すCO吸収放出システムを倒立させたりしても、それらの機能に有意差は生じない。 Note that FIG. 5 and FIG. 6, in the FIGS. 7 and 8, although the arrangement of the CO 2 absorbing material 2 is different than O by vertically or horizontal, place the monitor or the orientation of the CO 2 absorbing material 2 is no the present invention For example, even if the CO 2 absorbent 2 shown in FIG. 5 is disposed obliquely or the CO 2 absorption / release system shown in FIG. 7 is inverted, there is no significant difference in their functions. .

[実施例3]
図9および図10は、本発明に係るCO供給装置の他の実施例およびその動作を示す要部断面図であり、図7および図8に示す実施例2の構成に下記のような搬送空気通路をさらに付加したものである。すなわち実施例3に係る施設園芸用温室のCO供給装置は、二酸化炭素放出過程において、二酸化炭素吸収材2から放出された二酸化炭素(炭酸ガス)を温室方向に誘導しその輸送を補助する空気が流れる搬送空気通路10を具備して構成される。
[Example 3]
FIGS. 9 and 10 are cross-sectional views showing the principal part of another embodiment of the CO 2 supply device according to the present invention and the operation thereof, and the following conveyance is carried out in the configuration of the embodiment 2 shown in FIGS. An air passage is further added. That is, the CO 2 supply device for greenhouses for horticultural use according to the third embodiment guides carbon dioxide (carbon dioxide) released from the carbon dioxide absorbent 2 toward the greenhouse and assists its transportation in the carbon dioxide release process. It is configured to include a carrier air passage 10 through which air flows.

CO吸収材2からCOが放出されると、CO吸収材2を充填した充填層の空隙におけるCO分圧が上昇する。このCO分圧の上昇は放出反応速度を低下させることが実験結果から明らかになっている。したがって、発生したCOを速やかに除去する方策を講じると有効である。 When the CO 2 absorbing material 2 from the CO 2 is released, CO 2 partial pressure in the air gap of the packed bed filled with CO 2 absorbing material 2 is increased. Experimental results have shown that this increase in CO 2 partial pressure reduces the release reaction rate. Therefore, it is effective to take measures to quickly remove generated CO 2 .

すなわち、図9および図10に示すように、バイパス経路8から搬送空気通路(キャリアガス経路)10が分岐しており、この搬送空気通路の他端はCO吸収材2の二次側表面部に開口している。バイパス経路8から分岐し搬送空気通路10を流れる微量な空気がキャリアガスとしてCO吸収材2の表層を流れる。この時、キャリアガスは、移動流により発生したCOを速やかに輸送し、CO吸収材2の表層部におけるCO分圧を降下させる効果が得られる。したがって、CO吸収材2を充填した充填層の空隙におけるCO分圧が上昇することが防止でき、炭酸ガスの放出効率を高く維持できる。 That is, as shown in FIGS. 9 and 10, a carrier air passage (carrier gas passage) 10 is branched from the bypass passage 8, and the other end of this carrier air passage is the secondary surface portion of the CO 2 absorbent 2. Is open. A small amount of air that branches from the bypass path 8 and flows through the carrier air path 10 flows as a carrier gas through the surface layer of the CO 2 absorbent 2. At this time, the carrier gas is quickly transported CO 2 generated by moving stream, the effect of lowering the partial pressure of CO 2 in the surface layer of the CO 2 absorbing material 2 is obtained. Therefore, it is possible to prevent the CO 2 partial pressure in the voids of the packed bed filled with the CO 2 absorbent 2 from increasing, and the carbon dioxide gas release efficiency can be maintained high.

[実施例4]
図11(a)は、本発明に係るCO供給装置の他の実施例を示す要部断面図であり、図9に示す実施例3の構成に対して、さらにキャリアガスの予熱機能を付加した実施例4の構成を示す要部断面図である。すなわち実施例4に係る施設園芸用温室のCO供給装置は、二酸化炭素放出過程において、加熱手段5によって前記二酸化炭素吸収材2から放出された二酸化炭素の輸送を補助する空気を予熱する予熱手段11を具備して構成される。
[Example 4]
FIG. 11A is a cross-sectional view of the main part showing another embodiment of the CO 2 supply device according to the present invention, and a carrier gas preheating function is added to the configuration of the embodiment 3 shown in FIG. It is principal part sectional drawing which shows the structure of done Example 4. That is, the CO 2 supply device for a greenhouse for horticulture according to the fourth embodiment is a preheating unit that preheats the air that assists the transportation of the carbon dioxide released from the carbon dioxide absorbent 2 by the heating unit 5 in the carbon dioxide release process. 11 is configured.

図11(a)に示す上記予熱手段11は、図11(b)に示すようにCO吸収材2を詰めたコンテナ12と加熱ヒータ13とから構成されている。コンテナ12の底面はCO吸収材2の粒子径より目が細かいメッシュ材14を配置した構造となっており、キャリアガスを容易に通過させることができる。また、加熱ヒータ13は、図11(c)に示すように、例えばカートリッジヒータ15を挿通するための挿通口16を所定数穿設したヒータブロック17と、キャリアガスをヒータブロック17の全面に分配するマニホールド19とから構成される。ヒータブロック17の厚さ方向にはキャリアガスが流通する多数の貫通孔18が開けられているために、下方からのキャリアガスを容易に通過させると共にキャリアガスの予熱が十分にできる。上記ヒータブロック17はコンテナ12と接触しているため、熱伝導により内部のCO吸収材2にも熱を効率的に伝達させることが可能である。 The preheating means 11 shown in FIG. 11 (a) is composed of a container 12 packed with a CO 2 absorbent 2 and a heater 13 as shown in FIG. 11 (b). The bottom surface of the container 12 has a structure in which a mesh material 14 finer than the particle diameter of the CO 2 absorbent 2 is disposed, and the carrier gas can be easily passed. In addition, as shown in FIG. 11C, the heater 13 distributes the carrier gas over the entire surface of the heater block 17, for example, with a heater block 17 having a predetermined number of insertion holes 16 through which the cartridge heater 15 is inserted. And a manifold 19 is formed. Since a large number of through holes 18 through which the carrier gas flows are opened in the thickness direction of the heater block 17, the carrier gas from below can be easily passed and the carrier gas can be sufficiently preheated. Since the heater block 17 is in contact with the container 12, heat can be efficiently transferred to the internal CO 2 absorbent 2 by heat conduction.

予熱手段を有しない図9に示すようなCO吸収手段3aの場合には、キャリアガスはCO吸収材2の表層に到達するまで、ほぼ大気温度であり、CO吸収材の温度を降下させて、CO放出を阻害する場合がある。しかるに、図11に示すようなキャリアガスの予熱手段11を付加した本実施例4に係るCO供給装置によれば、二酸化炭素放出過程において、二酸化炭素吸収材2から放出された二酸化炭素の輸送を補助する空気(キャリアガス)を予熱する予熱手段11を備えているために、キャリアガスによってCO吸収材2の温度が降下することがなくCOの放出効率を高く維持できる。 In the case of the CO 2 absorbing means 3a shown in no 9 preheating means, until the carrier gas reaches the surface of the CO 2 absorbing material 2 is substantially ambient temperature, lowering the temperature of the CO 2 absorbent material And may inhibit CO 2 release. However, according to the CO 2 supply device according to the fourth embodiment to which the carrier gas preheating means 11 as shown in FIG. 11 is added, the carbon dioxide released from the carbon dioxide absorbent 2 is transported in the carbon dioxide releasing process. the to and a preheating means 11 for preheating air (carrier gas) to assist, can maintain a high emission efficiency of CO 2 without the temperature of the CO 2 absorbing material 2 by the carrier gas is lowered.

[実施例5]
図12(a)は、本発明に係るCO供給装置の他の実施例を示す要部断面図であり、図11に示す予熱手段11とは別の予熱手段11aを具備して構成される実施例5の構成を示す要部断面図である。
[Example 5]
FIG. 12A is a cross-sectional view of an essential part showing another embodiment of the CO 2 supply device according to the present invention, and is configured to include a preheating means 11a different from the preheating means 11 shown in FIG. FIG. 10 is a cross-sectional view of a main part showing the configuration of Example 5.

図12(a)に示す上記予熱手段11aは、図12(b)に示すようにCO吸収材2を詰めたコンテナ12と加熱ヒータ13と、図12(c)に示すようにコンテナ12の側面に配置されたマニホールド19aとから構成されている。このマニホールド19aからコンテナ12内部に至る数本の穴開き管20が配設される。この穴開き管20によってキャリアガスがCO吸収材2中に均等に分配される。マニホールド19aはコンテナ12と一体化あるいは密に接しているため十分に加熱されており、その内部を通るキャリアガスも効果的に加熱される。したがって、前記実施例4と同様にキャリアガスによってCO吸収材2の温度が降下することがなくCOの放出効率を高く維持できる。 The preheating means 11a shown in FIG. 12 (a) includes a container 12 packed with a CO 2 absorbent 2 and a heater 13 as shown in FIG. 12 (b), and a container 12 as shown in FIG. 12 (c). It is comprised from the manifold 19a arrange | positioned at the side surface. Several perforated pipes 20 extending from the manifold 19a to the inside of the container 12 are disposed. The carrier gas is evenly distributed in the CO 2 absorbent 2 by the perforated pipe 20. The manifold 19a is sufficiently heated because it is integrated or in close contact with the container 12, and the carrier gas passing through the interior of the manifold 19a is also effectively heated. Accordingly, Example 4 to be able to maintain a high emission efficiency of CO 2 without the temperature of the CO 2 absorbing material 2 is lowered as well by the carrier gas.

なお図示は省略するが、上記構成以外に、上記穴開き管を1〜2本折り曲げてコンテナ12底部に張り巡らせて予熱手段を構成しても良い。また、穴開き管をヒータブロックと一体化させて構成しても良い。なお、ヒータやコンテナは矩形の直方体であるが、円筒形状であっても別段問題は生じない。   In addition, although illustration is abbreviate | omitted, in addition to the said structure, the said perforated pipe | tube may be bend | folded 1-2 and it may be stretched around the container 12 bottom part, and a preheating means may be comprised. Further, the perforated pipe may be integrated with the heater block. In addition, although a heater and a container are rectangular parallelepipeds, even if it is a cylindrical shape, a problem does not arise in particular.

以上の実施例1〜5の態様を総括すると、最低限の構成として、CO吸収材2と、空気あるいは加温機の排気ガスを送風する送風手段(ブロワ)4と、CO吸収材2を加熱するための加熱手段(ヒータ)5とを備えれば、各実施例のCO供給装置を実現することができる。上記ヒータ5の消費電力と容量とを抑制するためには、放出過程用のバイパス通路を付加すればよい。 When the aspects of Examples 1 to 5 are summarized, as a minimum configuration, the CO 2 absorbent 2, the air blowing means (blower) 4 for blowing air or the exhaust gas of the warmer, and the CO 2 absorbent 2 If the heating means (heater) 5 for heating is provided, the CO 2 supply device of each embodiment can be realized. In order to suppress the power consumption and capacity of the heater 5, a bypass passage for the discharge process may be added.

さらに効率よくCOを発生放出させるために、キャリアガスを用いてCOを速やかに除去する方法やヒータ5とCO吸収材コンテナ12との組み合わせでキャリアガスを予熱する機構を付与すると良い。本実施例によれば、高効率で省エネルギー性が向上した施設園芸用温室のCO供給装置を提供することが可能となる。 In order to generate and release CO 2 more efficiently, a method for quickly removing CO 2 using a carrier gas or a mechanism for preheating the carrier gas by a combination of the heater 5 and the CO 2 absorbent container 12 may be provided. According to the present embodiment, it is possible to provide a CO 2 supply device for greenhouses for horticulture that is highly efficient and energy saving is improved.

[実施例6]
図13および図14は、本発明に係るCO供給装置の他の実施例を示す要部断面図であり、図9および図10に示す実施例3の構成に下記のような流量調整手段をさらに付加したものである。すなわち実施例6に係る施設園芸用温室のCO供給装置は、二酸化炭素吸収過程において空気あるいは燃焼排ガスを二酸化炭素吸収材2に供給し、かつ二酸化炭素を吸収された空気または燃焼排ガスを温室に供給する送風通路7と、二酸化炭素放出過程において送風する空気が、前記二酸化炭素吸収材2を通らずに前記二酸化炭素吸収手段3aの一次側から二次側にバイパスするバイパス通路10とから成るの二つの通路のうちの上記バイパス通路10に、空気あるいは燃焼排ガスの流量を調整する流量調整手段21としてのダンパーを具備して構成される。
[Example 6]
FIGS. 13 and 14 are cross-sectional views showing the principal parts of another embodiment of the CO 2 supply device according to the present invention. The following flow rate adjusting means is added to the configuration of the embodiment 3 shown in FIGS. In addition. That is, the CO 2 supply device for a greenhouse for horticulture according to Example 6 supplies air or combustion exhaust gas to the carbon dioxide absorbent 2 in the carbon dioxide absorption process, and the air or combustion exhaust gas absorbed by carbon dioxide to the greenhouse. The air supply passage 7 to be supplied and the bypass air passage 10 that bypasses the carbon dioxide absorbing material 2 from the primary side to the secondary side without passing through the carbon dioxide absorbing material 2. Of the two passages, the bypass passage 10 is provided with a damper as flow rate adjusting means 21 for adjusting the flow rate of air or combustion exhaust gas.

図9および図10に示すように送風通路7およびバイパス通路8の開閉を切替弁9によって実行していた実施例3に係るCO供給装置においては、炭酸ガスの吸収過程と放出過程とでは、空気あるいは排気ガスが流れる通路が異なり、送風通路7およびバイパス通路8の一方を閉止する必要があった。 In the CO 2 supply device according to the third embodiment in which the switching valve 9 is used to open and close the air passage 7 and the bypass passage 8 as shown in FIGS. 9 and 10, in the carbon dioxide gas absorption process and the discharge process, The passages through which air or exhaust gas flows are different, and one of the blower passage 7 and the bypass passage 8 has to be closed.

しかるに本実施例6によれば、図13および図14に示すように、バイパス経路8に自動あるいは手動の流量調整手段21としてのダンパー1つを設けることにより、流路の切り替えを容易に実施できる。   However, according to the sixth embodiment, as shown in FIGS. 13 and 14, by providing one damper as the automatic or manual flow rate adjusting means 21 in the bypass path 8, the flow path can be easily switched. .

上記実施例6において、炭酸ガスの吸収過程では、図13に示すように、ダンパー21
を閉止して、全ての空気/排気ガスをCO吸収材2に通す。一方、CO放出過程では図14に示すように、ダンパー21を開放して、バイパス通路8に空気を呼び込みキャリアガス通路10にも微量の空気を送り込む。なお、1つのダンパーは主経路(送風通路7)内に設けることも可能である。
In the sixth embodiment, in the carbon dioxide absorption process, as shown in FIG.
Is closed and all the air / exhaust gas is passed through the CO 2 absorbent 2. On the other hand, in the CO 2 releasing process, as shown in FIG. 14, the damper 21 is opened, air is drawn into the bypass passage 8, and a small amount of air is also sent into the carrier gas passage 10. One damper can also be provided in the main path (air passage 7).

[実施例7]
図15および図16は、本発明に係るCO供給装置の他の実施例を示す要部断面図であり、図7および図8に示す実施例2の構成に下記のような流量調整手段をさらに付加したものである。すなわち実施例7に係る施設園芸用温室のCO供給装置は、送風通路7と、バイパス通路8との双方に、空気あるいは燃焼排ガスの流量を調整する流量調整手段21としてのダンパー21a、21bを具備して構成される。すなわち、ダンパーを主経路としての送風通路7とバイパス通路8との2箇所に配設している。
[Example 7]
FIGS. 15 and 16 are cross-sectional views showing the principal parts of another embodiment of the CO 2 supply device according to the present invention. The following flow rate adjusting means is added to the configuration of the embodiment 2 shown in FIGS. In addition. That is, the CO 2 supply device for a greenhouse for horticulture according to the seventh embodiment includes dampers 21 a and 21 b as flow rate adjusting means 21 for adjusting the flow rate of air or combustion exhaust gas in both the air passage 7 and the bypass passage 8. It is provided and configured. In other words, the dampers are disposed at two locations of the air passage 7 and the bypass passage 8 as main passages.

上記構成の実施例7において、炭酸ガスの吸収過程では、図15に示すように主経路ダンパー21aを全開にする一方、バイパスダンパー21bを全閉にして、全ての空気/排気ガスをCO吸収材2に通す。一方、炭酸ガスの放出過程では、図16に示すようにバイパスダンパー21bを全開して、希釈空気として使用する一方で、主経路ダンパー21aを少し開けて空気を流し、キャリアガスとして用いることもできる。 In the seventh embodiment configured as described above, in the carbon dioxide gas absorption process, as shown in FIG. 15, the main path damper 21a is fully opened, while the bypass damper 21b is fully closed, so that all air / exhaust gas is absorbed by CO 2. Pass through material 2. On the other hand, in the carbon dioxide gas release process, as shown in FIG. 16, the bypass damper 21b is fully opened and used as dilution air. On the other hand, the main path damper 21a is opened slightly to allow air to flow and can be used as a carrier gas. .

以上の実施例6〜7を総括すると、送風通路(主経路)あるいはバイパス通路8のいずれかあるいは両方にダンパー等の流量調整機構あるいは通路を開閉可能な流量調整手段を配置することにより、空気/排気ガスの切り替えが容易な施設園芸用温室のCO供給装置を提供することが可能となる。 When the above Examples 6 to 7 are summarized, a flow rate adjusting mechanism such as a damper or a flow rate adjusting means capable of opening and closing the passage is arranged in either or both of the blower passage (main route) and the bypass passage 8. It is possible to provide a CO 2 supply device for a greenhouse for horticulture that allows easy switching of exhaust gas.

[実施例8]
図17は、本発明に係るCO供給装置の他の実施例を示す要部断面図であり、CO吸収手段3bを複数のCO吸収材2a、2b、2cと複数のヒータ5a、5b、5cとの組み合わせで構成している。すなわち実施例8に係る施設園芸用温室のCO供給装置は、二酸化炭素吸収材2a、2b、2cと、この二酸化炭素吸収材2a、2b、2cを加熱して二酸化炭素を放出させるための加熱手段としてのヒータ5a、5b、5cとの組み合わせが複数個設けられて構成されている。
[Example 8]
FIG. 17 is a cross-sectional view of an essential part showing another embodiment of the CO 2 supply device according to the present invention, in which the CO 2 absorbing means 3b includes a plurality of CO 2 absorbents 2a, 2b, 2c and a plurality of heaters 5a, 5b. 5c. That is, the CO 2 supply device for greenhouses for horticulture according to the eighth embodiment includes the carbon dioxide absorbents 2a, 2b, and 2c and the heating for heating the carbon dioxide absorbents 2a, 2b, and 2c to release carbon dioxide. A plurality of combinations with heaters 5a, 5b, and 5c as means are provided.

ここで、炭酸ガスの放出過程におけるCO放出反応速度は吸収速度よりはるかに速い。そのため、実施例1〜3に示すように、一塊のCO吸収材2に対して1個のヒータ5を組み合わせたCO供給装置では、反応温度まで加熱されたCO吸収材2から一気にCOが放出されてしまう結果、長い時間を掛けて炭酸ガスを均等に放出させることが困難になり、いずれにしても炭酸ガスの放出量を正確に制御することが困難である問題があった。また、CO吸収材2から放熱などによる熱損失についても、CO吸収材2を一様に加熱した場合には、CO吸収材2の反応終了部分からの熱損失も大きくなる問題点もあった。 Here, the CO 2 release reaction rate in the carbon dioxide release process is much faster than the absorption rate. Therefore, as shown in Examples 1-3, with CO 2 supply device combining one heater 5 with respect to CO 2 absorbing material 2 of the lump is at once CO from CO 2 absorbing material 2 that has been heated to the reaction temperature results 2 from being released, there is a difficult to uniformly emit carbon dioxide over a long time, which is any case difficult also to accurately control the discharge amount of carbon dioxide gas problem. As for the heat loss due to heat dissipation from the CO 2 absorbing material 2, in the case of uniformly heating the CO 2 absorbing material 2, the thermal loss increases problems from the completion of the reaction portion of the CO 2 absorbing material 2 there were.

しかるに、図17に示すように、円板状に成形した複数のCO吸収材2a、2b、2cと、その外周縁に装着されたヒータ5a、5b、5cとの組み合わせを、ガスの流れ方向に複数個設けた場合には、各ヒータ5a、5b、5cの通電量の個別制御が可能であり、全CO吸収材2a、2b、2cから一気にCOが放出される恐れはなく、しかも長い時間を掛けて炭酸ガスを均等に放出させることが可能になる。 However, as shown in FIG. 17, a combination of a plurality of CO 2 absorbents 2a, 2b, and 2c formed in a disk shape and heaters 5a, 5b, and 5c attached to the outer periphery of the CO 2 absorbents 2a, 2b, and 2c If a plurality of heaters 5a, 5b, 5c are individually provided, it is possible to individually control the energization amount of the heaters 5a, 5b, 5c, and there is no risk of CO 2 being released from the CO 2 absorbents 2a, 2b, 2c all at once. It becomes possible to discharge carbon dioxide evenly over a long time.

図18は、上記実施例8に係るCO供給装置の3個の二酸化炭素吸収材2a、2b、2cを順次加熱して二酸化炭素を放出させるためヒータ5a、5b、5cの通電量を個別に制御する運転ダイヤグラムと、温室内に放出される炭酸ガスの放出濃度の時間変動を示すグラフである。 FIG. 18 shows the amount of electricity supplied to the heaters 5a, 5b, and 5c individually for sequentially heating the three carbon dioxide absorbers 2a, 2b, and 2c of the CO 2 supply device according to Example 8 to release carbon dioxide. It is the graph which shows the time fluctuation of the driving | running diagram to control and the discharge | release density | concentration of the carbon dioxide gas discharge | released in a greenhouse.

図18に示す結果から明らかなように、CO吸収材を小分けに分割する一方、分割したCO吸収材にそれぞれ付設されたヒータを個別に逐次通電するように制御することにより、分割したCO吸収材から炭酸ガスを逐次放出させることができ、長時間に亘るCOの放出が可能となり、放出反応に関与しない他の吸収材部分での加熱および熱損失が少なくなり、省エネルギー効果が高まる。なお、図17に示す実施例8では、CO吸収材とヒータとの組み合わせを3個設けた場合を示しているが、2個でも効果は期待できる。もちろん、4個以上であればコストは増加するが機能的にはさらに向上する。 As is clear from the results shown in FIG. 18, the CO 2 absorbent is divided into small portions, while the heaters attached to the divided CO 2 absorbents are controlled so as to be sequentially energized individually, thereby dividing the divided CO 2 absorbent. 2 Carbon dioxide gas can be sequentially released from the absorbent material, CO 2 can be released over a long period of time, and heating and heat loss in other absorbent material parts not involved in the release reaction are reduced, resulting in an energy saving effect. . In Example 8 shown in FIG. 17 shows the case of providing three of the combination of CO 2 absorbent material and a heater, effect of two can be expected. Of course, if the number is four or more, the cost is increased, but the function is further improved.

本発明に係る施設園芸用温室の二酸化炭素供給装置の一実施例を示し、加温機を稼動させない夏季における構成を示すブロック図であり、(a)は炭酸ガスの吸収過程での動作を示し、(b)は炭酸ガスの放出過程での動作を示すブロック図。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows one Example of the carbon dioxide supply apparatus of the greenhouse for horticulture which concerns on this invention, and shows the structure in the summer which does not operate a heater, (a) shows the operation | movement in the absorption process of a carbon dioxide gas (B) is a block diagram which shows the operation | movement in the discharge | release process of a carbon dioxide gas. 本発明に係る施設園芸用温室の二酸化炭素供給装置の一実施例を示し、加温機を稼動させる冬季における構成を示すブロック図であり、(a)は炭酸ガスの吸収過程での動作を示し、(b)は炭酸ガスの放出過程での動作を示すブロック図。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows one Example of the carbon dioxide supply apparatus of the greenhouse for greenhouses for horticulture concerning this invention, and shows the structure in the winter season which operates a heating machine, (a) shows the operation | movement in the absorption process of a carbon dioxide gas (B) is a block diagram which shows the operation | movement in the discharge | release process of a carbon dioxide gas. 施設園芸用温室の二酸化炭素供給装置における夏季の運転ダイヤグラムを示すグラフ。The graph which shows the driving | running diagram of the summer in the carbon dioxide supply apparatus of the greenhouse for greenhouses. 施設園芸用温室の二酸化炭素供給装置における冬季の運転ダイヤグラムを示すグラフ。The graph which shows the driving diagram in the winter in the carbon dioxide supply apparatus of greenhouses for horticulture. 施設園芸用温室の二酸化炭素供給装置におけるCO吸収材と送風手段との位置関係を示す側面図であり、(a)はCO吸収材の1次側に送風手段を設けた構成と吸収過程での作用を示し、(b)はCO吸収材の2次側に送風手段を設けた構成と吸収過程での作用を示す側面図。Is a side view showing the positional relationship between the CO 2 absorbent material in the carbon dioxide supply apparatus horticulture for greenhouses and blowing means, (a) shows the structure and absorption process in which a blower means to the primary side of the CO 2 absorbent material shows the effect of in, (b) is a side view showing the operation of the configuration and absorption process in which a blowing means on the secondary side of the CO 2 absorber. 図5に示す二酸化炭素供給装置における炭酸ガス放出過程の作用を示す側面図であり、(a)は図5(a)に示す装置における炭酸ガス放出過程の作用を示す側面図であり、(b)は図5(b)に示す装置における炭酸ガス放出過程の作用を示す側面図。It is a side view which shows the effect | action of the carbon dioxide release process in the carbon dioxide supply apparatus shown in FIG. 5, (a) is a side view which shows the effect | action of the carbon dioxide release process in the apparatus shown in FIG. ) Is a side view showing the action of the carbon dioxide gas releasing process in the apparatus shown in FIG. バイパス通路を付加した二酸化炭素供給装置の吸収過程の作用を示す断面図。Sectional drawing which shows the effect | action of the absorption process of the carbon dioxide supply apparatus which added the bypass channel. バイパス通路を付加した二酸化炭素供給装置の放出過程の作用を示す断面図。Sectional drawing which shows the effect | action of the discharge | release process of the carbon dioxide supply apparatus which added the bypass channel. 搬送空気通路(キャリアガス通路)を付加した二酸化炭素供給装置の吸収過程の作用を示す断面図。Sectional drawing which shows the effect | action of the absorption process of the carbon dioxide supply apparatus which added the conveyance air channel | path (carrier gas channel | path). 搬送空気通路(キャリアガス通路)を付加した二酸化炭素供給装置の放出過程の作用を示す断面図。Sectional drawing which shows the effect | action of the discharge | release process of the carbon dioxide supply apparatus which added the conveyance air channel | path (carrier gas channel | path). キャリアガスの予熱手段を付加した二酸化炭素供給装置の構成を示す図であり、(a)は上記予熱手段を付加した二酸化炭素供給装置の全体構成を示す断面図であり、(b)は上記予熱手段の構成を示す斜視図であり、(c)は加熱ヒータの構成を示す斜視図。It is a figure which shows the structure of the carbon dioxide supply apparatus which added the preheating means of carrier gas, (a) is sectional drawing which shows the whole structure of the carbon dioxide supply apparatus which added the said preheating means, (b) is the said preheating. It is a perspective view which shows the structure of a means, (c) is a perspective view which shows the structure of a heater. キャリアガスの他の予熱手段を付加した二酸化炭素供給装置の構成を示す図であり、(a)は上記予熱手段を付加した二酸化炭素供給装置の全体構成を示す断面図であり、(b)は上記予熱手段の構成を示す斜視図であり、(c)はコンテナの構成を示す斜視図。It is a figure which shows the structure of the carbon dioxide supply apparatus which added the other preheating means of carrier gas, (a) is sectional drawing which shows the whole structure of the carbon dioxide supply apparatus which added the said preheating means, (b) It is a perspective view which shows the structure of the said preheating means, (c) is a perspective view which shows the structure of a container. 流量調整手段としてのダンパーを付加した二酸化炭素供給装置の吸収過程での作用を示す断面図。Sectional drawing which shows the effect | action in the absorption process of the carbon dioxide supply apparatus which added the damper as a flow volume adjustment means. 流量調整手段としてのダンパーを付加した二酸化炭素供給装置の放出過程での作用を示す断面図。Sectional drawing which shows the effect | action in the discharge | release process of the carbon dioxide supply apparatus which added the damper as a flow volume adjustment means. 流量調整手段としてのダンパーを付加した二酸化炭素供給装置の吸収過程での作用を示す断面図。Sectional drawing which shows the effect | action in the absorption process of the carbon dioxide supply apparatus which added the damper as a flow volume adjustment means. 流量調整手段としてのダンパーを付加した二酸化炭素供給装置の放出過程での作用を示す断面図。Sectional drawing which shows the effect | action in the discharge | release process of the carbon dioxide supply apparatus which added the damper as a flow volume adjustment means. CO吸収材と加熱手段との組み合わせを3個配置して構成した二酸化炭素供給装置の放出過程での作用を示す断面図。Cross-sectional view showing the action at emission process of carbon dioxide supply device combined with three arranged to configure the CO 2 absorbing material and the heating means. 図17に示す二酸化炭素供給装置の運転ダイヤグラムを示すグラフ。The graph which shows the driving | running diagram of the carbon dioxide supply apparatus shown in FIG.

符号の説明Explanation of symbols

1 二酸化炭素供給装置(CO供給装置)
2,2a,2b,2c 二酸化炭素吸収材(CO吸収材)
3,3a 二酸化炭素吸収手段(CO吸収手段)
4,4a,4b 送風手段(ブロワ)
5,5a,5b,5c 加熱手段(ヒータ)
6 加温機(暖房機)
7 送風通路(主経路)
8 バイパス通路
9 切替弁
10 搬送空気通路(キャリアガス通路)
11,11a 予熱手段
12 コンテナ
13 加熱ヒータ
14 メッシュ材
15 カートリッジヒータ
16 挿通口
17 ヒータブロック
18 貫通孔
19,19a マニホールド
20 穴開き管
21,21a,21b 流量調整手段(ダンパー)
1 Carbon dioxide supply device (CO 2 supply device)
2, 2a, 2b, 2c Carbon dioxide absorbent (CO 2 absorbent)
3,3a Carbon dioxide absorption means (CO 2 absorption means)
4, 4a, 4b Blower (blower)
5, 5a, 5b, 5c Heating means (heater)
6 Heating machine (heating machine)
7 Air passage (main route)
8 Bypass passage 9 Switching valve 10 Carrier air passage (carrier gas passage)
11, 11a Preheating means 12 Container 13 Heater 14 Mesh material 15 Cartridge heater 16 Insertion port 17 Heater block 18 Through hole 19, 19a Manifold 20 Perforated pipes 21, 21a, 21b Flow rate adjusting means (damper)

Claims (4)

二酸化炭素吸収材を含有し二酸化炭素を吸収貯留する二酸化炭素吸収手段と、
この二酸化炭素吸収手段による吸収貯留過程において空気あるいは燃焼排ガスを上記二酸化炭素吸収材に供給し、かつ二酸化炭素を吸収された空気または燃焼排ガスを温室に供給する送風通路と、
この送風通路を介して二酸化炭素を含有する空気あるいは燃焼排ガスを上記二酸化炭素吸収手段に送風する送風手段と、
上記二酸化炭素吸収材を加熱して二酸化炭素を放出させる加熱手段と、
この加熱手段による二酸化炭素放出過程において、上記送風手段により送風する空気が、上記二酸化炭素吸収手段を通らずに上記二酸化炭素吸収手段の一次側から二次側にバイパスするように上記送風通路に並列に設けられたバイパス通路と、
上記送風手段により送風される空気の通路を上記送風通路と上記バイパス通路とに切り替える切替弁と
を備えることを特徴とする施設園芸用温室の二酸化炭素供給装置。
A carbon dioxide absorbing means containing a carbon dioxide absorbent and absorbing and storing carbon dioxide;
An air supply passage for supplying air or combustion exhaust gas to the carbon dioxide absorbent in the absorption storage process by the carbon dioxide absorption means, and supplying air or combustion exhaust gas absorbed with carbon dioxide to the greenhouse;
Blower means for blowing air containing carbon dioxide or combustion exhaust gas to the carbon dioxide absorption means through the blow passage,
Heating means for heating the carbon dioxide absorbent to release carbon dioxide;
In the process of releasing carbon dioxide by the heating means, the air blown by the blowing means is arranged in parallel with the blowing passage so as to bypass the carbon dioxide absorbing means from the primary side to the secondary side without passing through the carbon dioxide absorbing means. A bypass passage provided in
A carbon dioxide supply device for greenhouses for horticultural use, comprising: a switching valve for switching a passage of air blown by the blower means to the blower passage and the bypass passage .
二酸化炭素放出過程において、前記バイパス通路から分岐するとともに前記二酸化炭素吸収手段の二次側表面部に開口した搬送空気通路を備え、この搬送空気通路により前記二酸化炭素吸収材から放出された二酸化炭素を前記送風手段により送風される空気によって温室方向に誘導しその輸送を補助することを特徴とする請求項記載の施設園芸用温室の二酸化炭素供給装置。 In the carbon dioxide release process, a carrier air passage branched from the bypass passage and opened in the secondary side surface portion of the carbon dioxide absorbing means is provided, and the carbon dioxide released from the carbon dioxide absorbent by the carrier air passage is carbon dioxide supply apparatus of horticulture for greenhouses as claimed in claim 1, wherein the help induce and its transport to the greenhouse direction by the air blown by the blowing means. 二酸化炭素放出過程において、前記加熱手段によって前記二酸化炭素吸収材から放出された二酸化炭素の輸送を補助する空気を予熱する予熱手段を具備することを特徴とする請求項記載の施設園芸用温室の二酸化炭素供給装置。 3. The greenhouse for horticultural horticulture according to claim 2 , further comprising preheating means for preheating air for assisting transport of carbon dioxide released from the carbon dioxide absorbent by the heating means in the carbon dioxide releasing process. Carbon dioxide supply device. 前記切替弁に替えて、前記送風通路と前記バイパス通路との少なくとも一方に、空気あるいは燃焼排ガスの流量を調整する流量調整手段を具備することを特徴とする請求項に記載の施設園芸用温室の二酸化炭素供給装置。 The greenhouse for horticultural horticulture according to claim 1 , wherein a flow rate adjusting means for adjusting a flow rate of air or combustion exhaust gas is provided in at least one of the air passage and the bypass passage instead of the switching valve. CO2 supply device.
JP2005170709A 2005-06-10 2005-06-10 Carbon dioxide supply device for greenhouse for horticulture Expired - Fee Related JP4822746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005170709A JP4822746B2 (en) 2005-06-10 2005-06-10 Carbon dioxide supply device for greenhouse for horticulture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005170709A JP4822746B2 (en) 2005-06-10 2005-06-10 Carbon dioxide supply device for greenhouse for horticulture

Publications (2)

Publication Number Publication Date
JP2006340683A JP2006340683A (en) 2006-12-21
JP4822746B2 true JP4822746B2 (en) 2011-11-24

Family

ID=37638113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005170709A Expired - Fee Related JP4822746B2 (en) 2005-06-10 2005-06-10 Carbon dioxide supply device for greenhouse for horticulture

Country Status (1)

Country Link
JP (1) JP4822746B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2616701C (en) 2005-07-28 2018-10-02 Global Research Technologies, Llc Removal of carbon dioxide from air
US9266051B2 (en) 2005-07-28 2016-02-23 Carbon Sink, Inc. Removal of carbon dioxide from air
KR20090003206A (en) 2006-03-08 2009-01-09 글로벌 리서치 테크놀로지스, 엘엘씨 Air collector with functionalized ion exchange membrane for capturing ambient co2
KR20090086530A (en) * 2006-10-02 2009-08-13 글로벌 리서치 테크놀로지스, 엘엘씨 Method and apparatus for extracting carbon dioxide from air
JP4846632B2 (en) * 2007-03-19 2011-12-28 株式会社東芝 Tri-generation system of greenhouse for horticulture
KR200447866Y1 (en) 2007-04-11 2010-02-24 강민구 A co2 supply
AU2008242845B2 (en) 2007-04-17 2012-08-23 Carbon Sink, Inc. Capture of carbon dioxide (CO2) from air
AU2008324818A1 (en) 2007-11-05 2009-05-14 Global Research Technologies, Llc Removal of carbon dioxide from air
CN101868292A (en) 2007-11-20 2010-10-20 环球研究技术有限公司 Air collector with functionalized ion exchange membrane for capturing ambient co2
CA2715874C (en) 2008-02-19 2019-06-25 Global Research Technologies, Llc Extraction and sequestration of carbon dioxide
WO2009149292A1 (en) 2008-06-04 2009-12-10 Global Research Technologies, Llc Laminar flow air collector with solid sorbent materials for capturing ambient co2
WO2011002419A1 (en) * 2009-07-03 2011-01-06 National University Of Singapore Method and apparatus for reducing carbon dioxide concentration from flue gas
JP5941723B2 (en) * 2011-03-28 2016-06-29 尚登 安田 Hot air heating system for institutional horticultural house and carbon dioxide recovery / divergence system and method for use in institutional horticultural house
JP6290622B2 (en) * 2013-12-27 2018-03-07 フタバ産業株式会社 Carbon dioxide application equipment
JP6560949B2 (en) * 2015-10-13 2019-08-14 東京瓦斯株式会社 Plant growth promotion device and plant cultivation method
KR101931441B1 (en) * 2017-08-07 2018-12-20 윤정한 CO2 generation and temperature control device using methanol
JP6787854B2 (en) * 2017-08-31 2020-11-18 フタバ産業株式会社 Carbon dioxide application device
KR101834533B1 (en) 2017-11-06 2018-03-05 (주)대성기연 Multi-function air conditioning systems
CA3091524A1 (en) 2018-02-16 2019-08-22 Carbon Sink, Inc. Fluidized bed extractors for capture of co2 from ambient air
CN113924902A (en) * 2021-09-06 2022-01-14 珠海格力电器股份有限公司 Water-cooled central air conditioner CO2Circulation control method and water-cooled central air conditioner
JP7399412B1 (en) * 2023-10-25 2023-12-18 株式会社レブセル Air purifier and carbon dioxide absorption unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004066091A (en) * 2002-08-06 2004-03-04 Meidensha Corp Method of treating carbon dioxide-containing gas and equipment therefor
JP2004136164A (en) * 2002-10-16 2004-05-13 Masayuki Horio Carbon dioxide absorbing particles and manufacturing method therefor

Also Published As

Publication number Publication date
JP2006340683A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
JP4822746B2 (en) Carbon dioxide supply device for greenhouse for horticulture
WO2015098252A1 (en) Carbon dioxide application device
JP5578469B2 (en) Carbon dioxide supply system for horticultural facilities by pressure swing method using carbon dioxide in combustion exhaust gas
Badji et al. Design, technology, and management of greenhouse: A review
EP2893800B1 (en) System and method for growing a plant in an at least partly conditioned environment
DK2695513T3 (en) METHOD AND APPARATUS FOR PROVIDING HEAT AND CARBON Dioxide TO PLANTS AND / OR ALGES USING FUEL GAS FROM POWER PLANTS
KR101681601B1 (en) Carbon dioxide supply device
US20150282440A1 (en) Climate control system and method for a greenhouse
EP3500089B1 (en) A system for climate control in closed or semi closed spaces
JP6366456B2 (en) Energy supply equipment for horticultural facilities
JP2011250759A (en) Carbon dioxide recovery utilization system
CN103026923A (en) Greenhouse with multi-layer film structure
JP2006230250A (en) Mushroom cultivation greenhouse
ES2280817T3 (en) METHOD FOR THE REGULATION OF AIR CO2 CONCENTRATION WITHIN A CLOSED SPACE IN WHICH PLANTS ARE CULTIVATED.
CN103650992A (en) Carbon dioxide fertilizer distributor based on chain type biomass fuel heating furnace
KR200475472Y1 (en) Auxiliary heating apparatus for vinyl greenhouse
JP2017112954A (en) Plant cultivation facility
CN107466727A (en) The double-layer insulating plastic pipe greenhouse of the temperature difference can be reduced
JP2016202007A (en) Carbon dioxide supply device
JPS5810443Y2 (en) Heat storage greenhouse
JP2023183785A (en) Carbon dioxide-containing gas supply system, and carbon dioxide-containing gas supply method
WO2021235136A1 (en) Gas application device and gas application method for plant
JPH01199526A (en) House for horticulture
CN114258806B (en) Ventilating system and method for controlling local CO2 concentration of solar greenhouse plants
CN211267871U (en) Greenhouse system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees