JP4818298B2 - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
JP4818298B2
JP4818298B2 JP2008072223A JP2008072223A JP4818298B2 JP 4818298 B2 JP4818298 B2 JP 4818298B2 JP 2008072223 A JP2008072223 A JP 2008072223A JP 2008072223 A JP2008072223 A JP 2008072223A JP 4818298 B2 JP4818298 B2 JP 4818298B2
Authority
JP
Japan
Prior art keywords
emitting layer
light emitting
layer
light
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008072223A
Other languages
Japanese (ja)
Other versions
JP2008172271A (en
Inventor
睦美 鈴木
正雄 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008072223A priority Critical patent/JP4818298B2/en
Publication of JP2008172271A publication Critical patent/JP2008172271A/en
Application granted granted Critical
Publication of JP4818298B2 publication Critical patent/JP4818298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

本発明は、各種の表示装置として広範囲に利用される発光素子であって、色純度に優れた有機電界発光素子に関するものである。   The present invention relates to a light-emitting element widely used as various display devices, and relates to an organic electroluminescent element having excellent color purity.

電界発光素子は、自己発光のために液晶素子にくらべて明るく、鮮明な表示が可能であるため、古くから多くの研究者によって研究されてきた。現在実用レベルに達した電界発光素子としては、無機材料のZnSを用いた素子がある。しかし、このような無機の電界発光素子は、発光のための駆動電圧として50V以上が必要であるため、広く使用されるには至っていない。   Electroluminescent devices have been studied by many researchers for a long time because they are brighter and clearer than liquid crystal devices because of self-luminescence. As an electroluminescent element which has reached a practical level at present, there is an element using an inorganic material ZnS. However, such an inorganic electroluminescent element has not been widely used because it requires a drive voltage of 50 V or more for light emission.

これに対して有機材料を用いた電界発光素子である有機電界発光素子は、従来は実用的なレベルからはほど遠いものであったが、1987年にイーストマン・コダック社のシー・ダブリュ・タン(C.W.Tang)らによって開発された積層構造素子によりその特性が飛躍的に進歩した。彼らは蒸着膜の構造が安定で電子を輸送することのできる蛍光体からなる層(電子輸送性発光層)と、正孔を輸送することのできる有機物からなる層(正孔輸送層)とを積層し、正孔と電子を蛍光体中に注入して発光させることに成功した。これによって有機電界発光素子の発光効率が向上し、10V以下の電圧で1000cd/m2以上の発光が得られるようになった。その後、電子輸送性発光層を発光層と電子輸送層に分けるなど、素子を構成する層の機能分離が進められた結果、現在では10000cd/m2以上の発光特性が得られている。   On the other hand, the organic electroluminescent element, which is an electroluminescent element using an organic material, has been far from a practical level, but in 1987, Eastman Kodak Co., Ltd. C. W. Tang) et al. Have dramatically improved their characteristics. They have a layer made of a phosphor (electron transporting light-emitting layer) that has a stable deposited film structure and can transport electrons, and a layer made of an organic substance that can transport holes (hole transporting layer). Lamination was successful in injecting holes and electrons into the phosphor to emit light. As a result, the luminous efficiency of the organic electroluminescent device was improved, and light emission of 1000 cd / m 2 or more was obtained at a voltage of 10 V or less. After that, as a result of the functional separation of the layers constituting the device, such as dividing the electron-transporting light-emitting layer into a light-emitting layer and an electron-transporting layer, light emission characteristics of 10,000 cd / m 2 or more are currently obtained.

このような有機電界発光素子は、発光層を構成する材料を変更することによりその発光色を任意に変更することができる。さらに、青・緑・赤色の発光素子を組み合わせることにより、フルカラー表示が可能となり、薄型軽量のフルカラーディスプレイを実現することが可能となる。   Such an organic electroluminescent element can change the luminescent color arbitrarily by changing the material which comprises a light emitting layer. Further, by combining blue, green and red light emitting elements, full color display is possible, and a thin and light full color display can be realized.

しかしながら、上記のようなフルカラーディスプレイにおいて、より高品位の表示を実現するためには、青・緑・赤色各色の色純度をさらに高くすることが必要不可欠である。   However, in order to realize a higher quality display in the above-described full color display, it is indispensable to further increase the color purity of each color of blue, green, and red.

本発明の目的は、有機電界発光素子の素子構成を改良することによって、色純度の改善された有機電界発光素子を実現することにある。   An object of the present invention is to realize an organic electroluminescent device having improved color purity by improving the device configuration of the organic electroluminescent device.

本発明の有機電界発光素子は、陽極と陰極からなる一対の電極と、前記陽極と陰極の間に少なくとも発光層を含めた一層以上の有機物から構成される層を有する有機電界発光素子において、前記発光層を構成する主な材料としてエネルギーギャップが2.7eV以上である芳香族メチリデン化合物が使用され、かつ前記発光層に前記発光層を構成する材料よりも電荷輸送性が強い材料が混合されていることを特徴とするものである。発光層を構成する材料として蛍光強度の強い材料を用い、かつ電荷輸送性が強い材料を混合することにより、発光効率の優れた素子を得ることができる。
本発明の有機電界発光素子は、陽極と陰極からなる一対の電極と、前記陽極と陰極の間に少なくとも発光層を含めた一層以上の有機物から構成される層を有する有機電界発光素子において、前記発光層に接して電子輸送層が配置され、前記発光層は、前記発光層を構成する主な材料として、下記一般式(1)で表される芳香族メチリデン化合物が使用され、かつ、前記電子輸送層を構成する材料の電子親和力よりも大きい電子親和力を有する電子輸送材料を混合したことを特徴とするものである。発光層を構成する材料として蛍光強度の強い材料を用い、かつ電荷輸送性が強い材料を混合することにより、発光効率の優れた素子を得ることができる。

Figure 0004818298
(式中Ar1は一般式(A)〜(D)のいずれかである2価の基、Ar2は一般式(E)〜(I)のいずれかである2価の基である。ここでnは1から3の整数、R1、R2はそれぞれ独立に水素原子、ハロゲン原子、低級アルキル基、置換もしくは無置換のアリール基である。)
Figure 0004818298
Figure 0004818298
The organic electroluminescent device of the present invention is an organic electroluminescent device comprising a pair of electrodes composed of an anode and a cathode, and a layer composed of one or more organic substances including at least a light emitting layer between the anode and the cathode. An aromatic methylidene compound having an energy gap of 2.7 eV or more is used as a main material constituting the light emitting layer, and a material having a higher charge transport property than the material constituting the light emitting layer is mixed in the light emitting layer. It is characterized by being. By using a material having a strong fluorescence intensity as a material constituting the light emitting layer and mixing a material having a strong charge transport property, an element having excellent light emission efficiency can be obtained.
The organic electroluminescent device of the present invention is an organic electroluminescent device comprising a pair of electrodes composed of an anode and a cathode, and a layer composed of one or more organic substances including at least a light emitting layer between the anode and the cathode. An electron transport layer is disposed in contact with the light emitting layer, and the light emitting layer uses an aromatic methylidene compound represented by the following general formula (1) as a main material constituting the light emitting layer, and the electron It is characterized in that an electron transport material having an electron affinity greater than that of the material constituting the transport layer is mixed . By using a material having a strong fluorescence intensity as a material constituting the light emitting layer and mixing a material having a strong charge transport property, an element having excellent light emission efficiency can be obtained.
Figure 0004818298
(In the formula, Ar1 is a divalent group of any one of the general formulas (A) to (D), and Ar2 is a divalent group of any one of the general formulas (E) to (I). Is an integer of 1 to 3, and R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a lower alkyl group, or a substituted or unsubstituted aryl group.)
Figure 0004818298
Figure 0004818298

また、本発明の有機電界発光素子は、陽極と陰極からなる一対の電極と、前記陽極と陰極の間に少なくとも発光層を含めた一層以上の有機物から構成される層を有する有機電界発光素子において、前記発光層に電荷輸送材料を10 mol %以下混合したことを特徴とするものである。混合する電荷輸送材料の濃度を低く抑えることにより、電荷輸送材料間の電荷のやり取りを抑制し、発光層に流れる無効電流を少なくすることができる。   Moreover, the organic electroluminescent element of the present invention is an organic electroluminescent element having a pair of electrodes composed of an anode and a cathode, and a layer composed of one or more organic substances including at least a light emitting layer between the anode and the cathode. The light emitting layer is mixed with 10 mol% or less of a charge transport material. By keeping the concentration of the charge transport material to be mixed low, exchange of charges between the charge transport materials can be suppressed, and the reactive current flowing in the light emitting layer can be reduced.

また、本発明の有機電界発光素子は、陽極と陰極からなる一対の電極と、前記陽極と陰極の間に少なくとも発光層を含めた一層以上の有機物から構成される層を有する有機電界発光素子において、前記発光層を主に構成する材料が吸収しうる波長に蛍光波長を有する電荷輸送材料を前記発光層に混合したことを特徴とするものである。発光層を構成する材料へのエネルギー移動確率が高い材料を電荷輸送材料として用いることにより、より確実に発光層に注入された電荷を発光材料に移動させることができる。   Moreover, the organic electroluminescent element of the present invention is an organic electroluminescent element having a pair of electrodes composed of an anode and a cathode, and a layer composed of one or more organic substances including at least a light emitting layer between the anode and the cathode. The light-emitting layer is mixed with a charge transport material having a fluorescence wavelength at a wavelength that can be absorbed by the material mainly constituting the light-emitting layer. By using a material having a high energy transfer probability to the material constituting the light emitting layer as the charge transporting material, the charges injected into the light emitting layer can be more reliably transferred to the light emitting material.

また、本発明の有機電界発光素子は、陽極と陰極からなる一対の電極と、前記陽極と陰極の間に少なくとも発光層を含めた一層以上の有機物から構成される層を有する有機電界発光素子において、前記発光層に前記発光層と接して設けられた正孔輸送層を構成する材料のイオン化ポテンシャルよりも小さいイオン化ポテンシャルを有する電荷輸送材料を混合したことを特徴とするものである。このような電荷輸送材料を用いることにより、確実に発光層内に正孔を注入することができる。   Moreover, the organic electroluminescent element of the present invention is an organic electroluminescent element having a pair of electrodes composed of an anode and a cathode, and a layer composed of one or more organic substances including at least a light emitting layer between the anode and the cathode. The light-emitting layer is mixed with a charge transport material having an ionization potential smaller than the ionization potential of the material constituting the hole transport layer provided in contact with the light-emitting layer. By using such a charge transport material, holes can be reliably injected into the light emitting layer.

また、本発明の有機電界発光素子は、陽極と陰極からなる一対の電極と、前記陽極と陰極の間に少なくとも発光層を含めた一層以上の有機物から構成される層を有する有機電界発光素子において、前記発光層に前記発光層と接して設けられた電子輸送層を構成する材料の電子親和力よりも大きい電子親和力を有する電荷輸送材料を混合したことを特徴とするものである。このような電荷輸送材料を用いることにより、確実に発光層内に電子を注入することができる。   Moreover, the organic electroluminescent element of the present invention is an organic electroluminescent element having a pair of electrodes composed of an anode and a cathode, and a layer composed of one or more organic substances including at least a light emitting layer between the anode and the cathode. The light-emitting layer is mixed with a charge transport material having an electron affinity larger than that of the material constituting the electron transport layer provided in contact with the light-emitting layer. By using such a charge transport material, electrons can be reliably injected into the light emitting layer.

また、本発明の有機電界発光素子は、上記した各電荷輸送材料が下記一般式(2)で表されることを特徴とするものであり、電荷輸送材料として高耐熱性の有機材料を用いることで、より耐久性の高い発光素子を実現することができる。

Figure 0004818298
(式中、R3、R4、R5はそれぞれ独立に水素原子、低級アルキル基、置換または無置換のアリール基、R6、R7はそれぞれ独立に水素原子、低級アルキル基、ハロゲン原子を表す。) The organic electroluminescent element of the present invention is characterized in that each of the above charge transport materials is represented by the following general formula (2), and a high heat resistant organic material is used as the charge transport material. Thus, a light-emitting element with higher durability can be realized.
Figure 0004818298
(Wherein R 3 , R 4 and R 5 are each independently a hydrogen atom, a lower alkyl group, a substituted or unsubstituted aryl group, R 6 and R 7 are each independently a hydrogen atom, a lower alkyl group or a halogen atom. To express.)

また、本発明の有機電界発光素子は、陽極と陰極からなる一対の電極と、前記陽極と陰極の間に少なくとも発光層を含めた一層以上の有機物から構成される層を有する有機電界発光素子において、前記発光層の一部の層領域に電荷輸送材料を混合したことを特徴とするものであり、発光層の一部のみに混合層を設けることにより、漏れ電流を抑制し、電流効率の高い素子を実現することができる。   Moreover, the organic electroluminescent element of the present invention is an organic electroluminescent element having a pair of electrodes composed of an anode and a cathode, and a layer composed of one or more organic substances including at least a light emitting layer between the anode and the cathode. The charge transport material is mixed in a partial layer region of the light emitting layer, and the leakage current is suppressed and the current efficiency is high by providing the mixed layer only in a part of the light emitting layer. An element can be realized.

また、本発明の有機電界発光素子は、陽極と陰極からなる一対の電極と、前記陽極と陰極の間に少なくとも発光層を含めた一層以上の有機物から構成される層を有する有機電界発光素子において、前記発光層の正孔輸送層と接する領域に正孔輸送材料を混合した層領域を設けるとともに、前記発光層の電子輸送層と接する領域に電子輸送材料を混合した層領域を設けたことを特徴とするものであり、一つの発光層内に正孔輸送材料、電子輸送材料をそれぞれ混合した層領域を設けることで、発光層内にバランス良く正孔・電子を注入することができる。   Moreover, the organic electroluminescent element of the present invention is an organic electroluminescent element having a pair of electrodes composed of an anode and a cathode, and a layer composed of one or more organic substances including at least a light emitting layer between the anode and the cathode. Providing a layer region in which a hole transport material is mixed in a region of the light emitting layer in contact with the hole transport layer, and providing a layer region in which the electron transport material is mixed in a region of the light emitting layer in contact with the electron transport layer. A feature is that by providing a layer region in which a hole transport material and an electron transport material are mixed in one light emitting layer, holes and electrons can be injected into the light emitting layer in a well-balanced manner.

以上のように、本発明の有機電界発光素子は、陽極と陰極からなる一対の電極と、その間に少なくとも発光層を含めた一層以上の有機物から構成される層を有し、発光層として発光材料に電荷輸送性の強い材料をある条件で混合するようにしたので、従来の素子に比べて色純度に優れた有機電界発光素子が得られるという有利な効果が得られる。   As described above, the organic electroluminescent element of the present invention has a pair of electrodes composed of an anode and a cathode, and a layer composed of one or more organic substances including at least a light emitting layer therebetween, and a light emitting material as the light emitting layer In addition, since a material having a strong charge transporting property is mixed under a certain condition, an advantageous effect that an organic electroluminescence device having excellent color purity as compared with the conventional device can be obtained.

以下、本発明の実施の形態について、図面を用いて説明する。図1は本発明による有機電界発光素子の概略構成を示す断面図である。基板1上に陽極2を形成し、その上に正孔輸送層3、発光層4、電子輸送層5、陰極6を形成したものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of an organic electroluminescent device according to the present invention. An anode 2 is formed on a substrate 1, and a hole transport layer 3, a light emitting layer 4, an electron transport layer 5 and a cathode 6 are formed thereon.

基板1は、透明で表面が平滑なものであれば使用できる。一般的にはガラス、プラスティックが用いられる。また、素子作製時に支持できれば、任意の厚さの基板を使用できる。   The substrate 1 can be used as long as it is transparent and has a smooth surface. Generally, glass and plastic are used. In addition, a substrate having an arbitrary thickness can be used as long as it can be supported at the time of element fabrication.

陽極2は、透明電極としてインジウム錫酸化物(ITO)や半透明電極としての金薄膜を用いることができる。   The anode 2 can use indium tin oxide (ITO) as a transparent electrode or a gold thin film as a translucent electrode.

正孔輸送層3と電子輸送層5が、それぞれ電荷輸送層を構成する。それぞれの電荷輸送層は、電極からの電荷の注入を容易にし、注入された電荷を発光領域まで輸送するという働きをする。正孔輸送層3としては、正孔輸送性の強い材料が使用され、具体的にはN、N'−ジフェニル−N、N'−ビス(3−メチルフェニル)1,1'−ビフェニル−4,4'−ジアミン(TPD)、4、4'−ビス[N−(1−ナフチル)−N−フェニル−アミノ]ビフェニル(α−NPD)などのトリフェニルアミン誘導体やチオフェン誘導体、スチルベン誘導体などを用いることができる。   The hole transport layer 3 and the electron transport layer 5 each constitute a charge transport layer. Each charge transport layer serves to facilitate injection of charges from the electrode and transport the injected charges to the light emitting region. As the hole transport layer 3, a material having a strong hole transport property is used. Specifically, N, N′-diphenyl-N, N′-bis (3-methylphenyl) 1,1′-biphenyl-4 is used. , 4′-diamine (TPD), 4,4′-bis [N- (1-naphthyl) -N-phenyl-amino] biphenyl (α-NPD), and other triphenylamine derivatives, thiophene derivatives, stilbene derivatives, etc. Can be used.

電子輸送層5としては、電子輸送性の強い材料が用いることができ、具体的にはフェナントロリン誘導体,オキサジアゾール誘導体やトリス(8−ヒドロキシキノリノール)アルミニウム(Alq)などに代表されるキノリノール金属錯体などを使用することができる。   As the electron transport layer 5, a material having a strong electron transport property can be used. Specifically, quinolinol metal complexes represented by phenanthroline derivatives, oxadiazole derivatives, tris (8-hydroxyquinolinol) aluminum (Alq), and the like. Etc. can be used.

陰極6は、有機膜に電子が注入できることが必要であり、アルカリ金属またはアルカリ土類金属またはその化合物を構成材料の一つとして用いることが多い。具体的にはリチウム、マグネシウムやカルシウム、あるいはこれらの金属や化合物を他の金属と組み合わせて用いることができる。   The cathode 6 needs to be able to inject electrons into the organic film, and an alkali metal, an alkaline earth metal, or a compound thereof is often used as one of the constituent materials. Specifically, lithium, magnesium, calcium, or these metals and compounds can be used in combination with other metals.

発光層4としては、従来からも数多くの化合物群が検討されているが、基本的には電子・正孔の注入が可能でかつ蛍光・りん光を有する物質であれば使用できる。また、成膜性に優れた材料の中に色素を少量分散させた膜を発光層として用いることにより、素子の高効率化、長寿命化および発光色の調整をすることも検討されている。この手法は、単独では結晶化しやすい、あるいは濃度消光を起こしやすい蛍光色素に対して非常に有効である。   As the light emitting layer 4, many compound groups have been studied conventionally, but basically any substance capable of injecting electrons and holes and having fluorescence and phosphorescence can be used. In addition, it has been studied to improve the efficiency of the device, extend the lifetime, and adjust the emission color by using a film in which a small amount of a dye is dispersed in a material having excellent film formability as a light emitting layer. This technique is very effective for fluorescent dyes that are easily crystallized or cause concentration quenching.

前述のとおり、一般に有機電界発光素子は、発光層4に用いる材料の種類を変えることにより発光色を変化させることができる。発光層4の構成材料として、エネルギーギャップ(Eg)の大きい青色蛍光材料を用いることで、高色純度の青色発光素子の実現が期待されるが、実際にはEgの大きい材料への電荷の注入は困難であり、電子と正孔が発光層以外の層、例えば電子輸送層や正孔輸送層で電荷の再結合が生じてしまう。そのために素子の発光スペクトルがブロードになり発光色が白っぽくなる現象がよく観測される。   As described above, in general, the organic electroluminescent element can change the emission color by changing the type of material used for the light emitting layer 4. By using a blue fluorescent material having a large energy gap (Eg) as a constituent material of the light emitting layer 4, it is expected to realize a blue light emitting element with high color purity. In practice, however, charge injection into a material having a large Eg is performed. It is difficult to recombine electrons and holes in a layer other than the light emitting layer, for example, an electron transport layer or a hole transport layer. Therefore, the phenomenon that the emission spectrum of the device becomes broad and the emission color becomes whitish is often observed.

しかしながら、本実施の形態によれば、発光層4の全体、または発光層4の一部に電荷輸送性が強く非発光性の材料をある条件のもとで混合することにより、より効率よく発光層中に電荷を注入し再結合させることが可能となる。例えば、元来蛍光強度が強い芳香族メチリデン化合物に電荷輸送材料を混合したものを発光層として用いると、色純度の高い素子が得られる。特に(化5)に一般式(1)として示した材料はEgが大きく、高色純度の青色発光が得られる。   However, according to the present embodiment, light emission can be performed more efficiently by mixing a non-light emitting material having a strong charge transporting property under a certain condition with the entire light emitting layer 4 or a part of the light emitting layer 4. Charges can be injected into the layer and recombined. For example, when a mixture of an aromatic methylidene compound with originally high fluorescence intensity and a charge transport material is used as the light emitting layer, an element with high color purity can be obtained. In particular, the material represented by the general formula (1) in (Chemical Formula 5) has a large Eg, and blue light emission with high color purity can be obtained.

また、電荷輸送材料を混合する時の濃度としては、電荷輸送材料間でホッピング伝導や電荷の再結合が起こらない濃度である必要がある。最適な濃度は用いる有機材料や素子構成によっても変化するが、少なくとも10 mol %以下である必要がある。   Further, the concentration when mixing the charge transport material needs to be a concentration at which hopping conduction and charge recombination do not occur between the charge transport materials. The optimum concentration varies depending on the organic material used and the element configuration, but it needs to be at least 10 mol% or less.

発光層4に混合する電荷輸送材料に用いる材料としては、発光層4に接する正孔輸送層3または電子輸送層5からの電荷注入が容易である必要がある。また混合された電荷輸送材料での電荷再結合が起こりにくく、再結合が生じた場合にもエネルギーが確実に発光材料へ移動するような材料が望ましい。具体的には、(化8)の一般式(2)で表される高耐熱性の有機材料を用いることで、より耐久性の高い発光素子を実現することができる。   As a material used for the charge transport material mixed with the light emitting layer 4, it is necessary that the charge injection from the hole transport layer 3 or the electron transport layer 5 in contact with the light emitting layer 4 is easy. Further, it is desirable to use a material in which charge recombination is unlikely to occur in the mixed charge transport material, and energy is reliably transferred to the light emitting material when recombination occurs. Specifically, a light-emitting element with higher durability can be realized by using a highly heat-resistant organic material represented by the general formula (2) of (Chemical Formula 8).

このように、本実施の形態では、発光層4の構成材料として、エネルギーギャップ(Eg)の大きい青色蛍光材料である芳香族メチリデン化合物を使用し、さらにこの材料に電荷輸送性の強い材料を10 mol %以下の濃度で混合することにより、より効率よく発光層中に電荷を注入し再結合させることが可能となり、発光効率の優れた素子を得ることができる。   Thus, in this embodiment, an aromatic methylidene compound, which is a blue fluorescent material having a large energy gap (Eg), is used as a constituent material of the light emitting layer 4, and a material having a strong charge transporting property is used as the material. By mixing at a concentration of mol% or less, it becomes possible to inject charges into the light emitting layer and recombine more efficiently, and an element with excellent light emission efficiency can be obtained.

なお、本実施の形態では、発光層4としてエネルギーギャップ(Eg)の大きい芳香族メチリデン化合物を使用したが、他の発光材料を用いても同様に実施することができ、発光層に電荷輸送材料を混合することにより、発光効率の優れた素子を得ることができる。   In the present embodiment, an aromatic methylidene compound having a large energy gap (Eg) is used as the light-emitting layer 4, but the present invention can also be carried out using other light-emitting materials, and a charge transport material is used for the light-emitting layer. By mixing these, an element having excellent luminous efficiency can be obtained.

また、本実施の形態では、有機層が正孔輸送層3、発光層4、電子輸送層5の3層から構成される場合について説明したが、複数の層の有する機能を1つの層で兼ねる場合や、各層が複数の材料から構成される場合も同様に実施可能である。また、新たな機能を有する層を挿入することも可能である。   Further, in the present embodiment, the case where the organic layer is composed of the three layers of the hole transport layer 3, the light emitting layer 4, and the electron transport layer 5 has been described. In the case of the case where each layer is composed of a plurality of materials, the same can be applied. It is also possible to insert a layer having a new function.

(実施例)
次に、本発明の具体例を説明する。
(実施例1)
基板1には、ガラス上に透明な陽極2としてインジウム錫酸化膜(ITO)を予め形成し、電極の形にパターニングしたものを用いた。この基板1を充分に洗浄した後、蒸着する材料と一緒に真空装置内にセットし、10−4Paまで排気した。その後、正孔輸送層3としてN,N'−ビス[4'−(N,N−ジフェニルアミノ)−4−ビフェニリル]−N,N'−ジフェニルベンジジン(TPT)を50nm製膜した。その後、発光層4として(化9)に示す化合物(3)(蛍光ピーク波長470nm)とTPTとの混合膜を25nm製膜した。化合物(3)に対するTPTの割合は5 mol %とした。電子輸送層5としてトリス(8−ヒドロキシキノリノール)アルミニウム(Alq)を25nm製膜した後、陰極6としてAl/Li混合膜を150nmの厚さで製膜し、素子を作成した。これらの製膜は一度も真空を破ることなく、連続して行った。なお、膜厚は水晶振動子によってモニターした。素子作製後、直ちに乾燥窒素中で電極の取り出しを行い、引き続き特性測定を行った。得られた素子に電圧を印加したところ、均一な青色の発光が観測された。発光スペクトルを測定したところ、470nmにピークを有することがわかり、この素子の発光が化合物(3)に由来するものであることがわかった。CIE色度座標を求めたところ、x=0.18、y=0.23であった。

Figure 0004818298
(Example)
Next, specific examples of the present invention will be described.
Example 1
As the substrate 1, an indium tin oxide film (ITO) previously formed as a transparent anode 2 on glass and patterned in the form of an electrode was used. After this substrate 1 was sufficiently cleaned, it was set in a vacuum apparatus together with the material to be deposited and evacuated to 10 −4 Pa. Thereafter, N, N′-bis [4 ′-(N, N-diphenylamino) -4-biphenylyl] -N, N′-diphenylbenzidine (TPT) was formed into a 50 nm film as the hole transport layer 3. Thereafter, a mixed film of compound (3) (fluorescence peak wavelength: 470 nm) shown in (Chemical Formula 9) and TPT was formed into a 25 nm thick light-emitting layer 4. The ratio of TPT to the compound (3) was 5 mol%. After forming 25 nm of tris (8-hydroxyquinolinol) aluminum (Alq) as the electron transport layer 5, an Al / Li mixed film having a thickness of 150 nm was formed as the cathode 6 to prepare an element. These films were formed continuously without breaking the vacuum. The film thickness was monitored with a crystal resonator. Immediately after the device was fabricated, the electrode was taken out in dry nitrogen, and then the characteristics were measured. When voltage was applied to the resulting device, uniform blue light emission was observed. When the emission spectrum was measured, it was found that it had a peak at 470 nm, and it was found that the light emission of this device was derived from the compound (3). The CIE chromaticity coordinates were determined to be x = 0.18 and y = 0.23.
Figure 0004818298

(実施例2)
基板1には、実施例1と同様にITOを予め電極の形にパターニングして陽極2としたものを用いた。基板の洗浄後、蒸着装置内に基板をセットし10−4Paまで排気した。その後、正孔輸送層3としてTPTを50nm製膜した。その後、化合物(3)と正孔輸送材料であるTPTの混合層、化合物(3)のみからなる層、化合物(3)と電子輸送材料であるバソクプロイン(東京化成製)の混合層をそれぞれ10nmずつ製膜して発光層4とした。化合物(3)に対するTPT、バソクプロインの割合はいずれも5 mol %とした。電子輸送層5としてAlqを20nm製膜した後、陰極6としてAl/Li混合膜を150nmの厚さで製膜し、素子を作製した。素子作成後、直ちに乾燥窒素中で電極の取り出しを行い、特性測定を行った。得られた素子に電圧を印加したところ、均一な青色の発光が観測された。発光スペクトルを測定したところ、470nmにピークを有することがわかり、発光が化合物(3)に由来するものであることがわかった。CIE色度座標を求めたところ、x=0.17、y=0.21であった。
(Example 2)
As the substrate 1, the same one as in Example 1 was used in which ITO was patterned in the form of an electrode in advance to form the anode 2. After cleaning the substrate, the substrate was set in a vapor deposition apparatus and evacuated to 10-4 Pa. Thereafter, a TPT film having a thickness of 50 nm was formed as the hole transport layer 3. Thereafter, a mixed layer of compound (3) and a hole-transporting material TPT, a layer consisting only of compound (3), and a mixed layer of compound (3) and bathocuproine (manufactured by Tokyo Kasei) 10 nm each. A light emitting layer 4 was formed by forming a film. The proportions of TPT and bathocuproine relative to compound (3) were both 5 mol%. After forming 20 nm of Alq as the electron transport layer 5, an Al / Li mixed film having a thickness of 150 nm was formed as the cathode 6 to produce a device. Immediately after the device was prepared, the electrode was taken out in dry nitrogen and measured for characteristics. When voltage was applied to the resulting device, uniform blue light emission was observed. When the emission spectrum was measured, it was found that it had a peak at 470 nm, and it was found that the emission was derived from the compound (3). The CIE chromaticity coordinates were determined to be x = 0.17 and y = 0.21.

(比較例1)
化合物(3)のみからなる層を発光層4として用いたこと以外は実施例1と同様に素子を作製した。得られた素子に電圧を印加したところ青白い均一な発光が観測された。発光スペクトルを測定したところ420nmにピークを有することがわかり、この素子の発光が主に正孔輸送層3に用いているTPTに由来するものであることがわかった。
(Comparative Example 1)
A device was produced in the same manner as in Example 1 except that a layer composed only of the compound (3) was used as the light emitting layer 4. When voltage was applied to the resulting device, light blue uniform light emission was observed. When the emission spectrum was measured, it was found that it had a peak at 420 nm, and it was found that the light emission of this device was mainly derived from TPT used for the hole transport layer 3.

(比較例2)
化合物(3)に対してTPTを15 mol %混合した層を発光層4として用いたこと以外は実施例1と同様に素子を作製した。得られた素子に電圧を印加したところ、黄緑色の発光が観測された。発光スペクトルを測定したところ530nmにピークを有することがわかり、この素子の発光が主に電子輸送層5に用いているAlqに由来するものであることがわかった。
(Comparative Example 2)
A device was produced in the same manner as in Example 1 except that a layer obtained by mixing 15 mol% of TPT with the compound (3) was used as the light emitting layer 4. When voltage was applied to the resulting device, yellow-green light emission was observed. When the emission spectrum was measured, it was found that it had a peak at 530 nm, and it was found that the light emission of this device was mainly derived from Alq used for the electron transport layer 5.

実施例1、2および比較例1、2の結果から、エネルギーギャップが大きく蛍光強度の強い材料である化合物(3)を使用し、さらにこの材料に電荷輸送性の強い材料を5 mol の濃度で混合することにより、発光効率の優れた素子を得ることができる。   From the results of Examples 1 and 2 and Comparative Examples 1 and 2, the compound (3), which is a material having a large energy gap and a strong fluorescence intensity, was used, and a material having a strong charge transporting property was further added to this material at a concentration of 5 mol. By mixing, an element having excellent luminous efficiency can be obtained.

(実施例3)
発光層として(化10)に示す化合物(4)(吸収ピーク波長360nm)に対して(化11)に示す電荷輸送材料であるTPAC(蛍光ピーク波長370nm)を5 mol %混合した層を発光層4として用いたこと以外は、実施例1と同様に素子を作成した。得られた素子に電圧を印加したところ、青緑色の均一な発光が観測された。発光スペクトルを観測したところ、490nmにピークを有することがわかり、この素子の発光が化合物(4)に由来するものであることがわかった。CIE色度座標を求めたところ、x=0.17、y=0.35であった。

Figure 0004818298
Figure 0004818298
(Example 3)
As a light emitting layer, a layer obtained by mixing 5 mol% of TPAC (fluorescence peak wavelength: 370 nm), which is a charge transport material shown in (Chemical Formula 11), with respect to the compound (4) (absorption peak wavelength: 360 nm) shown in (Chemical Formula 10) A device was prepared in the same manner as in Example 1 except that it was used as 4. When voltage was applied to the resulting device, blue-green uniform light emission was observed. When an emission spectrum was observed, it was found that there was a peak at 490 nm, and it was found that the light emission of this device was derived from the compound (4). The CIE chromaticity coordinates were determined to be x = 0.17 and y = 0.35.
Figure 0004818298
Figure 0004818298

(比較例3)
化合物(4)に対してTPACを15 mol %混合した層を発光層4として用いたこと以外は実施例1と同様に素子を作製した。得られた素子に電圧を印加したところ、黄緑色の発光が観測された。発光スペクトルを測定したところ520nmにピークを有することがわかり、この素子の発光が主に電子輸送層5に用いているAlqに由来するものであることがわかった。
(Comparative Example 3)
A device was produced in the same manner as in Example 1 except that a layer obtained by mixing 15 mol% of TPAC with the compound (4) was used as the light emitting layer 4. When voltage was applied to the resulting device, yellow-green light emission was observed. When the emission spectrum was measured, it was found that it had a peak at 520 nm, and it was found that the light emission of this device was mainly derived from Alq used for the electron transport layer 5.

実施例3および比較例3の結果から、発光層4に添加する電荷輸送材料の濃度を適当な条件にすることにより、発光層を主に構成する材料からの発光を得ることができることを確認した。 From the results of Example 3 and Comparative Example 3, it was confirmed that light emission from the material mainly constituting the light emitting layer can be obtained by setting the concentration of the charge transport material added to the light emitting layer 4 to an appropriate condition. .

(実施例4)
化合物(3)(吸収ピーク波長330nm)に対して(化11)に示すTPAC(蛍光ピーク波長370nm)を5 mol %混合した層を発光層4として用いたこと以外は実施例1と同様に素子を作製した。得られた素子に電圧を印加したところ青色の均一な発光が観測された。発光スペクトルを測定したところ、470nmにピークを有することがわかり、この素子の発光が化合物(3)に由来するものであることがわかった。CIE色度座標を求めたところx=0.17、y=0.22であった。
Example 4
The device was the same as in Example 1 except that a layer in which 5 mol% of TPAC (fluorescence peak wavelength: 370 nm) represented by (Chemical Formula 11) was mixed with Compound (3) (absorption peak wavelength: 330 nm) was used as the light emitting layer 4. Was made. When voltage was applied to the resulting device, blue uniform light emission was observed. When the emission spectrum was measured, it was found that it had a peak at 470 nm, and it was found that the light emission of this device was derived from the compound (3). The CIE chromaticity coordinates were determined to be x = 0.17 and y = 0.22.

(比較例4)
化合物(3)に対して(化12)に示す化合物(5)(蛍光ピーク波長500nm)を5 mol %混合した層を発光層4として用いたこと以外は実施例1と同様に素子を作成した。得られた素子に電圧を印加したところ青緑色の均一な発光が観測された。発光スペクトルを観測したところ500nmにピークを有することがわかり、この素子の発光が化合物(5)に由来するものであることがわかった。CIE色度座標を求めたところ、x=0.19、y=0.40であった。

Figure 0004818298
(Comparative Example 4)
A device was prepared in the same manner as in Example 1 except that a layer in which 5 mol% of the compound (5) (fluorescence peak wavelength: 500 nm) represented by (Chemical Formula 12) was mixed with the compound (3) was used as the light emitting layer 4. . When voltage was applied to the resulting device, blue-green uniform light emission was observed. When an emission spectrum was observed, it was found that there was a peak at 500 nm, and it was found that the light emission of this device was derived from the compound (5). The CIE chromaticity coordinates were determined to be x = 0.19 and y = 0.40.
Figure 0004818298

(比較例5)
化合物(4)に対して化合物(5)(蛍光ピーク波長500nm)を5 mol %混合した層を発光層4として用いたこと以外は実施例1と同様に素子を作成した。得られた素子に電圧を印加したところ青緑色の均一な発光が観測された。発光スペクトルを観測したところ500nmにピークを有することがわかり、この素子の発光が化合物(5)に由来するものであることがわかった。CIE色度座標を求めたところ、x=0.19、y=0.42であった。
(Comparative Example 5)
A device was prepared in the same manner as in Example 1 except that a layer obtained by mixing 5 mol% of the compound (5) (fluorescence peak wavelength: 500 nm) with respect to the compound (4) was used as the light emitting layer 4. When voltage was applied to the resulting device, blue-green uniform light emission was observed. When an emission spectrum was observed, it was found that there was a peak at 500 nm, and it was found that the light emission of this device was derived from the compound (5). CIE chromaticity coordinates were determined to be x = 0.19 and y = 0.42.

実施例3、4および比較例4、5の結果から、発光層4を主に構成する材料が吸収しうる波長に蛍光波長を有する電荷輸送材料を発光層に混合することにより、発光層を構成する材料に由来する発光が得られることが確認できた。   Based on the results of Examples 3 and 4 and Comparative Examples 4 and 5, the light-emitting layer is formed by mixing the light-emitting layer with a charge transport material having a fluorescence wavelength at a wavelength that can be absorbed by the material mainly constituting the light-emitting layer 4. It was confirmed that light emission derived from the material to be obtained was obtained.

(実施例5)
基板1には、実施例1と同様にITOを予め電極の形にパターニングして陽極2としたものを用いた。基板の洗浄後、基板を蒸着装置内にセットし10−4Paまで排気した。その後、正孔輸送層3としてTPD(イオン化ポテンシャル 5.5eV)を50nm製膜した。さらに化合物(3)とTPT(イオン化ポテンシャル 5.4eV)の混合層を25nm製膜して発光層4とした。化合物(3)に対するTPDの割合は5 mol %とした。電子輸送層5としてAlqを25nm製膜した後、陰極6としてAl/Li混合膜を150nmの厚さで製膜し、素子を作製した。素子作成後直ちに乾燥窒素中で電極の取り出しを行い、特性測定を行った。得られた素子に電圧を印加したところ、均一な青色の発光が観測された。発光スペクトルを調べたところ470nmにピークを有することがわかり、発光が化合物(3)に由来するものであることがわかった。CIE色度座標を求めたところ、x=0.17、y=0.22であった。
(Example 5)
As the substrate 1, the same one as in Example 1 was used in which ITO was patterned in the form of an electrode in advance to form the anode 2. After cleaning the substrate, the substrate was set in a vapor deposition apparatus and evacuated to 10-4 Pa. Thereafter, TPD (ionization potential 5.5 eV) was formed into a 50 nm film as the hole transport layer 3. Further, a mixed layer of compound (3) and TPT (ionization potential 5.4 eV) was formed into a light emitting layer 4 by forming a film with a thickness of 25 nm. The ratio of TPD to compound (3) was 5 mol%. After forming 25 nm of Alq as the electron transport layer 5, an Al / Li mixed film having a thickness of 150 nm was formed as the cathode 6, thereby fabricating an element. Immediately after the device was fabricated, the electrode was taken out in dry nitrogen and the characteristics were measured. When voltage was applied to the resulting device, uniform blue light emission was observed. When the emission spectrum was examined, it was found that it had a peak at 470 nm, and it was found that the emission was derived from the compound (3). The CIE chromaticity coordinates were determined to be x = 0.17 and y = 0.22.

(実施例6)
発光層4として化合物(4)に対してTPTを5 mol %混合した層を用いたこと以外は実施例5と同様に素子を作成した。得られた素子に電圧を印加したところ、均一な青緑色の発光が観測された。発光スペクトルを調べたところ490nmにピークを有することがわかり、発光が化合物(4)に由来するものであることがわかった。CIE色度座標を求めたところ、x=0.18、y=0.34であった。
(Example 6)
A device was prepared in the same manner as in Example 5 except that a layer in which 5 mol% of TPT was mixed with the compound (4) was used as the light emitting layer 4. When voltage was applied to the resulting device, uniform blue-green light emission was observed. When the emission spectrum was examined, it was found that it had a peak at 490 nm, and it was found that the emission was derived from the compound (4). The CIE chromaticity coordinates were determined to be x = 0.18 and y = 0.34.

(実施例7)
基板1には、実施例1と同様にITOをあらかじめ電極の形にパターニングして陽極2としたものを用いた。基板の洗浄後、蒸着装置内に基板をセットし10−4Paまで排気した。その後、正孔輸送層3としてTPTを50nm製膜した。さらに化合物(3)と(化13)に示す化合物(6)(電子親和力2.8eV)の混合層を25nm製膜して発光層4とした。化合物(3)に対する化合物(6)の割合は5 mol %とした。電子輸送層5としてバソクプロイン(電子親和力2.3eV)を25nm製膜し、素子を作製した。素子作成後直ちに乾燥窒素中で電極の取り出しを行い、特性測定を行った。得られた素子に電圧を印加したところ、均一な青色の発光が観測された。発光スペクトルを調べたところ、470nmにピークを有することがわかり、発光が化合物(3)に由来するものであることがわかった。CIE色度座標を求めたところx=0.18、y=0.23であった。

Figure 0004818298
(Example 7)
As the substrate 1, as in Example 1, a substrate in which ITO was previously patterned into an electrode shape to form an anode 2 was used. After cleaning the substrate, the substrate was set in a vapor deposition apparatus and evacuated to 10-4 Pa. Thereafter, a TPT film having a thickness of 50 nm was formed as the hole transport layer 3. Further, a mixed layer of compound (3) and compound (6) (electron affinity 2.8 eV) represented by (Chemical Formula 13) was formed into a light-emitting layer 4 by forming a layer of 25 nm. The ratio of compound (6) to compound (3) was 5 mol%. As the electron transport layer 5, bathocuproine (electron affinity 2.3 eV) was deposited to a thickness of 25 nm to produce a device. Immediately after the device was fabricated, the electrode was taken out in dry nitrogen and the characteristics were measured. When voltage was applied to the resulting device, uniform blue light emission was observed. When the emission spectrum was examined, it was found that it had a peak at 470 nm, and it was found that the emission was derived from the compound (3). The CIE chromaticity coordinates were determined to be x = 0.18 and y = 0.23.
Figure 0004818298

(実施例8)
発光層4として化合物(4)に対して化合物(6)を5 mol %混合した層を用いたこと以外は実施例7と同様に素子を作成した。得られた素子に電圧を印加したところ、均一な青緑色の発光が観測された。発光スペクトルを調べたところ490nmにピークを有することがわかり、発光が化合物(4)に由来するものであることがわかった。CIE色度座標を求めたところ、x=0.17、y=0.38であった。
(Example 8)
A device was prepared in the same manner as in Example 7 except that a layer obtained by mixing 5 mol% of the compound (6) with respect to the compound (4) was used as the light emitting layer 4. When voltage was applied to the resulting device, uniform blue-green light emission was observed. When the emission spectrum was examined, it was found that it had a peak at 490 nm, and it was found that the emission was derived from the compound (4). The CIE chromaticity coordinates were determined to be x = 0.17 and y = 0.38.

(比較例6)
正孔輸送層3にTPTを、発光層4として化合物(3)とTPDの5 mol %混合膜を用いたこと以外は、実施例5と同様に素子を作製した。得られた素子に電圧を印加したところ青色の均一な発光が観測された。発光スペクトルを調べたところ、470nmと420nmのところにピークを有することがわかり、この素子の発光が化合物(3)と正孔輸送層3を構成するTPTに由来するものであることがわかった。
(Comparative Example 6)
A device was fabricated in the same manner as in Example 5 except that TPT was used for the hole transport layer 3 and a 5 mol% mixed film of the compound (3) and TPD was used for the light emitting layer 4. When voltage was applied to the resulting device, blue uniform light emission was observed. When the emission spectrum was examined, it was found that there were peaks at 470 nm and 420 nm, and it was found that the light emission of this element was derived from TPT constituting the compound (3) and the hole transport layer 3.

(比較例7)
正孔輸送層3にTPTを、発光層4として化合物(4)とTPDの5 mol %混合膜を用いたこと以外は、実施例5と同様に素子を作製した。得られた素子に電圧を印加したところ青色の均一な発光が観測された。発光スペクトルを調べたところ、490nmと420nmのところにピークを有することがわかり、この素子の発光が化合物(4)と正孔輸送層3を構成するTPTに由来するものであることがわかった。
(Comparative Example 7)
A device was fabricated in the same manner as in Example 5 except that TPT was used for the hole transport layer 3 and a 5 mol% mixed film of compound (4) and TPD was used as the light emitting layer 4. When voltage was applied to the resulting device, blue uniform light emission was observed. When the emission spectrum was examined, it was found that there were peaks at 490 nm and 420 nm, and it was found that the light emission of this device was derived from the compound (4) and TPT constituting the hole transport layer 3.

(比較例8)
電子輸送層5に化合物(6)、発光層4に化合物(3)とバソクプロインの5mol %混合膜を用いたこと以外は実施例7と同様に素子を作製した。得られた素子に電圧を印加したところ、水色の均一な発光が観測された。発光スペクトルを調べたところ、化合物(3)のスペクトルに化合物(6)のスペクトルが重なって発光していることがわかり、発光層4と電子輸送層5の2層が発光していることがわかった。
(Comparative Example 8)
A device was fabricated in the same manner as in Example 7 except that the compound (6) was used for the electron transport layer 5 and a 5 mol% mixed film of compound (3) and bathocuproine was used for the light emitting layer 4. When voltage was applied to the resulting device, light blue uniform light emission was observed. When the emission spectrum was examined, it was found that the spectrum of the compound (6) overlapped with the spectrum of the compound (3), and it was found that two layers of the light emitting layer 4 and the electron transport layer 5 were emitting light. It was.

(比較例9)
電子輸送層5に化合物(6)、発光層4に化合物(4)とバソクプロインの5mol %混合膜を用いたこと以外は実施例7と同様に素子を作製した。得られた素子に電圧を印加したところ、水色の均一な発光が観測された。発光スペクトルを調べたところ、化合物(4)のスペクトルに化合物(6)のスペクトルが重なって発光していることがわかり、発光層4と電子輸送層5の2層が発光していることがわかった。
(Comparative Example 9)
A device was fabricated in the same manner as in Example 7 except that the compound (6) was used for the electron transport layer 5 and a 5 mol% mixed film of compound (4) and bathocuproine was used for the light emitting layer 4. When voltage was applied to the resulting device, light blue uniform light emission was observed. When the emission spectrum was examined, it was found that the spectrum of the compound (6) overlapped with the spectrum of the compound (4), and it was found that two layers of the light emitting layer 4 and the electron transport layer 5 were emitting light. It was.

実施例5から8および比較例6から9の結果から、正孔輸送層3あるいは電子輸送層5と発光層4中に混合させる電荷輸送材料のエネルギーダイアグラムを調整することにより、発光層4からのみの発光を得ることができることが確認できた。   From the results of Examples 5 to 8 and Comparative Examples 6 to 9, by adjusting the energy diagram of the charge transport material mixed in the hole transport layer 3 or the electron transport layer 5 and the light emitting layer 4, only from the light emitting layer 4 It was confirmed that the luminescence of can be obtained.

本発明における電界発光素子の構成を示す概略断面図Schematic sectional view showing the configuration of the electroluminescent element in the present invention

符号の説明Explanation of symbols

1 基板
2 陽極
3 正孔輸送層
4 発光層
5 電子輸送層
6 陰極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole transport layer 4 Light emitting layer 5 Electron transport layer 6 Cathode

Claims (3)

陽極と陰極からなる一対の電極と、
前記陽極と陰極の間に少なくとも発光層を含めた一層以上の有機物から構成される層を有する有機電界発光素子において、
前記発光層に接して電子輸送層が配置され、
前記発光層は、前記発光層を構成する主な材料として、下記一般式(1)で表される芳香族メチリデン化合物が使用され、かつ、前記電子輸送層を構成する材料の電子親和力よりも大きい電子親和力を有する電子輸送材料を混合したことを特徴とする有機電界発光素子。
Figure 0004818298
(式中Ar1は一般式(A)〜(D)のいずれかである2価の基、Ar2は一般式(E)〜(I)のいずれかである2価の基である。ここでnは1から3の整数、R1、R2はそれぞれ独立に水素原子、ハロゲン原子、低級アルキル基、置換もしくは無置換のアリール基である。)
Figure 0004818298
Figure 0004818298
A pair of electrodes consisting of an anode and a cathode;
In the organic electroluminescent device having a layer composed of one or more organic substances including at least a light emitting layer between the anode and the cathode,
An electron transport layer is disposed in contact with the light emitting layer,
In the light emitting layer, an aromatic methylidene compound represented by the following general formula (1) is used as a main material constituting the light emitting layer, and the electron affinity of the material constituting the electron transport layer is larger. An organic electroluminescent device comprising an electron transport material having an electron affinity.
Figure 0004818298
(In the formula, Ar1 is a divalent group of any one of the general formulas (A) to (D), and Ar2 is a divalent group of any one of the general formulas (E) to (I). Is an integer of 1 to 3, and R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a lower alkyl group, or a substituted or unsubstituted aryl group.)
Figure 0004818298
Figure 0004818298
前記発光層に前記電子輸送材料を10mol%以下混合したことを特徴とする請求項1に
記載の有機電界発光素子。
The organic electroluminescent device according to claim 1, wherein the light-emitting layer is mixed with 10 mol% or less of the electron transport material.
前記発光層の前記電子輸送層と接する領域に、前記電子輸送材料を混合した領域を設けたことを特徴とする請求項1に記載の有機電界発光素子。   2. The organic electroluminescent element according to claim 1, wherein a region in which the electron transport material is mixed is provided in a region of the light emitting layer in contact with the electron transport layer.
JP2008072223A 2008-03-19 2008-03-19 Organic electroluminescence device Expired - Fee Related JP4818298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008072223A JP4818298B2 (en) 2008-03-19 2008-03-19 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008072223A JP4818298B2 (en) 2008-03-19 2008-03-19 Organic electroluminescence device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002190617A Division JP4243459B2 (en) 2002-06-28 2002-06-28 Organic electroluminescence device

Publications (2)

Publication Number Publication Date
JP2008172271A JP2008172271A (en) 2008-07-24
JP4818298B2 true JP4818298B2 (en) 2011-11-16

Family

ID=39699996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008072223A Expired - Fee Related JP4818298B2 (en) 2008-03-19 2008-03-19 Organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP4818298B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03190088A (en) * 1989-12-20 1991-08-20 Sanyo Electric Co Ltd Organic el element
GB9810798D0 (en) * 1998-05-20 1998-07-15 Sharp Kk Light emitting devices
JP2000204051A (en) * 1999-01-11 2000-07-25 Matsushita Electric Ind Co Ltd Aromatic methylidene compound, aromatic aldehyde compound for producing the same, and their production
JP2002069427A (en) * 2000-06-13 2002-03-08 Matsushita Electric Ind Co Ltd Exciton forming substance; luminescent material, luminescent method, and luminescent element using the same; and device using luminescent element
JP3279310B2 (en) * 2000-09-18 2002-04-30 株式会社デンソー Aging method for organic EL device
JP2002134273A (en) * 2000-10-27 2002-05-10 Denso Corp Organic el element

Also Published As

Publication number Publication date
JP2008172271A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
TWI487157B (en) White oled with blue light-emitting layers
JP4939284B2 (en) Organic electroluminescent device
JP5476061B2 (en) Organic electroluminescence device and method for manufacturing the same
JP4886352B2 (en) Organic electroluminescence device
JP4895742B2 (en) White organic electroluminescence device
JP2002038140A (en) Organic luminescent layer and electroluminescent device
JP2004047469A (en) Organic light emitting diode device
JP2002093583A (en) Organic light emitting diode device
JP2002100478A (en) Organic electroluminescence element and its method of manufacture
US20080003455A1 (en) Organic El Device
JP2005085599A (en) Organic electroluminescent element
Zhao et al. High color stability and CRI (> 80) fluorescent white organic light-emitting diode based pure emission of exciplexes by employing merely complementary colors
JP2004171828A (en) Organic electroluminescent element
JP2012204096A (en) Organic electroluminescent element
JP5109054B2 (en) Organic electroluminescence device
JP2006310748A (en) Organic electroluminescence element
JP2003068461A (en) Light-emitting element
JP2004031214A (en) Organic electroluminescent element
CN111740020A (en) Efficient and long-life blue light device
JP2004152700A (en) Organic light emitting element and its manufacturing method
JP2003229279A (en) Organic electroluminescent element
KR100594775B1 (en) White organic light emitting device
KR100760901B1 (en) The White Organic Light Emitting Device
JP4818298B2 (en) Organic electroluminescence device
Jeong et al. Four-wavelength white organic light-emitting diodes using 4, 4′-bis-[carbazoyl-(9)]-stilbene as a deep blue emissive layer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees