JP4817773B2 - Imaging optical system and image reading apparatus using the same - Google Patents

Imaging optical system and image reading apparatus using the same Download PDF

Info

Publication number
JP4817773B2
JP4817773B2 JP2005265506A JP2005265506A JP4817773B2 JP 4817773 B2 JP4817773 B2 JP 4817773B2 JP 2005265506 A JP2005265506 A JP 2005265506A JP 2005265506 A JP2005265506 A JP 2005265506A JP 4817773 B2 JP4817773 B2 JP 4817773B2
Authority
JP
Japan
Prior art keywords
axial
optical system
reference axis
imaging optical
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005265506A
Other languages
Japanese (ja)
Other versions
JP2006106728A5 (en
JP2006106728A (en
Inventor
伸之 栃木
丈慶 齋賀
匡生 林出
和行 今道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005265506A priority Critical patent/JP4817773B2/en
Publication of JP2006106728A publication Critical patent/JP2006106728A/en
Publication of JP2006106728A5 publication Critical patent/JP2006106728A5/ja
Application granted granted Critical
Publication of JP4817773B2 publication Critical patent/JP4817773B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は結像光学系及びそれを用いた画像読取装置に関し、特に各種収差がバランスよく補正され、高解像力の画像読取ができるイメージスキャナーやデジタル複写機等においてラインセンサーを用いてモノクロ画像やカラー画像を読取る際に好適なものである。   BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an imaging optical system and an image reading apparatus using the same, and in particular, various aberrations are corrected in a well-balanced manner, and a monochrome image or color can be obtained using a line sensor in an image scanner or a digital copying machine that can read an image with high resolution. This is suitable for reading an image.

従来より、原稿面上の画像情報を読取る画像読取装置として主走査方向に複数の受光素子を配列したラインセンサーを用い、その画像情報をラインセンサー(CCD)面上に結像させ、原稿とラインセンサーとの相対的位置を副走査方向に変位させて該ラインセンサーから得られる出力信号を利用して、該原稿等の画像情報を読取るようにした画像読取装置が種々提案されている。   Conventionally, a line sensor in which a plurality of light receiving elements are arranged in the main scanning direction is used as an image reading apparatus for reading image information on a document surface, and the image information is imaged on a line sensor (CCD) surface, and the document and line Various image reading apparatuses have been proposed in which image information of the original or the like is read by using an output signal obtained from the line sensor by displacing the position relative to the sensor in the sub-scanning direction.

図13は従来のキャリッジ一体型走査方式の画像読取装置の概略図である。同図において照明光源1から放射された光束は直接原稿台ガラス2に載置した原稿7を照明し、該原稿7からの反射光束を順に第1、第2、第3折り返しミラー3a、3b、3cを介してキャリッジ7内部でその光路を折り曲げ、結像レンズ(結像光学系)4によりラインセンサー5面上に結像させている。   FIG. 13 is a schematic diagram of a conventional carriage-integrated scanning image reading apparatus. In the figure, the light beam emitted from the illumination light source 1 directly illuminates the document 7 placed on the platen glass 2, and the reflected light beam from the document 7 is sequentially converted into the first, second, and third folding mirrors 3 a, 3 b, The optical path is bent inside the carriage 7 through 3c, and an image is formed on the surface of the line sensor 5 by the imaging lens (imaging optical system) 4.

そしてキャリッジ6を副走査モーター8により図13に示す矢印A方向(副走査方向)に移動させることにより原稿7の画像情報を読み取っている。同図におけるラインセンサー5は複数の受光素子を1次元方向(主走査方向)に配列した構成により成り立っている。   Then, the image information of the document 7 is read by moving the carriage 6 in the arrow A direction (sub-scanning direction) shown in FIG. The line sensor 5 in the figure has a configuration in which a plurality of light receiving elements are arranged in a one-dimensional direction (main scanning direction).

図14は図13の画像読取光学系の基本構成の説明図である。   FIG. 14 is an explanatory diagram of a basic configuration of the image reading optical system of FIG.

図中、144は結像光学系、145R,145G,145Bは各々ラインセンサー145を構成するR(赤色),G(緑色),B(青色)の各色に関する画像情報を読取るR,G,B用のラインセンサー、147R,147G,147Bはラインセンサー145R,145G,145Bに対応する原稿面147上の読取範囲である。   In the figure, 144 is an imaging optical system, and 145R, 145G, and 145B are for R, G, and B that read image information relating to each color of R (red), G (green), and B (blue) constituting the line sensor 145, respectively. The line sensors 147R, 147G, and 147B are reading ranges on the document surface 147 corresponding to the line sensors 145R, 145G, and 145B.

原稿面147を走査することによってある時間間隔をおいて同一箇所を異なる色で読取ることができる。前記構成において結像光学系144が通常の屈折系からなる場合には軸上色収差や倍率色収差が発生するので基準のラインセンサー145Gに対しラインセンサー145B,145Rに結像されるライン像にデフォーカスあるいは位置ズレが発生する。したがって各色画像を重ね合わせて再現した時に色にじみやズレの目立つ画像になる。すなわち高開口、高解像度の性能が要求される場合には要求に対応できなくなる。   By scanning the document surface 147, the same portion can be read with different colors at a certain time interval. In the above-described configuration, when the imaging optical system 144 is composed of a normal refraction system, axial chromatic aberration and lateral chromatic aberration are generated. Therefore, the line image formed on the line sensors 145B and 145R is defocused with respect to the reference line sensor 145G. Or a positional shift occurs. Therefore, when the color images are superimposed and reproduced, the image becomes conspicuous in color blurring and deviation. In other words, when high aperture and high resolution performance is required, the request cannot be met.

一方、最近非共軸光学系においても、基準軸という概念を導入し構成面を非対称非球面にすることで、十分収差が補正された光学系が構築可能であることが提案されている(特許文献1〜3)。特許文献1にその設計方法が、特許文献2、特許文献3にその設計例が示されている。   On the other hand, recently, it has been proposed that even in non-coaxial optical systems, an optical system in which aberrations are sufficiently corrected can be constructed by introducing the concept of a reference axis and making the constituent surface an asymmetric aspheric surface (patent) Literatures 1-3). The design method is shown in Patent Document 1, and the design example is shown in Patent Document 2 and Patent Document 3.

こうした非共軸光学系はオフアキシャル光学系(像中心と瞳中心を通る光線に沿った基準軸を考えた時、構成面の基準軸との交点における面法線が基準軸上にない曲面(オフアキシャル曲面)を含む光学系として定義される光学系で、この時、基準軸は折れ曲がった形状となる)と呼ばれている。   Such a non-coaxial optical system is an off-axial optical system (a curved surface whose surface normal at the intersection with the reference axis of the component surface is not on the reference axis when considering a reference axis along a ray passing through the image center and the pupil center ( This is an optical system defined as an optical system including an off-axial curved surface, and at this time, the reference axis has a bent shape).

このオフアキシャル光学系は、構成面が一般には非共軸となり、反射面でもケラレが生じることがないため、反射面を使った光学系の構築がし易い。また、光路の引き回しが比較的自由に行える、構成面を一体成型する手法で一体型の光学系を作りやすいという特徴をもっている。   In this off-axial optical system, the constituent surfaces are generally non-coaxial and vignetting does not occur even on the reflecting surface, so that it is easy to construct an optical system using the reflecting surface. In addition, the optical path can be routed relatively freely, and it has a feature that it is easy to make an integrated optical system by a method of integrally forming the constituent surfaces.

このような技術を画像読取用の結像光学系に用いたものが開示されている(特許文献4,5)。これに開示されている技術により、画像読取装置において色収差のない十分収差が補正された5面、6面の反射面からなるオフアキシャル光学系が達成されている。   A technique using such a technique in an imaging optical system for image reading is disclosed (Patent Documents 4 and 5). With the technique disclosed therein, an off-axial optical system including five and six reflecting surfaces in which an aberration is sufficiently corrected without chromatic aberration is achieved in the image reading apparatus.

特許文献4では光学系の小型化の達成も同時に狙っているため、各実施例ではキャリッジ一体型に好適な光学系となっている。また特許文献5の画像読取用の結像光学系として開示されている実施例では、3面の反射面からなるオフアキシャル光学系が示されており、2:1ミラー走査型のスキャナーへ適用するのに十分な光路長となっている。
特開平9−5650号公報(対応外国なし) USP5825560号公報 USP5847887号公報 US AA2003038228号公報 US AA2003076606号公報
Since Patent Document 4 also aims to achieve miniaturization of the optical system at the same time, each embodiment is an optical system suitable for a carriage integrated type. Further, in the embodiment disclosed as an imaging optical system for image reading in Patent Document 5, an off-axial optical system including three reflecting surfaces is shown, which is applied to a 2: 1 mirror scanning type scanner. The optical path length is sufficient.
Japanese Patent Laid-Open No. 9-5650 (no corresponding foreign countries) US Pat. No. 5,825,560 USP5847887 US AA20033032828 US AA20033076066

反射型のオフアキシャル光学系では、全ての反射面を球面で構成しつつ光学性能を良好に保つのが難しい。この為少なくとも1面に回転非対称な非球面(自由曲面)を導入することで良好な光学性能を達成している。   In a reflection type off-axial optical system, it is difficult to keep good optical performance while all the reflecting surfaces are formed of spherical surfaces. Therefore, good optical performance is achieved by introducing a rotationally asymmetric aspherical surface (free curved surface) on at least one surface.

ところで一般に反射面で構成された光学系は偏心誤差による光学性能の低下が大きいことが知られている。回転非対称な非球面(自由曲面)を有する反射型の光学素子をオフアキシャル光学系に組み込む場合、通常の球面反射面に増してなお、それを保持する部材の配置は非常に高精度であることが要求される。   By the way, it is generally known that an optical system composed of a reflecting surface has a great decrease in optical performance due to an eccentric error. When a reflective optical element having a rotationally asymmetric aspherical surface (free-form surface) is incorporated in an off-axial optical system, the arrangement of the members for holding it is very high as compared with a normal spherical reflecting surface. Is required.

特に面数が3面以上の場合、各面の各々の相対的な位置精度を出す必要があり、逆に高精度を達成するには保持部材の構成が複雑化、大型化し組立性も悪化して製造が難しくなるという問題が生じてくる。   In particular, when the number of surfaces is three or more, it is necessary to obtain the relative positional accuracy of each surface. Conversely, in order to achieve high accuracy, the structure of the holding member becomes complicated, the size is increased, and the assemblability is deteriorated. This makes it difficult to manufacture.

またオフアキシャル反射面が自由曲面反射面の場合、通常のガラスで製造しようとすると、製造工程が複雑化してくる。   In addition, when the off-axial reflecting surface is a free-form curved reflecting surface, the manufacturing process becomes complicated if it is manufactured using ordinary glass.

そこでポリカーボネートやアクリル、ポリオレフィン系等のプラスチックでの製造が考えられるが、面数が多い場合は、その面数分の型代といった製造コストが上昇する問題が発生してくる。   Therefore, it is conceivable to manufacture with polycarbonate, acrylic, polyolefin-based plastics, etc., but when the number of surfaces is large, there arises a problem that the manufacturing cost such as mold cost corresponding to the number of surfaces increases.

本発明はオフアキシャル反射面で構成しても非対称収差の発生が少なく、良好な像性能を維持しつつ非常に簡易な構成で画像読取ができる結像光学系及び、それを用いた画像読取装置の提供を目的とする。   The present invention provides an imaging optical system capable of reading an image with a very simple configuration while maintaining good image performance with little occurrence of asymmetric aberration even when configured with an off-axial reflecting surface, and an image reading apparatus using the same The purpose is to provide.

特にデジタル複写機やイメージスキャナー等の画像読取系を容易に実現する際に好適な結像光学系の提供を目的とする。   In particular, an object of the present invention is to provide an imaging optical system suitable for easily realizing an image reading system such as a digital copying machine or an image scanner.

そこで、本発明では、原稿面上の画像情報を主走査方向に伸びたラインセンサー上に結像させ、該原稿面とラインセンサーとの相対的位置を副走査方向に変えて該ラインセンサーで該画像情報を読取る為の画像読取用の結像光学系であって、
前記結像光学系は、第1のオフアキシャル反射面及び第2のオフアキシャル反射面の2面のみからなり、かつ、
前記第1のオフアキシャル反射面及び前記第2のオフアキシャル反射面の副走査断面内の形状は、基準軸に対して非対称な形状であり、かつ、
副走査断面内において、副走査断面に垂直な直線を回転軸に基準軸光線を第1方向に偏向させるオフアキシャル反射面をマイナス偏向面、
副走査断面内において、副走査断面に垂直な直線を回転軸に基準軸光線を該第1方向と反対方向の第2方向に偏向させるオフアキシャル反射面をプラス偏向面、
と定義するとき、
前記第1のオフアキシャル反射面及び前記第2のオフアキシャル反射面は、前記原稿面側から前記プラス偏向面、前記マイナス偏向面もしくは前記マイナス偏向面、前記プラス偏向面、の順に前記結像光学系の光路中に配置され、かつ、
副走査断面内において、前記第1のオフアキシャル反射面に入射する基準軸光線と前記第2のオフアキシャル反射面から射出する基準軸光線の成す角度をθとしたとき、
−30°<θ<+30°
なる条件を満足し、かつ、
前記第1のオフアキシャル反射面と前記第2のオフアキシャル反射面の間の光路中に絞りが配置され、かつ
前記絞りの光線有効径の中心点を通り、前記ラインセンサー上の結像面の中心へ至る基準軸光線が前記第iのオフアキシャル反射面(i=1,2)によって反射する経路を基準軸とし、前記基準軸と前記第iのオフアキシャル反射面(i=1,2)が交差する点を原点とする前記第iのオフアキシャル反射面(i=1,2)のローカル座標(x,y,z)としたとき、前記第iのオフアキシャル反射面(i=1,2)の形状は以下のように定義でき、

Figure 0004817773

前記第1のオフアキシャル反射面の非球面係数C02r2と前記第2のオフアキシャル反射面の非球面係数C02r4は、
−1.0<C02r2/C02r4<−0.01
を満たしていることを特徴とする。 Therefore, in the present invention, image information on the document surface is imaged on a line sensor extending in the main scanning direction, and the relative position between the document surface and the line sensor is changed in the sub-scanning direction, and the line sensor An imaging optical system for image reading for reading image information,
The imaging optical system comprises only two surfaces, a first off-axial reflective surface and a second off-axial reflective surface, and
The shapes of the first off-axial reflective surface and the second off-axial reflective surface in the sub-scan section are asymmetric with respect to a reference axis, and
In the sub-scan section, an off-axial reflection surface that deflects the reference axis light beam in the first direction with a straight line perpendicular to the sub-scan section as the rotation axis,
Within the sub-scan section, an off-axial reflection surface that deflects a reference axis ray in a second direction opposite to the first direction with a straight line perpendicular to the sub-scan section as a rotation axis is a plus deflection surface,
When defining
The first off-axial reflecting surface and the second off-axial reflecting surface are formed by the imaging optics in the order of the plus deflection surface, the minus deflection surface or the minus deflection surface, and the plus deflection surface from the document surface side. Arranged in the optical path of the system, and
In the sub-scan section, when the angle formed by the reference axis ray incident on the first off-axial reflection surface and the reference axis ray emitted from the second off-axis reflection surface is θ,
−30 ° <θ <+ 30 °
Satisfying the following conditions, and
A stop is disposed in the optical path between the first off-axial reflective surface and the second off-axial reflective surface; and
The reference axis passes through the central point of the effective diameter of the light beam of the stop and reaches the center of the imaging plane on the line sensor, and is reflected by the i-th off-axial reflecting surface (i = 1, 2). And the local coordinates (x, x) of the i-th off-axial reflective surface (i = 1, 2) with the origin at the point where the reference axis and the i-th off-axial reflective surface (i = 1, 2) intersect. y, z), the shape of the i-th off-axial reflective surface (i = 1, 2) can be defined as follows:
Figure 0004817773

The aspheric coefficient C02r2 of the first off-axial reflective surface and the aspheric coefficient C02r4 of the second off-axial reflective surface are:
−1.0 <C02r2 / C02r4 <−0.01
It is characterized by satisfying.

本発明によれば、イメージスキャナーやデジタル複写機等のラインセンサーを用いた画像読取装置において、色収差が少なくオフアキシャル反射面が2面という非常に構造が簡略で、高性能な画像読取用の結像光学系が得られる。   According to the present invention, an image reading apparatus using a line sensor such as an image scanner or a digital copying machine has a very simple structure with two chromatic aberrations and two off-axial reflecting surfaces, and a high performance image reading result. An image optical system is obtained.

各実施例の説明に入る前に、各実施例で用いている結像光学系(光学系)の構成諸元の表し方及び実施例全体の共通事項について説明する。   Before describing each embodiment, a description will be given of how to represent the configuration specifications of the image forming optical system (optical system) used in each embodiment and common items of the entire embodiment.

図15は本発明の結像光学系の構成データを定義する座標系の説明図である。実施例では物体側から像面に進む1つの光線(図15中の一点鎖線で示すもので基準軸光線と呼ぶ)La1に沿ってi番目の面を第i面とする。   FIG. 15 is an explanatory diagram of a coordinate system defining configuration data of the imaging optical system of the present invention. In the embodiment, the i-th surface is defined as the i-th surface along one light beam (indicated by a one-dot chain line in FIG. 15 and referred to as a reference axis light beam) La1 traveling from the object side to the image plane.

図15において第1面R1は絞り、第2面R2は第1面と共軸な屈折面、第3面R3は第2面R2に対してチルトされた反射面、第4面R4、第5面R5は各々の前面に対してシフト、チルトされた反射面、第6面R6は第5面R5に対してシフト、チルトされた屈折面である。第2面R2から第6面R6までの各々の面はガラス、プラスチック等の透明な媒質で構成される一つの光学素子上に構成されている。   In FIG. 15, the first surface R1 is a stop, the second surface R2 is a refracting surface coaxial with the first surface, the third surface R3 is a reflecting surface tilted with respect to the second surface R2, the fourth surface R4, and the fifth surface. The surface R5 is a reflective surface shifted and tilted with respect to each front surface, and the sixth surface R6 is a refractive surface shifted and tilted with respect to the fifth surface R5. Each surface from the second surface R2 to the sixth surface R6 is formed on one optical element formed of a transparent medium such as glass or plastic.

従って、図15の構成では不図示の物体面から第2面R2までの媒質は空気、第2面R2から第6面R6まではある共通の媒質、第6面R6から不図示の第7面(例えば像面)R7までの媒質は空気で構成されている。   Accordingly, in the configuration of FIG. 15, the medium from the object surface (not shown) to the second surface R2 is air, the common medium from the second surface R2 to the sixth surface R6, and the seventh surface (not shown) from the sixth surface R6. The medium up to (for example, the image plane) R7 is composed of air.

本発明の結像光学系はオフアキシャル光学系であるため結像光学系を構成する各面は共通の光軸を持っていない。   Since the imaging optical system of the present invention is an off-axial optical system, the surfaces constituting the imaging optical system do not have a common optical axis.

そこで、実施例においては先ず第1面の光線有効径の中心を原点とする絶対座標系を設定する。そして、実施例においては、第1面の光線有効径の中心点を原点とすると共に、原点と最終結像面の中心とを通る光線(基準軸光線)の経路を結像光学系の基準軸と定義している。さらに、実施例中の基準軸は方向(向き)を持っている。その方向は基準軸光線が結像に際して進行する方向である。   Therefore, in the embodiment, first, an absolute coordinate system having the origin at the center of the effective ray diameter of the first surface is set. In the embodiment, the center point of the effective ray diameter of the first surface is used as the origin, and the path of the light beam (reference axis light beam) passing through the origin and the center of the final imaging surface is the reference axis of the imaging optical system. It is defined as Furthermore, the reference axis in the embodiment has a direction (orientation). The direction is the direction in which the reference axis ray travels during imaging.

本発明の実施例においては、結像光学系の基準となる基準軸を上記の様に設定したが、結像光学系の基準となる軸の決め方は光学設計上、収差の取り纏め上、若しくは結像光学系を構成する各面形状を表現する上で都合の良い軸を採用すれば良い。しかし、一般的には像面の中心と、絞り又は入射瞳又は射出瞳又は光学系の第1面の中心若しくは最終面の中心のいずれかを通る光線の経路を光学系の基準となる基準軸に設定する。   In the embodiments of the present invention, the reference axis used as the reference of the imaging optical system is set as described above. However, the method of determining the axis used as the reference of the imaging optical system is based on the optical design, the collection of aberrations, or the result. An axis that is convenient in expressing the shape of each surface constituting the image optical system may be employed. However, in general, the reference axis that serves as a reference for the optical system is the center of the image plane and the path of the light beam that passes through either the stop, the entrance pupil or the exit pupil, or the center of the first surface or the center of the final surface of the optical system. Set to.

つまり、本発明の実施例においては、基準軸は第1面、即ち絞り面の光線有効径の中心点を通り、最終結像面の中心へ至る光線(基準軸光線)が各屈折面及び反射面によって屈折・反射する経路を基準軸に設定している。各面の順番は基準軸光線が屈折・反射を受ける順番に設定している。   In other words, in the embodiment of the present invention, the reference axis passes through the center point of the effective diameter of the light beam on the first surface, that is, the diaphragm surface, and the light beam that reaches the center of the final imaging surface (reference axis light beam) The path that is refracted and reflected by the surface is set as the reference axis. The order of each surface is set in the order in which the reference axis rays are refracted and reflected.

従って基準軸は設定された各面の順番に沿って屈折若しくは反射の法則に従ってその方向を変化させつつ、最終的に像面の中心に到達する。   Therefore, the reference axis finally reaches the center of the image plane while changing its direction in accordance with the law of refraction or reflection along the set order of each surface.

本発明の各実施例の結像光学系を構成するチルト面は基本的にすべてが同一面内でチルトしている。そこで、絶対座標系の各軸を以下のように定める。
Z軸:原点を通り第2面R2に向かう基準軸
Y軸:原点を通りチルト面内(図15の紙面内)でZ軸に対して反時計回りに90゜をなす直線
X軸:原点を通りZ、Y各軸に垂直な直線(図15の紙面に垂直な直線)
また、結像光学系を構成する第i面の面形状を表すには、絶対座標系にてその面の形状を表記するより、基準軸と第i面が交差する点を原点とするローカル座標系を設定して、ローカル座標系でその面の面形状を表した方が形状を認識する上で理解し易い為、本発明の結像光学系に関する構成データを表示する実施例では第i面の面形状をローカル座標系で表わす。
All the tilt surfaces constituting the imaging optical system of each embodiment of the present invention are basically tilted within the same plane. Therefore, each axis of the absolute coordinate system is determined as follows.
Z axis: Reference axis passing through the origin toward the second surface R2 Y axis: Straight line passing through the origin and tilting 90 ° counterclockwise with respect to the Z axis in the tilt plane (in the paper of FIG. 15) X axis: Origin Straight lines perpendicular to the Z and Y axes (straight lines perpendicular to the paper surface of FIG. 15)
In addition, in order to represent the surface shape of the i-th surface constituting the imaging optical system, the local coordinates with the origin at the point where the reference axis and the i-th surface intersect are represented by the shape of the surface in the absolute coordinate system. It is easier to understand when the system is set and the surface shape of the surface is expressed in the local coordinate system for recognizing the shape. Therefore, in the embodiment for displaying the configuration data regarding the imaging optical system of the present invention, the i-th surface The surface shape of is expressed in the local coordinate system.

また、第i面のYZ面内でのチルト角は絶対座標系のZ軸に対して反時計回り方向を正とした角度θi(単位°)で表す。よって、本発明の実施例では各面のローカル座標の原点は図15中のYZ平面上にある。またXZおよびXY面内での面の偏心はない。さらに、第i面のローカル座標(x,y,z)のy,z軸は絶対座標系(X,Y,Z)に対してYZ面内で角度θi傾いており、具体的には以下のように設定する。
z軸:ローカル座標の原点を通り、絶対座標系のZ方向に対しYZ面内において反時計方向に角度θiをなす直線
y軸:ローカル座標の原点を通り、z方向に対しYZ面内において反時計方向に90゜をなす直線
x軸:ローカル座標の原点を通り、YZ面に対し垂直な直線
また、Diは第i面と第(i+1)面のローカル座標の原点間の間隔を表すスカラー量、Ndi、νdiは第i面と第(i+1)面間の媒質の屈折率とアッベ数である。また、本発明の実施例では光学系の断面図及び数値データを示す。
Further, the tilt angle of the i-th surface in the YZ plane is represented by an angle θi (unit: °) with the counterclockwise direction being positive with respect to the Z axis of the absolute coordinate system. Therefore, in the embodiment of the present invention, the origin of the local coordinates of each surface is on the YZ plane in FIG. There is no surface eccentricity in the XZ and XY planes. Furthermore, the y and z axes of the local coordinates (x, y, z) of the i-th surface are inclined at an angle θi in the YZ plane with respect to the absolute coordinate system (X, Y, Z). Set as follows.
z-axis: a straight line that passes through the origin of the local coordinate and forms an angle θi in the counterclockwise direction in the YZ plane with respect to the Z direction of the absolute coordinate system. y-axis: passes through the origin of the local coordinate and runs in the YZ plane with respect to the z direction. A straight line that forms 90 ° in the clockwise direction: a straight line that passes through the origin of the local coordinates and is perpendicular to the YZ plane. Di is a scalar quantity that represents the distance between the origins of the local coordinates of the i-th and (i + 1) -th planes. , Ndi and νdi are the refractive index and Abbe number of the medium between the i-th surface and the (i + 1) -th surface. Moreover, in the Example of this invention, sectional drawing and numerical data of an optical system are shown.

球面は以下の式で表される形状である:   A spherical surface is a shape represented by the following formula:

Figure 0004817773
Figure 0004817773

また、本発明の実施例における結像光学系は回転非対称の非球面を有し、その形状は以下の式により示す。   Further, the imaging optical system in the embodiment of the present invention has a rotationally asymmetric aspheric surface, and the shape thereof is expressed by the following equation.

Figure 0004817773
Figure 0004817773

上記曲面式はxに関して偶数次の項のみであるため、上記曲面式により規定される曲面はyz面を対称面とする面対称な形状である。   Since the curved surface formula is only an even-order term with respect to x, the curved surface defined by the curved surface formula is a plane-symmetric shape with the yz plane as the symmetry plane.

また結像光学系の実施例はすべて共軸光学系ではないため、近軸理論に基づく焦点距離を直接計算することが困難である。そこで以下の定義による換算焦点距離feqを用いる。 In addition, since all embodiments of the imaging optical system are not coaxial optical systems, it is difficult to directly calculate the focal length based on paraxial theory. Therefore, the converted focal length f eq according to the following definition is used.

Figure 0004817773
Figure 0004817773

なお定義上、反射面が奇数個の場合、焦点距離の符号は通常の符号と逆に表現される。   By definition, when there are an odd number of reflecting surfaces, the sign of the focal length is expressed opposite to the normal sign.

ここに
:第1面において基準軸に平行で基準軸に無限に近く入射する光線の入射高さak’:該光線が最終面から射出時に基準軸となす角度である。
Where h 1 is the incident height ak ′ of the light beam incident on the first surface parallel to the reference axis and infinitely incident on the reference axis, ak ′: the angle that the light beam makes with the reference axis when emitted from the final surface

図1は本発明の結像光学系を画像読取装置に適用したときの実施例1の副走査断面内の要部概略図である。図2は図1の結像光学系4aを抽出したときの副走査断面内の概略図である。   FIG. 1 is a schematic view of the main part in the sub-scan section of Example 1 when the imaging optical system of the present invention is applied to an image reading apparatus. FIG. 2 is a schematic view in the sub-scan section when the imaging optical system 4a of FIG. 1 is extracted.

図中、1は光源(光源手段)であり、蛍光灯やキセノンランプ等が成っている。2は原稿台ガラス、3a、3b、3cは順に第1、第2、第3反射ミラーである。4aは画像読取用の結像光学系であり、反射面より成る2つのオフアキシャル光学素子R2,R4を有している。5はCCD等で構成されるラインセンサー(受光手段)であり像面に相当する位置に配置している。6はキャリッジ(筐体)であり、各部材1,3a,3b,3c,4a,5等を収納している。   In the figure, reference numeral 1 denotes a light source (light source means), which includes a fluorescent lamp, a xenon lamp, and the like. Reference numeral 2 denotes a platen glass, and 3a, 3b, and 3c are first, second, and third reflecting mirrors in this order. An image forming optical system 4a for image reading has two off-axial optical elements R2 and R4 each made of a reflecting surface. Reference numeral 5 denotes a line sensor (light receiving means) composed of a CCD or the like, which is arranged at a position corresponding to the image plane. Reference numeral 6 denotes a carriage (housing) that houses the members 1, 3a, 3b, 3c, 4a, 5 and the like.

ここでラインセンサー5の画素の並び方向(紙面と垂直方向)が主走査方向(主走査断面内)、それに直交する方向(紙面内方向)が副走査方向(副走査断面内)である。   Here, the direction in which the pixels of the line sensor 5 are arranged (perpendicular to the paper surface) is the main scanning direction (in the main scanning section), and the direction orthogonal to the direction (in the paper surface direction) is the sub-scanning direction (in the sub-scanning section).

本実施例では、前述した図15で示すように、基準軸光線を時計回り方向に偏向させるオフアキシャル反射面をマイナス偏向面、基準軸光線を反時計回り方向に偏向させるオフアキシャル反射面をプラス偏向面と定義するとき、該結像光学系4aは2つの反射面より成るオフアキシャル光学素子R2,R4を有している。そして2つのオフアキシャル光学素子R2,R4は原稿面7側から順にプラス偏向面、マイナス偏向面もしくはマイナス偏向面、プラス偏向面となるように構成している。これによって良好なる光学性能を得ている。   In this embodiment, as shown in FIG. 15 described above, the off-axial reflecting surface that deflects the reference axis light beam in the clockwise direction is a minus deflection surface, and the off-axial reflecting surface that deflects the reference axis light beam in the counterclockwise direction is added. When defined as a deflecting surface, the imaging optical system 4a has off-axial optical elements R2 and R4 composed of two reflecting surfaces. The two off-axial optical elements R2 and R4 are configured to be a plus deflection surface, a minus deflection surface, a minus deflection surface, and a plus deflection surface in order from the document surface 7 side. As a result, good optical performance is obtained.

オフアキシャル光学素子R2は基準軸光線を反時計回り方向に偏向させるプラス偏向面、オフアキシャル光学素子R4は基準軸光線を時計回り方向に偏向させるマイナス偏向面である。   The off-axial optical element R2 is a plus deflection surface that deflects the reference axis beam in the counterclockwise direction, and the off-axial optical element R4 is a minus deflection surface that deflects the reference axis beam in the clockwise direction.

本実施例の画像読取用の結像光学系4aはパワーを有した屈折面は有さず、2つのオフアキシャル光学素子R2,R4から構成している。これによりプリズムのように入射面と射出面で屈折作用を有する構成を用いると偏心による問題は少なくなるものの、プリズムの硝材の特性による色収差が発生し、読取画像に色ズレ問題が発生するという問題を防止している。   The imaging optical system 4a for image reading of this embodiment does not have a refractive surface having power, and is composed of two off-axial optical elements R2 and R4. As a result, if a configuration having a refractive action on the entrance surface and exit surface is used like a prism, the problem due to decentration is reduced, but chromatic aberration due to the characteristics of the glass material of the prism occurs, resulting in a color shift problem in the read image. Is preventing.

光源1からの光束で原稿台ガラス2の上に載置された原稿7(物体)を照明し、原稿7からの光を反射ミラー3a、3b、3cを介して結像光学系4aによりラインセンサー5上に結像している。このとき原稿7とキャリッジ6との相対的位置を副走査方向(矢印A方向)に変えて原稿7を2次元的に読み取っている。   The original 7 (object) placed on the original platen glass 2 is illuminated with the light flux from the light source 1, and the light from the original 7 is detected by the imaging optical system 4a via the reflecting mirrors 3a, 3b, 3c. 5 is imaged. At this time, the document 7 is read two-dimensionally by changing the relative position between the document 7 and the carriage 6 in the sub-scanning direction (arrow A direction).

原稿読取装置をコンパクトに構成するために第1、第2、第3反射ミラー3a、3b、3cにより光路を折り畳んでいる。結像光学系4aも光路を折り畳むのに寄与している。結像光学系4aでは光路をおおよそZの形状に折り畳むことで互いのオフアキシャル反射面で発生する偏心収差をキャンセルし易くし、2面という少ない構成にもかかわらず良好な結像性能を得ている。   In order to make the document reading apparatus compact, the optical path is folded by the first, second, and third reflecting mirrors 3a, 3b, and 3c. The imaging optical system 4a also contributes to folding the optical path. In the imaging optical system 4a, the optical path is folded in an approximate Z shape to easily cancel the decentration aberrations generated on the off-axial reflecting surfaces of each other. Yes.

つまり、2つのオフアキシャル光学素子R2,R4は原稿面7側から順にプラス偏向面、マイナス偏向面もしくはマイナス偏向面、プラス偏向面となるように符号の異なる偏向面を順に並ばせているので、互いのオフアキシャル反射面で発生する偏心収差をキャンセルできる効果得ている。   That is, since the two off-axial optical elements R2 and R4 are arranged in order from the document surface 7 side, the deflection surfaces having different signs are arranged in order so as to be a plus deflection surface, a minus deflection surface or a minus deflection surface, and a plus deflection surface. An effect of canceling decentration aberrations generated on the mutual off-axial reflecting surfaces is obtained.

仮に、原稿面7側から順にプラス偏向面、プラス偏向面もしくはマイナス偏向面、マイナス偏向面となるように符号が同一の偏向面を順に並ばせると、互いのオフアキシャル反射面で発生する偏心収差は増幅される問題起こる。   If the deflection surfaces having the same sign are arranged in order so as to be a plus deflection surface, a plus deflection surface or a minus deflection surface, and a minus deflection surface in order from the document surface 7 side, decentration aberration generated on each off-axial reflecting surface. Problems that are amplified.

更に良好な結像性能を得るためにオフアキシャル反射面を基準軸に対し主走査方向に対称で副走査方向に非対称な自由曲面で構成して、副走査方向に光路を折り曲げによる偏芯収差を良好に補正している。   In order to obtain better imaging performance, the off-axial reflecting surface is composed of a free-form surface that is symmetric with respect to the reference axis in the main scanning direction and asymmetric in the sub-scanning direction, so that the eccentric aberration caused by bending the optical path in the sub-scanning direction Corrected well.

またオフアキシャル反射面R2,R4との間に絞りSPを設けることでオフアキシャル反射面の小型化に寄与している。更に反射面を小型化するには中間結像面を構成すればよいのであるが、リレー系を有するため光路長が長くなるか、各反射面のパワーが強くなり偏心誤差に弱くなってしまうので中間結像をしていない。   Further, by providing a stop SP between the off-axial reflecting surfaces R2 and R4, it contributes to downsizing of the off-axial reflecting surface. In order to further reduce the size of the reflecting surface, it is sufficient to configure an intermediate imaging surface. There is no intermediate imaging.

本実施例では原稿7の副走査方向の長さが短いため、中間結像面を構成しなくても反射面の大きさはあまり大きくならず、面間隔を小さく構成することができる。   In this embodiment, since the length of the document 7 in the sub-scanning direction is short, the size of the reflecting surface does not become so large even if the intermediate image plane is not formed, and the surface interval can be reduced.

本実施例ではこのような結像光学系4aを用いることによりキャリッジ一体型光学系の画像読取装置を3枚の平面折り返しミラーと2枚のオフアキシャル光学素子からなる少ない部品で構成することができ非常に製造が容易となり、小型化への対応も可能とし、如いては高速読取を可能としている。   In this embodiment, by using such an imaging optical system 4a, an image reading apparatus of a carriage-integrated optical system can be configured with a small number of parts including three plane folding mirrors and two off-axial optical elements. Manufacture is very easy and it is possible to cope with downsizing, and thus high-speed reading is possible.

以下に上で説明した本発明の実施例1に対応する画像読取用の結像光学系4aの数値実施例1ついて数値データを示す。また同様の実施例に対応する画像読取用の結像光学系4aの数値実施例2、3についても数値データを示す。   Numerical data will be shown below for Numerical Example 1 of the imaging optical system 4a for image reading corresponding to Example 1 of the present invention described above. Numerical data is also shown for Numerical Examples 2 and 3 of the imaging optical system 4a for image reading corresponding to the similar embodiment.

図4、図6に数値実施例2、3に対応した画像読取用の結像光学系の副走査断面図を示す。図3、図5、図7に数値実施例1,2、3のラインセンサーのライン方向の5点(像高)についての収差図を示す。図中のXは原稿面上の高さ(像高)を表す。   4 and 6 are sub-scanning sectional views of the imaging optical system for image reading corresponding to Numerical Examples 2 and 3. FIG. 3, 5, and 7 show aberration diagrams at five points (image heights) in the line direction of the line sensors of Numerical Examples 1, 2, and 3. FIG. X in the figure represents the height (image height) on the document surface.

本実施例では図2に示すように結像光学系4aの第1のオフアキシャル光学素子R2に入射する基準軸光線と第2のオフアキシャル光学素子R4から射出する基準軸光線の成す角度をθiとしたとき
−30°<θi<30° (1)
なる条件を満足させている。
In the present embodiment, as shown in FIG. 2, the angle formed by the reference axis ray incident on the first off-axial optical element R2 of the imaging optical system 4a and the reference axis ray emitted from the second off-axial optical element R4 is θi. -30 ° <θi <30 ° (1)
Satisfy the following conditions.

この条件式(1)の技術的意義を説明する。   The technical significance of this conditional expression (1) will be described.

条件式(1)は結像光学系に入射した光線と結像光学系から射出した光線との成す角度を規定したものであり、より具体的にはオフアキシャル反射面2面の配置角度の相対関係を規定したものである。オフアキシャル光学系では偏心収差が発生し、これを補正する必要があるが、オフアキシャル反射面を2面のみで構成するため面形状だけでの補正では良好な光学性能を得ることは困難である。そこで基準軸光線をZの形状に折り畳むことで互いのオフアキシャル反射面で発生する偏心収差をキャンセルし易くしているが、条件式(1)の範囲内にすることで偏心収差をキャンセルがより容易になる。条件式の上下限を外れてオフアキシャル反射面を相対配置すると、一方の面での偏心収差の発生量が大きくなり2面のオフアキシャル反射面のみではキャンセルが困難になるという問題が発生する。   Conditional expression (1) defines the angle formed between the light beam incident on the image forming optical system and the light beam emitted from the image forming optical system. More specifically, the conditional expression (1) is relative to the arrangement angle of the two off-axial reflecting surfaces. It defines the relationship. In the off-axial optical system, decentration aberration is generated and needs to be corrected. However, since the off-axial reflecting surface is composed of only two surfaces, it is difficult to obtain good optical performance only by correcting the surface shape. . Therefore, by folding the reference axis ray into the shape of Z, it becomes easy to cancel the decentration aberration generated on the off-axial reflecting surfaces of each other. However, the decentration aberration can be canceled by making it within the range of the conditional expression (1). It becomes easy. If the off-axial reflecting surfaces are relatively arranged outside the upper and lower limits of the conditional expression, the amount of decentering aberration generated on one surface increases, and there is a problem that it is difficult to cancel with only two off-axial reflecting surfaces.

更に好ましくは上記条件式(1)を次の如く設定するのが良い。
−15°<θi<15°
また、本実施例では図2に示すように結像光学系4aの第1のオフアキシャル光学素子R2(反射面)と第2のオフアキシャル光学素子R4(反射面)の非球面係数の非球面係数C02をそれぞれC02r2、C02r4としたとき
−1.0<C02r2/C02r4<−0.01・・・・・(2)
なる条件を満足させている。
More preferably, the conditional expression (1) is set as follows.
−15 ° <θi <15 °
In this embodiment, as shown in FIG. 2, the aspherical surface of the aspherical coefficient of the first off-axial optical element R2 (reflective surface) and the second off-axial optical element R4 (reflective surface) of the imaging optical system 4a is used. When the coefficients C02 are C02r2 and C02r4, respectively -1.0 <C02r2 / C02r4 <-0.01 (2)
Satisfy the following conditions.

この条件式(2)の技術的意義を説明する。   The technical significance of this conditional expression (2) will be described.

条件式(2)はオフアキシャル光学素子R2とオフアキシャル光学素子R4の非球面係数の比を規定したものであり、より具体的には2つのオフアキシャル光学素子の副走査方向の屈折力の比を規定したものである。   Conditional expression (2) defines the ratio of the aspheric coefficients of the off-axial optical element R2 and the off-axial optical element R4. More specifically, the ratio of the refractive powers of the two off-axial optical elements in the sub-scanning direction. Is specified.

一般的にオフアキシャル光学系では偏心収差が発生し、これを補正する必要があるが、コンパクト化を図りつつ良好な光学性能を得るためには、オフアキシャル光学素子の配置角度は制限されてしまう。   In general, an off-axial optical system generates decentration aberrations, which need to be corrected. However, in order to obtain good optical performance while achieving compactness, the arrangement angle of the off-axial optical element is limited. .

この限られた角度範囲で良好な光学性能を得るためには、光線を折り曲げる副走査方向と同方向の副走査方向の屈折力の2面での関係が重要となる。   In order to obtain good optical performance in this limited angular range, the relationship between the refractive powers in the sub-scanning direction, which is the same as the sub-scanning direction in which the light beam is bent, is important.

条件式(2)の下限を超えて、2面間の副走査方向の屈折力の差が発生すると所定の倍率を維持するためには光路長が長くなるという問題が発生する。逆に条件式(2)の上限を超えて2面間の副走査方向の屈折力の差が発生すると、副走査方向の屈折力が2面間で反転が起こり、良好な光学性能を光線を折り曲げるためには4の字形状にする必要が起こり、これも結像光学系を大きくしてしまうという問題が発生する。   If the difference between the refractive powers in the sub-scanning direction between the two surfaces exceeds the lower limit of the conditional expression (2), there arises a problem that the optical path length becomes long in order to maintain a predetermined magnification. Conversely, if the difference in refractive power between the two surfaces in the sub-scanning direction exceeds the upper limit of conditional expression (2), the refractive power in the sub-scanning direction is reversed between the two surfaces, and the optical performance is improved. In order to bend, it is necessary to make a figure 4 shape, and this also causes a problem that the imaging optical system is enlarged.

更に好ましくは上記条件式(2)を次の如く設定するのが良い。
−0.8<C02r2/C02r4<−0.2
More preferably, the conditional expression (2) is set as follows.
−0.8 <C02r2 / C02r4 <−0.2

数値実施例1
原稿読取幅 220mm 結像倍率 −0.189
原稿側NA 0.016 feq 29.680
Numerical example 1
Document reading width 220 mm Imaging magnification -0.189
Document side NA 0.016 feq 29.680

Figure 0004817773
Figure 0004817773

非球面形状
R2面
C02= -4.5460E-03 C03= 1.8570E-05 C04= -1.9333E-05
C05= 1.2781E-06 C06= 1.5282E-06 C07= -2.6256E-07
C08= 4.0099E-08 C20= -4.7534E-03 C21= 6.3040E-05
C22= -4.0753E-06 C23= -5.3171E-08 C24= 5.5317E-07
C25= 2.3713E-08 C26= -4.2652E-08 C40= 2.5124E-06
C41= -6.5956E-08 C42= -2.5347E-09 C43= -8.2587E-10
C44= -8.2235E-10 C60= -3.3116E-09 C61= 2.3522E-11
C62= 6.4321E-11 C80= 3.3081E-12
R4面
C02= 6.8081E-03 C03= 6.1342E-05 C04= -8.7196E-05
C05= -4.3217E-05 C06= 1.5179E-05 C07= 1.0360E-05
C08= 6.6517E-07 C20= 6.9865E-03 C21= 8.4961E-05
C22= 8.3621E-06 C23= 5.2533E-07 C24= 3.4662E-06
C25= -1.4766E-07 C26= -5.7376E-07 C40= -6.0197E-06
C41= -1.6224E-07 C42= 2.0695E-08 C43= 7.9461E-10
C44= -6.8943E-09 C60= 1.5482E-08 C61= 3.6681E-10
C62= -1.4023E-10 C80= -3.0158E-11
Aspherical surface R2
C02 = -4.5460E-03 C03 = 1.8570E-05 C04 = -1.9333E-05
C05 = 1.2781E-06 C06 = 1.5282E-06 C07 = -2.6256E-07
C08 = 4.0099E-08 C20 = -4.7534E-03 C21 = 6.3040E-05
C22 = -4.0753E-06 C23 = -5.3171E-08 C24 = 5.5317E-07
C25 = 2.3713E-08 C26 = -4.2652E-08 C40 = 2.5124E-06
C41 = -6.5956E-08 C42 = -2.5347E-09 C43 = -8.2587E-10
C44 = -8.2235E-10 C60 = -3.3116E-09 C61 = 2.3522E-11
C62 = 6.4321E-11 C80 = 3.3081E-12
R4 surface
C02 = 6.8081E-03 C03 = 6.1342E-05 C04 = -8.7196E-05
C05 = -4.3217E-05 C06 = 1.5179E-05 C07 = 1.0360E-05
C08 = 6.6517E-07 C20 = 6.9865E-03 C21 = 8.4961E-05
C22 = 8.3621E-06 C23 = 5.2533E-07 C24 = 3.4662E-06
C25 = -1.4766E-07 C26 = -5.7376E-07 C40 = -6.0197E-06
C41 = -1.6224E-07 C42 = 2.0695E-08 C43 = 7.9461E-10
C44 = -6.8943E-09 C60 = 1.5482E-08 C61 = 3.6681E-10
C62 = -1.4023E-10 C80 = -3.0158E-11

数値実施例2
原稿読取幅 220mm 結像倍率 −0.165
原稿側NA 0.014 feq 28.927
Numerical example 2
Document reading width 220 mm Imaging magnification -0.165
Document side NA 0.014 feq 28.927

Figure 0004817773
Figure 0004817773

非球面形状
R2面
C02= -4.8409E-03 C03= 1.2949E-05 C04= 1.4067E-06
C05= 3.5016E-07 C06= -1.3856E-07 C20= -4.9915E-03
C21= 3.6762E-05 C22= -3.3290E-06 C23= -1.9140E-08
C24= 1.9491E-08 C40= 7.0626E-07 C41= -9.2190E-09
C42= 2.3060E-09 C60= -2.2285E-10
R4面
C02= 1.0388E-02 C03= 1.8869E-05 C04= -5.8565E-05
C05= -5.3466E-06 C06= 1.1605E-05 C20= 1.0488E-02
C21= 6.3485E-05 C22= 1.5856E-05 C23= 1.9689E-07
C24= 6.9101E-07 C40= -2.0168E-06 C41= 7.2103E-09
C42= 1.4145E-08 C60= 2.2083E-09
Aspherical surface R2
C02 = -4.8409E-03 C03 = 1.2949E-05 C04 = 1.4067E-06
C05 = 3.5016E-07 C06 = -1.3856E-07 C20 = -4.9915E-03
C21 = 3.6762E-05 C22 = -3.3290E-06 C23 = -1.9140E-08
C24 = 1.9491E-08 C40 = 7.0626E-07 C41 = -9.2190E-09
C42 = 2.3060E-09 C60 = -2.2285E-10
R4 surface
C02 = 1.0388E-02 C03 = 1.8869E-05 C04 = -5.8565E-05
C05 = -5.3466E-06 C06 = 1.1605E-05 C20 = 1.0488E-02
C21 = 6.3485E-05 C22 = 1.5856E-05 C23 = 1.9689E-07
C24 = 6.9101E-07 C40 = -2.0168E-06 C41 = 7.2103E-09
C42 = 1.4145E-08 C60 = 2.2083E-09

数値実施例3
原稿読取幅 220mm 結像倍率 −0.255
原稿側NA 0.023 feq 49.819
Numerical Example 3
Document reading width 220 mm Imaging magnification -0.255
Document side NA 0.023 feq 49.819

Figure 0004817773
Figure 0004817773

非球面形状
R2面
C02= -3.2910E-03 C03= 2.8869E-06 C04= 4.4281E-07
C05= 6.6841E-08 C06= -3.4875E-08 C07= -1.0234E-09
C08= 7.2439E-10 C20= -3.3779E-03 C21= 1.3092E-05
C22= -2.7252E-07 C23= 1.4027E-09 C24= 1.9624E-10
C25= -3.9379E-11 C26= -5.2793E-12 C40= 2.5615E-07
C41= -2.5287E-09 C42= -8.2932E-11 C43= -9.6523E-13
C44= 2.2800E-13 C60= -6.3385E-11 C61= 6.1354E-13
C62= 8.2234E-14 C80= 1.2858E-14
R4面
C02= 5.3904E-03 C03= -7.1792E-06 C04= -1.8231E-06
C05= 1.9647E-07 C06= 4.9083E-07 C07= 5.2920E-09
C08= -2.9427E-08 C20= 5.5433E-03 C21= 3.5404E-05
C22= 5.2311E-06 C23= 2.3961E-08 C24= 1.0051E-08
C25= -1.5006E-09 C26= -3.9259E-10 C40= -5.9770E-07
C41= 3.3155E-10 C42= 3.5756E-10 C43= 9.4700E-12
C44= 8.5528E-12 C60= 5.2122E-10 C61= 1.5001E-12
C62= -2.3248E-12 C80= -2.2990E-13
Aspherical surface R2
C02 = -3.2910E-03 C03 = 2.8869E-06 C04 = 4.4281E-07
C05 = 6.6841E-08 C06 = -3.4875E-08 C07 = -1.0234E-09
C08 = 7.2439E-10 C20 = -3.3779E-03 C21 = 1.3092E-05
C22 = -2.7252E-07 C23 = 1.4027E-09 C24 = 1.9624E-10
C25 = -3.9379E-11 C26 = -5.2793E-12 C40 = 2.5615E-07
C41 = -2.5287E-09 C42 = -8.2932E-11 C43 = -9.6523E-13
C44 = 2.2800E-13 C60 = -6.3385E-11 C61 = 6.1354E-13
C62 = 8.2234E-14 C80 = 1.2858E-14
R4 surface
C02 = 5.3904E-03 C03 = -7.1792E-06 C04 = -1.8231E-06
C05 = 1.9647E-07 C06 = 4.9083E-07 C07 = 5.2920E-09
C08 = -2.9427E-08 C20 = 5.5433E-03 C21 = 3.5404E-05
C22 = 5.2311E-06 C23 = 2.3961E-08 C24 = 1.0051E-08
C25 = -1.5006E-09 C26 = -3.9259E-10 C40 = -5.9770E-07
C41 = 3.3155E-10 C42 = 3.5756E-10 C43 = 9.4700E-12
C44 = 8.5528E-12 C60 = 5.2122E-10 C61 = 1.5001E-12
C62 = -2.3248E-12 C80 = -2.2990E-13

図8は本発明の結像光学系を画像読取装置に適用したときの実施例2の要部概略図である。図9は図8の結像光学系4bを抽出したときの副走査方向の概略図である。   FIG. 8 is a schematic view of the essential portions of Embodiment 2 when the imaging optical system of the present invention is applied to an image reading apparatus. FIG. 9 is a schematic diagram in the sub-scanning direction when the imaging optical system 4b of FIG. 8 is extracted.

図中、1は光源(光源手段)であり、蛍光灯やキセノンランプ等が成っている。2は原稿台ガラス、3a、3b、3cは順に第1、第2、第3反射ミラーである。4bは画像読取用の結像光学系であり、2つのオフアキシャル光学素子R2,R4を有している。5はCCD等で構成されるラインセンサー(受光手段)である。   In the figure, reference numeral 1 denotes a light source (light source means), which includes a fluorescent lamp, a xenon lamp, and the like. Reference numeral 2 denotes a platen glass, and 3a, 3b, and 3c are first, second, and third reflecting mirrors in this order. Reference numeral 4b denotes an image forming optical system for image reading, which has two off-axial optical elements R2 and R4. Reference numeral 5 denotes a line sensor (light receiving means) composed of a CCD or the like.

本実施例の該画像読取用の結像光学系4bは、2つの反射面R2,R4より成るオフアキシャル光学素子4bで構成され、基準軸光線を時計回り方向に偏向させるオフアキシャル反射面をマイナス偏向面、基準軸光線を反時計回り方向に偏向させるオフアキシャル反射面をプラス偏向面、と定義するとき原稿面7側からプラス偏向面、マイナス偏向面もしくはマイナス偏向面、プラス偏向面、となるように構成している。   The imaging optical system 4b for image reading of this embodiment is composed of an off-axial optical element 4b composed of two reflecting surfaces R2 and R4, and the off-axial reflecting surface for deflecting the reference axis light beam in the clockwise direction is minus. When the deflection surface and the off-axial reflection surface for deflecting the reference axis light beam in the counterclockwise direction are defined as the positive deflection surface, the positive deflection surface, the negative deflection surface or the negative deflection surface, and the positive deflection surface are formed from the document surface 7 side. It is configured as follows.

図8において原稿7を照射した光束は該原稿7で反射されて第1のミラー台M1に載置した第1のミラー3aに向かう。この反射光は原稿7の画像情報を含んでおり、この光束を読取手段としての受光手段5に導くために第2のミラー3b、第3のミラー3cが配置されている。この第2のミラー3bと第3のミラー3cも一体の構造(ハの字ミラー)となっていて、第2のミラー台Mに載置されている。   In FIG. 8, the light beam irradiated onto the document 7 is reflected by the document 7 and travels toward the first mirror 3a placed on the first mirror base M1. The reflected light includes image information of the document 7, and a second mirror 3b and a third mirror 3c are arranged to guide the light flux to the light receiving means 5 as a reading means. The second mirror 3b and the third mirror 3c also have an integral structure (C-shaped mirror) and are placed on the second mirror base M.

原稿を走査する(読取る)際は第1のミラー台M1が不図示のモーターによって該原稿2を走査していくと、その1/2の速度で第2のミラー台M2が追随するような構造となっており、これにより走査中の原稿7と結像光学系4b(読取系)との光学的距離が維持される。こうして結像光学系4bにより原稿7からの光束が共役関係に配されたラインセンサー5面上に結像する。   When scanning (reading) a document, the first mirror stage M1 scans the document 2 with a motor (not shown), and the second mirror stage M2 follows at a half speed. Thus, the optical distance between the document 7 being scanned and the imaging optical system 4b (reading system) is maintained. In this way, the imaging optical system 4b forms an image on the surface of the line sensor 5 in which the light beam from the document 7 is arranged in a conjugate relationship.

この受光手段5は実施例1と同様に主走査方向に複数の素子を配列した1次元ラインセンサー(CCD)等より成り、原稿面7上の主走査方向に沿うよう位置が規定されている。これにより原稿積載台2上に載置された原稿7の主走査方向を一度読み込み、順次各第1,第2のミラー台M1,M2が走査していくことで原稿7の副走査方向を読み込んでいる。   The light receiving means 5 is composed of a one-dimensional line sensor (CCD) or the like in which a plurality of elements are arranged in the main scanning direction as in the first embodiment, and its position is defined along the main scanning direction on the document surface 7. Thus, the main scanning direction of the document 7 placed on the document stacking table 2 is read once, and the first and second mirror tables M1 and M2 are sequentially scanned to read the sub-scanning direction of the document 7. It is out.

実施例2で実施例1と異なるのは画像読取装置の構成がキャリッジ1体型走査方式のものから2:1ミラー走査方式になっているところおよび画像読取用の結像光学系4bが2:1ミラー走査方式に対応して原稿面から原稿側のオフアキシャル反射面までの光路長が長くなっている点である。   The second embodiment is different from the first embodiment in that the configuration of the image reading apparatus is changed from the one-carriage scanning type to the 2: 1 mirror scanning type and the image reading imaging optical system 4b is 2: 1. Corresponding to the mirror scanning method, the optical path length from the original surface to the off-axial reflecting surface on the original side is increased.

このような画像読取用の結像光学系4bを用いることにより2:1ミラー走査型の画像読取装置を3枚の平面折り返しミラーと2枚のオフアキシャル光学素子R2,R4からなる少ない部品で構成することができ非常に製造が容易となる。   By using such an imaging optical system 4b for image reading, a 2: 1 mirror scanning type image reading apparatus is configured with a small number of parts including three plane folding mirrors and two off-axial optical elements R2 and R4. Can be very easy to manufacture.

更に反射面のみで構成されるため色収差が発生せず、カラー読取における色ずれが無いため、これに付随するソフトウエア等での処理が簡略化でき、画像読取装置としてもより容易に製造することができる。   Furthermore, since it is composed of only the reflective surface, no chromatic aberration occurs, and there is no color shift in color reading, so the processing with the accompanying software can be simplified and the image reading apparatus can be manufactured more easily. Can do.

以下に上で説明した本発明の実施例2に対応する画像読取用の結像光学系の数値実施例4ついて数値データを示す。また同様の実施例に対応する画像読取用の結像光学系の数値実施例5についても数値データを示す。   Numerical data will be shown below for a numerical example 4 of the imaging optical system for image reading corresponding to the example 2 of the present invention described above. Numerical data is also shown for Numerical Example 5 of the imaging optical system for image reading corresponding to the same Example.

図11に数値実施例5に対応した画像読取用の結像光学系の副走査断面図を示す。図10、図12に数値実施例4、5のラインセンサーのライン方向の5点(像高)についての収差図を示す。図中のXは原稿面上の高さを表す。   FIG. 11 shows a sub-scanning sectional view of an image-reading imaging optical system corresponding to Numerical Example 5. 10 and 12 show aberration diagrams at five points (image heights) in the line direction of the line sensors of Numerical Examples 4 and 5. FIG. X in the figure represents the height on the document surface.

数値実施例4
原稿読取幅 304.8mm 結像倍率 −0.111
原稿側NA 0.009 feq 45.093
Numerical Example 4
Document reading width 304.8 mm Imaging magnification -0.111
Document side NA 0.009 feq 45.093

Figure 0004817773
Figure 0004817773

非球面形状
R2面
C02= -3.0020E-03 C03= 4.7838E-06 C04= 2.3504E-07
C05= 9.9324E-08 C06= -2.8659E-09 C20= -3.1491E-03
C21= 2.5084E-05 C22= -5.4761E-07 C23= -1.0084E-08
C24= -6.8492E-10 C40= 7.8808E-07 C41= -1.6587E-08
C42= 1.2190E-09 C60= -5.1022E-10
R4面
C02= -4.4171E-03 C03= -1.4059E-05 C04= 4.6758E-07
C05= 8.9070E-07 C06= 4.8105E-08 C20= 4.6431E-03
C21= 6.1598E-05 C22= 5.6242E-06 C23= 1.6523E-09
C24= 3.4457E-09 C40= -1.5530E-06 C41= -3.2913E-08
C42= -8.0017E-09 C60= 9.5119E-10
Aspherical surface R2
C02 = -3.0020E-03 C03 = 4.7838E-06 C04 = 2.3504E-07
C05 = 9.9324E-08 C06 = -2.8659E-09 C20 = -3.1491E-03
C21 = 2.5084E-05 C22 = -5.4761E-07 C23 = -1.0084E-08
C24 = -6.8492E-10 C40 = 7.8808E-07 C41 = -1.6587E-08
C42 = 1.2190E-09 C60 = -5.1022E-10
R4 surface
C02 = -4.4171E-03 C03 = -1.4059E-05 C04 = 4.6758E-07
C05 = 8.9070E-07 C06 = 4.8105E-08 C20 = 4.6431E-03
C21 = 6.1598E-05 C22 = 5.6242E-06 C23 = 1.6523E-09
C24 = 3.4457E-09 C40 = -1.5530E-06 C41 = -3.2913E-08
C42 = -8.0017E-09 C60 = 9.5119E-10

数値実施例5
原稿読取幅 304.8mm 結像倍率 −0.220
原稿側NA 0.017 feq 80.432
Numerical Example 5
Document reading width 304.8 mm Imaging magnification -0.220
Document side NA 0.017 feq 80.432

Figure 0004817773
Figure 0004817773

非球面形状
R2面
C02= -1.6082E-03 C03= 3.9135E-06 C04= 7.1800E-08
C05= 2.6687E-08 C06= -1.1885E-09 C20= -1.6933E-08
C21= 1.4997E-05 C22= -3.1463E-07 C23= -6.9537E-09
C24= -9.9100E-11 C40= 5.1882E-07 C41= -1.2070E-08
C42= 1.0832E-09 C60= -3.2503E-10
R4面
C02= 1.9433E-03 C03= 2.6548E-06 C04= 6.9000E-08
C05= 6.2702E-08 C06= 4.8170E-09 C20= 2.0246E-03
C21= 2.1504E-05 C22= 9.6888E-07 C23= -5.0452E-09
C24= -2.2503E-10 C40= -6.6966E-07 C41= -1.5781E-08
C42= -2.2432E-09 C60= 3.9269E-10
各実施例では結像光学系4a,4bを上述のように構成することで色収差がなくオフアキシャル反射面が2面という非常に構造が簡略で、高性能な画像読取用の結像光学系およびそれを用いた画像読取装置を達成することができる。
Aspherical surface R2
C02 = -1.6082E-03 C03 = 3.9135E-06 C04 = 7.1800E-08
C05 = 2.6687E-08 C06 = -1.1885E-09 C20 = -1.6933E-08
C21 = 1.4997E-05 C22 = -3.1463E-07 C23 = -6.9537E-09
C24 = -9.9100E-11 C40 = 5.1882E-07 C41 = -1.2070E-08
C42 = 1.0832E-09 C60 = -3.2503E-10
R4 surface
C02 = 1.9433E-03 C03 = 2.6548E-06 C04 = 6.9000E-08
C05 = 6.2702E-08 C06 = 4.8170E-09 C20 = 2.0246E-03
C21 = 2.1504E-05 C22 = 9.6888E-07 C23 = -5.0452E-09
C24 = -2.2503E-10 C40 = -6.6966E-07 C41 = -1.5781E-08
C42 = -2.2432E-09 C60 = 3.9269E-10
In each embodiment, the imaging optical systems 4a and 4b are configured as described above, so that the structure is very simple with no chromatic aberration and two off-axial reflecting surfaces, and a high-performance imaging optical system for image reading and An image reading apparatus using the same can be achieved.

本発明の画像読取装置の実施例1の要部概略図1 is a schematic diagram of the main part of a first embodiment of an image reading apparatus according to the present invention. 本発明の画像読取用の結像光学系の数値実施例1の断面図Sectional drawing of Numerical Example 1 of the imaging optical system for image reading of this invention 本発明の画像読取用の結像光学系の数値実施例1の収差図Aberration diagram of Numerical Example 1 of the imaging optical system for image reading of the present invention 本発明の画像読取用の結像光学系の数値実施例2の断面図Sectional drawing of Numerical Example 2 of the imaging optical system for image reading of this invention 本発明の画像読取用の結像光学系の数値実施例2の収差図Aberration diagram of Numerical Example 2 of the imaging optical system for image reading of the present invention 本発明の画像読取用の結像光学系の数値実施例3の断面図Sectional drawing of numerical Example 3 of the imaging optical system for image reading of this invention 本発明の画像読取用の結像光学系の数値実施例3の収差図Aberration diagram of Numerical Example 3 of the imaging optical system for image reading of the present invention 本発明の画像読取装置の実施例2の要部概略図Schematic diagram of main parts of Embodiment 2 of the image reading apparatus of the present invention. 本発明の画像読取用の結像光学系の数値実施例4の断面図Sectional drawing of Numerical Example 4 of the imaging optical system for image reading of this invention 本発明の画像読取用の結像光学系の数値実施例4の収差図Aberration diagram of Numerical Example 4 of the imaging optical system for image reading of the present invention 本発明の画像読取用の結像光学系の数値実施例5の断面図Sectional drawing of Numerical Example 5 of the imaging optical system for image reading of this invention 本発明の画像読取用の結像光学系の数値実施例5の収差図Aberration diagram of Numerical Example 5 of the imaging optical system for image reading of the present invention 従来の画像読取装置の要部概略図Schematic diagram of main parts of a conventional image reading apparatus 従来のカラー画像読取装置の基本構成図Basic configuration diagram of a conventional color image reading apparatus オフアキシャル光学系の定義を説明する概略図Schematic explaining the definition of off-axial optical system

符号の説明Explanation of symbols

1 照明光源
2 原稿台ガラス
3a,3b,3c 反射ミラー
4a,4b 結像光学系
5 読取手段(ラインセンサー)
6 キャリッジ(筐体)
7 原稿
SP 絞り
DESCRIPTION OF SYMBOLS 1 Illumination light source 2 Original plate glass 3a, 3b, 3c Reflection mirror 4a, 4b Imaging optical system 5 Reading means (line sensor)
6 Carriage (housing)
7 Original SP Aperture

Claims (4)

原稿面上の画像情報を主走査方向に伸びたラインセンサー上に結像させ、該原稿面とラインセンサーとの相対的位置を副走査方向に変えて該ラインセンサーで該画像情報を読取る為の画像読取用の結像光学系であって、
前記結像光学系は、第1のオフアキシャル反射面及び第2のオフアキシャル反射面の2面のみからなり、かつ、
前記第1のオフアキシャル反射面及び前記第2のオフアキシャル反射面の副走査断面内の形状は、基準軸に対して非対称な形状であり、かつ、
副走査断面内において、副走査断面に垂直な直線を回転軸に基準軸光線を第1方向に偏向させるオフアキシャル反射面をマイナス偏向面、
副走査断面内において、副走査断面に垂直な直線を回転軸に基準軸光線を該第1方向と反対方向の第2方向に偏向させるオフアキシャル反射面をプラス偏向面、
と定義するとき、
前記第1のオフアキシャル反射面及び前記第2のオフアキシャル反射面は、前記原稿面側から前記プラス偏向面、前記マイナス偏向面もしくは前記マイナス偏向面、前記プラス偏向面、の順に前記結像光学系の光路中に配置され、かつ、
副走査断面内において、前記第1のオフアキシャル反射面に入射する基準軸光線と前記第2のオフアキシャル反射面から射出する基準軸光線の成す角度をθとしたとき、
−30°<θ<+30°
なる条件を満足し、かつ、
前記第1のオフアキシャル反射面と前記第2のオフアキシャル反射面の間の光路中に絞りが配置され、かつ、
前記絞りの光線有効径の中心点を通り、前記ラインセンサー上の結像面の中心へ至る基準軸光線が前記第iのオフアキシャル反射面(i=1,2)によって反射する経路を基準軸とし、前記基準軸と前記第iのオフアキシャル反射面(i=1,2)が交差する点を原点とする前記第iのオフアキシャル反射面(i=1,2)のローカル座標(x,y,z)としたとき、前記第iのオフアキシャル反射面(i=1,2)の形状は以下のように定義でき、
Figure 0004817773

前記第1のオフアキシャル反射面の非球面係数C02r2と前記第2のオフアキシャル反射面の非球面係数C02r4は、
−1.0<C02r2/C02r4<−0.01
を満たしていることを特徴とする結像光学系。
The image information on the document surface is imaged on a line sensor extending in the main scanning direction, the relative position between the document surface and the line sensor is changed in the sub-scanning direction, and the image information is read by the line sensor. An imaging optical system for image reading,
The imaging optical system comprises only two surfaces, a first off-axial reflective surface and a second off-axial reflective surface, and
The shapes of the first off-axial reflective surface and the second off-axial reflective surface in the sub-scan section are asymmetric with respect to a reference axis, and
In the sub-scan section, an off-axial reflection surface that deflects the reference axis light beam in the first direction with a straight line perpendicular to the sub-scan section as the rotation axis,
Within the sub-scan section, an off-axial reflection surface that deflects a reference axis ray in a second direction opposite to the first direction with a straight line perpendicular to the sub-scan section as a rotation axis is a plus deflection surface,
When defining
The first off-axial reflecting surface and the second off-axial reflecting surface are formed by the imaging optics in the order of the plus deflection surface, the minus deflection surface or the minus deflection surface, and the plus deflection surface from the document surface side. Arranged in the optical path of the system, and
In the sub-scan section, when the angle formed by the reference axis ray incident on the first off-axial reflection surface and the reference axis ray emitted from the second off-axis reflection surface is θ,
−30 ° <θ <+ 30 °
Satisfying the following conditions, and
A stop is disposed in an optical path between the first off-axial reflective surface and the second off-axial reflective surface; and
The reference axis passes through the central point of the effective diameter of the light beam of the stop and reaches the center of the imaging plane on the line sensor, and is reflected by the i-th off-axial reflecting surface (i = 1, 2). And the local coordinates (x, x) of the i-th off-axial reflective surface (i = 1, 2) with the origin at the point where the reference axis and the i-th off-axial reflective surface (i = 1, 2) intersect. y, z), the shape of the i-th off-axial reflective surface (i = 1, 2) can be defined as follows:
Figure 0004817773

The aspheric coefficient C02r2 of the first off-axial reflective surface and the aspheric coefficient C02r4 of the second off-axial reflective surface are:
−1.0 <C02r2 / C02r4 <−0.01
An imaging optical system characterized by satisfying
−0.8<C02r2/C02r4<−0.2
なる条件を満足する請求項1に記載の結像光学系。
−0.8 <C02r2 / C02r4 <−0.2
The imaging optical system according to claim 1, wherein the following condition is satisfied.
副走査断面内において、前記第1のオフアキシャル反射面に入射する基準軸光線と前記第2のオフアキシャル反射面から射出する基準軸光線の成す角度をθとしたとき、
−15°<θ<+15°
なる条件を満足する請求項1又は2に記載の結像光学系。
In the sub-scan section, when the angle formed by the reference axis ray incident on the first off-axial reflection surface and the reference axis ray emitted from the second off-axis reflection surface is θ,
−15 ° <θ <+ 15 °
The imaging optical system according to claim 1 or 2, wherein the following condition is satisfied.
請求項1乃至3の何れか一項に記載の結像光学系と、前記ラインセンサーと、を有することを特徴とする画像読取装置。 An image reading apparatus comprising: the imaging optical system according to claim 1; and the line sensor.
JP2005265506A 2004-09-13 2005-09-13 Imaging optical system and image reading apparatus using the same Expired - Fee Related JP4817773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265506A JP4817773B2 (en) 2004-09-13 2005-09-13 Imaging optical system and image reading apparatus using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004265376 2004-09-13
JP2004265376 2004-09-13
JP2005265506A JP4817773B2 (en) 2004-09-13 2005-09-13 Imaging optical system and image reading apparatus using the same

Publications (3)

Publication Number Publication Date
JP2006106728A JP2006106728A (en) 2006-04-20
JP2006106728A5 JP2006106728A5 (en) 2008-10-30
JP4817773B2 true JP4817773B2 (en) 2011-11-16

Family

ID=36376477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265506A Expired - Fee Related JP4817773B2 (en) 2004-09-13 2005-09-13 Imaging optical system and image reading apparatus using the same

Country Status (1)

Country Link
JP (1) JP4817773B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140302325A1 (en) 2011-10-18 2014-10-09 Nippon Soda Co., Ltd. Surface-covered inorganic powder
JP7180237B2 (en) 2018-09-25 2022-11-30 富士フイルムビジネスイノベーション株式会社 Image reading optical system and image reading device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109263A (en) * 1990-08-30 1992-04-10 Ricoh Co Ltd Optical system for document read
JP3943952B2 (en) * 2001-03-05 2007-07-11 キヤノン株式会社 Image reading device
JP4821057B2 (en) * 2001-06-20 2011-11-24 株式会社ニコン Off-axis reflection optics
JP2004138799A (en) * 2002-10-17 2004-05-13 Canon Inc Imaging optical system

Also Published As

Publication number Publication date
JP2006106728A (en) 2006-04-20

Similar Documents

Publication Publication Date Title
US7929187B2 (en) Image optical system and image reading apparatus equipped with same
EP1667420B1 (en) Image reading imaging optical system and image reading apparatus using the same
KR100738361B1 (en) Imaging optical system and image reading apparatus using the same
JP2006259544A (en) Imaging optical system and image reader using the same
JP4371634B2 (en) Imaging optical system and image reading apparatus using the same
JP5031303B2 (en) Image reading device
JP4817773B2 (en) Imaging optical system and image reading apparatus using the same
US7903301B2 (en) Imaging optical system and image reading apparatus using the same
US20030002170A1 (en) Imaging lens and image reading apparatus using the same
JP2004138799A (en) Imaging optical system
JP4759310B2 (en) Reading optical system and image reading apparatus using the same
JP4497805B2 (en) Image reading device
JP4804563B2 (en) Imaging optical system and image reading apparatus having the same
JP4332548B2 (en) Image reading device
JP5683130B2 (en) Image reading apparatus using image reading lens
JP2000307800A (en) Color picture reader
JP2005241682A (en) Image forming optical system for reading image, and image reading apparatus using the same
JP2011244135A (en) Image reading lens and image reading apparatus using the same
JP2011160070A (en) Method of adjusting image reader, and image reader
JP2002214528A (en) Original reading lens and original reader using the same
JP2017187663A (en) Imaging optical system
JP2010169781A (en) Document reader and document reading lens used therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4817773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees