JP4822167B2 - Diamond semiconductor manufacturing method and diamond semiconductor - Google Patents

Diamond semiconductor manufacturing method and diamond semiconductor Download PDF

Info

Publication number
JP4822167B2
JP4822167B2 JP2005121854A JP2005121854A JP4822167B2 JP 4822167 B2 JP4822167 B2 JP 4822167B2 JP 2005121854 A JP2005121854 A JP 2005121854A JP 2005121854 A JP2005121854 A JP 2005121854A JP 4822167 B2 JP4822167 B2 JP 4822167B2
Authority
JP
Japan
Prior art keywords
diamond
substrate
degrees
diamond semiconductor
sccm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005121854A
Other languages
Japanese (ja)
Other versions
JP2006303131A (en
Inventor
孝 築野
良樹 西林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005121854A priority Critical patent/JP4822167B2/en
Publication of JP2006303131A publication Critical patent/JP2006303131A/en
Application granted granted Critical
Publication of JP4822167B2 publication Critical patent/JP4822167B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、ダイヤモンド半導体の製造方法及びダイヤモンド半導体に関し、特に、ダイヤモンド{100}基板上へのn型ドーピング方法に関するものである。   The present invention relates to a method for manufacturing a diamond semiconductor and a diamond semiconductor, and more particularly to an n-type doping method on a diamond {100} substrate.

ダイヤモンドを人工的に合成しようとする試みは古くから行なわれて来ているが、1980年代に入り、マイクロ波プラズマCVD法や熱フィラメントCVD法など低圧下での実用的な合成が成功し始めた。これにあわせて、ダイヤモンドのエピタキシャル膜を使って、半導体デバイスを作ろうとする動きが盛んになってきた。   Attempts to artificially synthesize diamond have been made for a long time, but in the 1980s, practical synthesis under low pressure such as microwave plasma CVD method and hot filament CVD method began to succeed. . In line with this, there has been a growing movement to make semiconductor devices using diamond epitaxial films.

ダイヤモンドは、
(1)キャリア移動度が大きく、高速動作が期待できる。
(2)ワイドバンドギャップ(5eV以上)であり、500℃以上の温度でも破壊されず動作することが期待される。
(3)熱伝導率が銅の5倍と大きく、発生した熱を素早く逃がすことができる。
(4)耐放射線性が高く、超LSIで問題となるα線によるソフトエラーが少なくなることが予想される。
(5)単元素材料であり、化合物半導体に特有な構造欠陥の問題が避けられる。
等の優れた特性を有し、従来の半導体では対応出来ない高速デバイスや、厳しい使用環境での使用が期待されている。
Diamonds
(1) High carrier mobility and high speed operation can be expected.
(2) A wide band gap (5 eV or more), which is expected to operate without being destroyed even at a temperature of 500 ° C. or more.
(3) The thermal conductivity is as large as five times that of copper, and the generated heat can be quickly released.
(4) The radiation resistance is high, and it is expected that soft errors due to α rays, which is a problem in VLSI, are reduced.
(5) Since it is a single element material, the problem of structural defects peculiar to compound semiconductors can be avoided.
It is expected to be used in high-speed devices that cannot be handled by conventional semiconductors and in severe usage environments.

しかしながら、実用化にあたっては、いくつかの問題点が指摘されている。
(a)単結晶化技術、
(b)n型のドーピング
(c)回路形成技術
等が今後解決すべき主な課題である。
However, several problems have been pointed out in practical use.
(A) Single crystallization technology,
(B) n-type doping (c) Circuit formation technology and the like are main problems to be solved in the future.

(a)については、最近になってイリジウムの{100}上へのヘテロエピタキシャル成長(非特許文献1参照)、高圧合成によるIb型の結晶を複数個種結晶として用いた大型化等の方法(非特許文献2参照)が発展してきている。一方(b)のn型ドーピングについては、燐(P)をドーパントとして(111)基板を用いることでn型ダイヤモンドを得ることが望ましいとの報告がなされている(非特許文献3参照)。   Regarding (a), recently, heteroepitaxial growth of iridium on {100} (see Non-Patent Document 1), enlargement method using a plurality of Ib type crystals by high-pressure synthesis as seed crystals (non- Patent Document 2) has been developed. On the other hand, as for (b) n-type doping, it has been reported that it is desirable to obtain n-type diamond by using a (111) substrate with phosphorus (P) as a dopant (see Non-Patent Document 3).

(111)と{100}は、ダイヤモンドの主要な結晶面であるが、(111)は物質中最高硬度であるダイヤモンドでも、最も研磨しがたい面である。基板の大面積化についても、上述の接合基板、ヘテロエピタキシャル成長ともに{100}を想定した研究が進んでいる。また、平坦な面をホモエピタキシャル成長させるという点でも、{100}での技術が進んでいるのが現状である。   (111) and {100} are the main crystal planes of diamond, but (111) is the most difficult to polish even for diamonds with the highest hardness in the material. As for the increase in the area of the substrate, research on the assumption of {100} for both the above-described bonded substrate and heteroepitaxial growth is in progress. In addition, the current situation is that the technology in {100} is also advanced in that homo-epitaxial growth is performed on a flat surface.

上述したPのドーピングは{100}基板上への成長では、Pが膜中にドープされにくく、困難であった。そこで、難波らは、エッチング技術により{100}基板上に(111)面を有する凸凹を形成して、{100}基板上にn型領域を形成する方法を提案している(非特許文献4参照)。しかしながら、この方法では、パターニング、エッチング等の行程増によるコストアップがさけられない。   The above-mentioned doping of P is difficult because it is difficult to dope P into the film in the growth on the {100} substrate. Therefore, Namba et al. Proposed a method of forming an n-type region on a {100} substrate by forming an unevenness having a (111) plane on a {100} substrate by an etching technique (Non-patent Document 4). reference). However, this method cannot avoid an increase in cost due to increased processes such as patterning and etching.

前田他:ニューダイヤモンドフォーラム 第18回ダイヤモンドシンポジウム講演予稿集(2004) p10Maeda et al .: New Diamond Forum 18th Diamond Symposium Proceedings (2004) p10 目黒他:ニューダイヤモンドフォーラム 第16回ダイヤモンドシンポジウム講演予稿集(2002) p8Meguro et al .: New Diamond Forum Proceedings of the 16th Diamond Symposium (2002) p8 S.Koizumi et al.:Appl.Phys.Lett.71(1997)25S. Koizumi et al .: Appl. Phys. Lett. 71 (1997) 25 難波他:ニューダイヤモンドフォーラム 第17回ダイヤモンドシンポジウム講演予稿集(2003) p54Namba et al .: New Diamond Forum Proceedings of the 17th Diamond Symposium (2003) p54

上記従来の技術に鑑み、実質的な{100}基板上への、パターニング等を用いない安価な方法でn型ダイヤモンドをエピタキシャル成長する方法が望まれる。
本発明は、このような問題点に鑑みて、創案されたものであり、Pドープのn型ダイヤモンドを{100}基板上に成長させる安価な方法を提供するものである。
In view of the above prior art, a method of epitaxially growing n-type diamond on a substantial {100} substrate by an inexpensive method that does not use patterning or the like is desired.
The present invention has been made in view of such problems, and provides an inexpensive method for growing P-doped n-type diamond on a {100} substrate.

発明者らは、鋭意研究の結果、下記の発明に到達した。
(1){100}から<110>±10度以内の方向へ、10度以下傾斜したダイヤモンド基板上に、プラズマCVD法によって、ガス中の窒素原子濃度/炭素原子濃度を0.001以上0.05以下とした窒素添加条件で0.1μm以上の膜厚のダイヤモンド成長を行ったあと、続けて、燐添加条件でのダイヤモンド成長を行うことを特徴とするダイヤモンド半導体の製造方法。
As a result of earnest research, the inventors have reached the following invention.
(1) The nitrogen atom concentration / carbon atom concentration in the gas is set to 0.001 or more and 0.00 on the diamond substrate tilted by 10 degrees or less from {100} to within <110> ± 10 degrees by plasma CVD . A method for producing a diamond semiconductor, comprising growing diamond with a film thickness of 0.1 μm or more under nitrogen addition conditions of 05 or less, and subsequently growing diamond under phosphorus addition conditions.

(2){100}から<110>±10度以内の方向へ、10度以下傾斜したダイヤモンド基板上に、プラズマCVD法によって、窒素添加条件で0.1μm以上の膜厚のダイヤモンド成長を行い高さ1nm以上10nm以下のステップバンチを形成させた後に続けて、燐添加条件でのダイヤモンド成長を行うことを特徴とするダイヤモンド半導体の製造方法。
(3)上記(1)または(2)に記載のダイヤモンド半導体の製造方法によって製造されたダイヤモンド半導体であって、平均周期0.5μm以下の周期的層状に燐がドープされた領域を含むn型ダイヤモンドであり、燐がドープされた周期的層は基板主面に対して傾斜しており、その傾斜角度は1度以上60度以下であることを特徴とするダイヤモンド半導体。
(2) On a diamond substrate tilted by 10 degrees or less from {100} to within <110> ± 10 degrees, a diamond having a thickness of 0.1 μm or more is grown by plasma CVD under nitrogen addition conditions. A method for producing a diamond semiconductor, comprising: forming a step bunch having a thickness of 1 nm to 10 nm and subsequently growing diamond under a phosphorus addition condition.
(3) A diamond semiconductor manufactured by the method for manufacturing a diamond semiconductor according to (1) or (2) above, wherein the n-type includes a region doped with phosphorus in a periodic layer shape having an average period of 0.5 μm or less Ri Ah diamond, periodic layers phosphorus doped are inclined with respect to the substrate principal plane, the inclination angle of the diamond semiconductor, characterized in der Rukoto to 60 degrees 1 degree.

このメカニズムは以下のように考えられる。
窒素添加条件ではステップバンチングによる大きなステップが形成される。(図1、高さ方向は拡大している)このステップの高さや間隔は、基板の方位ずれや成膜条件により異なる。大きなステップの斜面は一般的には低指数面では表せなく凸凹の大きな面となっている(図1下)が、ここでの成長では成長様式が{100}とは異なるためPが膜中に取り込まれる。その結果、図2(ここでも高さ方向は拡大している)に示したように、断面が平行な縞状となり、結果的に平行な層状のPがドープされた領域を含むn型のダイヤモンドエピタキシャル膜を得ることができる。このような縞状領域はステップ斜面での成長とテラスでの成長の競合により形成されるが、基板主面に対しての傾きが大きくなると、層の上下間隔が大きくなり層間の導通が悪くなるため、60度以下であることが望ましい。
This mechanism is considered as follows.
Under nitrogen addition conditions, a large step is formed by step bunching. (FIG. 1, the height direction is enlarged) The height and interval of this step vary depending on the orientation deviation of the substrate and the film formation conditions. In general, the large step slope cannot be represented by a low index surface, but has a large uneven surface (bottom of FIG. 1). However, since the growth mode is different from {100} in this growth, P is in the film. It is captured. As a result, as shown in FIG. 2 (again, the height direction is enlarged), the cross-section becomes a stripe-like shape, resulting in an n-type diamond including a parallel layered P-doped region. An epitaxial film can be obtained. Such a striped region is formed by the competition between the growth on the step slope and the growth on the terrace, but when the inclination with respect to the main surface of the substrate is increased, the vertical distance between the layers is increased and the conduction between the layers is deteriorated. Therefore, it is desirable that it is 60 degrees or less.

オフ方位は<110>方位が好ましい。これは<110>方位のオフの場合はダイヤモンド表面に形成される大きなステップが平行になりやすく(図3(a))、均質性が期待できるからである。それに対して、たとえば<100>方位のオフでは図3(b)のようにステップがうねったものとなり、多様な方向へのステップが混ざった表面となるため、ステップ方位によりPの取り込み量が変化し、均質性が損なわれる。   The off orientation is preferably the <110> orientation. This is because when the <110> orientation is off, large steps formed on the diamond surface are likely to be parallel (FIG. 3A), and homogeneity can be expected. On the other hand, for example, when the <100> orientation is off, the step becomes wavy as shown in FIG. 3B, and the surface is a mixture of steps in various directions. And homogeneity is impaired.

層状領域の幅、間隔、基板との傾きは、Pドープ膜を成膜する時点でのステップバンチの高さ、間隔、更にはPドープ成長の条件に依存して変わることになるが、縞状領域の周期が大きくなりすぎる場合は、Pのドーピング領域が局所的になってしまい、膜としての導電性が期待できなくなる。このようなPのドーピング領域は平均周期0.5μm以下が好ましい。したがって、ステップバンチによるマクロステップが大きくなりすぎない段階でPドープ膜の成長を開始する必要がある。   The width of the layered region, the interval, and the inclination with the substrate vary depending on the height and interval of the step bunches at the time of forming the P-doped film, and further depending on the conditions of P-doped growth. If the period of the region becomes too large, the doped region of P becomes local, and the conductivity as a film cannot be expected. Such a P-doped region preferably has an average period of 0.5 μm or less. Therefore, it is necessary to start the growth of the P-doped film at a stage where the macro step due to the step bunch does not become too large.

本発明によれば、Pがドープされたn型のダイヤモンドエピタキシャル膜を{100}基板上に成長させることができ、ダイヤモンド半導体を容易に提供することができる。   According to the present invention, an n-type diamond epitaxial film doped with P can be grown on a {100} substrate, and a diamond semiconductor can be easily provided.

以下、本発明を実際のダイヤモンド半導体へのドーピングに用いた例を述べる。
実施例1
基板としては、{100}から<110>方向(±2度以内)に3±1度傾いた3mm×3mmの基板を使用した。これに加茂らによる、いわゆる無機材研型のマイクロ波プラズマCVD法により、まず窒素添加条件でダイヤモンドエピタキシャル膜の成長を行った。導入ガスは CH4、H2、N2(H2中に1%希釈)で、それぞれ2.5sccm、500sccm、2.5sccm、成膜中のガス圧力は60Torrである。基板温度は870度で、10分の成膜を行った。成膜した膜厚は0.15μmと推定した。
An example in which the present invention is used for doping an actual diamond semiconductor will be described below.
Example 1
As the substrate, a 3 mm × 3 mm substrate tilted by 3 ± 1 degree in the <110> direction (within ± 2 degrees) from {100} was used. In addition, a diamond epitaxial film was first grown under nitrogen addition conditions by a so-called inorganic material type microwave plasma CVD method by Kamo et al. The introduced gases are CH 4 , H 2 , and N 2 (diluted 1% in H 2 ), 2.5 sccm, 500 sccm, and 2.5 sccm, respectively, and the gas pressure during film formation is 60 Torr. The substrate temperature was 870 ° C., and the film was formed for 10 minutes. The film thickness was estimated to be 0.15 μm.

窒素添加条件での成膜後に、その表面を走査トンネル顕微鏡で観察したところ、概ね30nm〜50nm間隔で1〜2nm高さのステップが平行に形成されていることを観察した。大きなステップに挟まれる、フラットな領域には単原子ステップ、あるいは2原子ステップと見られるステップや、単原子層のアイランドも観察された。
この後、同じマイクロ波プラズマCVD装置を用いて、Pドープの成長を行った。導入ガスはCH4(H中に10%希釈)、H2、PH3 (H中に1%希釈)で、それぞれ5sccm、500sccm、1sccm、成膜中のガス圧力は100Torrとし、膜厚約2.5μm成膜した。
試料の4隅にTi/Pt/Au電極を形成しvan der Pauw法によるAC磁場ホール測定を実施した。抵抗率は、均質な膜と仮定した数値として、室温において6×103Ωcm、100℃において4×102Ωcmであり、後者の測定においてはn型の判定を得た。
After film formation under nitrogen addition conditions, the surface was observed with a scanning tunneling microscope, and it was observed that steps having a height of 1 to 2 nm were formed in parallel at intervals of approximately 30 nm to 50 nm. In the flat region sandwiched between large steps, a single atom step, a step that appears to be a two atom step, and an island of a monoatomic layer were also observed.
Thereafter, P-dope was grown using the same microwave plasma CVD apparatus. Introducing gas CH 4 (10% diluted in H 2), and in H 2, PH 3 (1% dilution in H 2), respectively 5 sccm, 500 sccm, 1 sccm, the gas pressure during film formation and 100 Torr, the film thickness A film thickness of about 2.5 μm was formed.
Ti / Pt / Au electrodes were formed at the four corners of the sample, and AC magnetic field hole measurement was performed by the van der Pauw method. The resistivity was 6 × 10 3 Ωcm at room temperature and 4 × 10 2 Ωcm at 100 ° C. as values assuming a homogeneous film. In the latter measurement, n-type determination was obtained.

実施例2
基板としては、{100}から<110>方向(±2度以内)に5±1度傾いた3mm×3mmの基板を使用した。これに加茂らによる、いわゆる無機材研型のマイクロ波プラズマCVD法により、まず窒素添加条件でダイヤモンドエピタキシャル膜の成長を行った。導入ガスは CH4、H2、N2(H2中に1%希釈)で、それぞれ1sccm、500sccm、1sccm、成膜中のガス圧力は60Torrである。基板温度は870度で、10分の成膜を行った。成膜した膜厚は0.1μmと推定した。
窒素添加条件での成膜後に、その表面を原子間力顕微鏡で観察したところ、概ね20nm〜30nm間隔で1〜2nm高さのステップが平行に形成されていることを観察した。
Example 2
As the substrate, a 3 mm × 3 mm substrate tilted by 5 ± 1 degree in the <110> direction (within ± 2 degrees) from {100} was used. In addition, a diamond epitaxial film was first grown under nitrogen addition conditions by a so-called inorganic material type microwave plasma CVD method by Kamo et al. The introduced gases are CH 4 , H 2 , and N 2 (diluted 1% in H 2 ), 1 sccm, 500 sccm, 1 sccm, respectively, and the gas pressure during film formation is 60 Torr. The substrate temperature was 870 ° C., and the film was formed for 10 minutes. The film thickness formed was estimated to be 0.1 μm.
After film formation under nitrogen addition conditions, the surface was observed with an atomic force microscope, and it was observed that steps having a height of 1 to 2 nm were formed in parallel at intervals of approximately 20 nm to 30 nm.

この後、同じマイクロ波プラズマCVD装置を用いて、Pドープの成長を行った。導入ガスはCH4(H2中に10%希釈)、H2、PH3 (H2中に1%希釈)で、それぞれ5sccm、500sccm、10sccm、成膜中のガス圧力は100Torrとし、膜厚約4μm成膜した。
マイクロプローバーを用いて、4探針法により抵抗率を測定し、均質な膜として抵抗率の推定を行った。
4探針をオフ方向(ステップに垂直)に並べた場合は、室温で、3×102Ωcm、100℃において2×102Ωcmであった。一方、オフに垂直方向(ステップに平行)に並べた場合は、室温で、2×102Ωcm、100℃において1×102Ωcmであった。
Thereafter, P-dope was grown using the same microwave plasma CVD apparatus. Introducing gas CH 4 (10% diluted in H 2), with H 2, PH 3 (1% dilution in H 2), respectively 5 sccm, 500 sccm, 10 sccm, gas pressure during film formation was set to 100 Torr, the film thickness A film thickness of about 4 μm was formed.
Using a microprober, the resistivity was measured by a four-probe method, and the resistivity was estimated as a homogeneous film.
When the four probes were arranged in the off direction (perpendicular to the step), they were 3 × 10 2 Ωcm at room temperature and 2 × 10 2 Ωcm at 100 ° C. On the other hand, when arranged in the off-vertical direction (parallel to the step), it was 2 × 10 2 Ωcm at room temperature and 1 × 10 2 Ωcm at 100 ° C.

実施例3
基板としては、{100}から<100>方向(±3度以内)に2±1度傾いた4mm×4mmの基板を使用した。無機材研型のマイクロ波プラズマCVD法により、まず窒素添加条件でダイヤモンドエピタキシャル膜の成長を行った。導入ガスは CH4、H2、N2(H2中に1%希釈)で、それぞれ2.5sccm、500sccm、1sccm、成膜中のガス圧力は60Torrである。基板温度は870度で、20分の成膜を行った。成膜した膜厚は0.2μmと推定した。
Example 3
As the substrate, a 4 mm × 4 mm substrate inclined by 2 ± 1 degree in the <100> direction (within ± 3 degrees) from {100} was used. First, a diamond epitaxial film was grown under the condition of nitrogen addition by an inorganic material type microwave plasma CVD method. The introduced gases are CH 4 , H 2 , and N 2 (1% dilution in H 2 ), 2.5 sccm, 500 sccm, and 1 sccm, respectively, and the gas pressure during film formation is 60 Torr. The substrate temperature was 870 ° C. and the film was formed for 20 minutes. The film thickness was estimated to be 0.2 μm.

窒素添加条件での成膜後に、その表面を走査トンネル顕微鏡で観察したところ、概ね30nm〜50nm間隔で1〜2nm高さの折れ曲がったステップが形成されていることを観察した。ステップの分裂、合流も観察することができた。大きなステップに挟まれる、フラットな領域には単原子ステップ、あるいは2原子ステップと見られるステップや、単原子層、2原子層のアイランドも観察された。   After film formation under nitrogen addition conditions, the surface was observed with a scanning tunneling microscope, and it was observed that bent steps having a height of 1 to 2 nm were formed at intervals of approximately 30 nm to 50 nm. We were able to observe the splitting and merging of steps. In the flat region sandwiched between large steps, a single atom step or a step that appears to be a two atom step, and an island of a monoatomic layer or a two atomic layer were also observed.

この後、同じマイクロ波プラズマCVD装置を用いて、Pドープの成長を行った。導入ガスはCH4(H2中に10%希釈)、H2、PH3 (H2中に1%希釈)で、それぞれ5sccm、500sccm、1sccm、成膜中のガス圧力は100Torrとし、膜厚約3μm成膜した。
試料の4隅にTi/Pt/Au電極を形成しvan der Pauw法によるAC磁場ホール測定を実施した。抵抗率は、均質な膜と仮定した数値として、室温において1.5×104Ωcm、100℃において7×102Ωcmであり、後者の測定においてはn型の判定を得た。
Thereafter, P-dope was grown using the same microwave plasma CVD apparatus. Introducing gas CH 4 (10% diluted in H 2), and in H 2, PH 3 (1% dilution in H 2), respectively 5 sccm, 500 sccm, 1 sccm, the gas pressure during film formation and 100 Torr, the film thickness A film thickness of about 3 μm was formed.
Ti / Pt / Au electrodes were formed at the four corners of the sample, and AC magnetic field hole measurement was performed by the van der Pauw method. The resistivity was 1.5 × 10 4 Ωcm at room temperature and 7 × 10 2 Ωcm at 100 ° C. as values assuming a homogeneous film. In the latter measurement, n-type determination was obtained.

比較例1
実施例1のPドープ条件と同じ条件で、{100}からの傾斜が0.3度以内である基板に成膜した。ただし、窒素添加条件での予備成膜は実施せず、マイクロ波プラズマCVD装置を用いて、導入ガスはCH4(H2中に10%希釈)、H2、PH3 (H2中に1%希釈)で、それぞれ5sccm、500sccm、1sccm、成膜中のガス圧力は100Torrとし、膜厚約5μm成膜した。
試料の4隅にTi/Pt/Au電極を形成しvan der Pauw法によるAC磁場ホール測定を実施したが抵抗率が高く測定できなかった。
Comparative Example 1
A film was formed on a substrate having an inclination from {100} within 0.3 degrees under the same conditions as the P-doping conditions of Example 1. However, pre-deposition with nitrogen addition condition not performed, by using a microwave plasma CVD apparatus, introducing gas (diluted 10% in H 2) CH 4, H 2 , PH 3 ( in H 2 1 % Dilution) at 5 sccm, 500 sccm, 1 sccm, the gas pressure during film formation was 100 Torr, and a film thickness of about 5 μm was formed.
Ti / Pt / Au electrodes were formed at the four corners of the sample, and AC magnetic field Hall measurement was performed by the van der Pauw method. However, the resistivity was high and could not be measured.

比較例2
基板としては、{100}から<100>方向(±3度以内)に4±1度傾いた基板を使用した。これに無機材研型のマイクロ波プラズマCVD法により、まず窒素添加条件でダイヤモンドエピタキシャル膜の成長を行った。導入ガスは CH4、H2、N2(H2中に1%希釈)で、それぞれ2.5sccm、500sccm、2.5sccm、成膜中のガス圧力は60Torrである。基板温度は870度で、4時間の成膜を行った。成膜した膜厚は5μmと推定した。
Comparative Example 2
As the substrate, a substrate tilted by 4 ± 1 degrees in the <100> direction (within ± 3 degrees) from {100} was used. To this, a diamond epitaxial film was first grown under the condition of nitrogen addition by the inorganic material type microwave plasma CVD method. The introduced gases are CH 4 , H 2 , and N 2 (diluted 1% in H 2 ), 2.5 sccm, 500 sccm, and 2.5 sccm, respectively, and the gas pressure during film formation is 60 Torr. The substrate temperature was 870 ° C., and film formation was performed for 4 hours. The film thickness was estimated to be 5 μm.

窒素添加条件での成膜後に、その表面を走査電子顕微鏡で観察したところ、概ね0.5〜1μm間隔のステップが観察され、その高さは概ね10〜30nmであり、まれに50nmを超えるマクロなステップも観察された。
この後、同じマイクロ波プラズマCVD装置を用いて、Pドープの成長を行った。導入ガスはCH4(H2中に10%希釈)、H2、PH3 (H2中に1%希釈)で、それぞれ5sccm、500sccm、1sccm、成膜中のガス圧力は100Torrとし、膜厚約5μm成膜した。試料の4隅にTi/Pt/Au電極を形成したが、抵抗率が高く測定できなかった。
マイクロプローバーで、2端子測定を行ったところ、導通性を示す領域と絶縁性を示す領域が細かく分布していることがわかった。
After film formation under nitrogen addition conditions, the surface was observed with a scanning electron microscope. Steps with an interval of approximately 0.5 to 1 μm were observed, and the height was approximately 10 to 30 nm. Numerous steps were also observed.
Thereafter, P-dope was grown using the same microwave plasma CVD apparatus. Introducing gas CH 4 (10% diluted in H 2), and in H 2, PH 3 (1% dilution in H 2), respectively 5 sccm, 500 sccm, 1 sccm, the gas pressure during film formation and 100 Torr, the film thickness A film thickness of about 5 μm was formed. Ti / Pt / Au electrodes were formed at the four corners of the sample, but the resistivity was high and could not be measured.
When two-terminal measurement was performed with a micro prober, it was found that the region showing conductivity and the region showing insulation were finely distributed.

以上、本発明の各実施例についてマイクロ波プラズマCVD法で説明したが、本発明はこれらに限定されるものではなく、本発明の主旨を逸脱しない範囲内で成膜方法は適宜変更可能である。例えば、ECRプラズマや、ヘリコン波プラズマ,ICP(InductiveCoupled Plasma),TCP(Transformer Coupled Plasma)、DCプラズマなどを用いてもかまわない。ただし、プラズマCVD法と並びダイヤモンドの代表的な合成法である熱フィラメントについては窒素添加条件での合成で膜質の悪化が見られるため、適当ではない。   As mentioned above, although each Example of this invention was demonstrated by the microwave plasma CVD method, this invention is not limited to these, The film-forming method can be changed suitably in the range which does not deviate from the main point of this invention. . For example, ECR plasma, helicon wave plasma, ICP (Inductive Coupled Plasma), TCP (Transformer Coupled Plasma), DC plasma, or the like may be used. However, a hot filament, which is a typical diamond synthesis method as well as a plasma CVD method, is not suitable because the film quality deteriorates when synthesized under nitrogen addition conditions.

窒素添加成長後のマクロステップ表面模式図(断面図)Schematic diagram of the macrostep surface after nitrogen addition growth (cross section) マクロステップ表面に成長したPドープダイヤモンドの分布図(斜線部がPドープ領域)Distribution diagram of P-doped diamond grown on macrostep surface (shaded area is P-doped region) 窒素添加成長後のマクロステップ表面模式図(上面図)オフ方位(矢印) (a)<110> (b)<100>Macro step surface schematic diagram after nitrogen addition growth (top view) off orientation (arrow) (a) <110> (b) <100>

Claims (3)

{100}から<110>±10度以内の方向へ、10度以下傾斜したダイヤモンド基板上に、プラズマCVD法によって、ガス中の窒素原子濃度/炭素原子濃度を0.001以上0.05以下とした窒素添加条件で0.1μm以上の膜厚のダイヤモンド成長を行ったあと、続けて、燐添加条件でのダイヤモンド成長を行うことを特徴とするダイヤモンド半導体の製造方法。 The nitrogen atom concentration / carbon atom concentration in the gas is set to 0.001 or more and 0.05 or less by a plasma CVD method on a diamond substrate inclined by 10 degrees or less from {100} to within <110> ± 10 degrees. A method for producing a diamond semiconductor, comprising: growing a diamond having a thickness of 0.1 μm or more under the added nitrogen condition, and subsequently growing the diamond under the added phosphorus condition. {100}から<110>±10度以内の方向へ、10度以下傾斜したダイヤモンド基板上に、プラズマCVD法によって、窒素添加条件で0.1μm以上の膜厚のダイヤモンド成長を行い高さ1nm以上10nm以下のステップバンチを形成させた後に続けて、燐添加条件でのダイヤモンド成長を行うことを特徴とするダイヤモンド半導体の製造方法。 A diamond substrate having a thickness of 0.1 μm or more is grown on a diamond substrate tilted by 10 degrees or less from {100} to within <110> ± 10 degrees by a plasma CVD method under nitrogen addition conditions, and a height of 1 nm or more. A method for producing a diamond semiconductor, comprising performing diamond growth under a phosphorus addition condition after forming a step bunch of 10 nm or less. 請求項1または2に記載のダイヤモンド半導体の製造方法によって製造されたダイヤモンド半導体であって、平均周期0.5μm以下の周期的層状に燐がドープされた領域を含むn型ダイヤモンドであり、燐がドープされた周期的層は基板主面に対して傾斜しており、その傾斜角度は1度以上60度以下であることを特徴とするダイヤモンド半導体。 A diamond semiconductor produced by the process of the diamond semiconductor manufacturing according to claim 1 or 2, Ri Ah with n-type diamond containing phosphorus below periodic layered average period 0.5μm doped region, phosphorus There doped periodic layers are inclined with respect to the substrate principal plane, the inclination angle of the diamond semiconductor, characterized in der Rukoto to 60 degrees 1 degree.
JP2005121854A 2005-04-20 2005-04-20 Diamond semiconductor manufacturing method and diamond semiconductor Expired - Fee Related JP4822167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121854A JP4822167B2 (en) 2005-04-20 2005-04-20 Diamond semiconductor manufacturing method and diamond semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121854A JP4822167B2 (en) 2005-04-20 2005-04-20 Diamond semiconductor manufacturing method and diamond semiconductor

Publications (2)

Publication Number Publication Date
JP2006303131A JP2006303131A (en) 2006-11-02
JP4822167B2 true JP4822167B2 (en) 2011-11-24

Family

ID=37471074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121854A Expired - Fee Related JP4822167B2 (en) 2005-04-20 2005-04-20 Diamond semiconductor manufacturing method and diamond semiconductor

Country Status (1)

Country Link
JP (1) JP4822167B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986131B2 (en) * 2007-01-24 2012-07-25 住友電気工業株式会社 Diamond single crystal substrate and manufacturing method thereof
EP2226413B1 (en) * 2007-12-26 2016-10-12 Sumitomo Electric Industries, Ltd. Method for manufacturing diamond monocrystal having a thin film, and diamond monocrystal having a thin film.
JP7298832B2 (en) * 2017-02-06 2023-06-27 信越化学工業株式会社 Underlying substrate for diamond film formation and method for producing diamond substrate using the same
JP7078947B2 (en) * 2017-02-06 2022-06-01 信越化学工業株式会社 A base substrate for diamond film formation and a method for manufacturing a diamond substrate using the substrate.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100933847B1 (en) * 2002-06-18 2009-12-24 스미토모덴키고교가부시키가이샤 n-type semiconductor diamond manufacturing method and semiconductor diamond

Also Published As

Publication number Publication date
JP2006303131A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
Nakamura et al. Formation of periodic steps with a unit-cell height on 6H–SiC (0001) surface by HCl etching
JP4646752B2 (en) Highly oriented diamond film, manufacturing method thereof, and electronic device provided with highly oriented diamond film
US11066757B2 (en) Diamond substrate and freestanding diamond substrate
JP4694144B2 (en) Method for growing SiC single crystal and SiC single crystal grown thereby
JP4740903B2 (en) Nitride single crystal growth method on silicon substrate, nitride semiconductor light emitting device using the same, and manufacturing method thereof
JP4048191B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
TWI382456B (en) Epitaxial growth of relaxed silicon germanium layers
KR20020062225A (en) SINGLE CRYSTAL SiC AND METHOD OF PRODUCING THE SAME AS WELL AS SiC SEMICONDUCTOR DEVICE AND SiC COMPOSITE MATERIAL
WO1997039476A1 (en) SiC ELEMENT AND PROCESS FOR ITS PRODUCTION
KR20100092932A (en) Semiconductor substrate and method for manufacturing semiconductor substrate
JP7420763B2 (en) Diamond electronic device and method for manufacturing diamond electronic device
JP2006032655A (en) Manufacturing method of silicon carbide substrate
EP4269666A1 (en) Substrate for epitaxially growing diamond crystal and method for manufacturing diamond crystal
JP4822167B2 (en) Diamond semiconductor manufacturing method and diamond semiconductor
US10100435B2 (en) Method for manufacturing diamond substrate
KR20200103578A (en) Manufacturing method of gallium oxide thin film for power semiconductor using dopant activation technoloty
WO2013145404A1 (en) Laminated substate of silicon single crystal and group iii nitride single crystal with off angle
JP2021193067A (en) Diamond substrate
JP6736005B2 (en) Thin film substrate, semiconductor device, and GaN template
JP2008071896A (en) Metal-insulating film-silicon carbide semiconductor structure
JP7415831B2 (en) Method for manufacturing silicon carbide semiconductor epitaxial substrate
JP7487702B2 (en) Method for manufacturing single crystal diamond substrate
JP2846576B2 (en) Method for producing III-V compound semiconductor epitaxial layer
TW202319352A (en) Method for producing crystal film, and crystal film
Furukawa et al. Defect Reduction of Cvd-Grown Cubic SiC Epitaxial Films on Off-Axis Si (100) Substrates with a Novel Off-Direction.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110815

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110828

R150 Certificate of patent or registration of utility model

Ref document number: 4822167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees