JP4820115B2 - Heat storage system - Google Patents

Heat storage system Download PDF

Info

Publication number
JP4820115B2
JP4820115B2 JP2005158123A JP2005158123A JP4820115B2 JP 4820115 B2 JP4820115 B2 JP 4820115B2 JP 2005158123 A JP2005158123 A JP 2005158123A JP 2005158123 A JP2005158123 A JP 2005158123A JP 4820115 B2 JP4820115 B2 JP 4820115B2
Authority
JP
Japan
Prior art keywords
heat
hot water
underground
amount
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005158123A
Other languages
Japanese (ja)
Other versions
JP2006329598A (en
Inventor
直樹 森
秀光 小柳
裕 小峰
真壮 井上
容子 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Research Institute Ltd
Original Assignee
Japan Research Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Research Institute Ltd filed Critical Japan Research Institute Ltd
Priority to JP2005158123A priority Critical patent/JP4820115B2/en
Publication of JP2006329598A publication Critical patent/JP2006329598A/en
Application granted granted Critical
Publication of JP4820115B2 publication Critical patent/JP4820115B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、蓄熱システム、および建造物に関する。特に本発明は、建造物の地下に低コストで蓄熱する蓄熱システムおよび建造物に関する。   The present invention relates to a heat storage system and a building. In particular, the present invention relates to a heat storage system and a building that store heat in the basement of the building at low cost.

熱電気併給装置から負荷に電力および温水を供給するコージェネレーションシステムとして、電力の消費状態および温水の消費状態に基づいて、複数の熱電気併給装置の運転台数を決定するシステムがある(例えば、特許文献1参照。)。このシステムでは、燃料電池の発電時に発生する熱によって温められた温水を貯湯タンクに貯湯して、貯湯された温水を給湯負荷に供給する。
特開2003-199254号公報
As a cogeneration system that supplies electric power and hot water to a load from a cogeneration device, there is a system that determines the number of operating cogeneration devices based on the power consumption state and the hot water consumption state (for example, a patent) Reference 1). In this system, hot water heated by heat generated during fuel cell power generation is stored in a hot water storage tank, and the stored hot water is supplied to a hot water supply load.
JP 2003-199254 A

住宅における温水の消費量は、季節毎或いは一日の時間帯毎に大きく変動する。このような温水消費量の変動に対応すべく熱電気併給装置の運転台数、発電量の調整を繰り返すと、熱電気併給装置のエネルギー効率が低下してしまう。このようなエネルギー効率の低下を避けつつ温水の消費量の変動に対応すべく、大容量の貯湯槽、温水を生成するバーナ等を設置すると、貯湯槽、バーナ等の設備コストが増大してしまうので好ましくない。したがって、コージェネレーションシステムには、熱電気併給装置からの熱量を低コストでより多くの熱量を蓄熱することができる蓄熱システムが備えられることが望ましい。   The amount of hot water consumed in a house varies greatly from season to season or from day to day. If the adjustment of the number of operating heat / electricity supply devices and the amount of power generation is repeated in order to cope with such fluctuations in the consumption of hot water, the energy efficiency of the heat / electricity supply device will decrease. If a large-capacity hot water storage tank or a burner that generates hot water is installed in order to respond to fluctuations in the consumption of hot water while avoiding such a decrease in energy efficiency, the equipment costs for the hot water storage tank and burner will increase. Therefore, it is not preferable. Therefore, it is desirable that the cogeneration system is provided with a heat storage system that can store a larger amount of heat at a low cost from the heat and power supply device.

そこで本発明は、上記の課題を解決することができる蓄熱システムおよび建造物を提供することを目的とする。この目的は特許請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。   Then, an object of this invention is to provide the thermal storage system and building which can solve said subject. This object is achieved by a combination of features described in the independent claims. The dependent claims define further advantageous specific examples of the present invention.

本発明の第1の形態における蓄熱システムは、電力および熱量を生成する分散型電源と、分散型電源から電力および熱量を供給される建造物と、建造物の下方に設けられて、建造物を支える地中杭と、地中杭の内部の外周近傍に設けられ、分散型電源が生成する熱量によって加温された熱媒体を流すことによって、建造物よりも下方の地下部に蓄熱する蓄熱配管とを備える。   A heat storage system according to a first aspect of the present invention includes a distributed power source that generates electric power and heat, a building that is supplied with electric power and heat from the distributed power source, and a building provided below the building. Underground piles to support and heat storage pipes installed near the outer periphery of the underground piles that store heat in the underground part below the building by flowing a heat medium heated by the amount of heat generated by the distributed power source With.

地下部は、水を通す帯水層と、帯水層よりも下方にあり帯水層よりも水を通しにくい不透水層を有し、地中杭を囲み、少なくとも建造物の下方から不透水層にまで達する、帯水層よりも水を通しにくい地中壁を更に備え、蓄熱配管は、不透水層よりも上方に位置する。地中壁は、地下部を掘削するときに、掘削されてできる壁面が崩れることを防ぐ山留めである。   The underground part has an aquifer that allows water to pass through and an impermeable layer that is below the aquifer and that is less likely to pass water than the aquifer, surrounds underground piles, and is impervious at least from below the building. It further includes an underground wall that reaches the layer and is less likely to pass water than the aquifer, and the heat storage pipe is located above the impermeable layer. The underground wall is a mountain stop that prevents the excavated wall from collapsing when excavating the underground.

地下部は、不透水層よりも堅牢で、不透水層よりも下方にある支持地盤を有し、地中杭は、支持地盤にまで達しており、蓄熱配管は、不透水層よりも上方に位置する。地中杭は、建造物の下方に複数設けられており、蓄熱配管は、地中壁に隣接する地中杭よりも内側の地中杭に設けられる。   The underground part is more robust than the impermeable layer, has a supporting ground below the impermeable layer, the underground pile reaches the supporting ground, and the heat storage pipe is above the impermeable layer To position. A plurality of underground piles are provided below the building, and the heat storage pipes are provided on the underground piles inside the underground pile adjacent to the underground wall.

分散型電源の生成する熱量が熱負荷によって消費さる熱量より多い場合に、分散型電源の生成する熱量によって加温された熱媒体を蓄熱配管に流すことによって地下部に蓄熱する制御部を更に備える。制御部は、分散型電源の生成する熱量が熱負荷によって消費される熱量より少ない場合に、分散型電源の熱量によって加温された熱媒体よりも温度の低い熱媒体を蓄熱配管に流して加温し、加温された熱媒体の熱量を熱負荷に供給する。   When the amount of heat generated by the distributed power source is greater than the amount of heat consumed by the heat load, the control unit further stores heat in the underground portion by flowing a heat medium heated by the amount of heat generated by the distributed power source through the heat storage pipe. . When the amount of heat generated by the distributed power source is less than the amount of heat consumed by the heat load, the control unit applies a heat medium having a temperature lower than that of the heat medium heated by the heat amount of the distributed power source to the heat storage piping. The amount of heat of the heated heating medium is supplied to the heat load.

熱負荷に熱量を供給すべく、分散型電源の生成する熱量によって加温された温水を貯湯する貯湯槽を更に備え、蓄熱配管は、貯湯槽と接続されており、制御部は、貯湯槽に熱量を更に蓄熱できない場合に、貯湯槽に貯湯された温水を蓄熱配管に流して地下部に蓄熱し、貯湯槽に蓄熱された熱量が熱負荷によって必要とされる熱量より少ない場合に、地下部に蓄積された熱量によって蓄熱配管を流れる水を加温し、加温して得られる温水を貯湯槽に供給する。   In order to supply heat to the heat load, it is further provided with a hot water storage tank for storing hot water heated by the heat generated by the distributed power source, the heat storage pipe is connected to the hot water storage tank, and the control unit is connected to the hot water storage tank. When the amount of heat cannot be stored further, the hot water stored in the hot water storage tank is poured into the heat storage piping to store heat in the basement, and when the amount of heat stored in the hot water storage tank is less than the amount of heat required by the heat load, The water flowing through the heat storage pipe is heated by the amount of heat accumulated in the hot water, and the hot water obtained by heating is supplied to the hot water storage tank.

蓄熱配管は、貯湯槽の温水を循環させるべく、貯湯槽の下部の温水を取り出す下部取出口と、下部よりも上方の温水を取り出す上部取出口とに接続されており、制御部は、貯湯槽に熱量を更に蓄熱できない場合に、上部取出口から取り出した温水を蓄熱配管に流して地下部に熱量を提供させた後に、下部取出口から貯湯槽に温水を戻し、貯湯槽に蓄熱された熱量が熱負荷によって必要とされる熱量より少ない場合に、下部取出口から蓄熱配管に温水を取り出して地下部に蓄積された熱量で加温し、加温した温水を上部取出口から貯湯槽に供給する。   The heat storage pipe is connected to a lower outlet for extracting hot water in the lower part of the hot water tank and an upper outlet for extracting hot water above the lower part in order to circulate the hot water in the hot water tank. When the amount of heat cannot be stored further, the hot water taken from the upper outlet is made to flow through the heat storage piping to provide heat to the underground, and then the hot water is returned from the lower outlet to the hot water tank and the amount of heat stored in the hot water tank When the amount of heat is less than the amount of heat required by the heat load, hot water is taken out from the lower outlet to the heat storage pipe and heated with the amount of heat accumulated in the basement, and the heated hot water is supplied from the upper outlet to the hot water tank To do.

熱負荷に熱量を供給すべく、分散型電源の生成する熱量によって加温された温水を貯湯する貯湯槽と、蓄熱配管に接続され、蓄熱配管を流れる熱媒体と、貯湯槽に貯湯された温水との間で熱量を交換させる熱交換部とを更に備え、制御部は、貯湯槽に熱量を更に蓄熱できない場合に、熱交換部を介して、貯湯槽の温水によって加温された熱媒体を蓄熱配管に流して地下部に蓄熱し、貯湯槽に蓄熱された熱量が熱負荷によって必要とされる熱量より少ない場合に、地下部に蓄積された熱量によって蓄熱配管を流れる熱媒体を加温し、熱交換部を介して、貯湯槽の温水を加温する。   A hot water tank that stores hot water heated by the amount of heat generated by the distributed power source to supply heat to the heat load, a heat medium that is connected to the heat storage pipe and flows through the heat storage pipe, and hot water stored in the hot water tank And a heat exchanging unit that exchanges the amount of heat between the heat storage unit and the control unit, when the amount of heat cannot be further stored in the hot water storage tank, the heat medium heated by the hot water in the hot water storage tank through the heat exchange unit. If the amount of heat stored in the hot water storage tank is less than the amount of heat required by the heat load, the heat medium flowing through the heat storage piping is heated by the amount of heat stored in the basement. The warm water in the hot water tank is heated through the heat exchange unit.

貯湯槽の下部の温水を取り出す下部取出口と、下部よりも上方の温水を取り出す上部取出口とを接続し、貯湯槽の温水を循環させる温水循環配管を更に備え、制御部は、貯湯槽に熱量を更に蓄熱できない場合に、熱交換部を介して、上部取出口から温水循環配管に取り出された温水によって蓄熱配管を流れる熱媒体を加温し、貯湯槽に蓄熱された熱量が熱負荷によって必要とされる熱量より少ない場合に、熱交換部を介して、蓄熱配管を流れる熱媒体によって下部取出口から温水循環配管に取り出された温水を加温する。   A hot water circulation pipe that circulates the hot water in the hot water tank is further connected by connecting a lower outlet for taking hot water at the lower part of the hot water tank and an upper outlet for taking hot water above the lower part. When the amount of heat cannot be further stored, the heat medium flowing through the heat storage pipe is heated by the hot water taken out from the upper outlet to the hot water circulation pipe through the heat exchange unit, and the amount of heat stored in the hot water storage tank is reduced by the heat load. When the amount of heat is less than the required amount of heat, the hot water taken out from the lower outlet to the hot water circulation pipe is heated by the heat medium flowing through the heat storage pipe via the heat exchange section.

分散型電源は、燃料電池であってよい。   The distributed power source may be a fuel cell.

本発明の第2の形態によると、分散型電源から電力および熱量を供給される建造物であって、建造物の下方に設けられて、建造物を支える地中杭と、地中杭の内部の外周近傍に設けられ、分散型電源が生成する熱量によって加温された熱媒体を流す蓄熱配管とを備える。   According to the second aspect of the present invention, the building is supplied with electric power and heat from a distributed power source, and is provided below the building to support the building. And a heat storage pipe through which a heat medium heated by the amount of heat generated by the distributed power source is provided.

なお上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた発明となりうる。   Note that the above summary of the invention does not enumerate all the necessary features of the present invention, and sub-combinations of these feature groups can also be the invention.

本発明によれば、地下に低コストで蓄熱する蓄熱システムおよび建造物を提供することができる。   According to the present invention, it is possible to provide a heat storage system and a building that store heat in the basement at low cost.

以下、発明の実施形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the claimed invention, and all combinations of features described in the embodiments are inventions. It is not always essential to the solution.

図1は、蓄熱システム100の構成の一例を示す。蓄熱システム100は、建造物110に設けられた電力負荷54および熱負荷56にそれぞれ熱量および電力を供給する。そして蓄熱システム100は、燃料電池40から排出される排熱を建造物110の下方の地下に熱量を蓄熱するとともに、当該地下から熱量を回収して、熱負荷56に供給する。ここで建造物110とは、住宅、集合住宅、ビル、工場など一般的な建築物の他に、駅、タワー等を含む、建造された物を意味する。なお、建造物110は複数設けられてよく、燃料電池40は建造物110のそれぞれに分散して設けられていてよい。この場合、燃料電池40の各々は、いずれの建造物110の電力負荷54に電力を供給するよう設けられてよい。なお、燃料電池40は、この発明における分散型電源の一例であって、この発明の分散型電源とは例えばガスエンジン、ガスタービン等の、電力及び熱量を生成する装置であってよい。   FIG. 1 shows an example of the configuration of the heat storage system 100. The heat storage system 100 supplies heat and electric power to an electric load 54 and a thermal load 56 provided in the building 110, respectively. The heat storage system 100 stores the amount of heat discharged from the fuel cell 40 in the basement below the building 110, collects the amount of heat from the basement, and supplies it to the heat load 56. Here, the building 110 means a built object including a station, a tower, and the like in addition to a general building such as a house, an apartment house, a building, and a factory. A plurality of buildings 110 may be provided, and the fuel cells 40 may be provided in a distributed manner in each of the buildings 110. In this case, each of the fuel cells 40 may be provided to supply power to the power load 54 of any building 110. The fuel cell 40 is an example of a distributed power source according to the present invention, and the distributed power source according to the present invention may be a device that generates electric power and heat, such as a gas engine or a gas turbine.

蓄熱システム100は、燃料電池40、排熱配管88、排熱ポンプ80、貯湯用熱交換部72、貯湯配管76、貯湯ポンプ78、貯湯槽58、給湯配管52、温水循環配管86、温水循環ポンプ98、熱交換部70、蓄熱配管44、熱媒体循環ポンプ99、地中杭46、地中壁42、電力計90、制御部50、および建造物110を備える。燃料電池40は、電力および熱量を生成する。燃料電池40が発電した電力は電力負荷54に供給される。電力負荷54は、燃料電池40の発電した電力を消費することによって動作する。   The heat storage system 100 includes a fuel cell 40, an exhaust heat pipe 88, an exhaust heat pump 80, a hot water storage heat exchanging unit 72, a hot water storage pipe 76, a hot water storage pump 78, a hot water tank 58, a hot water supply pipe 52, a hot water circulation pipe 86, and a hot water circulation pump. 98, a heat exchange unit 70, a heat storage pipe 44, a heat medium circulation pump 99, an underground pile 46, an underground wall 42, a wattmeter 90, a control unit 50, and a building 110. The fuel cell 40 generates electric power and heat. The electric power generated by the fuel cell 40 is supplied to the electric power load 54. The power load 54 operates by consuming the power generated by the fuel cell 40.

燃料電池40は、例えば固体高分子形燃料電池(PEFC)であってよい。また、燃料電池40は、都市ガス、プロパンガス等を改質して水素ガスを生成する改質器から供給される水素ガスを燃料として発電してよく、また外部から供給される水素ガスを燃料として発電してもよい。燃料電池40は、発電に伴って発電セルから熱量を排出する。また、燃料電池40が改質器を有する場合には、燃料電池40は改質器において利用されなかった熱を排出する。   The fuel cell 40 may be, for example, a polymer electrolyte fuel cell (PEFC). The fuel cell 40 may generate power using hydrogen gas supplied from a reformer that generates hydrogen gas by reforming city gas, propane gas, or the like, and uses hydrogen gas supplied from outside as fuel. You may generate electricity. The fuel cell 40 discharges heat from the power generation cell along with power generation. When the fuel cell 40 has a reformer, the fuel cell 40 discharges heat that was not used in the reformer.

貯湯槽58は、熱負荷56に熱量を供給すべく、燃料電池40の生成する熱量によって加温された温水を貯湯する。具体的には、貯湯槽58は、燃料電池40の排熱を受け取ることによって加温された温水を貯湯する。燃料電池40には、燃料電池40の排熱を冷却する冷却水が内部を通流する排熱配管88の両端が接続されている。排熱配管88は貯湯用熱交換部72に接続されており、燃料電池40の排熱を受け取ることで加温された冷却水は、排熱ポンプ80によって貯湯用熱交換部72に供給されて冷却された後に、燃料電池40を冷却する冷却水として燃料電池40に再び供給される。また、貯湯槽58には、貯湯槽58の下部および上部を、貯湯用熱交換部72を介して接続する貯湯配管76が接続されている。貯湯配管76には貯湯ポンプ78が接続されており、貯湯槽58の下部から取り出された温水は、貯湯ポンプ78によって、貯湯用熱交換部72に供給され、貯湯用熱交換部72において燃料電池40の排熱を受け取った冷却水から熱量を受け取って加温された後に、貯湯槽58の上部から供給される。   The hot water storage tank 58 stores hot water heated by the heat generated by the fuel cell 40 in order to supply heat to the heat load 56. Specifically, the hot water storage tank 58 stores hot water heated by receiving the exhaust heat of the fuel cell 40. The fuel cell 40 is connected to both ends of an exhaust heat pipe 88 through which cooling water for cooling the exhaust heat of the fuel cell 40 flows. The exhaust heat pipe 88 is connected to the hot water storage heat exchanging section 72, and the cooling water heated by receiving the exhaust heat of the fuel cell 40 is supplied to the hot water storage heat exchanging section 72 by the exhaust heat pump 80. After cooling, the fuel cell 40 is supplied again as cooling water for cooling the fuel cell 40. The hot water storage tank 58 is connected with a hot water storage pipe 76 that connects the lower and upper parts of the hot water storage tank 58 via a hot water storage heat exchanging section 72. A hot water storage pump 78 is connected to the hot water storage pipe 76, and hot water taken out from the lower part of the hot water storage tank 58 is supplied to the hot water storage heat exchanging section 72 by the hot water storage pump 78, and the hot water storage heat exchanging section 72 uses the fuel cell. After the amount of heat is received from the cooling water that has received 40 exhaust heat and heated, it is supplied from the upper part of the hot water storage tank 58.

貯湯槽58に貯槽された温水は、給湯配管52によって熱負荷56に供給される。熱負荷56は、例えば風呂、シャワー、洗面等を含む給湯器、空調装置等であってよく、給湯配管52から供給される温水を消費する。なお、熱負荷56は、温水を用いて床を温める温水床暖房装置等、温水から熱量を取り出して利用し、温度の低下した温水を排出するものであってよい。そして、熱負荷56は、当該温度の低下した温水を貯湯槽58の下部から貯湯槽58に戻してもよい。   The hot water stored in the hot water storage tank 58 is supplied to the thermal load 56 through the hot water supply pipe 52. The heat load 56 may be, for example, a water heater including a bath, a shower, and a wash surface, an air conditioner, and the like, and consumes hot water supplied from the hot water supply pipe 52. Note that the heat load 56 may be a hot water floor heater that warms the floor using hot water or the like, and uses the heat quantity extracted from the hot water and discharges the hot water whose temperature has dropped. Then, the heat load 56 may return the hot water whose temperature has decreased to the hot water storage tank 58 from the lower part of the hot water storage tank 58.

地中杭46は、建造物110を支えるべく、建造物110の下方に設けられている。そして、地中杭46の内部には蓄熱配管44が設けられている。蓄熱配管44は、燃料電池40が生成する熱量によって加温された熱媒体を流すことによって、建造物110よりも下方の地下部48に蓄熱する。また、蓄熱配管44は、地下部48に蓄熱された熱量によって加温された熱媒体を流すことによって、地下部48から熱量を回収する。具体的には、蓄熱配管44は、貯湯槽58に貯湯された温水から熱量を受け取った熱媒体を地下部48に流して地下部48に蓄熱する。また、蓄熱配管44は、地下部48に蓄熱された熱量によって加温された熱媒体を流すことによって、貯湯槽58に熱量を供給する。   The underground pile 46 is provided below the building 110 in order to support the building 110. A heat storage pipe 44 is provided inside the underground pile 46. The heat storage pipe 44 stores heat in the underground portion 48 below the building 110 by flowing a heat medium heated by the amount of heat generated by the fuel cell 40. The heat storage pipe 44 collects heat from the underground portion 48 by flowing a heat medium heated by the amount of heat stored in the underground portion 48. Specifically, the heat storage pipe 44 stores a heat medium that has received heat from hot water stored in the hot water storage tank 58 through the underground portion 48 and stores the heat in the underground portion 48. The heat storage pipe 44 supplies heat to the hot water storage tank 58 by flowing a heat medium heated by the heat stored in the underground portion 48.

より具体的には、貯湯槽58には、貯湯槽58の下部の温水を取り出す下部取出口82と、下部よりも上方の温水を取り出す上部取出口84とを有しており、下部取出口82および上部取出口84は、温水循環配管86によって接続されている。そして、熱交換部70は、温水循環配管86および蓄熱配管44に接続され、蓄熱配管44を流れる熱媒体と、貯湯槽58に貯湯された温水との間で熱量を交換させる。例えば温水循環配管86に接続された温水循環ポンプ98によって、貯湯槽58に貯湯された温水が下部取出口82から上部取出口84への向きまたは上部取出口84から下部取出口82への向きに流れる。そして、熱交換部70は、上部取出口84から温水循環配管86に取り出された温水によって蓄熱配管44を流れる熱媒体を加温する。また、熱交換部70は、下部取出口82から温水循環配管86に取り出された温水を、蓄熱配管44を流れる熱媒体によって加温する。   More specifically, the hot water storage tank 58 has a lower outlet 82 for taking out hot water in the lower part of the hot water tank 58 and an upper outlet 84 for taking out hot water above the lower part. The upper outlet 84 is connected by a hot water circulation pipe 86. The heat exchange unit 70 is connected to the hot water circulation pipe 86 and the heat storage pipe 44, and exchanges heat between the heat medium flowing through the heat storage pipe 44 and the hot water stored in the hot water storage tank 58. For example, the hot water stored in the hot water storage tank 58 is directed from the lower outlet 82 to the upper outlet 84 or from the upper outlet 84 to the lower outlet 82 by the hot water circulation pump 98 connected to the hot water circulation pipe 86. Flowing. Then, the heat exchanging unit 70 heats the heat medium flowing through the heat storage pipe 44 with the hot water taken out from the upper outlet 84 to the hot water circulation pipe 86. In addition, the heat exchanging unit 70 heats the hot water taken out from the lower outlet 82 to the hot water circulation pipe 86 with a heat medium flowing through the heat storage pipe 44.

そして、制御部50は、燃料電池40の生成する熱量が熱負荷56によって消費さる熱量より多い場合に、燃料電池40の生成する熱量によって加温された熱媒体を蓄熱配管44に流すことによって地下部48に蓄熱する。また、制御部50は、燃料電池40の生成する熱量が熱負荷56によって消費される熱量より少ない場合に、燃料電池40の熱量によって加温された熱媒体よりも温度の低い熱媒体を蓄熱配管44に流して加温し、加温された熱媒体の熱量を熱負荷56に供給する。   Then, when the amount of heat generated by the fuel cell 40 is larger than the amount of heat consumed by the heat load 56, the control unit 50 causes the heat medium heated by the amount of heat generated by the fuel cell 40 to flow through the heat storage pipe 44. The part 48 stores heat. In addition, when the amount of heat generated by the fuel cell 40 is less than the amount of heat consumed by the heat load 56, the control unit 50 uses a heat storage pipe with a heat medium having a temperature lower than that of the heat medium heated by the amount of heat of the fuel cell 40. The heat amount of the heated heat medium is supplied to the heat load 56.

具体的には、制御部50は、貯湯槽58に熱量を更に蓄熱できない場合に、熱交換部70を介して、貯湯槽58の温水によって加温された熱媒体を蓄熱配管44に流して地下部48に蓄熱する。また、貯湯槽58に蓄熱された熱量が熱負荷56によって必要とされる熱量より少ない場合に、地下部48に蓄積された熱量によって蓄熱配管44を流れる熱媒体を加温し、熱交換部70を介して貯湯槽58の温水を加温する。   Specifically, when the amount of heat cannot be further stored in the hot water storage tank 58, the control unit 50 causes the heat medium heated by the hot water in the hot water storage tank 58 to flow through the heat storage pipe 44 through the heat exchange unit 70 and underground. The part 48 stores heat. In addition, when the amount of heat stored in the hot water storage tank 58 is less than the amount of heat required by the heat load 56, the heat medium flowing through the heat storage pipe 44 is heated by the amount of heat accumulated in the underground portion 48, and the heat exchange unit 70. The hot water in the hot water storage tank 58 is heated via the.

より具体的には、制御部50は、貯湯槽58に熱量を更に蓄熱できない場合に、上部取出口84から温水循環配管86に取り出された温水によって蓄熱配管44を流れる熱媒体を、熱交換部70を介して加温する。また、制御部50は、貯湯槽58に蓄熱された熱量が熱負荷56によって必要とされる熱量より少ない場合には、蓄熱配管44を流れる熱媒体によって下部取出口82から温水循環配管86に取り出された温水を、熱交換部70を介して加温する。例えば、制御部50は、温水循環ポンプ98によって温水循環配管86を流れる温水の方向を制御することによって、上部取出口84から取り出した温水を熱交換部70に供給して地下部48に蓄熱する場合と、下部取出口82から取り出した温水を熱交換部70に供給して地下部48から熱量を回収する場合とを選択する。   More specifically, when the amount of heat cannot be further stored in the hot water storage tank 58, the control unit 50 converts the heat medium flowing through the heat storage pipe 44 by the hot water taken out from the upper outlet 84 into the hot water circulation pipe 86. Heat through 70. In addition, when the amount of heat stored in the hot water storage tank 58 is less than the amount of heat required by the heat load 56, the control unit 50 takes out from the lower outlet 82 to the hot water circulation pipe 86 by the heat medium flowing through the heat storage pipe 44. The heated water is heated through the heat exchange unit 70. For example, the control unit 50 controls the direction of the hot water flowing through the hot water circulation pipe 86 by the hot water circulation pump 98 to supply the hot water taken out from the upper outlet 84 to the heat exchange unit 70 and store the heat in the underground part 48. The case where the hot water taken out from the lower outlet 82 is supplied to the heat exchanging unit 70 and the amount of heat is recovered from the underground part 48 is selected.

なお、蓄熱配管44は複数設けられてよい。そして、複数の蓄熱配管44に一の熱媒体循環ポンプ99が設けられてよく、蓄熱配管44のそれぞれに熱媒体循環ポンプ99が設けられてもよい。また、地中杭46には、地下部48に熱量を蓄熱すべく設けられる蓄熱配管44と、地下部48から受け取った熱量を回収して貯湯槽58に温水として蓄熱すべく設けられる他の蓄熱配管44とが設けられてもよい。   A plurality of heat storage pipes 44 may be provided. A plurality of heat storage pipes 44 may be provided with one heat medium circulation pump 99, and each of the heat storage pipes 44 may be provided with a heat medium circulation pump 99. In addition, the underground pile 46 has a heat storage pipe 44 provided to store heat in the underground portion 48 and other heat storage provided to collect the heat received from the underground portion 48 and store it in the hot water storage tank 58 as hot water. A pipe 44 may be provided.

なお、建造物110の下方の地下部48には、水を通す帯水層62と、帯水層62よりも下方にあり帯水層62よりも水を通しにくい不透水層64とが存在する。また、地下部48には、不透水層64よりも堅牢で、不透水層64よりも下方にある支持地盤66が存在する。そして、地中杭46は支持地盤66にまで達している。なお、支持地盤66は、不透水層64よりも下方に存在する礫層等であってよい。   In addition, in the underground part 48 below the building 110, there are an aquifer 62 through which water passes and an impermeable layer 64 that is below the aquifer 62 and is less likely to pass water than the aquifer 62. . In the underground portion 48, there is a supporting ground 66 that is more robust than the impermeable layer 64 and is below the impermeable layer 64. The underground pile 46 reaches the support ground 66. The supporting ground 66 may be a gravel layer or the like existing below the impermeable layer 64.

地中壁42は、地中杭46を囲み、少なくとも建造物110の下方から不透水層64にまで達している。なお、地中壁42は、帯水層62よりも水を通しにくい。例えば、地中壁42はコンクリートを材料としたものであってよい。そして、蓄熱配管44は、地中杭46の内部の、不透水層64よりも上方に位置する。   The underground wall 42 surrounds the underground pile 46 and reaches at least the impermeable layer 64 from below the building 110. The underground wall 42 is less likely to pass water than the aquifer 62. For example, the underground wall 42 may be made of concrete. And the heat storage piping 44 is located above the impermeable layer 64 inside the underground pile 46.

このように、地中壁42が不透水層64にまで達しているので、地中壁42と不透水層64によって囲まれた地下部48と、地中壁42の外部の帯水層62との間の水の出入りは遮断される。更に蓄熱配管44が不透水層64よりも上方に位置するので、地中壁42によって地中杭46が囲まれていない場合に比べて、帯水層62の水によって地下部48から地中壁42の外部に運ばれてしまう熱量を低減することができる。したがって、地下部48に熱量を長期間保持しておくことができる。   Thus, since the underground wall 42 reaches the impermeable layer 64, the underground part 48 surrounded by the underground wall 42 and the impermeable layer 64, and the aquifer 62 outside the underground wall 42, Access to and from the water is blocked. Furthermore, since the heat storage pipe 44 is located above the impermeable layer 64, the underground wall 48 is submerged from the underground portion 48 by the water of the aquifer 62 compared to the case where the underground pile 46 is not surrounded by the underground wall 42. The amount of heat that is carried to the outside of 42 can be reduced. Accordingly, the amount of heat can be kept in the underground part 48 for a long period of time.

なお、地中壁42は、地下部48を掘削するときに、掘削されてできる壁面が崩れることを防ぐ山留めであってよい。例えば、建造物110の建造時に地下部48を掘削したときに築く山留めを不透水層64にまで到達させておく。そして、当該山留めを地中壁42として利用することによって、地中壁42を別途設置するコストを削減することができる。また、地中壁42は、地面を掘削したときの山留めであると同時に、建造物110を支持するものであってよい。例えば、地面を削孔しながら流し込まれたコンクリートの中に建造物110を支持すべく鉄骨又は鉄筋が挿入されて築かれる地中壁42を山留めとしても利用してもよい。この場合、地中壁42は、不透水層64よりも下方にある支持地盤66にまで達していることが望ましい。   In addition, the underground wall 42 may be a mountain stop which prevents the wall surface formed by excavation from collapsing when excavating the underground part 48. For example, a mountain stopper built when the underground part 48 is excavated at the time of building the building 110 is made to reach the impermeable layer 64. And the cost which installs the underground wall 42 separately can be reduced by using the said mountain retaining as the underground wall 42. FIG. Moreover, the underground wall 42 may be a mountain retaining when excavating the ground, and may support the building 110 at the same time. For example, the underground wall 42 formed by inserting a steel frame or a reinforcing bar to support the building 110 in the concrete poured while drilling the ground may be used as a mountain stop. In this case, it is desirable that the underground wall 42 reaches the support ground 66 below the impermeable layer 64.

なお、建造物110の下部の基礎を二重床とし、二重床に囲まれた空間を貯湯槽58としてもよい。また、二重床に囲まれた、複数の空間のそれぞれを貯湯槽58としてもよい。そして、燃料電池40からの排熱によって加温された温水を当該複数の貯湯槽58に貯湯してもよい。そして、制御部50は、一の貯湯槽58に更に熱量を蓄熱することができなくなった場合に、他の貯湯槽58に順次貯湯してもよい。   In addition, it is good also considering the foundation of the lower part of the building 110 as a double floor, and the space enclosed by the double floor as the hot water storage tank 58. FIG. Further, each of the plurality of spaces surrounded by the double floor may be used as the hot water storage tank 58. Then, the hot water heated by the exhaust heat from the fuel cell 40 may be stored in the plurality of hot water storage tanks 58. Then, the control unit 50 may sequentially store hot water in the other hot water storage tanks 58 when it is no longer possible to store heat in one hot water storage tank 58.

また、地中壁42の建造物110よりも下方の内側の表面には断熱材が設けられていてもよい。これにより、地中壁42から外部に損失する熱量を削減することができる。また、建造物110への伝熱によって地中壁42から損失する熱量を削減することができる。また、建造物110の下方の地下部48には、熱量を蓄熱する蓄熱体が設けられていてもよい。   Moreover, the heat insulating material may be provided in the inner surface below the building 110 of the underground wall 42. Thereby, the amount of heat lost from the underground wall 42 to the outside can be reduced. In addition, the amount of heat lost from the underground wall 42 due to heat transfer to the building 110 can be reduced. In addition, the underground portion 48 below the building 110 may be provided with a heat storage body that stores heat.

給水配管60は、貯湯槽58に水を供給する。例えば熱負荷56がシャワー等の給湯設備等であって、貯湯槽58から供給される温水を利用した後に、利用後の温水を貯湯槽58の外部に排出する場合に、排出された量の上水が給水配管60を通流して貯湯槽58に補給される。このとき、制御部50は、貯湯槽58に蓄熱された熱量が熱負荷56によって必要とされる熱量より少ない場合に、上水を蓄熱配管44の熱媒体により予熱してから貯湯槽58に供給してよい。具体的には、給水配管60は、蓄熱配管44から分岐した予熱配管75が接続されている給水用熱交換部74を経由して、貯湯槽58に上水を供給する。予熱配管75は、蓄熱配管44の熱媒体の通流経路を制御する予熱バルブ68を介して、蓄熱配管44に接続されている。そして、制御部50は、上水を予熱して貯湯槽58に供給する場合に、予熱バルブ68を用いて蓄熱配管44の熱媒体を予熱配管75に導いて、給水用熱交換部74において熱媒体と上水との熱交換により上水を加温する。なお、予熱バルブ68には、予熱配管75の熱媒体を熱交換部70に供給せずに迂回するバイパス配管43が接続されている。そして、蓄熱配管44には、バイパス配管43からの熱媒体が熱交換部70に供給されるのを阻止する逆流阻止バルブ69が、バイパス配管43との接続部に設けられている。そして、制御部50は、上水を予熱して貯湯槽58に供給する場合に、逆流阻止バルブ69を閉じてバイパス配管43からの熱媒体を地下部48に導いて、地下部48に蓄熱された熱量により熱媒体を加温させる。これにより、例えば給湯需要が拡大する冬季において、上水を地下部48に蓄熱された熱量によって予熱して貯湯槽58に供給することができる。   The water supply pipe 60 supplies water to the hot water storage tank 58. For example, when the heat load 56 is a hot water supply facility such as a shower and the like, and the hot water supplied from the hot water storage tank 58 is used and then the hot water after use is discharged to the outside of the hot water storage tank 58, the amount of discharged water is increased. Water is supplied to the hot water storage tank 58 through the water supply pipe 60. At this time, when the amount of heat stored in the hot water storage tank 58 is less than the amount of heat required by the heat load 56, the control unit 50 preheats clean water with the heat medium of the heat storage pipe 44 and then supplies the hot water to the hot water storage tank 58. You can do it. Specifically, the water supply pipe 60 supplies clean water to the hot water storage tank 58 via a water supply heat exchange section 74 to which a preheating pipe 75 branched from the heat storage pipe 44 is connected. The preheating pipe 75 is connected to the heat storage pipe 44 via a preheating valve 68 that controls the flow path of the heat medium of the heat storage pipe 44. When the control unit 50 preheats the clean water and supplies it to the hot water storage tank 58, the control unit 50 uses the preheating valve 68 to guide the heat medium of the heat storage pipe 44 to the preheating pipe 75, and heats it in the heat supply heat exchanger 74. Heat the water by heat exchange between the medium and the water. The preheating valve 68 is connected to a bypass pipe 43 that bypasses the heat medium of the preheating pipe 75 without supplying it to the heat exchange unit 70. The heat storage pipe 44 is provided with a backflow prevention valve 69 that prevents the heat medium from the bypass pipe 43 from being supplied to the heat exchanging section 70 at the connection portion with the bypass pipe 43. When the controller 50 preheats the clean water and supplies it to the hot water storage tank 58, the controller 50 closes the backflow prevention valve 69 and guides the heat medium from the bypass pipe 43 to the underground part 48, and the heat is stored in the underground part 48. The heating medium is heated by the amount of heat. Thereby, for example, in the winter season when demand for hot water supply expands, the water can be preheated by the amount of heat stored in the underground portion 48 and supplied to the hot water storage tank 58.

以上説明した蓄熱システム100によれば、熱負荷56が必要とする熱量に比べて燃料電池40の生成する熱量が多いとき、貯湯槽58に更に温水として蓄熱できないような場合でも、余剰の熱量を地下部48に蓄熱させることができる。また、燃料電池40を冷却し続けることができるので、燃料電池40を停止することなく安定して駆動し続けることができる。また、熱負荷56が消費する熱量に比べて燃料電池40の生成する熱量が少ないときには、地下部48に蓄熱した熱量を貯湯槽58に回収して熱負荷56に提供することができる。   According to the heat storage system 100 described above, when the amount of heat generated by the fuel cell 40 is larger than the amount of heat required by the heat load 56, even if heat cannot be stored as hot water in the hot water storage tank 58, the excess amount of heat is reduced. The underground part 48 can store heat. Further, since the fuel cell 40 can be continuously cooled, the fuel cell 40 can be stably driven without being stopped. When the amount of heat generated by the fuel cell 40 is smaller than the amount of heat consumed by the heat load 56, the amount of heat stored in the underground portion 48 can be recovered in the hot water storage tank 58 and provided to the heat load 56.

なお、制御部50は、電力負荷54の消費電力量および熱負荷56の消費熱量の履歴を管理してもよい。制御部50は、燃料電池40から電力負荷54に供給される電力量を電力計90によって検出して、消費電力量の履歴として記憶しておく。また、制御部50は、貯湯槽58から熱負荷56に供給される温水の量と、当該温水の温度とに基づいて、熱負荷56が消費する熱量を計算して、消費熱量の履歴として記憶しておく。そして制御部50は、消費電力量および消費熱量の履歴に基づいて、燃料電池40が将来生成する熱量と熱負荷56が将来消費する熱量を予測する。   Note that the control unit 50 may manage the history of the power consumption of the power load 54 and the heat consumption of the heat load 56. The control unit 50 detects the amount of power supplied from the fuel cell 40 to the power load 54 with the wattmeter 90 and stores it as a history of power consumption. Further, the control unit 50 calculates the amount of heat consumed by the heat load 56 based on the amount of hot water supplied from the hot water storage tank 58 to the heat load 56 and the temperature of the hot water, and stores it as a history of heat consumption. Keep it. Then, the control unit 50 predicts the amount of heat that the fuel cell 40 will generate in the future and the amount of heat that the heat load 56 will consume in the future based on the history of the power consumption and the amount of heat consumed.

また、制御部50は、例えば貯湯槽58に貯湯された温水の温度の空間分布を計測することによって、貯湯槽58に現在貯湯される温水の持つ熱量を計算する。そして、制御部50は、貯湯槽58に現在貯湯される温水の持つ熱量、燃料電池40が将来生成する熱量、および熱負荷56が将来消費する熱量に基づいて、貯湯槽58に温水として蓄熱される熱量を計算することによって、熱負荷56の必要とする熱量を貯湯槽58から供給することができるか否かを判断する。このようにして制御部50は、燃料電池40の生成する熱量が熱負荷56によって消費される熱量より少ないか否かを予め判断することができる。そして制御部50は、熱負荷56の必要とする熱量を貯湯槽58から供給することができないと判断した場合に、地下部48から熱量を貯湯槽58に回収すべく温水循環ポンプ98を制御して、熱負荷56が必要とする熱量を貯湯槽58に蓄熱させる。   Moreover, the control part 50 calculates the calorie | heat amount which the hot water currently stored in the hot water storage tank 58 has by measuring the spatial distribution of the temperature of the hot water stored in the hot water storage tank 58, for example. The control unit 50 stores heat as hot water in the hot water storage tank 58 based on the amount of heat of hot water currently stored in the hot water storage tank 58, the amount of heat generated in the future by the fuel cell 40, and the amount of heat consumed by the heat load 56 in the future. It is determined whether or not the amount of heat required by the heat load 56 can be supplied from the hot water storage tank 58 by calculating the amount of heat. In this way, the control unit 50 can determine in advance whether or not the amount of heat generated by the fuel cell 40 is less than the amount of heat consumed by the heat load 56. When the control unit 50 determines that the amount of heat required by the heat load 56 cannot be supplied from the hot water storage tank 58, the control unit 50 controls the hot water circulation pump 98 to recover the heat amount from the underground part 48 to the hot water storage tank 58. Thus, the amount of heat required by the heat load 56 is stored in the hot water storage tank 58.

図2は、地中杭46の断面の一例を示す。地中杭46は、内部に蓄熱配管44及び鉄筋94を有しているコンクリートを含む。そして、蓄熱配管44は、地中杭46の内部の外周近傍に設けられる。具体的には、蓄熱配管44は、建造物110を支持する強度を確保することができる領域96よりも外側の領域95に設けられる。このため、地中杭46は、地中杭46のより内側に蓄熱配管44を設けた場合に比べて、より効率的に地下部48に熱量を提供することができるとともに、建造物110を支持するための強度を確保することができる。   FIG. 2 shows an example of a cross section of the underground pile 46. The underground pile 46 includes concrete having a heat storage pipe 44 and a reinforcing bar 94 therein. The heat storage pipe 44 is provided in the vicinity of the outer periphery inside the underground pile 46. Specifically, the heat storage pipe 44 is provided in a region 95 outside the region 96 where the strength for supporting the building 110 can be secured. For this reason, the underground pile 46 can provide heat to the underground portion 48 more efficiently than the case where the heat storage pipe 44 is provided on the inner side of the underground pile 46 and supports the building 110. It is possible to ensure the strength to do this.

また、地中杭46を築く時に、建造物110を支持することができる強度が確保される領域96より広い、領域95を含む領域を掘削する。そして、領域96および領域95にそれぞれ鉄筋94および蓄熱配管44を配置してコンクリート等を流しこむことによって地中杭46を築く。このため、建造物110を支持する強度を確保しつつ、地中杭46の内部に蓄熱配管44を設置するコストを削減することができる。なお、蓄熱配管44は、例えば、耐熱性、耐食性に優れる架橋ポリエチレン、塩化ビニル等を材料とする樹脂管であってよい。   Further, when the underground pile 46 is constructed, a region including the region 95 that is wider than the region 96 in which the strength capable of supporting the building 110 is secured is excavated. And the underground pile 46 is built by arrange | positioning the reinforcement 94 and the thermal storage piping 44 in the area | region 96 and the area | region 95, respectively, and pouring concrete etc. into it. For this reason, the cost which installs the thermal storage piping 44 in the inside of the underground pile 46 can be reduced, ensuring the intensity | strength which supports the building 110. The heat storage pipe 44 may be, for example, a resin pipe made of cross-linked polyethylene, vinyl chloride, or the like having excellent heat resistance and corrosion resistance.

なお、地中杭46は、一の蓄熱配管44aを有してもよい。例えば、熱交換部70を通過した熱媒体は、配管断面45aを通過して、地中杭46の内部を不透水層64よりも上部の位置で折り返して、配管断面45bを通過して熱交換部70に戻される。また、地中杭46は、複数の蓄熱配管(44aおよび44b)を備えてもよい。例えば、蓄熱配管44bを流れる熱媒体は、配管断面45cを通過して地中杭46の内部を不透水層64よりも上部の位置で折り返して、配管断面45dを通過する。また、制御部50は、地下部48に蓄熱すべき熱量、または地下部48から回収すべき熱量に基づいて、熱媒体を流すべき蓄熱配管44の数を決定してもよい。また、蓄熱配管44は、地中杭46の外周近傍において、地中杭46の中央部を中心とした螺旋状に配置されていてもよい。   The underground pile 46 may have one heat storage pipe 44a. For example, the heat medium that has passed through the heat exchanging unit 70 passes through the pipe cross section 45a, turns the inside of the underground pile 46 at a position above the impermeable layer 64, and passes through the pipe cross section 45b to exchange heat. Returned to unit 70. The underground pile 46 may include a plurality of heat storage pipes (44a and 44b). For example, the heat medium flowing through the heat storage pipe 44b passes through the pipe cross section 45d by passing through the pipe cross section 45c, folding back the inside of the underground pile 46 at a position above the impermeable layer 64. Further, the control unit 50 may determine the number of heat storage pipes 44 through which the heat medium should flow based on the amount of heat to be stored in the underground portion 48 or the amount of heat to be recovered from the underground portion 48. Further, the heat storage pipe 44 may be arranged in a spiral shape around the center of the underground pile 46 in the vicinity of the outer periphery of the underground pile 46.

図3は、地中杭46の配置の一例を示す。地中杭46は、建造物110の下方に複数設けられている。そして、蓄熱配管44は、地中壁42に隣接する地中杭46(例えば地中杭46g)よりも内側の地中杭(46a〜46f)に設けられる。このため、地中壁42よりも建造物110の外部へと地下部48から損失していく熱量を削減することができる。   FIG. 3 shows an example of the arrangement of the underground piles 46. A plurality of underground piles 46 are provided below the building 110. And the heat storage piping 44 is provided in the underground pile (46a-46f) inside the underground pile 46 (for example, underground pile 46g) adjacent to the underground wall 42. As shown in FIG. For this reason, the amount of heat lost from the underground part 48 to the outside of the building 110 rather than the underground wall 42 can be reduced.

なお、地中壁42は、建造物110の外周を取り巻く地中壁42aの他に、建造物110の下方の地下部48を複数の部分領域に分割する地中壁42bが設けられてもよい。図3の例では、建造物110の下方の地下部48は更に、地中壁42bによって、地中杭46aおよび地中杭46bを含む部分領域92a、地中杭46cおよび地中杭46dを含む部分領域92b、並びに、地中杭46eおよび地中杭46fを含む部分領域92cに分割される。そして、制御部50は、地中壁42の建造物110よりも外部から最も断熱された部分領域92bの地下部48に、他の部分領域92aおよび部分領域92cの地下部48よりも優先的に燃料電池40の熱量を蓄熱してもよい。なお、ここでいう優先的とは、他の部分領域92よりも先に蓄熱配管44を用いて蓄熱するという意味であってよく、他の部分領域92よりも多くの熱量を蓄熱配管44を用いて提供するという意味であってよい。   The underground wall 42 may be provided with an underground wall 42b that divides the underground portion 48 below the building 110 into a plurality of partial areas, in addition to the underground wall 42a surrounding the outer periphery of the building 110. . In the example of FIG. 3, the underground portion 48 below the building 110 further includes a partial region 92a including the underground pile 46a and the underground pile 46b, the underground pile 46c, and the underground pile 46d by the underground wall 42b. It is divided into a partial region 92b and a partial region 92c including the underground pile 46e and the underground pile 46f. And the control part 50 gives priority to the underground part 48 of the partial area 92b most insulated from the exterior rather than the building 110 of the underground wall 42 over the underground part 48 of the other partial area 92a and the partial area 92c. The amount of heat of the fuel cell 40 may be stored. Note that the term “priority” as used herein may mean that heat is stored using the heat storage pipe 44 prior to the other partial area 92, and a larger amount of heat is used by the heat storage pipe 44 than the other partial area 92. It may mean that it is provided.

図4は、地下部48への蓄熱および/又は地下部48からの熱量の回収方法の他の一例を示す。図4の例では、蓄熱配管44は貯湯槽58と接続される。具体的には、蓄熱配管44は、下部取出口82と上部取出口84とに接続される。そして、熱媒体循環ポンプ99は、貯湯槽58に貯湯された温水を熱媒体として蓄熱配管44を通流させる。   FIG. 4 shows another example of a method of storing heat in the underground part 48 and / or recovering the amount of heat from the underground part 48. In the example of FIG. 4, the heat storage pipe 44 is connected to a hot water tank 58. Specifically, the heat storage pipe 44 is connected to the lower outlet 82 and the upper outlet 84. The heat medium circulation pump 99 causes the heat storage pipe 44 to flow using the hot water stored in the hot water storage tank 58 as a heat medium.

そして、制御部50は、貯湯槽58に熱量を更に蓄熱できない場合に、貯湯槽58に貯湯された温水を蓄熱配管44に流して地下部48に蓄熱する。また、制御部50は、貯湯槽58に蓄熱された熱量が熱負荷56によって必要とされる熱量より少ない場合に、地下部48に蓄積された熱量によって蓄熱配管44を流れる水を加温し、加温して得られる温水を貯湯槽58に供給する。   When the amount of heat cannot be further stored in the hot water storage tank 58, the control unit 50 stores the hot water stored in the hot water storage tank 58 through the heat storage pipe 44 and stores the heat in the underground part 48. Further, when the amount of heat stored in the hot water storage tank 58 is less than the amount of heat required by the heat load 56, the control unit 50 heats the water flowing through the heat storage pipe 44 by the amount of heat accumulated in the underground portion 48, Warm water obtained by heating is supplied to the hot water storage tank 58.

具体的には、制御部50は、貯湯槽58に熱量を更に蓄熱できない場合に、上部取出口84から取り出した温水を蓄熱配管44に流して地下部48に熱量を提供させた後に、下部取出口82から貯湯槽58に温水を供給する。また、制御部50は、貯湯槽58に蓄熱された熱量が熱負荷56によって必要とされる熱量より少ない場合に、下部取出口82から蓄熱配管44に温水を取り出して地下部48に蓄積された熱量で加温し、加温した温水を上部取出口84から貯湯槽58に供給する。例えば、制御部50は、熱媒体循環ポンプ99によって蓄熱配管44を流れる温水の向きを変更することによって、上部取出口84から取り出した温水を地下部48に供給することによる蓄熱と、下部取出口82から取り出した温水を地下部48に供給することによる地下部48からの熱量の回収とを選択する。   Specifically, when the amount of heat cannot be further stored in the hot water storage tank 58, the control unit 50 causes the hot water taken out from the upper outlet 84 to flow into the heat storage pipe 44 to provide the underground unit 48 with the amount of heat, and then takes the lower intake. Hot water is supplied from the outlet 82 to the hot water tank 58. In addition, when the amount of heat stored in the hot water storage tank 58 is less than the amount of heat required by the heat load 56, the control unit 50 takes hot water from the lower outlet 82 into the heat storage pipe 44 and accumulates it in the underground portion 48. Heated by the amount of heat, the heated hot water is supplied from the upper outlet 84 to the hot water storage tank 58. For example, the control unit 50 changes the direction of the hot water flowing through the heat storage pipe 44 by the heat medium circulation pump 99, thereby storing heat by supplying hot water taken out from the upper outlet 84 to the underground part 48, and lower outlet The recovery of the heat quantity from the underground part 48 by supplying the warm water taken out from 82 to the underground part 48 is selected.

なお、熱負荷56がシャワー等の給湯設備等であって、貯湯槽58から供給される温水を利用した後に、利用後の温水を貯湯槽58の外部に排出する場合に、排出された量の上水が給水配管60を通流して貯湯槽58に補給される。このとき、制御部50は、貯湯槽58に蓄熱された熱量が熱負荷56によって必要とされる熱量より少ない場合に、上水を貯湯槽58に直接供給せず、上水を蓄熱配管44に導いて地下部48に蓄熱された熱量によって予熱してから貯湯槽58に供給してよい。具体的には、給水配管60は、蓄熱配管44に設けられた予熱バルブ68に接続されており、制御部50は、予熱バルブ68を用いて給水配管60からの上水を蓄熱配管44に導く。このとき、制御部50は、貯湯槽58への上水が直接流入されるのを阻止する上水阻止バルブ67を閉じるとともに、貯湯槽58の温水の下部取出口82からの取り出しを予熱バルブ68を用いて停止させる。これにより、例えば給湯需要が拡大する冬季において、上水を地下部48に蓄熱された熱量によって予熱して貯湯槽58に供給することができる。なお、制御部50は、貯湯槽58の下部の温水の温度が上水の温度より高いことを更なる条件として、上水を貯湯槽58に直接供給せず、上水を蓄熱配管44に導いて地下部48に蓄熱された熱量によって予熱してから貯湯槽58に供給してよい。これにより、貯湯槽58の貯湯効率を高めることができる。   Note that when the heat load 56 is a hot water supply facility such as a shower and the like, and the hot water supplied from the hot water storage tank 58 is used and then the hot water after use is discharged outside the hot water storage tank 58, the amount of discharged water Clean water flows through the water supply pipe 60 and is supplied to the hot water storage tank 58. At this time, when the amount of heat stored in the hot water storage tank 58 is less than the amount of heat required by the heat load 56, the control unit 50 does not supply the hot water directly to the hot water storage tank 58 and supplies the hot water to the heat storage pipe 44. The hot water may be supplied to the hot water storage tank 58 after being preheated by the amount of heat guided and stored in the underground portion 48. Specifically, the water supply pipe 60 is connected to a preheating valve 68 provided in the heat storage pipe 44, and the control unit 50 guides clean water from the water supply pipe 60 to the heat storage pipe 44 using the preheating valve 68. . At this time, the control unit 50 closes the water supply blocking valve 67 that blocks the direct flow of clean water into the hot water storage tank 58 and removes the hot water from the hot water storage tank 58 from the lower outlet 82. Use to stop. Thereby, for example, in the winter season when demand for hot water supply expands, the water can be preheated by the amount of heat stored in the underground portion 48 and supplied to the hot water storage tank 58. In addition, the control part 50 does not supply hot water directly to the hot water storage tank 58 on the further conditions that the temperature of the warm water of the lower part of the hot water storage tank 58 is higher than the temperature of clean water, but guides fresh water to the heat storage piping 44. Then, after preheating with the amount of heat stored in the underground portion 48, the hot water tank 58 may be supplied. Thereby, the hot water storage efficiency of the hot water storage tank 58 can be increased.

例えば、貯湯槽58に蓄熱された熱量が将来的に不足することが予測されるような場合には、貯湯槽58にできるだけ多くの温水を貯湯しておく必要がある。そして、貯湯槽58が温水で満杯になると、貯湯槽58の下部の温水の温度が上水の温度より高くなることがある。このようなとき、熱負荷56によって消費された量の上水を貯湯槽58の下部に直接供給すると、貯湯槽58の下部の温水と上水とが混ざり合って温度が低下しまうので、効率的に貯湯することができない。このような場合には、上水を地下部48において一旦加温してから貯湯槽58に供給することによって、より効率的に貯湯槽58に貯湯することができる。   For example, when it is predicted that the amount of heat stored in the hot water storage tank 58 will be insufficient in the future, it is necessary to store as much hot water as possible in the hot water storage tank 58. And when the hot water storage tank 58 is filled with warm water, the temperature of the hot water in the lower part of the hot water storage tank 58 may be higher than the temperature of the clean water. In such a case, if the amount of clean water consumed by the heat load 56 is directly supplied to the lower part of the hot water storage tank 58, the hot water in the lower part of the hot water tank 58 and the hot water are mixed and the temperature is lowered. Cannot store hot water. In such a case, the hot water can be stored in the hot water storage tank 58 more efficiently by being heated in the underground part 48 and then supplied to the hot water storage tank 58.

図5は、地下部48に蓄熱する他の例を示す。熱交換部70は排熱配管88に接続されており、蓄熱配管44を流れる熱媒体は排熱配管88を流れる冷却水の熱量によって加温される。そして、蓄熱配管44を流れる熱媒体は、加温された熱媒体の持つ熱量を地下部48に提供することによって地下部48に蓄熱する。なお、排熱配管88は、排熱配管88を通流する冷却水の経路において貯湯用熱交換部72よりも後に熱交換部70に冷却水を供給すべく貯湯用熱交換部72および熱交換部70に接続される。これにより、排熱配管88の内部を通流する冷却水は、貯湯用熱交換部72において貯湯槽58に熱量を提供した後に、熱交換部70において蓄熱配管44を流れる熱媒体に熱量を提供する。したがって、例えば貯湯槽58が温水で満杯になった場合等、貯湯槽58に燃料電池40の排熱を提供できない場合には、燃料電池40の排熱は自動的に地下部48に蓄熱されることになる。また、排熱配管88を流れる冷却水が貯湯用熱交換部72において十分に冷却されない場合でも、熱交換部70において更に冷却水を冷却することができるので、燃料電池40を安定的に運転することができる。   FIG. 5 shows another example of storing heat in the underground portion 48. The heat exchange unit 70 is connected to the exhaust heat pipe 88, and the heat medium flowing through the heat storage pipe 44 is heated by the amount of cooling water flowing through the exhaust heat pipe 88. Then, the heat medium flowing through the heat storage pipe 44 stores heat in the underground part 48 by providing the underground part 48 with the amount of heat of the heated heat medium. The exhaust heat pipe 88 is connected to the hot water storage heat exchanging unit 72 and the heat exchanger so as to supply cooling water to the heat exchanging unit 70 after the hot water storage heat exchanging unit 72 in the path of the cooling water flowing through the exhaust heat pipe 88. Connected to the unit 70. As a result, the cooling water flowing through the exhaust heat pipe 88 provides heat to the hot water storage tank 58 in the hot water storage heat exchanging section 72, and then provides heat to the heat medium flowing through the heat storage pipe 44 in the heat exchanging section 70. To do. Therefore, if the exhaust heat of the fuel cell 40 cannot be provided to the hot water storage tank 58, for example, when the hot water storage tank 58 is filled with hot water, the exhaust heat of the fuel cell 40 is automatically stored in the underground portion 48. It will be. Further, even when the cooling water flowing through the exhaust heat pipe 88 is not sufficiently cooled in the hot water storage heat exchanging portion 72, the cooling water can be further cooled in the heat exchanging portion 70, so that the fuel cell 40 is stably operated. be able to.

また、制御部50は、貯湯槽58に更に熱量を蓄熱することができない場合に、貯湯ポンプ78を停止させてもよい。これにより、貯湯ポンプ78を駆動するエネルギーが無駄に消費さずに済む。また、制御部50は、地下部48に熱量を蓄熱する必要がない場合に、熱媒体循環ポンプ99を停止させてもよい。なお、排熱配管88は、熱交換部70を経由せずにバイパスする配管を有してもよい。そして、制御部50は、地下部48に熱量を蓄熱する必要がない場合に、冷却水を熱交換部70に供給せず、当該配管を通過させてもよい。   Further, the control unit 50 may stop the hot water storage pump 78 when the amount of heat cannot be stored in the hot water storage tank 58 further. As a result, energy for driving the hot water storage pump 78 is not wasted. Further, the control unit 50 may stop the heat medium circulation pump 99 when it is not necessary to store the amount of heat in the underground portion 48. Note that the exhaust heat pipe 88 may have a bypass pipe without going through the heat exchange unit 70. And the control part 50 may pass the said piping, without supplying cooling water to the heat exchange part 70, when it is not necessary to store heat quantity in the underground part 48. FIG.

なお、以上の説明においては、蓄熱システム100の一例として、燃料電池40の排熱を貯湯槽58に一旦温水として蓄熱する形態について説明した。蓄熱システム100の他の例では、貯湯槽58を備えておらず、燃料電池40の排熱を直接、或いは熱交換部70によって、蓄熱配管44を循環する熱媒体を加温することによって地下部48に蓄熱してもよい。   In the above description, as an example of the heat storage system 100, the form in which the exhaust heat of the fuel cell 40 is once stored in the hot water storage tank 58 as hot water has been described. In another example of the heat storage system 100, the hot water storage tank 58 is not provided, and the heat exhausting heat of the fuel cell 40 is heated directly or by the heat exchanging unit 70 by heating the heat medium circulating in the heat storage pipe 44. 48 may store heat.

以上説明した蓄熱システム100によれば、熱負荷56が消費しない余剰の熱量を燃料電池40が生成する場合においては、当該余剰の熱量を地下部48に低コストで蓄熱しておくことができる。そして、燃料電池40から供給される熱量が熱負荷56の消費する熱量に比べて不足した場合には、地下部48から熱量を回収して利用することができる。したがって、建造物110に供給する温水が不足したときに予備的に加熱すべく設けられるバーナ等の設備コストを削減することができる。また、蓄熱システム100においては、貯湯槽58の容量をより小さくて済む、或いは貯湯槽58を設置しないで済むので、貯湯槽58の設備コストを削減すことができるとともに、貯湯槽58の設置スペースを節約することができる。   According to the heat storage system 100 described above, when the fuel cell 40 generates surplus heat that is not consumed by the heat load 56, the surplus heat can be stored in the underground portion 48 at low cost. When the amount of heat supplied from the fuel cell 40 is insufficient compared to the amount of heat consumed by the heat load 56, the amount of heat can be recovered from the underground portion 48 and used. Therefore, it is possible to reduce equipment costs such as a burner provided to preliminarily heat when the hot water supplied to the building 110 is insufficient. Further, in the heat storage system 100, the capacity of the hot water storage tank 58 can be made smaller, or the hot water storage tank 58 can be omitted, so that the equipment cost of the hot water storage tank 58 can be reduced and the installation space of the hot water storage tank 58 can be reduced. Can be saved.

なお、本実施形態では、熱量および電力を供給する装置の一例として燃料電池40を用いて説明したが、燃料電池40に代えて、ガスエンジン、ガスタービン等の、化石燃料および/又は水素ガス等を燃料として発電する装置であってもよい。このような蓄熱システム100の例においても、以上の説明において述べた効果と同様の効果を得ることができる。   In the present embodiment, the fuel cell 40 is used as an example of an apparatus for supplying heat and electric power. However, instead of the fuel cell 40, fossil fuel and / or hydrogen gas such as a gas engine or a gas turbine is used. May be a device that generates electricity using as a fuel. Also in the example of such a heat storage system 100, the effect similar to the effect described in the above description can be acquired.

以上、実施形態を用いて本発明を説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に、多様な変更又は改良を加えることができる。そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. Various modifications or improvements can be added to the above embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

蓄熱システム100の構成の一例を示す図である。1 is a diagram illustrating an example of a configuration of a heat storage system 100. FIG. 地中杭46の断面の一例を示す図である。It is a figure which shows an example of the cross section of the underground pile 46. FIG. 地中杭46の配置の一例を示す図である。It is a figure which shows an example of arrangement | positioning of the underground pile 46. FIG. 地下部48への蓄熱および/又は地下部48からの熱量の回収方法の他の一例を示す図である。It is a figure which shows another example of the heat storage to the underground part 48, and / or the recovery method of the calorie | heat amount from the underground part 48. FIG. 地下部48に蓄熱する他の例を示す図である。It is a figure which shows the other example which accumulates heat in the underground part.

符号の説明Explanation of symbols

100 蓄熱システム
110 建造物
40 燃料電池
42 地中壁
43 バイパス配管
44 蓄熱配管
46 地中杭
48 地下部
50 制御部
52 給湯配管
54 電力負荷
56 熱負荷
58 貯湯槽
60 給水配管
62 帯水層
64 不透水層
66 支持地盤
67 上水阻止バルブ
68 予熱バルブ
69 逆流阻止バルブ
70 熱交換部
72 貯湯用熱交換部
74 給水用熱交換部
75 予熱配管
76 貯湯配管
78 貯湯ポンプ
80 排熱ポンプ
82 下部取出口
84 上部取出口
86 温水循環配管
88 排熱配管
90 電力計
98 温水循環ポンプ
99 熱媒体循環ポンプ
DESCRIPTION OF SYMBOLS 100 Thermal storage system 110 Building 40 Fuel cell 42 Underground wall 43 Bypass piping 44 Thermal storage piping 46 Underground pile 48 Underground part 50 Control part 52 Hot water supply pipe 54 Electric power load 56 Thermal load 58 Hot water storage tank 60 Water supply pipe 62 Aquifer 64 Not Water-permeable layer 66 Support ground 67 Water supply prevention valve 68 Preheating valve 69 Backflow prevention valve 70 Heat exchange part 72 Hot water storage heat exchange part 74 Water supply heat exchange part 75 Preheating pipe 76 Hot water storage pipe 78 Hot water pump 80 Waste heat pump 82 Lower outlet 84 Upper outlet 86 Hot water circulation pipe 88 Waste heat pipe 90 Wattmeter 98 Hot water circulation pump 99 Heat medium circulation pump

Claims (5)

電力および熱量を生成する分散型電源と、
前記分散型電源から電力および熱量が供給される建造物の下方に設けられて、前記建造物を支える地中杭と、
前記地中杭の内部の外周近傍に設けられ、前記分散型電源が生成する熱量によって加温された熱媒体を流すことによって、前記建造物よりも下方の地下部に蓄熱する蓄熱配管と、
前記地中杭を囲み、前記建造物の外周を取り巻く第1地中壁および前記地下部を複数の部分領域に分割する第2地中壁を有する地中壁と
前記地下部の前記複数の部分領域のうち、前記第1地中壁の外部から最も断熱された部分領域に、他の部分領域よりも優先的に前記分散型電源の熱量を蓄熱する制御部と
を備え、
前記地下部は、水を通す帯水層と、前記帯水層よりも下方にあり前記帯水層よりも水を通しにくい不透水層と、前記不透水層よりも堅牢で前記不透水層よりも下方にある支持地盤とを有し、
前記地中壁は、少なくとも前記建造物の下方から前記不透水層にまで達し、前記帯水層よりも水を通しにくく、
前記地中杭は、前記支持地盤にまで達しており、
前記蓄熱配管は、前記不透水層よりも上部で折り返して前記熱媒体を通流する
蓄熱システム。
A distributed power source that generates power and heat, and
An underground pile that is provided below the building to which power and heat are supplied from the distributed power source and supports the building;
A heat storage pipe that is provided near the outer periphery inside the underground pile and stores heat in the underground part below the building by flowing a heat medium heated by the amount of heat generated by the distributed power source, and
A diaphragm wall having a ground stake viewed circumference, second underground wall which divides the first diaphragm wall and the underground surrounding an outer periphery of the building into a plurality of partial regions,
Of the plurality of partial regions of the underground part, a control unit that preferentially stores the amount of heat of the distributed power source in a partial region most insulated from the outside of the first underground wall over other partial regions; <br/>
The underground part includes an aquifer through which water passes, an impermeable layer that is below the aquifer and is less likely to pass water than the aquifer, and is more robust than the impermeable layer and from the impermeable layer. Also has a supporting ground at the bottom,
The underground wall reaches at least the impermeable layer from below the building and is less likely to pass water than the aquifer,
The underground pile reaches the supporting ground,
The heat storage piping is a heat storage system in which the heat storage pipe passes through the heat medium by being folded back above the impermeable layer.
前記地中壁の内側の表面に断熱材が設けられる請求項に記載の蓄熱システム。 The heat storage system according to claim 1 , wherein a heat insulating material is provided on an inner surface of the underground wall. 前記制御部は、前記分散型電源の生成する熱量が熱負荷によって消費される熱量より多い場合に、前記分散型電源の生成する熱量によって加温された熱媒体を前記蓄熱配管に流すことによって前記地下部に蓄熱する請求項1または2に記載の蓄熱システム。 When the amount of heat generated by the distributed power source is greater than the amount of heat consumed by a heat load, the control unit causes the heat medium heated by the amount of heat generated by the distributed power source to flow through the heat storage pipe. The heat storage system of Claim 1 or 2 which stores heat in an underground part. 前記熱負荷に熱量を供給すべく、前記分散型電源の生成する熱量によって加温された温水を貯湯する貯湯槽
を更に備え、
前記蓄熱配管は、前記貯湯槽と接続されており、
前記制御部は、前記貯湯槽に熱量を更に蓄熱できない場合に、前記貯湯槽に貯湯された温水を前記蓄熱配管に流して前記地下部に蓄熱し、前記貯湯槽に蓄熱された熱量が前記熱負荷によって必要とされる熱量より少ない場合に、前記地下部に蓄積された熱量によって前記蓄熱配管を流れる水を加温し、加温して得られる温水を前記貯湯槽に供給する請求項に記載の蓄熱システム。
A hot water storage tank for storing hot water heated by the amount of heat generated by the distributed power source to supply heat to the heat load;
The heat storage pipe is connected to the hot water tank,
When the control unit cannot further store the amount of heat in the hot water storage tank, the hot water stored in the hot water storage tank flows through the heat storage pipe to store heat in the underground part, and the heat stored in the hot water storage tank is stored in the heat storage tank. If less than the amount of heat required by the load, warmed water flowing in the heat storage pipes by accumulated heat in the underground, heated hot water obtained in claim 3 to be supplied to the hot water storage tank The described heat storage system.
前記蓄熱配管は、前記貯湯槽の温水を循環させるべく、前記貯湯槽の下部の温水を取り出す下部取出口と、前記下部よりも上方の温水を取り出す上部取出口とに接続されており、
前記制御部は、前記貯湯槽に熱量を更に蓄熱できない場合に、前記上部取出口から取り出した温水を前記蓄熱配管に流して前記地下部に熱量を提供させた後に、前記下部取出口から前記貯湯槽に温水を戻し、前記貯湯槽に蓄熱された熱量が前記熱負荷によって必要とされる熱量より少ない場合に、前記下部取出口から前記蓄熱配管に温水を取り出して前記地下部に蓄積された熱量で加温し、加温した温水を前記上部取出口から前記貯湯槽に供給する請求項に記載の蓄熱システム。
The heat storage pipe is connected to a lower outlet for taking out hot water in the lower part of the hot water tank and an upper outlet for taking out hot water above the lower part in order to circulate the hot water in the hot water tank,
When the control unit is unable to further store the amount of heat in the hot water storage tank, the hot water taken out from the upper outlet is allowed to flow through the heat storage pipe to provide heat to the underground part, and then the hot water storage from the lower outlet. When the hot water is returned to the tank, and the amount of heat stored in the hot water storage tank is less than the amount of heat required by the heat load, the amount of heat accumulated in the underground portion by extracting hot water from the lower outlet to the heat storage pipe The heat storage system according to claim 4 , wherein the hot water heated by is supplied to the hot water storage tank from the upper outlet.
JP2005158123A 2005-05-30 2005-05-30 Heat storage system Expired - Fee Related JP4820115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005158123A JP4820115B2 (en) 2005-05-30 2005-05-30 Heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005158123A JP4820115B2 (en) 2005-05-30 2005-05-30 Heat storage system

Publications (2)

Publication Number Publication Date
JP2006329598A JP2006329598A (en) 2006-12-07
JP4820115B2 true JP4820115B2 (en) 2011-11-24

Family

ID=37551459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005158123A Expired - Fee Related JP4820115B2 (en) 2005-05-30 2005-05-30 Heat storage system

Country Status (1)

Country Link
JP (1) JP4820115B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292107A (en) * 2007-05-28 2008-12-04 Furukawa Electric Co Ltd:The Heat exchanger, heat exchange system, and construction method of heat exchange system
JP2019210595A (en) * 2018-05-31 2019-12-12 ジャパンパイル株式会社 Underground storage, compressed gas power generation system provided therewith, heat pump system, power storage system, fuel power generation system and underground storage system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525828A (en) * 1991-07-19 1993-02-02 Shimizu Corp Final excavation level lift-preventive construction
JP2000027177A (en) * 1998-07-13 2000-01-25 Ohbayashi Corp Aquifer thermal storage method utilizing underground continuous wall
JP2002256970A (en) * 2001-02-26 2002-09-11 Kubota Corp Co-generation system
JP2003148079A (en) * 2001-11-12 2003-05-21 Kubota Corp Manufacturing method for equipment for exchanging heat with ground, and pile for civil engineering and construction, used for the manufacturing method
JP2005016363A (en) * 2003-06-25 2005-01-20 Osaka Gas Co Ltd Cogeneration system
JP2005135738A (en) * 2003-10-30 2005-05-26 Matsushita Electric Ind Co Ltd Control device for fuel cell system

Also Published As

Publication number Publication date
JP2006329598A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
US7992631B2 (en) System and method for seasonal energy storage
SK29098A3 (en) Energy system for buildings
US20100059044A1 (en) Pressurized open loop freeze protected integral storage collector solar water-heating system
JP2008292044A (en) Natural heat hybrid soil thermal storage system
JP2011140827A (en) Underground heat-storing house
US8851066B1 (en) Thermal energy storage system
JP2007333295A (en) Heat storage system
JP2007333296A (en) Heat storage system
KR102278267B1 (en) Energy recycling apparatus and method using groundwater of fuel cell system
BR112020001151B1 (en) HOT WATER TANK
JP4820115B2 (en) Heat storage system
KR101126026B1 (en) Geothermal Exchanging Apparatus and System with Heat Recovery
JP4733549B2 (en) housing complex
JP6948711B2 (en) Exhaust hot water heat regeneration device and exhaust hot water heat regeneration system using it
JP2006308234A (en) Hot water supply system
KR102327523B1 (en) Green Energy system with suppling water and geothermal heat
JP3928085B2 (en) Non-watering snow melting system and method of operating the system
KR101166332B1 (en) Applicable heat-exchanging circulation water terminal pool system for large quantity requirement of seawater heat and/or geothermal heating and warm water supply, and it&#39;s effective operation method
CN109083159B (en) Cast-in-situ reinforced concrete horizontal containment energy pile and construction method
JP2010096364A (en) Electric water heater
JP3045125B2 (en) Heat insulation structure of building
KR101410702B1 (en) Method for construction of ground heat exchanger system using floor space of the underground structures
KR20160049067A (en) Method for Hybrid geothermal heating and cooling system
JPS59212689A (en) Heat accumulation and hot water supply system
KR20240133430A (en) Geothermal system using a combined heat source for balancing underground heat balance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4820115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees