JP4819651B2 - OFDM signal transmission line characteristic estimation means and correction means and apparatus using the same - Google Patents

OFDM signal transmission line characteristic estimation means and correction means and apparatus using the same Download PDF

Info

Publication number
JP4819651B2
JP4819651B2 JP2006299397A JP2006299397A JP4819651B2 JP 4819651 B2 JP4819651 B2 JP 4819651B2 JP 2006299397 A JP2006299397 A JP 2006299397A JP 2006299397 A JP2006299397 A JP 2006299397A JP 4819651 B2 JP4819651 B2 JP 4819651B2
Authority
JP
Japan
Prior art keywords
signal
signal obtained
fft
low
ofdm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006299397A
Other languages
Japanese (ja)
Other versions
JP2008118390A (en
Inventor
圭 伊藤
樹広 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2006299397A priority Critical patent/JP4819651B2/en
Publication of JP2008118390A publication Critical patent/JP2008118390A/en
Application granted granted Critical
Publication of JP4819651B2 publication Critical patent/JP4819651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Noise Elimination (AREA)

Description

本発明は、振幅、位相が既知のパイロットキャリアを挿入したOFDM信号を受信する装置の伝送路特性推定手段と補正手段及びそれを用いた装置に関する。   The present invention relates to a transmission path characteristic estimation unit and a correction unit of an apparatus for receiving an OFDM signal into which a pilot carrier having a known amplitude and phase is inserted, and an apparatus using the same.

近年、移動体向けディジタル伝送や、地上系ディジタルテレビジョン放送への応用に適した変調方式として、マルチパスフェージングやゴーストに強いという特徴のある直交周波数分割多重(Orthogonal Frequency Division Multiplexing以下OFDM)方式が注目を浴びている。OFDM方式は、マルチキャリア変調方式の一種であって、互いに直交する数十本〜数百本の搬送波(以下キャリア)にそれぞれディジタル変調を施した伝送方式である。これらの各キャリアのI軸成分、Q軸成分には、各々に被変調信号として離散的な符号を割り当て、シンボル周期(数μsec〜msec)毎にその符号を更新する。これらのキャリアは互いに直交関係を保つように加算され、OFDM時間軸波形が生成される。この加算処理は、各キャリアに対し逆フーリエ変換(Inverse Fast Fourie Transform以下IFFT)処理を行うことで実現できる。   In recent years, Orthogonal Frequency Division Multiplexing (OFDM) is a modulation method suitable for digital transmission for mobiles and terrestrial digital television broadcasting. Has attracted attention. The OFDM scheme is a type of multi-carrier modulation scheme, and is a transmission scheme in which digital modulation is performed on dozens to hundreds of carriers (hereinafter referred to as carriers) orthogonal to each other. A discrete code is assigned to each of the I-axis component and Q-axis component of each carrier as a modulated signal, and the code is updated every symbol period (several μsec to msec). These carriers are added so as to maintain an orthogonal relationship with each other, and an OFDM time axis waveform is generated. This addition process can be realized by performing an inverse Fourier transform (hereinafter referred to as IFFT) process on each carrier.

OFDM信号のシンボル構成は、図7に示すように、上記IFFT処理後の時間軸波形である有効シンボルと、有効シンボルの一部を複写して有効シンボルの前に付加したガードインターバルからOFDMシンボルが構成される。ガードインターバルを付加することでにより、ガードインターバル期間内の遅延時間の遅延波に対しては、シンボル間干渉による劣化を避けることが出来るため、マルチパスフェージングに対して、強い耐性を有することができる。   As shown in FIG. 7, the OFDM symbol is composed of an effective symbol, which is a time axis waveform after the IFFT processing, and an OFDM symbol based on a guard interval that is a part of the effective symbol copied and added before the effective symbol. Composed. By adding a guard interval, it is possible to avoid deterioration due to inter-symbol interference with respect to a delayed wave having a delay time within the guard interval period, and thus can have strong resistance against multipath fading. .

上記処理により生成されたOFDM信号は、高周波(RF)に周波数変換(アップコンバート)された後、アンテナから送信され、受信側アンテナで受信され、中間(IF)信号に周波数変換(ダウンコンバート)され,OFDM信号に戻る。   The OFDM signal generated by the above processing is frequency-converted (up-converted) to high frequency (RF), transmitted from the antenna, received by the receiving antenna, and frequency-converted (down-converted) to an intermediate (IF) signal. , Return to OFDM signal.

変調誤差比(Modulation Error Ratio以下MER)は、デジタル放送波のデータシンボル座標のばらつきを数値化した値であり、ノイズや歪みの影響が少なく受信状態が良好であるほど大きな値となる。具体的には、復調したコンスタレーションにおいて理想コンスタレーションポイントからのベクトル誤差の電力換算値と理想コンスタレーションの電力比として定義された値であり、等価C/Nを表す。地上デジタル放送の場合、MERはOFDM復調後のQAM信号の値であり、通常の放送で使用されている64QAMの場合には、およそ20dB以上あることが受信の最低条件となる。しかし実際には、フェージングや妨害波などによる受信状態の悪化に対して十分なマージンを見込んでおくことが必要であるので、25dB以上を確保することが望ましいといわれている。   The modulation error ratio (hereinafter referred to as MER) is a value obtained by quantifying the variation of data symbol coordinates of a digital broadcast wave, and becomes a larger value as the reception state is less affected by noise and distortion. Specifically, in the demodulated constellation, it is a value defined as the power ratio between the power converted value of the vector error from the ideal constellation point and the ideal constellation, and represents the equivalent C / N. In the case of terrestrial digital broadcasting, MER is the value of a QAM signal after OFDM demodulation, and in the case of 64 QAM used in normal broadcasting, the minimum reception condition is about 20 dB or more. However, in practice, it is necessary to allow for a sufficient margin against the deterioration of the reception state due to fading, jamming waves, etc., so it is said that it is desirable to secure 25 dB or more.

地上デジタルテレビ放送方式では、振幅・位相が既知であるパイロットシンボルを挿入しており、受信したパイロットキャリアを時間及び周波数方向に内挿補間を行うことで伝送路特性の推定を行う。パイロットキャリアは周波数方向で12キャリアごとに挿入され、挿入されるキャリアの位置は時間とともに3キャリアずつずらして配置され離散パイロット(Scattered Pilot:以下SPと略す)と呼ばれている。   In the digital terrestrial television broadcasting system, pilot symbols with known amplitudes and phases are inserted, and the channel characteristics are estimated by interpolating the received pilot carriers in the time and frequency directions. The pilot carriers are inserted every 12 carriers in the frequency direction, and the positions of the inserted carriers are shifted by 3 carriers with time and are called discrete pilots (hereinafter abbreviated as SP).

時間ごとに見ると、パイロットキャリアの挿入される周波数は異なっているので、最初に時間方向の補間を行えば、3キャリアごとの伝送路特性を得られることができる。その後、周波数方向の内挿によって、パイロットキャリアの挿入されていないキャリアの伝送路特性を推定する。この方法を4シンボル推定方式と呼ぶ。また、高速フーリエ変換(以下FFT)時間窓を固定的に設定し、ガードインターバル期間内の遅延波と先行波を等化するためには、周波数方向の内挿フィルタの通過域を2倍のガードインターバル長とする方式が良く用いられている。   Since the frequency at which the pilot carrier is inserted differs from time to time, transmission path characteristics for every three carriers can be obtained by performing interpolation in the time direction first. Thereafter, the channel characteristics of the carrier in which no pilot carrier is inserted are estimated by interpolation in the frequency direction. This method is called a 4-symbol estimation method. Also, in order to set a fast Fourier transform (FFT) time window fixedly and equalize the delayed wave and the preceding wave within the guard interval period, the pass band of the interpolation filter in the frequency direction is doubled. An interval length method is often used.

映像信号を伝送する場合には、パイロットキャリアを同一キャリアに時間連続的に配置させた連続パイロット(Continuous Pilot:以下CPと略す)も使用されている。
特開2005−260331号公報
In the case of transmitting a video signal, a continuous pilot (hereinafter abbreviated as CP) in which pilot carriers are continuously arranged on the same carrier in time is also used.
JP 2005-260331 A

しかしながら、4シンボル推定方式では時間方向に内挿補間を行うために時変動への追従が困難になるという問題点がある。 However, the four symbol estimation method for performing interpolation in the time direction, when the tracking of the variations is disadvantageously difficult.

上記問題点を解決するために全キャリアを用いた伝送路特性推定を用いるが、低域通過フィルタの長さがガードインターバル長の2倍必要となり、不必要な範囲までフィルタを適用することとなり、雑音成分が多くなるという問題点がある。   In order to solve the above problem, channel characteristic estimation using all carriers is used, but the length of the low-pass filter is twice as long as the guard interval length, and the filter is applied to an unnecessary range. There is a problem that the noise component increases.

本発明は、このような従来の問題を解決しようとするもので、高精度かつ高速な伝送路特性推定技術を有するOFDM信号受信装置および中継装置を提供することができる。   The present invention is intended to solve such a conventional problem, and can provide an OFDM signal receiving apparatus and a relay apparatus having a high-accuracy and high-speed transmission path characteristic estimation technique.

本発明では上記課題を解決するため、振幅及び位相が既知であるパイロットキャリアが配置されたOFDM変調信号を受信し受信信号をFFTする手段を有する装置において、前記FFT手段から得られる信号に含まれるパイロットキャリア信号を内挿補間することによる第一の伝送路特性推定手段と、前記第一の伝送路特性推定手段から得られる信号を用いて前記FFT手段から得られる信号の全キャリア信号とから伝送路特性を推定する第二の伝送路特性推定手段と、前記第二の伝送路特性推定手段から得られる信号に対してガードインターバル長が通過帯域である低域通過フィルタと、前記第一の伝送路特性推定手段から得られる信号から主波の位置を検出し主波の位置を前記低域通過フィルタの通過域の所定位置となるように補正する手段とを備えることを特徴とするOFDM信号の伝送路特性推定手段と補正手段を提供する。   In the present invention, in order to solve the above-mentioned problem, in an apparatus having means for receiving an OFDM modulated signal in which a pilot carrier having a known amplitude and phase is arranged, and performing FFT on the received signal, the signal is obtained from the FFT means. Transmission from the first transmission path characteristic estimation means by interpolating the pilot carrier signal and all the carrier signals of the signal obtained from the FFT means using the signal obtained from the first transmission path characteristic estimation means Second transmission path characteristic estimation means for estimating path characteristics, a low-pass filter whose guard interval length is a pass band for the signal obtained from the second transmission path characteristic estimation means, and the first transmission The position of the main wave is detected from the signal obtained from the path characteristic estimating means, and the position of the main wave is corrected so as to be a predetermined position in the pass band of the low-pass filter. Providing channel estimation means and correction means of the OFDM signal, characterized in that it comprises a means.

または、振幅及び位相が既知であるパイロットキャリアが配置されたOFDM変調信号を受信し受信信号をFFTする手段を有する装置において、前記FFT手段から得られる信号に含まれるパイロットキャリア信号を内挿補間することによる第一の伝送路特性推定手段と、前記第一の伝送路特性推定手段から得られる信号を用いて前記FFT手段から得られる信号の全キャリア信号とから伝送路特性を推定し低域通過フィルタを通過させる第二の伝送路特性推定手段と、前記第一の伝送路特性推定手段から得られる信号を用いて前記FFT手段から得られる信号を等化し変調誤差比を算出する第一の変調誤差比の演算手段と、前記低域通過フィルタから得られる信号を用いて前記FFT手段から得られる信号を等化し変調誤差比を算出する第二の変調誤差比の演算手段と、前記第一の変調誤差比の演算手段から得られる信号と前記第二の変調誤差比の演算手段から得られる信号とを比較する手段と、前記比較手段結果から前記第一の変調誤差比の演算器から得られる信号のほうが良好な場合は前記第一の伝送路特性推定手段から得られる信号を選択し前記第二の変調誤差比の演算手段から得られる信号のほうが良好な場合は前記低域通過フィルタから得られる信号を選択する手段とを備えることを特徴とするOFDM信号の伝送路特性推定手段と補正手段を提供する。   Alternatively, in an apparatus having means for receiving an OFDM modulated signal in which a pilot carrier having a known amplitude and phase is arranged and performing FFT on the received signal, the pilot carrier signal included in the signal obtained from the FFT means is interpolated. The first transmission path characteristic estimation means and the signal obtained from the first transmission path characteristic estimation means to estimate the transmission path characteristics from all the carrier signals of the signal obtained from the FFT means, A first modulation for calculating a modulation error ratio by equalizing a signal obtained from the FFT means using a signal obtained from the second transmission path characteristic estimation means passing through the filter and the first transmission path characteristic estimation means; The signal obtained from the FFT means is equalized using the error ratio calculating means and the signal obtained from the low-pass filter to calculate the modulation error ratio. A second modulation error ratio calculation means, a means for comparing a signal obtained from the first modulation error ratio calculation means and a signal obtained from the second modulation error ratio calculation means, and the comparison means result When the signal obtained from the first modulation error ratio computing unit is better, the signal obtained from the first transmission path characteristic estimating means is selected and obtained from the second modulation error ratio computing means. An OFDM signal transmission line characteristic estimating means and a correcting means are provided, comprising means for selecting a signal obtained from the low-pass filter when the signal is better.

上記のOFDM信号の伝送路特性推定部及び主波の位置補正手段において、前記第二の伝送路特性推定手段から得られる信号に対してガードインターバル長が通過帯域である低域通過フィルタと、前記第一の伝送路特性推定手段から得られる信号から主波の位置を検出し主波の位置を前記低域通過フィルタの通過域の所定位置となるように補正する手段とを備えることを特徴とするOFDM信号の伝送路特性推定手段と補正手段を提供する。   In the OFDM signal transmission path characteristic estimation unit and the main wave position correction means, a low-pass filter whose guard interval length is a pass band with respect to the signal obtained from the second transmission path characteristic estimation means, and And a means for detecting the position of the main wave from the signal obtained from the first transmission path characteristic estimating means and correcting the position of the main wave so as to be a predetermined position in the pass band of the low-pass filter. An OFDM signal transmission line characteristic estimation unit and a correction unit are provided.

さらに、上記のOFDM信号の伝送路特性推定手段と補正手段を備えることを特徴とするOFDM信号受信装置を提供する。
または、上記のOFDM信号の伝送路特性推定手段と補正手段を備えることを特徴とするOFDM信号中継機を提供する。
Furthermore, the present invention provides an OFDM signal receiving apparatus comprising the OFDM signal transmission path characteristic estimation means and correction means.
Alternatively, there is provided an OFDM signal repeater comprising the OFDM signal transmission line characteristic estimation means and correction means.

以上説明したように、本発明によれば、伝送路特性推定方式に全キャリア方式を用い、低域通過フィルタの範囲を従来の1/2にすることで、不要な雑音成分を軽減でき、高速かつ高精度な伝送路特性推定を行うことができる。また、4シンボル推定方式と全キャリア方式を変調誤差比(MER)の比較により、伝送路の状況に応じた伝送路特性推定方式を選択することが可能となる。   As described above, according to the present invention, unnecessary noise components can be reduced by using the all-carrier method for the transmission path characteristic estimation method and by reducing the range of the low-pass filter to ½ that of the conventional one. In addition, highly accurate transmission path characteristic estimation can be performed. Further, by comparing the modulation error ratio (MER) between the 4-symbol estimation method and the all-carrier method, it is possible to select a transmission channel characteristic estimation method according to the transmission path condition.

以下、この発明の実施の形態について図8と図9とを参照して全体を説明してから、各部について、図1から図7を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. 8 and FIG. 9, and each part will be described with reference to FIGS. 1 to 7.

図8は本発明の実施例のOFDM信号受信装置の全体構成を示すブロック図で、図9は本発明の実施例のOFDM信号中継装置の全体構成を示すブロック図である。図8と図9において、アンテナ1に受信した高周波信号はダウンコンバータ2でIF信号に変換され,アナログデジタル変換器(A/D)3でデジタル信号になり高速フーリエ変換(FFT) 部4で周波数成分に変換され、伝送路特性推定部6と等化部5で、伝送路劣化を補正される。図8のOFDM信号受信装置では、等化部5の補正出力を、復調部7でトランスポートストリーム(TS)信号に戻される。図9のOFDM信号中継装置では、逆高速フーリエ変換(IFFT)部8で時間軸成分に変換され、デジタルアナログ変換器(D/A)9でIF信号となり、アップコンバータ10で高周波信号となり、アンテナ11から再送信される。   FIG. 8 is a block diagram showing the overall configuration of the OFDM signal receiving apparatus according to the embodiment of the present invention, and FIG. 9 is a block diagram showing the overall configuration of the OFDM signal relay apparatus according to the embodiment of the present invention. 8 and 9, the high-frequency signal received by the antenna 1 is converted into an IF signal by the down-converter 2 and converted into a digital signal by the analog-digital converter (A / D) 3, and the frequency is obtained by the fast Fourier transform (FFT) unit 4. It is converted into a component, and the transmission line deterioration is corrected by the transmission line characteristic estimation unit 6 and the equalization unit 5. In the OFDM signal receiving apparatus of FIG. 8, the correction output of the equalization unit 5 is returned to the transport stream (TS) signal by the demodulation unit 7. In the OFDM signal relay apparatus of FIG. 9, it is converted into a time axis component by an inverse fast Fourier transform (IFFT) unit 8, converted into an IF signal by a digital-analog converter (D / A) 9, and converted into a high-frequency signal by an up-converter 10, 11 is retransmitted.

図1は本発明の第一の実施例のOFDM信号受信装置の伝送路特性推定部6の構成を示すものである。図2は4シンボル推定方式のフィルタ通過域とフィルタ通過域に含まれる雑音を示す模式図であり、図3はガードインターバル長DGIの2倍のかつ最適化処理を適用しない従来の場合の低域通過フィルタと雑音を示す模式図であり、図4はガードインターバル長DGIの低域通過フィルタと雑音を示す模式図である。図5はガードインターバル長DGIの低域通過フィルタと雑音と主波の時間的な位置Dmと帯域端DGI/2から最短かつフィルタの減衰がないDαを示す模式図である。図6は、本発明の第二の実施例における伝送路特性推定部のブロック図であり、図6は第一の実施例において伝送路特性推定部の構成を変更したものである。 FIG. 1 shows the configuration of the transmission path characteristic estimation unit 6 of the OFDM signal receiving apparatus according to the first embodiment of the present invention. Figure 2 is a schematic diagram showing a noise included in the filter passband the filter passband 4 symbol estimation method, Fig. 3 is low in the case of the conventional is not applied twice and optimization process of the guard interval length D GI is a schematic diagram illustrating a band pass filter and a noise, FIG. 4 is a schematic diagram showing a low-pass filter and the noise of the guard interval length D GI. Figure 5 is a schematic diagram showing a Dα no attenuation of the shortest and the filter from the temporal position Dm and band edge D GI / 2 of the low-pass filter of the guard interval length D GI and noise and the main wave. FIG. 6 is a block diagram of the transmission path characteristic estimation unit in the second embodiment of the present invention, and FIG. 6 is a modification of the configuration of the transmission path characteristic estimation unit in the first embodiment.

図1において、伝送路特性推定部6はパイロットキャリア(P)抽出・仮推定器13と等化処理器14と判定処理器15と除算器16とLPF17とLPF最適化制御部18とを備える。LPF最適化制御部18はIFFT部51と主波検出器52と位置検出器53と位置制御器54とを備える。   In FIG. 1, the channel characteristic estimation unit 6 includes a pilot carrier (P) extraction / provisional estimator 13, an equalization processor 14, a determination processor 15, a divider 16, an LPF 17, and an LPF optimization controller 18. The LPF optimization control unit 18 includes an IFFT unit 51, a main wave detector 52, a position detector 53, and a position controller 54.

補正部(LPF最適化ローテータ)12はLPF最適化制御部18からの出力信号DCONTに基づき、最適化位置補正を行う。FFT部4は入力された信号に対してFFT演算を行う。 The correction unit (LPF optimization rotator) 12 performs optimization position correction based on the output signal D CONT from the LPF optimization control unit 18. The FFT unit 4 performs an FFT operation on the input signal.

出力信号RはP抽出・仮推定部器13と等化処理器14と除算器16に接続される。P抽出・仮推定器13は入力された信号Rから離散パイロット(SP)を抽出し、最初に時間方向の補間を行い3キャリアごとの伝送路特性を得られる。その後、周波数方向の内挿によって、パイロットキャリアの挿入されていないキャリアの伝送路特性の仮推定を行い、等化処理器14とLPF最適化制御部18に信号H1’を出力する。 The output signal R is connected to a P extraction / provisional estimation unit 13, an equalization processor 14, and a divider 16. The P extraction / provisional estimator 13 extracts a discrete pilot (SP) from the input signal R, and first performs interpolation in the time direction to obtain transmission path characteristics for every three carriers. Thereafter, provisional estimation of the channel characteristics of the carrier in which no pilot carrier is inserted is performed by interpolation in the frequency direction, and a signal H 1 ′ is output to the equalization processor 14 and the LPF optimization controller 18.

等化処理器14は入力された信号Rと信号H1’との複素除算を行い、等化後信号R/H1’を判定処理器15に出力する。等化後の信号R/H1’は64QAMや16QAM等で変調された信号を受信した受信のコンスタレーションを示している。また、地上デジタルテレビ放送方式では、キャリア毎に変調方式が異なる方式が採用されている。 The equalization processor 14 performs complex division between the input signal R and the signal H 1 ′, and outputs the equalized signal R / H 1 ′ to the determination processor 15. The equalized signal R / H 1 ′ indicates a reception constellation when a signal modulated by 64QAM, 16QAM, or the like is received. Further, in the terrestrial digital television broadcasting system, a system with a different modulation system for each carrier is adopted.

判定処理器15は入力された等化後信号R/H1’に対して、キャリア毎の変調方式に基づいた判定を行い、判定信号X’を除算器16に出力する。FFT部4の出力信号RはHで与えられる伝送路の影響によって歪みを受けている。出力信号Rにおいて希望キャリア成分Xは伝送路特性Hの影響による振幅・位相歪みを受けている。これを式で表すとR=H・Xと書ける。伝送路特性Hについて書き直すとH=R/Xと表される。判定誤りが少ない環境では判定信号X’はX≒X’となるものであり、判定信号X’の算出は希望キャリア成分の理想値の算出である。 The determination processor 15 performs determination based on the modulation scheme for each carrier on the input equalized signal R / H 1 ′, and outputs the determination signal X ′ to the divider 16. The output signal R of the FFT unit 4 is distorted by the influence of the transmission path given by H. In the output signal R, the desired carrier component X is subjected to amplitude / phase distortion due to the influence of the transmission path characteristic H. This can be expressed as R = H · X. Rewriting the transmission line characteristic H, it is expressed as H = R / X. In an environment where there are few determination errors, the determination signal X ′ becomes X≈X ′, and the determination signal X ′ is calculated as an ideal value of the desired carrier component.

除算器16では入力された信号Rと判定信号X’との複素除算を行うことにより、時間変動に追従した伝送路特性Hを算出することができる。 By performing the complex division of the determination signal X 'and the divider 16 the input signal R, it is possible to output calculated channel characteristics H which follow the time variation.

LPF17はガードインターバル長DGIとしたときフィルタ通過域が−DGI/2〜DGI/2であるような低域通過フィルタであり、入力された信号H’から雑音等不要な成分を取り除いた信号HLPFを出力する。図2は4シンボル推定方式のフィルタ通過域とフィルタ通過域に含まれる雑音を示したものである。図3はフィルタ通過域が−DGI〜DGIかつ最適化処理を適用しない従来の場合の低域通過フィルタ適用例である。図3より実際に必要なフィルタ通過域長はDあれば良いことが分かる。また、図4はフィルタ通過域が−DGI/2〜DGI/2である低域通過フィルタ適用例の例である。フィルタ通過域を従来の1/2とすることで雑音成分による影響を半減させることが可能である。 LPF17 is a low-pass filter, such as filter passband is -D GI / 2~D GI / 2 when a guard interval length D GI, remove noise such as unnecessary components from the signal H 2 'which is input Output the signal H LPF . FIG. 2 shows the filter passband of the 4-symbol estimation method and the noise contained in the filter passband. FIG. 3 shows an application example of a low-pass filter in the conventional case where the filter pass band is −D GI to D GI and the optimization process is not applied. It can be seen from FIG. 3 that the actually required filter passband length is D. Further, FIG. 4 is an example of a low-pass filter applications the filter passband is -D GI / 2~D GI / 2. The influence of noise components can be halved by setting the filter passband to ½ that of the prior art.

LPF最適化制御部18はLPF処理を最適にする位置補正制御処理を行い、その補正情報DCONTをLPF最適化ローテータ12へ出力する。 The LPF optimization control unit 18 performs position correction control processing that optimizes the LPF processing, and outputs the correction information D CONT to the LPF optimization rotator 12.

IFFT部51は伝送路特性の仮推定信号H1’に対してIFFT(逆高速フーリエ変換)演算を行い、図3に示すような伝送路の遅延プロファイルを算出し、主波検出器52に出力する。図3に示す遅延プロファイルは右端パスが時間的に最も先行して到来したパスを示し、左端が最遅延パスを示している。 The IFFT unit 51 performs an IFFT (Inverse Fast Fourier Transform) operation on the temporary estimation signal H 1 ′ of the transmission path characteristic, calculates a delay profile of the transmission path as shown in FIG. 3, and outputs it to the main wave detector 52. To do. In the delay profile shown in FIG. 3, the right end path indicates the path that has arrived most first in time, and the left end indicates the most delay path.

主波検出器52はIFFT部51からの遅延プロファイル信号から主波成分を検出し、位置検出器53に出力される。主波検出器52の動作について説明する。図3に示す遅延プロファイルにおいて、到来パス信号と雑音を混同しないように設けた閾値を超えたパスで尚且つ最も時間的に先行して到来したパスを主波として検出する。   The main wave detector 52 detects the main wave component from the delay profile signal from the IFFT unit 51, and outputs it to the position detector 53. The operation of the main wave detector 52 will be described. In the delay profile shown in FIG. 3, a path that exceeds a threshold provided so as not to confuse the incoming path signal and noise and that has arrived the earliest in time is detected as the main wave.

位置検出器53は主波検出器52の出力に基づき、主波の時間的な位置Dmを検出し、その位置情報を位置制御器54に出力する。   The position detector 53 detects the temporal position Dm of the main wave based on the output of the main wave detector 52 and outputs the position information to the position controller 54.

位置制御器54は対象波選択器54から出力されたDmの情報に基づきDm=DGI/2−Dα(Dα>0)となるような位置補正情報DCONTをLPF最適化ローテータ12に出力する。最適化ローテータ12ではFFT部4からの出力信号に対して、LPF最適化制御部18からの制御情報に基づき複素周波数軸上で回転演算を行い、等価的に遅延プロファイル信号の時間位置補正を行う。 The position controller 54 outputs position correction information D CONT such that Dm = D GI / 2−Dα (Dα> 0) based on the Dm information output from the target wave selector 54 to the LPF optimization rotator 12. . The optimization rotator 12 performs rotation calculation on the complex frequency axis for the output signal from the FFT unit 4 based on the control information from the LPF optimization control unit 18 and equivalently corrects the time position of the delay profile signal. .

遅延プロファイル信号の主波の位置Dmは帯域端DGI/2から最短かつフィルタの減衰がないDα離れた位置とする。このような位置を保つことで、図5のように通過域内にできるだけ多くの主波から遅延波を配置することができる。 The position Dm of the main wave of the delay profile signal is a position that is shortest from the band edge D GI / 2 and away from Dα where there is no filter attenuation. By maintaining such a position, it is possible to arrange delay waves from as many main waves as possible in the passband as shown in FIG.

以上説明した第一の実施例により、全キャリアを用いた伝送路特性の推定を行うことにより、時間変動への追従が可能となり、LPFの通過域を従来の1/2とすることで雑音の影響を軽減することが可能となり、高速かつ高精度な伝送路特性の推定を行うことができる。   According to the first embodiment described above, it is possible to follow time fluctuation by estimating the channel characteristics using all carriers, and by reducing the passband of the LPF to 1/2 of the conventional one, It is possible to reduce the influence, and it is possible to estimate transmission path characteristics with high speed and high accuracy.

次に第二の実施例について説明する。第二の実施例は伝送路特性推定部の構成を図6にしたものであり、全キャリアを用いた伝送路特性推定方式と、4シンボル推定方式とを変調誤差比(MER)値の比較により選択可能とするものである。それ以外の構成は第一の実施例と同一であるので、詳細説明は省略する。   Next, a second embodiment will be described. In the second embodiment, the configuration of the channel characteristic estimation unit is shown in FIG. 6, and the channel characteristic estimation method using all carriers and the four symbol estimation method are compared by modulating error ratio (MER) values. Selectable. Since the other configuration is the same as that of the first embodiment, detailed description thereof is omitted.

図6は第一の実施例において伝送路特性推定部の構成を変更したものであり、図1の構成に等化処理器71とMER演算器72および73と伝送路推定選択処理器74を付け加えたものである。   FIG. 6 shows a modification of the configuration of the transmission path characteristic estimation unit in the first embodiment, and an equalization processor 71, MER calculators 72 and 73, and a transmission path estimation selection processor 74 are added to the configuration of FIG. It is a thing.

等化処理器71は入力された信号Rと信号H’LPFとの複素除算を行い、等化後信号R/H’LPFをMER演算器72に出力する。MER演算器72は等化処理器71の出力信号R/H’LPFからMER値を算出し、選択処理器63にMER[R/H’LPF]を出力する。MER[α]はαのC/Nを出力する関数である。MER演算器73は等化処理器14の出力信号R/H1’からMER値を算出し、選択処理器73にMER[R/H1’]を出力する。伝送路推定選択処理器74は入力されたMER[R/H’LPF]とMER[R/H1’]の比較を行う。比較の結果、MER[R/H’LPF]が大きければ入力されたH’LPFを選択し、MER[R/H1’]が大きければ入力されたH1’を選択し、選択信号H’SELを出力する。 The equalization processor 71 performs complex division between the input signal R and the signal H ′ LPF , and outputs the equalized signal R / H ′ LPF to the MER calculator 72. The MER calculator 72 calculates the MER value from the output signal R / H ′ LPF of the equalization processor 71 and outputs MER [R / H ′ LPF ] to the selection processor 63. MER [α] is a function that outputs C / N of α. The MER calculator 73 calculates the MER value from the output signal R / H 1 ′ of the equalization processor 14 and outputs MER [R / H 1 ′] to the selection processor 73. The transmission path estimation / selection processor 74 compares the input MER [R / H ′ LPF ] and MER [R / H 1 ′]. As a result of the comparison, if MER [R / H ′ LPF ] is large, the input H ′ LPF is selected. If MER [R / H 1 ′] is large, the input H 1 ′ is selected, and the selection signal H ′ is selected. SEL is output.

以上説明した第二の実施例により、伝送路の変動が極端に激しくR/H1’の判定が誤る等の理由により、MER[R/H’LPF]の劣化が激しい場合は、MER値を比較することにより4シンボル推定方式の伝送路特性推定結果を選択する。つまり、伝送路の状況に応じ、より良い伝送路特性推定結果を選択する。 According to the second embodiment described above, if the deterioration of MER [R / H ′ LPF ] is severe due to extremely severe fluctuations in the transmission path and the erroneous determination of R / H 1 ′, the MER value is By comparison, the channel characteristic estimation result of the 4-symbol estimation method is selected. That is, a better transmission path characteristic estimation result is selected according to the transmission path status.

以上説明した第二の実施例の伝送路特性推定部の構成の図6において、最適化ローテータ12とLPF最適化前制御部18を省略し、LPF17をガードインターバル長の2倍とした簡易方式も可能である。   In FIG. 6 of the configuration of the transmission line characteristic estimation unit of the second embodiment described above, there is also a simple method in which the optimization rotator 12 and the pre-LPF control unit 18 are omitted and the LPF 17 is twice the guard interval length. Is possible.

以上の説明は、パイロットキャリアを時間及び周波数方向に分散配置した地上デジタルテレビ放送方式を中心に説明したが、パイロットキャリアを同一キャリアに時間連続的に配置させた連続パイロット(CP)方式においても、本発明で伝送路特性を推定することが可能である。図1と図6のP抽出・仮推定部13において、内挿補間が周波数方向のみで、パイロットキャリアの挿入されていないキャリアの伝送路特性の仮推定を行う以外は、同様の動作であるので、詳細説明は省略する。
Although the above explanation has been mainly focused on the digital terrestrial television broadcasting system in which pilot carriers are distributed and arranged in the time and frequency directions, in the continuous pilot (CP) system in which pilot carriers are continuously arranged on the same carrier, With the present invention, it is possible to estimate transmission line characteristics. The P extraction / provisional estimation unit 13 in FIGS. 1 and 6 is the same operation except that the interpolation is performed only in the frequency direction and the transmission path characteristics of the carrier in which the pilot carrier is not inserted is provisionally estimated. Detailed description will be omitted.

本発明の第一の実施例における伝送路特性推定部のブロック図The block diagram of the transmission-line characteristic estimation part in 1st Example of this invention 4シンボル推定方式のフィルタ通過域と雑音を示す模式図Schematic diagram showing the filter passband and noise of the 4-symbol estimation method ガードインターバル長DGIの2倍の低域通過フィルタと雑音を示す模式図Schematic view showing a 2-fold lowpass filter and a noise guard interval length D GI ガードインターバル長DGIの低域通過フィルタと雑音を示す模式図Schematic diagram showing a low-pass filter and the noise of the guard interval length D GI ガードインターバル長DGIの低域通過フィルタと雑音と主波の時間的な位置Dmと帯域端DGI/2から最短かつフィルタの減衰がないDαを示す模式図Schematic diagram showing a low-pass filter and noise and temporal position Dm and Dα no attenuation of the shortest and the filter from the band edge D GI / 2 of the main wave of the guard interval length D GI 本発明の第二の実施例における伝送路特性推定部のブロック図The block diagram of the transmission-line characteristic estimation part in 2nd Example of this invention OFDM信号のシンボル構成を示す模式図Schematic diagram showing symbol structure of OFDM signal 本発明の実施例のOFDM受信装置の構成を示すブロック図The block diagram which shows the structure of the OFDM receiver of the Example of this invention 本発明の実施例のOFDM中継装置の構成を示すブロック図The block diagram which shows the structure of the OFDM relay apparatus of the Example of this invention

符号の説明Explanation of symbols

1,11:アンテナ、2:ダウンコンバータ、
3:アナログデジタル変換器(A/D)、
4:高速フーリエ変換(FFT)部
5:等化部、6:伝送路特性推定部、7:復調部、
8,51:逆高速フーリエ変換(IFFT) 部、
9:デジタルアナログ変換器(D/A)、10:アップコンバータ
12:補正部(LPF最適化ローテータ)、13:P抽出・仮推定部、
14:等化処理器、15:判定処理器、16:除算器
17:低域通過フィルタ(LPF)、18:LPF最適化制御部
52:主波検出器、53:主波位置検出器、54:主波位置制御器
71:等化処理器、72:MER演算器、73:MER演算器
74:伝送路特性推定手段選択器
1, 11: antenna, 2: down converter,
3: Analog-digital converter (A / D),
4: Fast Fourier transform (FFT) unit 5: equalization unit, 6: transmission path characteristic estimation unit, 7: demodulation unit,
8, 51: Inverse Fast Fourier Transform (IFFT) part,
9: Digital-analog converter (D / A), 10: Upconverter 12: Correction unit (LPF optimization rotator), 13: P extraction / temporary estimation unit,
14: Equalizer, 15: Decision processor, 16: Divider 17: Low-pass filter (LPF), 18: LPF optimization controller 52: Main wave detector, 53: Main wave position detector, 54 : Main wave position controller 71: Equalizer, 72: MER calculator, 73: MER calculator 74: Transmission path characteristic estimation means selector

Claims (5)

振幅及び位相が既知であるパイロットキャリアが配置されたOFDM変調信号を受信し受信信号をFFTする手段を有するOFDM信号受信装置において、
前記FFT手段から得られる信号に含まれるパイロットキャリア信号を内挿補間することによる第一の伝送路特性推定手段と、
前記第一の伝送路特性推定手段から得られる信号を用いて前記FFT手段から得られる信号を等価及び判定することで判定信号を得、前記FFT手段から得られる信号と該判定信号との複素除算により、全キャリア信号に基づく伝送路特性を推定する第二の伝送路特性推定手段と、
前記第二の伝送路特性推定手段から得られる信号に対して、通過域の幅がガードインターバル長に対応する低域濾波を行う低域通過フィルタと、
前記第一の伝送路特性推定手段から得られる信号から主波の位置を検出し、主波の位置を前記低域通過フィルタの通過域の所定位置となるよう、前記FFT手段から得られる信号に補正を施す補正手段とを備えることを特徴とするOFDM信号受信装置
In an OFDM signal receiving apparatus having means for receiving an OFDM modulated signal in which a pilot carrier having a known amplitude and phase is arranged and performing FFT on the received signal,
First transmission line characteristic estimation means by interpolating a pilot carrier signal included in the signal obtained from the FFT means;
A determination signal is obtained by equalizing and determining the signal obtained from the FFT means using the signal obtained from the first transmission line characteristic estimation means, and complex division of the signal obtained from the FFT means and the determination signal A second transmission path characteristic estimating means for estimating the transmission path characteristics based on all carrier signals;
A low-pass filter that performs low-pass filtering on the signal obtained from the second transmission path characteristic estimation means , the width of the pass band corresponding to the guard interval length;
The position of the main wave is detected from the signal obtained from the first transmission path characteristic estimation means, and the signal obtained from the FFT means is set so that the position of the main wave becomes a predetermined position in the pass band of the low-pass filter. An OFDM signal receiving apparatus comprising correction means for performing correction .
前記第一の伝送路特性推定手段から得られる信号を用いて前記FFT手段から得られる信号を等化し第一の変調誤差比を算出する第一の変調誤差比演算手段と、
前記低域通過フィルタから得られる信号を用いて前記FFT手段から得られる信号を等化し第二の変調誤差比を算出する第二の変調誤差比演算手段と、
前記第一及び第二の変調誤差比を比較し、前記第一の変調誤差比ほうが良好な場合は前記第一の伝送路特性推定手段から得られる信号を選択し、前記第二の変調誤差比ほうが良好な場合は前記低域通過フィルタから得られる信号を選択する手段と、を更に備えることを特徴とする請求項1記載のOFDM信号受信装置
A first modulation error ratio arithmetic means for calculating a first modulation error ratio equalizes the signal obtained from the FFT unit by using a signal obtained from the first transmission channel characteristic estimating means,
A second modulation error ratio calculation means for calculating the low-pass by using a signal obtained from the filter equalizes the signal obtained from the FFT unit second modulation error ratio,
Wherein the first and compares the second modulation error ratio, if the the first towards the modulation error ratio better selects the signal obtained from the first transmission channel characteristic estimating unit, wherein the second modulation error The OFDM signal receiving apparatus according to claim 1 , further comprising means for selecting a signal obtained from the low-pass filter when the ratio is better.
前記第一の伝送路特性推定手段は、前記パイロットキャリア信号を時間及び周波数方向に内挿補間を行うことで伝送路特性の推定を行うものであり、
前記低域通過フィルタの前記通過域は、ガードインターバル長をD GI としたときに、−D GI /2からD GI /2であり、
前記補正手段は、前記FFT手段から得られる信号に周波数軸上で回転演算を行い、等価的に遅延プロファイルにおける前記主波の時間位置を補正するものであり、該主波の時間位置は、前記低域通過フィルタの帯域端の近傍かつ該低域通過フィルタによる減衰が実質的に無い位置となるよう制御するものであり、
前記第一及び第二の伝送路特性推定手段は、前記FFT手段から得られる信号であって前記補正手段で補正された信号を入力されることを特徴とする請求項1又は2に記載のOFDM信号受信装置
The first transmission line characteristic estimation means estimates the transmission line characteristic by interpolating the pilot carrier signal in the time and frequency directions,
The pass band of the low-pass filter is −D GI / 2 to D GI / 2 when the guard interval length is D GI .
The correction means performs a rotation operation on the frequency axis on the signal obtained from the FFT means, and equivalently corrects the time position of the main wave in the delay profile. It is controlled so that it is in the vicinity of the band edge of the low-pass filter and at a position where there is substantially no attenuation by the low-pass filter,
3. The OFDM according to claim 1, wherein the first and second transmission line characteristic estimation means are input with signals obtained from the FFT means and corrected by the correction means. 4. Signal receiving device .
前記低域通過フィルタが出力する伝送路特性を用いて、前記補正手段で補正された信号を等価する等化部と、前記等価部の出力を復調する復調部と、を更に備えることを特徴とする請求項1乃至請求項3記載のOFDM信号受信装置。 An equalizer for equalizing the signal corrected by the correction means using a transmission path characteristic output from the low-pass filter, and a demodulator for demodulating the output of the equivalent unit, The OFDM signal receiving apparatus according to claim 1 . 請求項1乃至請求項4記載のOFDM信号受信装置を備えることを特徴とするOFDM信号中継機。 An OFDM signal repeater comprising the OFDM signal receiving device according to claim 1.
JP2006299397A 2006-11-02 2006-11-02 OFDM signal transmission line characteristic estimation means and correction means and apparatus using the same Active JP4819651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006299397A JP4819651B2 (en) 2006-11-02 2006-11-02 OFDM signal transmission line characteristic estimation means and correction means and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006299397A JP4819651B2 (en) 2006-11-02 2006-11-02 OFDM signal transmission line characteristic estimation means and correction means and apparatus using the same

Publications (2)

Publication Number Publication Date
JP2008118390A JP2008118390A (en) 2008-05-22
JP4819651B2 true JP4819651B2 (en) 2011-11-24

Family

ID=39503965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006299397A Active JP4819651B2 (en) 2006-11-02 2006-11-02 OFDM signal transmission line characteristic estimation means and correction means and apparatus using the same

Country Status (1)

Country Link
JP (1) JP4819651B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4916846B2 (en) * 2006-11-20 2012-04-18 シャープ株式会社 OFDM demodulation apparatus and OFDM demodulation method
JP5062839B2 (en) * 2008-03-17 2012-10-31 株式会社日立国際電気 OFDM receiving apparatus and OFDM relay apparatus
JP5256073B2 (en) * 2009-02-19 2013-08-07 日本放送協会 Digital transmission system transmitter, receiver, and transmitter / receiver
JP6073189B2 (en) * 2013-05-31 2017-02-01 株式会社日立国際電気 OFDM receiver

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3606448B2 (en) * 2000-08-21 2005-01-05 株式会社ケンウッド Orthogonal frequency division multiplex signal receiving apparatus and orthogonal frequency division multiplex signal receiving method
JP2004096703A (en) * 2001-11-15 2004-03-25 Matsushita Electric Ind Co Ltd Ofdm demodulation method and ofdm demodulation apparatus
JP3993441B2 (en) * 2002-02-01 2007-10-17 株式会社日立国際電気 OFDM signal receiver
JP2004343480A (en) * 2003-05-16 2004-12-02 Fujitsu Ltd Ofdm receiving device
US7701917B2 (en) * 2004-02-05 2010-04-20 Qualcomm Incorporated Channel estimation for a wireless communication system with multiple parallel data streams
JP4447372B2 (en) * 2004-05-13 2010-04-07 株式会社エヌ・ティ・ティ・ドコモ RADIO COMMUNICATION SYSTEM, RADIO COMMUNICATION DEVICE, RADIO RECEPTION DEVICE, RADIO COMMUNICATION METHOD, AND CHANNEL ESTIMATION METHOD
JP2006024992A (en) * 2004-07-06 2006-01-26 Matsushita Electric Ind Co Ltd Method and device of ofdm demodulation
JP2006157762A (en) * 2004-12-01 2006-06-15 Hitachi Kokusai Electric Inc Receiving device
WO2006082637A1 (en) * 2005-02-03 2006-08-10 Fujitsu Limited Wireless communication system and wireless communication method

Also Published As

Publication number Publication date
JP2008118390A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
US7519122B2 (en) OFDM reception apparatus and OFDM reception method
US7684503B2 (en) OFDM reception apparatus and OFDM reception method
JP4982186B2 (en) OFDM receiver
US7424072B2 (en) Receiving apparatus and receiving method
US7652527B2 (en) Demodulator, diversity receiver, and demodulation method
US8345809B2 (en) Receiver apparatus for receiving a multicarrier signal
US7664189B2 (en) OFDM demodulator, receiver, and method
JP3740468B2 (en) OFDM receiver and data demodulation method
US8045945B2 (en) Reception apparatus, reception method and program
JP3110423B1 (en) Error correction device for frequency selective interference
US7830970B2 (en) Receiver for a multi-carrier communication system
US20080063040A1 (en) Equalizer demodulating a signal including sp symbols and an equalization method therefor
US7551691B2 (en) Receiver for a multi-carrier communication system
US8428190B2 (en) Radio receiving apparatus and radio receiving method
JP4819651B2 (en) OFDM signal transmission line characteristic estimation means and correction means and apparatus using the same
JP2002152167A (en) Demodulation circuit for multicarrier modulation system
US20110243280A1 (en) Receiver and receiving method
JP4847850B2 (en) OFDM receiver
JP2005236666A (en) Ofdm demodulator
JP5306111B2 (en) OFDM receiver
JP2005191662A (en) Method of demodulating ofdm signal
JP2014121070A (en) Equalizer and equalization method and receiver
JP2007258794A (en) Method and device for reducing noise in ofdm receiver
JP2005229207A (en) Ofdm receiver and offset correcting method of ofdm reception signal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4819651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250