JP4821520B2 - Brazing composite material and brazing product using the same - Google Patents

Brazing composite material and brazing product using the same Download PDF

Info

Publication number
JP4821520B2
JP4821520B2 JP2006236069A JP2006236069A JP4821520B2 JP 4821520 B2 JP4821520 B2 JP 4821520B2 JP 2006236069 A JP2006236069 A JP 2006236069A JP 2006236069 A JP2006236069 A JP 2006236069A JP 4821520 B2 JP4821520 B2 JP 4821520B2
Authority
JP
Japan
Prior art keywords
brazing
layer
clad
stainless steel
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006236069A
Other languages
Japanese (ja)
Other versions
JP2008055470A (en
Inventor
英之 佐川
洋光 黒田
一真 黒木
文夫 堀井
信人 作山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006236069A priority Critical patent/JP4821520B2/en
Publication of JP2008055470A publication Critical patent/JP2008055470A/en
Application granted granted Critical
Publication of JP4821520B2 publication Critical patent/JP4821520B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、ろう付け性能及び加工性を向上させ、かつ、耐食性を有したろう付け用複合材及びそれを用いたろう付け製品に関するものであり、特に、熱交換器(排ガス再循環装置(EGR)用クーラや燃料電池改質器用クーラなど)および燃料電池用部材のろう付け用複合材及びそれを用いたろう付け製品に関するものである。   The present invention relates to a brazing composite material having improved brazing performance and workability and having corrosion resistance and a brazing product using the same, and in particular, a heat exchanger (exhaust gas recirculation device (EGR)). The present invention relates to a composite material for brazing a fuel cell member and a fuel cell reformer, and a brazing product using the same.

自動車用オイルクーラの接合材として、ステンレス基ろう付け用クラッド材が使用されている。これは、ステンレス鋼板の片面、あるいは両面にろう材としての機能をもつ銅がクラッドされている。また、ステンレス鋼や、ニッケル基又はコバルト基合金などの部品のろう付け材として、接合部の耐食性に優れる各種ニッケルろうに、Ni、Cr、Ni−Cr合金のうち選ばれた金属粉末を4wt%〜25wt%添加して構成されるニッケルろう材が提案されている。   Stainless steel-based brazing clad materials are used as joining materials for oil coolers for automobiles. In this case, copper having a function as a brazing material is clad on one side or both sides of a stainless steel plate. In addition, as a brazing material for parts such as stainless steel and nickel-base or cobalt-base alloy, 4 wt% of metal powder selected from Ni, Cr, Ni—Cr alloy is added to various nickel brazes having excellent corrosion resistance at joints. A nickel brazing material constituted by adding ˜25 wt% has been proposed.

また、自己ろう付け性クラッド材を作る方法として、Ni−Tiクラッド材の製造法がある。   Further, as a method for producing a self-brazing clad material, there is a method for producing a Ni-Ti clad material.

特開平7−299592号公報Japanese Patent Laid-Open No. 7-299592 特開2000−107883号公報JP 2000-107883 A 特開2005−186106号公報JP-A-2005-186106 特開2003−117683号公報JP 2003-117683 A 特開2004−291078号公報JP 2004-291078 A

自動車用オイルクーラの接合材としてのステンレス基ろう付け用クラッド材は、ろう材の機能を持つ銅が、ステンレス鋼板の片面あるいは両面にクラッドされている。オイルクーラに、このステンレス基ろう付け用クラッド材を使用した場合、ろう材としての銅は使用上の耐食性に全く問題はない。   In a stainless steel brazing clad material as a joining material for an automobile oil cooler, copper having a brazing material function is clad on one or both surfaces of a stainless steel plate. When this stainless steel-based brazing clad material is used for an oil cooler, copper as a brazing material has no problem in corrosion resistance in use.

しかしながら、このステンレス基ろう付け用クラッド材を、燃料電池用熱交換器、或いはEGR(Exhaust Gas Recirculation:排ガス再循環装置)クーラ接合用など、耐食・耐熱環境下(腐食性・高温環境下)でろう材として使用した場合、耐食性に著しい問題が生じる。すなわち、燃料電池用熱交換器やEGRクーラ内には、高温かつ腐食性の高い溶液あるいは排気ガスなどが循環されるため、従来の銅ろう材では、耐食性が十分でなく使用ができない。   However, this stainless steel brazing clad material can be used in a corrosion-resistant and heat-resistant environment (in a corrosive or high-temperature environment) such as a fuel cell heat exchanger or EGR (Exhaust Gas Recirculation) cooler joint. When used as a brazing material, a significant problem arises in corrosion resistance. That is, since a high-temperature and highly corrosive solution or exhaust gas is circulated in the fuel cell heat exchanger and the EGR cooler, the conventional copper brazing material has insufficient corrosion resistance and cannot be used.

特許文献1に記載されているようなNi−Tiクラッド材は、ろう材として機能する合金の特定の組成範囲において、ろう付け時にろう材が基材を大幅に侵食し、基材の薄肉化(基材食われ)が生じてしまう。その結果、ろう付け接合部の強度低下が問題となる。   In the Ni-Ti clad material described in Patent Document 1, in a specific composition range of an alloy that functions as a brazing material, the brazing material significantly erodes the base material during brazing, and the base material is thinned ( Substrate erosion) occurs. As a result, a reduction in the strength of the brazed joint becomes a problem.

特許文献2に記載されている粉末ニッケルろう材、及びJISに記載のニッケルろう材は、粉末状であるため、接合部毎に粉末ろう材を添付(配置)する作業が必要になるため、多大な労力を費やし、製品の生産性が著しく低く、高コストな製品とならざるを得ない。また、同じくJISに記載のアモルファスニッケルろう材は非常に脆いため、加工及びろう付け組み立て時の取り扱いが難しく、製造コスト(加工コスト)が高いという問題があった。   Since the powder nickel brazing material described in Patent Document 2 and the nickel brazing material described in JIS are in a powder form, it is necessary to attach (arrange) the powder brazing material for each joint. Consuming a lot of labor, the productivity of the product is extremely low, and it must be a high-cost product. Also, since the amorphous nickel brazing material described in JIS is very brittle, handling at the time of processing and brazing assembly is difficult, and there is a problem that the manufacturing cost (processing cost) is high.

そこで本発明の目的は、ろう付けによる基材の薄肉化を低減し、加工性に優れ、製造コストが安価で、かつ、所望の耐食性及び湯流れ性を有するろう付け用複合材及びそれを用いたろう付け製品を提供することにある。   Accordingly, an object of the present invention is to reduce the thinning of the base material due to brazing, to be excellent in workability, to be low in manufacturing cost, and to have a desired corrosion resistance and hot water flowability, and to use the same. To provide brazing products.

上記の目的を達成するために、請求項の発明は、4種の金属で構成される複合材であり、その複合材がニッケル層、アルミニウム或いはアルミニウム合金層、チタン層、鉄−ニッケル合金層の順に積層させた構造であり、複合材全体のAl濃度が1mass%以上、かつ、Fe濃度が5〜45mass%であることを特徴とするろう付け用複合材である。
In order to achieve the above object, the invention of claim 1 is a composite material composed of four kinds of metals, and the composite material is a nickel layer, an aluminum or aluminum alloy layer, a titanium layer, an iron-nickel alloy layer. structure der obtained by sequentially stacking Ri, Al concentration of the whole composite material is 1 mass% or more, and a brazing composite material Fe concentration is characterized by a 5~45mass%.

請求項の発明は、ステンレス鋼製の基材の片面もしくは両面に、4種の金属で構成される複合材からなるろう付け層を複合一体化してなり、そのろう付け層が、基材側からニッケル層、アルミニウム或いはアルミニウム合金層、チタン層、鉄−ニッケル合金層の順に積層させた構造であり、ろう付け層全体のAl濃度が1mass%以上、かつ、Fe濃度が5〜45mass%であることを特徴とするろう付け用複合材である。
The invention of claim 2 is formed by integrating a brazing layer made of a composite material composed of four kinds of metals on one side or both sides of a stainless steel base material. nickel layer from aluminum or an aluminum alloy layer, a titanium layer, an iron - Ri structures der formed by laminating in this order a nickel alloy layer, the Al concentration of the whole brazing layer 1 mass% or more and, Fe concentration in 5~45Mass% It is a composite material for brazing characterized by being.

請求項の発明は、請求項1又は2に記載のろう付け用複合材を用いてろう付け接合されたことを特徴とするろう付け製品である。
The invention of claim 3 is a brazed product characterized by being brazed and joined using the brazing composite material of claim 1 or 2 .

本発明のろう付け用複合材によれば、ろう付けによる基材の薄肉化(基材食われ)を低減し、加工性に優れ、製造コストが安価で、かつ、良好な耐食性及び湯流れ性を得ることができる。   According to the composite material for brazing of the present invention, the thinning of the base material (base material erosion) due to brazing is reduced, the processability is excellent, the manufacturing cost is low, and the corrosion resistance and hot water flowability are good. Can be obtained.

以下本発明の実施の形態を添付図面に基いて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

本発明者らが、ろう付け用複合材(クラッド材)の構成について種々検討した結果、ろう材を構成する材料を、所定の構成に選定することで、本発明を完成するに至った。すなわち、本発明者らは、ろう材の一部としてAl又はAl合金を加えることで、ろう付け後のろう材部の耐食性、特に耐高温酸化性が向上でき、また、ろう材部をNi、Ti、Fe−Ni合金を用いた構成にすることで、金属単体の融点を低下させたろう材として機能させることができることを見出した。また、ろう材中にFe−Ni合金を用いることで、Fe系材料のろう付け接合を行う際、同時に母材(Fe系材料、基材)の食われを抑制できることを見出した。   As a result of various studies on the structure of the brazing composite material (cladding material) by the present inventors, the present invention has been completed by selecting the material constituting the brazing material into a predetermined structure. That is, the present inventors can improve the corrosion resistance of the brazing filler metal part after brazing, particularly high-temperature oxidation resistance by adding Al or an Al alloy as a part of the brazing filler metal. It has been found that the structure using Ti, Fe—Ni alloy can function as a brazing material in which the melting point of a single metal is lowered. Further, it has been found that by using an Fe—Ni alloy in the brazing material, it is possible to suppress biting of the base material (Fe-based material, base material) at the same time when performing brazing joining of the Fe-based material.

図1に示すように、本実施の形態に係るろう付け用複合材は、少なくとも2種以上の金属のクラッド材で構成され、アルミニウム或いはアルミニウム合金層2を含み、そのAl濃度が1mass%以上であることに特徴がある。   As shown in FIG. 1, the brazing composite material according to the present embodiment is composed of at least two kinds of metal clad materials, includes aluminum or an aluminum alloy layer 2, and has an Al concentration of 1 mass% or more. There is a feature in being.

具体的には、ろう付け用複合材は、アルミニウム或いはアルミニウム合金層2の他に、ニッケル層1、チタン層3、鉄−ニッケル合金層4を含んでおり、好ましくは、ニッケル層1、アルミニウム或いはアルミニウム合金層2、チタン層3、鉄−ニッケル合金層4の順に積層させた構造である。ろう付け用複合材(ろう材)全体のAl濃度は1mass%以上、かつ、Fe濃度は5〜45mass%である。   Specifically, the brazing composite material includes a nickel layer 1, a titanium layer 3, and an iron-nickel alloy layer 4 in addition to the aluminum or aluminum alloy layer 2, preferably the nickel layer 1, aluminum or In this structure, the aluminum alloy layer 2, the titanium layer 3, and the iron-nickel alloy layer 4 are laminated in this order. The Al concentration of the entire brazing composite material (brazing material) is 1 mass% or more, and the Fe concentration is 5 to 45 mass%.

上述した本実施の形態に係るろう付け用複合材を、基材と被ろう付け材の所望のろう付け接合箇所に配置し、ろう付けすることで、基材と被ろう付け材がろう付け接合部を介してろう付けされ、本実施の形態に係るろう付け製品が得られる。   The brazing composite material according to the present embodiment described above is placed at a desired brazing joint location between the base material and the brazing material, and brazed so that the base material and the brazing material are brazed. The brazed product according to the present embodiment is obtained by brazing through the section.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

本実施の形態に係るろう付け用複合材は、ろう材中に占めるAl濃度の割合を1mass%以上としている。これは、Al濃度が1mass%未満であると、十分な耐食性、特に耐酸化性が得にくいためである。   In the brazing composite material according to the present embodiment, the ratio of the Al concentration in the brazing material is 1 mass% or more. This is because it is difficult to obtain sufficient corrosion resistance, particularly oxidation resistance, when the Al concentration is less than 1 mass%.

また、本実施の形態に係るろう付け用複合材は、ろう材中に占めるFe濃度の割合を5〜45mass%としている。これは、Fe濃度が5mass%未満であると、Fe系材料(母材)のろう付けをする際、母材の侵食が大きくなり、母材の食われが多くなるためである。一方、Fe濃度が45mass%を超えると、ろうの湯流れ性及び耐食性が低下するためである。   In the brazing composite material according to the present embodiment, the proportion of Fe concentration in the brazing material is set to 5 to 45 mass%. This is because when the Fe concentration is less than 5 mass%, when the Fe-based material (base material) is brazed, the base material becomes more eroded and the base material is eroded. On the other hand, if the Fe concentration exceeds 45 mass%, the flow of the hot metal and the corrosion resistance are lowered.

このように、ろう材全体のAl濃度を1mass%以上、かつ、Fe濃度を5〜45mass%とすることで、ろうの湯流れ性及び耐食性が良好で、ろう付け時における母材薄肉化の低減を図ることができる。   Thus, by setting the Al concentration of the entire brazing material to 1 mass% or more and the Fe concentration to 5 to 45 mass%, the hot metal flowability and corrosion resistance of the brazing metal are good and the reduction in the thickness of the base metal during brazing is reduced. Can be achieved.

また、本実施の形態に係るろう付け用複合材は、ろう材の構成材料として、ニッケル、アルミニウム或いはアルミニウム合金、チタン、鉄−ニッケル合金を選定している。これは、これらの材料が汎用品であり、比較的容易に板或いは箔形状で入手可能であり、かつ、圧延、プレス、絞り加工が可能であるためである。また、これらの材料で構成されたろう材部を、ろう付け時の熱処理によって溶融・混合することで、優れた耐食性が得られる。本実施の形態に係るろう付け用複合材は、プレスなどの加工が容易であるため、ろう付け製品の生産性に優れる、すなわちろう付け製品の製造コストが安価となる。   In the brazing composite material according to the present embodiment, nickel, aluminum, an aluminum alloy, titanium, or an iron-nickel alloy is selected as a constituent material of the brazing material. This is because these materials are general-purpose products, are relatively easily available in the form of a plate or foil, and can be rolled, pressed, and drawn. Further, excellent corrosion resistance can be obtained by melting and mixing the brazing filler metal portion composed of these materials by heat treatment during brazing. Since the composite material for brazing according to the present embodiment is easily processed by pressing or the like, the brazing product is excellent in productivity, that is, the manufacturing cost of the brazing product is low.

また、本実施の形態に係るろう付け用複合材は、アルミニウム或いはアルミニウム合金層2をろう材中の最外層ではなく、中心側に配置している。これは、ろう材を構成する金属の中で、比較的融点が低いアルミニウム或いはアルミニウム合金層2が最外層に位置していると、ろう材成分が十分に混ざり合う前に流れてしまうか、もしくはろう付け後のろうが不均一な組成となるためである。アルミニウム或いはアルミニウム合金層2をろう材中の中心側に配置することで、このような不具合が生じるのを防ぐことができる。   Further, in the brazing composite material according to the present embodiment, the aluminum or aluminum alloy layer 2 is disposed not on the outermost layer in the brazing material but on the center side. This is because if the aluminum or aluminum alloy layer 2 having a relatively low melting point is located in the outermost layer among the metals constituting the brazing material, it flows before the brazing material components are sufficiently mixed, or This is because the brazing after brazing has a non-uniform composition. By arranging the aluminum or aluminum alloy layer 2 on the center side in the brazing material, it is possible to prevent such a problem from occurring.

次に、本発明の他の実施の形態を添付図面に基いて説明する。   Next, another embodiment of the present invention will be described with reference to the accompanying drawings.

図2に示すように、本実施の形態に係るろう付け用複合材は、ステンレス鋼製の基材5の上面(片面)に、少なくとも2種以上の金属で構成される複合材からなるろう付け層を複合一体化してなり、そのろう付け層が、アルミニウム或いはアルミニウム合金層2を含み、そのAl濃度が1mass%以上であることに特徴がある。   As shown in FIG. 2, the brazing composite material according to the present embodiment is made of a composite material composed of at least two kinds of metals on the upper surface (one surface) of a stainless steel base material 5. The layers are combined and integrated, and the brazing layer includes aluminum or an aluminum alloy layer 2, and the Al concentration is 1 mass% or more.

具体的には、ろう付け用複合材は、基材5の上面に、アルミニウム或いはアルミニウム合金層2の他に、ニッケル層1、チタン層3、鉄−ニッケル合金層4を含むろう付け層を設けてなり、好ましくは、基材5側から、ニッケル層1、アルミニウム或いはアルミニウム合金層2、チタン層3、鉄−ニッケル合金層4の順に積層させた構造のろう付け層を有する。ろう付け層(ろう材)全体のAl濃度は1mass%以上、かつ、Fe濃度は5〜45mass%である。   Specifically, the brazing composite material is provided with a brazing layer including a nickel layer 1, a titanium layer 3, and an iron-nickel alloy layer 4 in addition to the aluminum or aluminum alloy layer 2 on the upper surface of the base material 5. Preferably, it has a brazing layer having a structure in which the nickel layer 1, the aluminum or aluminum alloy layer 2, the titanium layer 3, and the iron-nickel alloy layer 4 are laminated in this order from the substrate 5 side. The Al concentration of the entire brazing layer (brazing material) is 1 mass% or more, and the Fe concentration is 5 to 45 mass%.

アルミニウム或いはアルミニウム合金層2は、ろう材の最外層ではなく、中心側に配置することが好ましい。これは、基材5とろう材を一体化させたクラッド材の場合、基材5と低融点のアルミニウム或いはアルミニウム合金層2とが接していると、ろう付け熱処理の過程で、基材5とろう材が著しく反応してしまうためである。   It is preferable that the aluminum or aluminum alloy layer 2 is disposed not on the outermost layer of the brazing material but on the center side. In the case of a clad material in which the base material 5 and the brazing material are integrated, if the base material 5 and the low melting point aluminum or aluminum alloy layer 2 are in contact with each other, This is because the brazing material reacts remarkably.

本実施の形態によれば、基材5とろう付け層を複合一体化しているため、ろう付け時に、ろう材をろう付け箇所に配置する手間が省け、前実施の形態に係るろう付け用複合材と比べて、ろう付け作業性が更に向上する。   According to the present embodiment, since the base material 5 and the brazing layer are combined and integrated, it is possible to save the trouble of arranging the brazing material at the brazing point at the time of brazing, and the brazing composite according to the previous embodiment. Compared to the material, brazing workability is further improved.

本実施の形態に係るろう付け用複合材のろう付け層自体は、前実施の形態に係るろう付け用複合材と同じであるため、本実施の形態に係るろう付け用複合材においても、前実施の形態に係るろう付け用複合材と同様の効果が得られる。   Since the brazing layer itself of the brazing composite material according to the present embodiment is the same as the brazing composite material according to the previous embodiment, the brazing composite material according to the present embodiment also includes The same effect as the brazing composite material according to the embodiment can be obtained.

ろう付け層は基材5の上面だけでなく、図3に示すように、上面と下面の両面に設けてもよい。また、基材5の形状は、板状に限定するものではなく、図4に示すように、棒状又はワイヤ状のものであってもよい。この棒状又はワイヤ状の基材5の周囲全面にろう付け層を複合一体化して設けることで、棒状又はワイヤ状のろう付け用複合材を得ることができる。   The brazing layer may be provided not only on the upper surface of the substrate 5 but also on both the upper surface and the lower surface as shown in FIG. Moreover, the shape of the base material 5 is not limited to a plate shape, and may be a rod shape or a wire shape as shown in FIG. A brazing or wire-like composite material for brazing can be obtained by providing a brazing layer in an integrated manner on the entire periphery of the rod-like or wire-like substrate 5.

本実施の形態に係るろう付け用複合材は、EGR用クーラや燃料電池改質器用クーラなどの熱交換器や、燃料電池用部材のろう材のみに限定されるものではなく、高耐食性が要求される接合分野においては、その用途が限定されないのは言うまでもない。   The brazing composite material according to the present embodiment is not limited to heat exchangers such as EGR coolers and fuel cell reformer coolers, and brazing materials for fuel cell members, and requires high corrosion resistance. Needless to say, the application is not limited in the joining field.

(実施例1)
各ろう材構成元素の単位体積あたりの重量濃度が、Ni:Ti:Al:Fe=48:29:3:20になるように素材の投入厚さを調整した後、Ni条、Al条、Ti条、インバー(登録商標)条を圧延法によりクラッドし、クラッド材を作製した。更に圧延を繰り返し、Ni層、Al層、Ti層、インバー層の合計の厚さを70μmとした。ステンレス鋼(SUS304)板の上に、Ni層を下面にした本クラッド材を載せ、更にその上にステンレス鋼(SUS304)パイプを置いた後、管状炉中、1200℃でろう付け加熱し、ろう付け特性を評価した。
(実施例2)
各ろう材構成元素の単位体積あたりの重量濃度が、Ni:Ti:Al:Fe=48:29:3:20になるように素材の投入厚さを調整した後、Ni条、Al−Fe条、Ti条、インバー(登録商標)条を圧延法によりクラッドし、クラッド材を作製した。更に圧延を繰り返し、Ni層、Al−Fe層、Ti層、インバー層の合計の厚さを70μmとした。ステンレス鋼(SUS304)板の上に、Ni層を下面にした本クラッド材を載せ、更にその上にステンレス鋼(SUS304)パイプを置いた後、管状炉中、1200℃でろう付け加熱し、ろう付け特性を評価した。
(実施例3)
各ろう材構成元素の単位体積あたりの重量濃度が、Ni:Ti:Al:Fe=49:30:1:20になるように素材の投入厚さを調整した後、ステンレス鋼(SUS304)条の表面から順に、Ni条、Al条、Ti条、インバー(登録商標)条を圧延法によりクラッドし、クラッド材を作製した。更に圧延を繰り返し、Ni層、Al層、Ti層、インバー層の合計の厚さを70μmとした。本クラッド材の上にステンレス鋼(SUS304)パイプを置いた後、管状炉中、1200℃でろう付け加熱し、ろう付け特性を評価した。
(実施例4)
各ろう材構成元素の単位体積あたりの重量濃度が、Ni:Ti:Al:Fe=57:35:3:5になるように素材の投入厚さを調整した後、ステンレス鋼(SUS304)条の表面から順に、Ni条、Al条、Ti条、インバー(登録商標)条を圧延法によりクラッドし、クラッド材を作製した。更に圧延を繰り返し、Ni層、Al層、Ti層、インバー層の合計の厚さを70μmとした。本クラッド材の上にステンレス鋼(SUS304)パイプを置いた後、管状炉中、1200℃でろう付け加熱し、ろう付け特性を評価した。
(実施例5)
各ろう材構成元素の単位体積あたりの重量濃度が、Ni:Ti:Al:Fe=32:20:3:45になるように素材の投入厚さを調整した後、ステンレス鋼(SUS304)条の表面から順に、Ni条、Al条、Ti条、インバー(登録商標)条を圧延法によりクラッドし、クラッド材を作製した。更に圧延を繰り返し、Ni層、Al層、Ti層、インバー層の合計の厚さを70μmとした。この時のろう材部のAl濃度は3mass%、Fe濃度は45mass%である。本クラッド材の上にステンレス鋼(SUS304)パイプを置いた後、管状炉中、1200℃でろう付け加熱し、ろう付け特性を評価した。
(比較例1)
各ろう材構成元素の単位体積あたりの重量濃度が、Ni:Ti:Fe=50:30:20になるように素材の投入厚さを調整した後、Ni条、Ti条、インバー(登録商標)条を圧延法によりクラッドし、クラッド材を作製した。更に圧延を繰り返し、Ni層、Ti層、インバー層の合計の厚さを70μmとした。ステンレス鋼(SUS304)板の上に、Ni層を下面にした本クラッド材を載せ、更にその上にステンレス鋼(SUS304)パイプを置いた後、管状炉中、1200℃でろう付け加熱し、ろう付け特性を評価した。
(比較例2)
各ろう材構成元素の単位体積あたりの重量濃度が、Ni:Ti:Fe=50:30:20になるように素材の投入厚さを調整した後、ステンレス鋼(SUS304)条の表面から順に、Ni条、Ti条、インバー(登録商標)条を圧延法によりクラッドし、クラッド材を作製した。更に圧延を繰り返し、Ni層、Ti層、インバー層の合計の厚さを70μmとした。本クラッド材の上にステンレス鋼(SUS304)パイプを置いた後、管状炉中、1200℃でろう付け加熱し、ろう付け特性を評価した。
(比較例3)
各ろう材構成元素の単位体積あたりの重量濃度が、Ni:Ti:Al:Fe=49.1:30.1:0.8:20になるように素材の投入厚さを調整した後、ステンレス鋼(SUS304)条の表面から順に、Ni条、Al条、Ti条、インバー(登録商標)条を圧延法によりクラッドし、クラッド材を作製した。更に圧延を繰り返し、Ni層、Al層、Ti層、インバー層の合計の厚さを70μmとした。本クラッド材の上にステンレス鋼(SUS304)パイプを置いた後、管状炉中、1200℃でろう付け加熱し、ろう付け特性を評価した。
(比較例4)
各ろう材構成元素の単位体積あたりの重量濃度が、Ni:Ti:Al:Fe=58:35:3:4になるように素材の投入厚さを調整した後、ステンレス鋼(SUS304)条の表面から順に、Ni条、Al条、Ti条、インバー(登録商標)条を圧延法によりクラッドし、クラッド材を作製した。更に圧延を繰り返し、Ni層、Al層、Ti層、インバー層の合計の厚さを70μmとした。本クラッド材の上にステンレス鋼(SUS304)パイプを置いた後、管状炉中、1200℃でろう付け加熱し、ろう付け特性を評価した。
(比較例5)
各ろう材構成元素の単位体積あたりの重量濃度が、Ni:Ti:Al:Fe=31:19:3:47になるように素材の投入厚さを調整した後、ステンレス鋼(SUS304)条の表面から順に、Ni条、Al条、Ti条、インバー(登録商標)条を圧延法によりクラッドし、クラッド材を作製した。更に圧延を繰り返し、Ni層、Al層、Ti層、インバー層の合計の厚さを70μmとした。本クラッド材の上にステンレス鋼(SUS304)パイプを置いた後、管状炉中、1200℃でろう付け加熱し、ろう付け特性を評価した。
(比較例6)
各ろう材構成元素の単位体積あたりの重量濃度が、Ni:Al:Mn=68:20:12になるように素材の投入厚さを調整した後、ステンレス鋼(SUS304)条の表面から順に、Al条、Ni−Mn条を圧延法によりクラッドし、クラッド材を作製した。更に圧延を繰り返し、Ni−Mn層、Al層の合計の厚さを70μmとした。本クラッド材の上にステンレス鋼(SUS304)パイプを置いた後、管状炉中、1200℃でろう付け加熱し、ろう付け特性を評価した。
(比較例7)
各ろう材構成元素の単位体積あたりの重量濃度が、Ni:Al=45:55になるように素材の投入厚さを調整した後、ステンレス鋼(SUS304)条の表面から順に、Al条、Ni条を圧延法によりクラッドし、クラッド材を作製した。更に圧延を繰り返し、Ni層、Al層の合計の厚さを70μmとした。本クラッド材の上にステンレス鋼(SUS304)パイプを置いた後、管状炉中、1200℃でろう付け加熱し、ろう付け特性を評価した。
(比較例8)
各ろう材構成元素の単位体積あたりの重量濃度が、Ni:Al:Zn=42:25:33になるように素材の投入厚さを調整した後、ステンレス鋼(SUS304)条の表面から順に、Al条、Zn条、Ni条を圧延法によりクラッドし、クラッド材を作製した。更に圧延を繰り返し、Ni層、Zn層、Al層の合計の厚さを70μmとした。本クラッド材の上にステンレス鋼(SUS304)パイプを置いた後、管状炉中、1200℃でろう付け加熱し、ろう付け特性を評価した。
(比較例9)
各ろう材構成元素の単位体積あたりの重量濃度が、Al:Cu:Ti=3:64:33になるように素材の投入厚さを調整した後、ステンレス鋼(SUS304)条の表面から順に、Ti条、Cu条、Al条を圧延法によりクラッドし、クラッド材を作製した。更に圧延を繰り返し、Al層、Cu層、Ti層の合計の厚さを70μmとした。本クラッド材の上にステンレス鋼(SUS304)パイプを置いた後、管状炉中、1200℃でろう付け加熱し、ろう付け特性を評価した。
(比較例10)
各ろう材構成元素の単位体積あたりの重量濃度が、Al:Ni:Ti:Cu=4:24:24:48になるように素材の投入厚さを調整した後、ステンレス鋼(SUS304)条の表面から順に、Cu条、Ti条、Ni条、Al条を圧延法によりクラッドし、クラッド材を作製した。更に圧延を繰り返し、Al層、Ni層、Ti層、Cu層の合計の厚さを70μmとした。本クラッド材の上にステンレス鋼(SUS304)パイプを置いた後、管状炉中、1200℃でろう付け加熱し、ろう付け特性を評価した。
(従来例1)
クラッド材の材料としてステンレス鋼(SUS304)条、銅条を用い、圧延法により2層構造のろう付け用クラッド材を作製した。また、銅層の厚さが70μmになるように圧延加工を行った。本クラッド材を管状炉で1120℃に加熱し、ろう層を溶融させた後、ろう付け特性を評価した。
(従来例2)
ステンレス鋼(SUS304)条の片面に、市販の粉末Niろう材(Ni−19mass%Cr−10mass%Si)を合成樹脂バインダで溶いたものを塗布し、ろう材を作製した。本ろう材を管状炉で1180℃に加熱し、ろう層を溶融させた後、ろう付け特性を評価した。
Example 1
After adjusting the raw material input thickness so that the weight concentration per unit volume of each brazing filler constituent element is Ni: Ti: Al: Fe = 48: 29: 3: 20, Ni strip, Al strip, Ti Strips and Invar (registered trademark) strips were clad by a rolling method to produce a clad material. Furthermore, rolling was repeated, and the total thickness of the Ni layer, Al layer, Ti layer, and Invar layer was set to 70 μm. The clad material with the Ni layer on the lower surface is placed on a stainless steel (SUS304) plate, and a stainless steel (SUS304) pipe is placed on the clad material. The attachment characteristics were evaluated.
(Example 2)
After adjusting the thickness of the raw material so that the weight concentration per unit volume of each brazing filler metal constituent element is Ni: Ti: Al: Fe = 48: 29: 3: 20, Ni strips, Al-Fe strips Ti strips and Invar (registered trademark) strips were clad by a rolling method to produce a clad material. Furthermore, rolling was repeated, and the total thickness of the Ni layer, the Al—Fe layer, the Ti layer, and the Invar layer was set to 70 μm. The clad material with the Ni layer on the lower surface is placed on a stainless steel (SUS304) plate, and a stainless steel (SUS304) pipe is placed on the clad material. The attachment characteristics were evaluated.
(Example 3)
After adjusting the input thickness of the material so that the weight concentration per unit volume of each brazing material constituent element is Ni: Ti: Al: Fe = 49: 30: 1: 20, the stainless steel (SUS304) strip In order from the surface, Ni strips, Al strips, Ti strips, and Invar (registered trademark) strips were clad by a rolling method to produce a clad material. Furthermore, rolling was repeated, and the total thickness of the Ni layer, Al layer, Ti layer, and Invar layer was set to 70 μm. A stainless steel (SUS304) pipe was placed on the clad material, and then brazed at 1200 ° C. in a tubular furnace to evaluate the brazing characteristics.
Example 4
After adjusting the input thickness of the material so that the weight concentration per unit volume of each brazing material constituent element is Ni: Ti: Al: Fe = 57: 35: 3: 5, the stainless steel (SUS304) strip In order from the surface, Ni strips, Al strips, Ti strips, and Invar (registered trademark) strips were clad by a rolling method to produce a clad material. Furthermore, rolling was repeated, and the total thickness of the Ni layer, Al layer, Ti layer, and Invar layer was set to 70 μm. A stainless steel (SUS304) pipe was placed on the clad material, and then brazed at 1200 ° C. in a tubular furnace to evaluate the brazing characteristics.
(Example 5)
After adjusting the input thickness of the material so that the weight concentration per unit volume of each brazing filler constituent element is Ni: Ti: Al: Fe = 32: 20: 3: 45, the stainless steel (SUS304) strip In order from the surface, Ni strips, Al strips, Ti strips, and Invar (registered trademark) strips were clad by a rolling method to produce a clad material. Furthermore, rolling was repeated, and the total thickness of the Ni layer, Al layer, Ti layer, and Invar layer was set to 70 μm. At this time, the Al concentration in the brazing filler metal portion is 3 mass%, and the Fe concentration is 45 mass%. A stainless steel (SUS304) pipe was placed on the clad material, and then brazed at 1200 ° C. in a tubular furnace to evaluate the brazing characteristics.
(Comparative Example 1)
After adjusting the thickness of the raw material so that the weight concentration per unit volume of each brazing material constituent element is Ni: Ti: Fe = 50: 30: 20, Ni strip, Ti strip, Invar (registered trademark) The strip was clad by a rolling method to produce a clad material. Furthermore, rolling was repeated so that the total thickness of the Ni layer, Ti layer, and Invar layer was 70 μm. The clad material with the Ni layer on the lower surface is placed on a stainless steel (SUS304) plate, and a stainless steel (SUS304) pipe is placed on the clad material. The attachment characteristics were evaluated.
(Comparative Example 2)
After adjusting the input thickness of the raw material so that the weight concentration per unit volume of each brazing filler constituent element is Ni: Ti: Fe = 50: 30: 20, in order from the surface of the stainless steel (SUS304) strip, Ni strips, Ti strips, and Invar (registered trademark) strips were clad by a rolling method to produce a clad material. Furthermore, rolling was repeated so that the total thickness of the Ni layer, Ti layer, and Invar layer was 70 μm. A stainless steel (SUS304) pipe was placed on the clad material, and then brazed at 1200 ° C. in a tubular furnace to evaluate the brazing characteristics.
(Comparative Example 3)
After adjusting the feed thickness of the material so that the weight concentration per unit volume of each brazing filler constituent element is Ni: Ti: Al: Fe = 49.1: 30.1: 0.8: 20, stainless steel In order from the surface of the steel (SUS304) strip, Ni strip, Al strip, Ti strip, and Invar (registered trademark) strip were clad by a rolling method to produce a clad material. Furthermore, rolling was repeated, and the total thickness of the Ni layer, Al layer, Ti layer, and Invar layer was set to 70 μm. A stainless steel (SUS304) pipe was placed on the clad material, and then brazed at 1200 ° C. in a tubular furnace to evaluate the brazing characteristics.
(Comparative Example 4)
After adjusting the input thickness of the material so that the weight concentration per unit volume of each brazing material constituent element is Ni: Ti: Al: Fe = 58: 35: 3: 4, the stainless steel (SUS304) strip In order from the surface, Ni strips, Al strips, Ti strips, and Invar (registered trademark) strips were clad by a rolling method to produce a clad material. Furthermore, rolling was repeated, and the total thickness of the Ni layer, Al layer, Ti layer, and Invar layer was set to 70 μm. A stainless steel (SUS304) pipe was placed on the clad material, and then brazed at 1200 ° C. in a tubular furnace to evaluate the brazing characteristics.
(Comparative Example 5)
After adjusting the input thickness of the material so that the weight concentration per unit volume of each brazing material constituent element is Ni: Ti: Al: Fe = 31: 19: 3: 47, the stainless steel (SUS304) strip In order from the surface, Ni strips, Al strips, Ti strips, and Invar (registered trademark) strips were clad by a rolling method to produce a clad material. Furthermore, rolling was repeated, and the total thickness of the Ni layer, Al layer, Ti layer, and Invar layer was set to 70 μm. A stainless steel (SUS304) pipe was placed on the clad material, and then brazed at 1200 ° C. in a tubular furnace to evaluate the brazing characteristics.
(Comparative Example 6)
After adjusting the input thickness of the raw material so that the weight concentration per unit volume of each brazing material constituent element is Ni: Al: Mn = 68: 20: 12, in order from the surface of the stainless steel (SUS304) strip, The Al strip and Ni-Mn strip were clad by a rolling method to produce a clad material. Further, the rolling was repeated so that the total thickness of the Ni—Mn layer and the Al layer was 70 μm. A stainless steel (SUS304) pipe was placed on the clad material, and then brazed at 1200 ° C. in a tubular furnace to evaluate the brazing characteristics.
(Comparative Example 7)
After adjusting the material input thickness so that the weight concentration per unit volume of each brazing filler constituent element is Ni: Al = 45: 55, the Al strip, Ni are sequentially formed from the surface of the stainless steel (SUS304) strip. The strip was clad by a rolling method to produce a clad material. Furthermore, rolling was repeated so that the total thickness of the Ni layer and the Al layer was 70 μm. A stainless steel (SUS304) pipe was placed on the clad material, and then brazed at 1200 ° C. in a tubular furnace to evaluate the brazing characteristics.
(Comparative Example 8)
After adjusting the input thickness of the material so that the weight concentration per unit volume of each brazing material constituent element is Ni: Al: Zn = 42: 25: 33, in order from the surface of the stainless steel (SUS304) strip, The Al strip, Zn strip, and Ni strip were clad by a rolling method to produce a clad material. Furthermore, rolling was repeated so that the total thickness of the Ni layer, Zn layer, and Al layer was 70 μm. A stainless steel (SUS304) pipe was placed on the clad material, and then brazed at 1200 ° C. in a tubular furnace to evaluate the brazing characteristics.
(Comparative Example 9)
After adjusting the input thickness of the material so that the weight concentration per unit volume of each brazing material constituent element is Al: Cu: Ti = 3: 64: 33, in order from the surface of the stainless steel (SUS304) strip, Ti strips, Cu strips, and Al strips were clad by a rolling method to produce a clad material. Furthermore, rolling was repeated so that the total thickness of the Al layer, Cu layer, and Ti layer was 70 μm. A stainless steel (SUS304) pipe was placed on the clad material, and then brazed at 1200 ° C. in a tubular furnace to evaluate the brazing characteristics.
(Comparative Example 10)
After adjusting the input thickness of the material so that the weight concentration per unit volume of each brazing material constituent element is Al: Ni: Ti: Cu = 4: 24: 24: 48, the stainless steel (SUS304) strip In order from the surface, Cu strip, Ti strip, Ni strip, and Al strip were clad by a rolling method to produce a clad material. Furthermore, rolling was repeated, and the total thickness of the Al layer, Ni layer, Ti layer, and Cu layer was set to 70 μm. A stainless steel (SUS304) pipe was placed on the clad material, and then brazed at 1200 ° C. in a tubular furnace to evaluate the brazing characteristics.
(Conventional example 1)
A stainless steel (SUS304) strip and a copper strip were used as the clad material, and a two-layer brazing clad material was produced by a rolling method. Further, the rolling process was performed so that the thickness of the copper layer was 70 μm. The clad material was heated to 1120 ° C. in a tubular furnace to melt the brazing layer, and then the brazing characteristics were evaluated.
(Conventional example 2)
A brazing material was prepared by applying a commercially available powder Ni brazing material (Ni-19 mass% Cr-10 mass% Si) with a synthetic resin binder to one side of a stainless steel (SUS304) strip. The brazing material was heated to 1180 ° C. in a tubular furnace to melt the brazing layer, and then the brazing characteristics were evaluated.

表1は、実施例、比較例、および従来例のろう付け用クラッド材、または市販の粉末ろう材に対して、ろう付け後の基材の残存率、腐食試験の結果、フィレット形成状態(湯流れ性)、ろう付け生産性を比較し、それぞれのろう材の総合評価を行ったものである。   Table 1 shows the residual ratio of the base material after brazing, the results of the corrosion test, the fillet formation state (hot water) for the brazing clad materials of Examples, Comparative Examples, and Conventional Examples, or commercially available powder brazing materials. Flowability) and brazing productivity are compared, and a comprehensive evaluation of each brazing material is performed.

基材の残存率については、ろう付け前後の基材の板厚変化を断面観察によって測定し、板厚の平均減少率及び最大減少率について評価した。   About the residual rate of the base material, the plate | board thickness change of the base material before and behind brazing was measured by cross-sectional observation, and the average reduction | decrease rate and maximum reduction | decrease rate of plate | board thickness were evaluated.

腐食試験は、次の2種の方法で評価した。第一の方法として、塩素イオン、硝酸イオン、硫酸イオンを含んだ腐食性溶液中に試料を1000h浸漬し、取り出した後のろう付け部について詳細な観察を行い、腐食の発生の有無を調査した。第二の方法として、ろう付け試料を600℃の大気中で最大300h保持し、腐食による重量変化量及び腐食生成物の生成量により評価した。   The corrosion test was evaluated by the following two methods. As a first method, the sample was immersed in a corrosive solution containing chlorine ions, nitrate ions, and sulfate ions for 1000 hours, and the brazed portion after taking out was observed in detail, and the presence or absence of corrosion was investigated. . As a second method, the brazed sample was held in the atmosphere at 600 ° C. for a maximum of 300 hours, and evaluated by the amount of change in weight due to corrosion and the amount of corrosion products generated.

強度試験は、各々のろう材を用いてステンレス鋼部材同士を接合し、部材同士の接合面と垂直方向に応力を加える引張試験を行い、その引張強度により評価した。試験温度は常温とした。   In the strength test, stainless steel members were joined using each brazing material, a tensile test was performed in which stress was applied in a direction perpendicular to the joining surfaces of the members, and the tensile strength was evaluated. The test temperature was room temperature.

湯流れ性については、ろう付け熱処理した後のステンレス鋼基材/ステンレス鋼パイプ接合部に形成されるフィレットの形状及び断面積により評価した。   The hot water flowability was evaluated by the shape and cross-sectional area of the fillet formed at the stainless steel substrate / stainless steel pipe joint after brazing heat treatment.

Figure 0004821520
Figure 0004821520

表1に示すように、ろう材中を占めるFe濃度が同じ20mass%であっても、インバー/Ti/Niというろう材部の構成を持つ比較例1,2は、腐食試験、特に600℃での酸化試験で不十分の結果となった。これに対し、Alをろう材中に添加し、インバー/Ti/Al/Niというろう材部の構成を持つ実施例1,2については、十分な耐食性を確保することができた。   As shown in Table 1, even when the Fe concentration in the brazing material is the same 20 mass%, Comparative Examples 1 and 2 having the configuration of the brazing filler metal part of Invar / Ti / Ni are corrosion tests, particularly at 600 ° C. Insufficient results were obtained in the oxidation test. On the other hand, in Examples 1 and 2 in which Al was added to the brazing material and the structure of the brazing material portion of Invar / Ti / Al / Ni was sufficient, sufficient corrosion resistance could be secured.

また、インバー/Ti/Al/Niというろう材部の構成で、同じくFe濃度を20mass%とした場合、実施例3に示すように、Al濃度が1mass%以上であれば、耐食性能を十分確保できるが、比較例3に示すように、Al濃度が0.8mass%では、十分な耐食性が得られないことがわかった。このことから、腐食環境下で良好な耐食性を得るためのろう材中のAl濃度は、1mass%以上であることがわかった。   In addition, in the structure of the brazing filler metal part of Invar / Ti / Al / Ni, when the Fe concentration is 20 mass%, as shown in Example 3, if the Al concentration is 1 mass% or more, sufficient corrosion resistance is ensured. However, as shown in Comparative Example 3, it was found that sufficient corrosion resistance could not be obtained when the Al concentration was 0.8 mass%. From this, it was found that the Al concentration in the brazing material for obtaining good corrosion resistance in a corrosive environment is 1 mass% or more.

Al濃度が1mass%以上であっても、ろう材中にTiを含まない比較例6〜8については、浸漬腐食試験の結果で実施例のろう材よりも劣ることがわかった。また、これら比較例6〜8の他、比較例9に示すAl/Cu/Ti/SUS、比較例10に示すAl/Ni/Ti/Cu/SUSは、強度試験の結果、実施例のろう材よりも劣ることがわかった。   Even when the Al concentration was 1 mass% or more, it was found that Comparative Examples 6 to 8 containing no Ti in the brazing material were inferior to the brazing material of the examples in the results of the immersion corrosion test. In addition to these Comparative Examples 6 to 8, Al / Cu / Ti / SUS shown in Comparative Example 9 and Al / Ni / Ti / Cu / SUS shown in Comparative Example 10 are the brazing materials of Examples as a result of the strength test. It turned out to be inferior.

次に、ろう材中のAl濃度を3mass%の一定とした場合、Fe濃度が5mass%及び45mass%の実施例4,5では、ろう材中の基材残存率が良好で、かつ、腐食試験でも問題ないことがわかった。また、湯流れ性も良好であった。これに対して、比較例4のように、Fe濃度が4mass%と少ない場合、基材の食われを十分に抑制することができなかった。逆に、比較例5のように、Fe濃度が47mass%と多い場合、基材の食われは抑制できるものの、耐食性が不十分であることに加え、Fe濃度の増加に伴い融点が上昇し、湯流れ性が悪くなることがわかった。このことから、ろう材中のFe濃度としては、5〜45mass%が適正であることがわかった。   Next, when the Al concentration in the brazing material is constant at 3 mass%, in Examples 4 and 5 in which the Fe concentration is 5 mass% and 45 mass%, the base material residual ratio in the brazing material is good and the corrosion test is performed. But it turned out that there was no problem. Moreover, the hot water flowability was also good. On the other hand, when the Fe concentration was as low as 4 mass% as in Comparative Example 4, the biting of the base material could not be sufficiently suppressed. Conversely, as in Comparative Example 5, when the Fe concentration is as high as 47 mass%, although the biting of the base material can be suppressed, in addition to insufficient corrosion resistance, the melting point increases with an increase in Fe concentration, It was found that the hot water flow was poor. From this, it was found that 5 to 45 mass% is appropriate as the Fe concentration in the brazing filler metal.

その他、Fe−Ni合金として、インバー合金の代わりに42アロイを用いて試験を行った結果、同様の効果が得られることを確認した。   In addition, as a result of performing a test using 42 alloy as the Fe—Ni alloy instead of the Invar alloy, it was confirmed that the same effect was obtained.

金属層の積層構造に関しては、Tiを最外層とした場合、ろう付け熱処理の過程で外気(O,N,Cなど)と反応しやすいため、湯流れが低下することがわかった。また、Alを最外層とした場合、1200℃程度のろう付け温度に対して、Alの融点が660℃と十分に低いため、ろう材部の溶融・混合が十分に行われる前に、Al成分のみが特定の接合箇所へ流れてしまう不具合が生じることがわかった。つまり、ろう材部の積層構造としては、インバー/Ti/Al/Niが望ましい。   Regarding the laminated structure of the metal layer, it was found that when Ti is the outermost layer, the hot metal flow is lowered because it easily reacts with the outside air (O, N, C, etc.) during the brazing heat treatment. Further, when Al is the outermost layer, the melting point of Al is sufficiently low at 660 ° C. with respect to a brazing temperature of about 1200 ° C. Therefore, before the brazing material part is sufficiently melted and mixed, the Al component It has been found that there is a problem that only flows to a specific joint. That is, the invar / Ti / Al / Ni is desirable as the laminated structure of the brazing filler metal part.

本発明の好適一実施の形態に係るろう付け用複合材の横断面図である。1 is a cross-sectional view of a brazing composite material according to a preferred embodiment of the present invention. 本発明の他の好適一実施の形態に係るろう付け用複合材の横断面図である。It is a cross-sectional view of a composite material for brazing according to another preferred embodiment of the present invention. 図2の第1変形例を示す図である。It is a figure which shows the 1st modification of FIG. 図2の第2変形例を示す図である。It is a figure which shows the 2nd modification of FIG.

符号の説明Explanation of symbols

1 ニッケル層
2 アルミニウム或いはアルミニウム合金層
3 チタン層
4 鉄−ニッケル合金層
1 Nickel layer 2 Aluminum or aluminum alloy layer 3 Titanium layer 4 Iron-nickel alloy layer

Claims (3)

4種の金属で構成される複合材であり、その複合材がニッケル層、アルミニウム或いはアルミニウム合金層、チタン層、鉄−ニッケル合金層の順に積層させた構造であり、複合材全体のAl濃度が1mass%以上、かつ、Fe濃度が5〜45mass%であることを特徴とするろう付け用複合材。 A composite material constituted by four metal, the composite material is a nickel layer, an aluminum or aluminum alloy layer, a titanium layer, an iron - Ri structures der formed by laminating in this order a nickel alloy layer, Al concentration of the total composite Is 1 mass% or more, and the Fe concentration is 5 to 45 mass% . ステンレス鋼製の基材の片面もしくは両面に、4種の金属で構成される複合材からなるろう付け層を複合一体化してなり、そのろう付け層が、基材側からニッケル層、アルミニウム或いはアルミニウム合金層、チタン層、鉄−ニッケル合金層の順に積層させた構造であり、ろう付け層全体のAl濃度が1mass%以上、かつ、Fe濃度が5〜45mass%であることを特徴とするろう付け用複合材。 A brazing layer made of a composite material composed of four kinds of metals is combined and integrated on one or both surfaces of a stainless steel base material, and the brazing layer is nickel layer, aluminum or aluminum from the base material side. alloy layer, a titanium layer, an iron - Ri structures der formed by laminating in this order a nickel alloy layer, wax is Al concentration of the whole brazing layer 1 mass% or more and, Fe concentration is characterized by a 5~45Mass% Attached composite material. 請求項1又は2に記載のろう付け用複合材を用いてろう付け接合されたことを特徴とするろう付け製品。 Brazing product characterized in that it is brazed with the brazing composite material according to claim 1 or 2.
JP2006236069A 2006-08-31 2006-08-31 Brazing composite material and brazing product using the same Expired - Fee Related JP4821520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006236069A JP4821520B2 (en) 2006-08-31 2006-08-31 Brazing composite material and brazing product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006236069A JP4821520B2 (en) 2006-08-31 2006-08-31 Brazing composite material and brazing product using the same

Publications (2)

Publication Number Publication Date
JP2008055470A JP2008055470A (en) 2008-03-13
JP4821520B2 true JP4821520B2 (en) 2011-11-24

Family

ID=39238829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006236069A Expired - Fee Related JP4821520B2 (en) 2006-08-31 2006-08-31 Brazing composite material and brazing product using the same

Country Status (1)

Country Link
JP (1) JP4821520B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4107553B2 (en) * 2001-06-07 2008-06-25 日立電線株式会社 Brazing composite material and brazing product using the same
JP3765533B2 (en) * 2001-10-11 2006-04-12 日立電線株式会社 Brazing composite material and brazing product using the same
JP3891137B2 (en) * 2003-03-28 2007-03-14 日立電線株式会社 Brazing composite material and brazing product using the same
JP4239853B2 (en) * 2004-02-27 2009-03-18 日立電線株式会社 Brazing composite material, method for producing the same, and brazed product
JP2006334603A (en) * 2005-05-31 2006-12-14 Hitachi Cable Ltd Composite material for brazing, and brazed product using the same
JP2006334605A (en) * 2005-05-31 2006-12-14 Hitachi Cable Ltd Brazing filler metal, and brazed product using the same

Also Published As

Publication number Publication date
JP2008055470A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP5157864B2 (en) Brazing clad material and brazing product
JP2002363707A (en) Composite material for brazing and brazed product using the composite material
JP4507942B2 (en) Brazing clad material and brazing product using the same
JP3765533B2 (en) Brazing composite material and brazing product using the same
JP3915726B2 (en) Brazing composite material and brazing product using the same
WO2000018537A1 (en) Brazing filler alloy for stainless steel, brazed structure manufactured by using the brazing filler alloy, and brazing filler material for stainless steel
JP2006334603A (en) Composite material for brazing, and brazed product using the same
JP2006334605A (en) Brazing filler metal, and brazed product using the same
JP4821520B2 (en) Brazing composite material and brazing product using the same
JP2003117686A (en) Composite material for brazing, and brazed product obtained by using the composite material
JP2003117679A (en) Composite brazing filler metal and composite material for brazing and brazing method
JP4507943B2 (en) Brazing clad material and brazing product using the same
JP4239853B2 (en) Brazing composite material, method for producing the same, and brazed product
JP4196776B2 (en) Brazing composite material and method for producing the same
JP4821503B2 (en) Brazing composite material and brazing product using the same
JP3909015B2 (en) Brazing composite material, brazing method and brazing product using the same
JP2003117685A (en) Composite brazing filler metal, composite material for brazing, and brazed product
JP4835862B2 (en) Brazing composite material and brazing product using the same
JP2003071586A (en) Brazing composite material and brazing product using the same
JP2008212985A (en) Composite material for brazing and brazed product using the same
JP4239764B2 (en) Brazing composite material and brazing method using the same
JP2005088071A (en) Composite material for brazing and brazed product using the same
JP4835863B2 (en) Brazing composite material and brazing product using the same
JP2005103610A (en) Composite material for brazing and brazed product using the same
JP2006334606A (en) Brazing filler metal, composite material for brazing, and brazed product using them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees