JP4817562B2 - Long-lasting nifedipine dry-coated tablets - Google Patents

Long-lasting nifedipine dry-coated tablets Download PDF

Info

Publication number
JP4817562B2
JP4817562B2 JP2001292697A JP2001292697A JP4817562B2 JP 4817562 B2 JP4817562 B2 JP 4817562B2 JP 2001292697 A JP2001292697 A JP 2001292697A JP 2001292697 A JP2001292697 A JP 2001292697A JP 4817562 B2 JP4817562 B2 JP 4817562B2
Authority
JP
Japan
Prior art keywords
nifedipine
dry
outer shell
granulated product
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001292697A
Other languages
Japanese (ja)
Other versions
JP2003095948A (en
Inventor
豊 奥田
茂 前山
伸子 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Towa Pharmaceutical Co Ltd
Original Assignee
Towa Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa Pharmaceutical Co Ltd filed Critical Towa Pharmaceutical Co Ltd
Priority to JP2001292697A priority Critical patent/JP4817562B2/en
Publication of JP2003095948A publication Critical patent/JP2003095948A/en
Application granted granted Critical
Publication of JP4817562B2 publication Critical patent/JP4817562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【技術分野】
本発明は、長時間持続型、例えば1〜2回/日の投与によって有効血中濃度が持続するニフエジピン有核錠に関する。
【0002】
【先行技術および課題】
薬物の長時間にわたる持続性放出を達成する製剤技術の一つとして、速放部を芯部とし、その外側の外殻を徐放部とした有核錠が知られている。このタイプの有核錠は、消化管内において外殻部が徐々に侵食されて薬物を放出し、消化管下部に至って露出した芯部から残りの薬物を放出するように設計されている。
【0003】
この種の持続性製剤は、溶解性が消化液のpHに依存する腸溶性高分子物質の皮膜を施した製剤とは異なり、外殻部は吸水によりゲル化する親水性高分子物質を含有し、外殻部は消化管内において薬物を含有するゲルマトリックスを形成する。自明なように、このゲルマトリックスは消化管下部に到達する前に腸の蠕動運動によって一挙に崩壊し、芯部の速溶部からの薬物の放出が標的部位の上流で終了してしまってはならない。このためゲルマトリックスは消化管内で徐々に侵食されるが一挙に崩壊しない適度の機械的強度を有することが必要である。
【0004】
特公平6−11699号は外殻部に親水性ゲル形成性重合体を使用したニフエジピンの有核錠を記載する。特開平9−143073号は、親水性ゲル形成性重合体と、アクリル酸・メタクリル酸・メタクリル酸塩化トリメチルアンモニウムエチル三元共重合体を外殻部に使用したニフエジピン有核錠を記載する。前記三元共重合体は親水性重合体のゲルマトリックスの機械的強度もしくは崩壊性を改善するために用いられる物質であるが、製剤技術においてもっと一般的で入手しし易い物質を用いて外殻部のゲルマトリックスを補強することが好ましい。
【0005】
【解決手段】
本発明は、芯部および外殻部が共にニフエジピンと、HPC−LまたはHPC−LとHPC−Mの組み合わせを含有し、外殻部はさらに平均粒径75〜150μmの水に不溶性の粒子または造粒物を含有することを特徴とする長時間持続型ニフエジピン有核錠を提供する
【0006】
本発明による主要な利益は、前記したアクリル系三元共重合体のような特別の高分子物質を使用することなく、製薬工業においてもっと一般的に使用され、入手し易い物質を使用して外殻部のゲルマトリックスの機械的強度を補強可能とすることである。これら物質はニフエジピンおよびゲルを形成する水溶性高分子物質と共に顆粒に成形し、外殻部を打錠することも可能であるが、水不溶性粒子または造粒物を含まない顆粒を調製し、この顆粒にこれら粒子または造粒物を混和して外殻部を打錠することができる。これにより製剤工程が簡単化される。
【0007】
【好ましい実施態様】
本発明のニフエジピン有核錠は、芯部と外殻部よりなる。芯部と外殻部は共にニフエジピンと、ゲルを形成する水溶性有機高分子物質を含んでいる。ゲルを形成する水溶性有機高分子物質の例は、ヒドロキシプロピルセルロース(HPC)、メチルセルロース(MC)、ヒドロキシプロピルメチルセルロース(HPMC)、カルボキシメチルセルロースナトリウム(CMC)のような水溶性セルロース誘導体、およびポリビニルアルコール(PVA)のような水溶性ビニルポリマーを含む。中でもHPCが好ましく、芯部には低粘度HPC(HPC−L)を単独で使用するのが好ましい。芯部はニフエジピンおよび水溶性高分子物質に加え、任意に慣用の賦形剤、崩壊剤、溶解補助剤などの補助成分を含むことができる。錠剤に打錠するためには上記成分を公知技術によって顆粒に造粒し、滑沢剤を混和して直径3〜7mm程度の錠剤に打錠する。芯部もゲルマトリックスを形成するためには、前記水溶性有機高分子物質は芯部錠剤の15〜40重量%を占めるのが好ましい。
【0008】
外殻部は、ゲルマトリックスの機械的強度を増強する粒子または造粒物を除いて一般に芯部と同じ成分を含むことができる。すなわち、ニフエジピン、ゲルを形成する水溶性高分子物質、および任意に賦形剤、崩壊剤、溶解補助剤などの補助成分を含むことができる。外殻部の水溶性高分子物質もHPCが好ましく、この場合はHPC−L単独、またはHPC−Lを主体とし、これに中粘度HPC(HPC−M)を少割合配合した混合物を用いても良い。外殻部中の水溶性高分子物質の割合は30〜70重量%、特に40〜60重量%の範囲内であることが好ましい。
【0009】
本発明によれば、外殻部のゲルマトリックスの機械的強度は一定範囲の比較的大きい平均粒径を有する水不溶性粒子または造粒物によって増強されることがわかった。そのような粒子および造粒物は75μmないし500μmの平均粒径を有し、その例はエチルセルロース、酢酸セルロースおよび結晶セルロースのようなセルロースおよび水不溶性セルロース誘導体、リン酸水素カルシウム、無水リン酸水素カルシウム、クエン酸カルシウム、メタケイ酸アルミニウムマグネシウム、硫酸カルシウム、ケイ酸アルミニウムおよびケイ酸マグネシウムのような無機粒子を含む。平均粒径が75μm未満の粒子でも常温で固体のワックス類をコーティングするか、またはそれにより結合して上記範囲の粒径に造粒して用いることができる。特に好ましいそのような粒子または造粒物は、エチルセルロース(EC)、リン酸水素カルシウム、およびタルク(ケイ酸マグネシウム)およびリン酸水素カルシウムにショ糖脂肪酸エステルを溶融コーティングして得られる造粒物である。この目的に使用し得るワックス類の他の例は、ステアリン酸およびパルミチン酸のような高級脂肪酸、硬化油、牛脂などのそれらのグリセリンエステル、ステアリルアルコールおよびセチルアルコールなどの高級脂肪アルコール、木ロウ、精製蜜ロウなどの天然ロウ、およびパラフィンワックスに代表される鉱油系ワックスを含む。ワックス類は粒径が75〜500μmの範囲内にある粒子のゲルマトリックス補強効果をさらに増強するコーティングに用いることができる。
【0010】
外殻部は上に述べた成分の全部を顆粒に造粒し、これに滑沢剤を混和して有核錠に打錠することによって形成することができる。代って前記した水不溶性粒子またはその造粒物を除いた成分を顆粒に造粒した後、これに前記粒子または粒子造粒物を混和し、さらに滑沢剤を混和して有核錠に打錠することができる。
【0011】
吸水した外殻部のゲルマトリックスが消化管内で機械的ストレスに耐えられる十分な強度を発揮するためには、本発明に従って配合される補強用粒子または造粒物は外殻部重量の1〜50%を占めるのが適当である。また芯部と外殻部の重量比は1:3〜1:6が適当であり、全体のニフエジピン含量の50〜75%が外殻部に存在するのが適当である。
【0012】
外殻部のゲルマトリックスの補強のために本発明に従って使用される粒子または造粒物の効果は、製品有核錠について局方第2法溶出試験法(シンカー使用)と、局方崩壊試験装置法(補助盤使用)に従ってそれぞれの方法によるニフエジピン溶出率を測定し、得られたデータを比較することによって確かめることができる。局方崩壊試験法による溶出率は、第2法溶出試験法による溶出率よりも機械的ストレスにより加速されることになるので、この加速の程度が大きければ大きい程ゲルマトリックスの機械的強度は低いことを意味する。本発明によれば、この加速の程度を200%以下、好ましくは150%以下、最も好ましくは120%以下に保つことができる。
【0013】
【実施例】
以下の実施例は、限定を意図することなく本発明を例証する。
【0014】
実施例1
1.芯部の製造
ニフエジピン結晶(平均粒子径5μm、以下同じ)375g、乳糖800g、結晶セルロース100g、およびHPC−L685gを流動層造粒機を用いて均一に混合し、ポリビニルピロリドン500gをエタノール(95%)に溶解した液を結合液とし、流動造粒した。得られた造粒物を流動層乾燥機を用いて乾燥後、パワーミルにて整粒した。得られた整粒末2460gへステアリン酸マグネシウム40gを混和し、常法により重量50mg,直径5mmの錠剤に打錠した。この錠剤はすべての実施例および比較例において芯部錠剤として用いた。
【0015】
2.外殻部の製造
ニフエジピン125g,HPC−L2100gを流動層造粒機を用いて均一に混合し、エタノール(95%)を結合液として流動造粒した。得られた造粒物をパワーミルにて整粒し、これにEC(平均粒子径約150μm)245gを加え、ボーレ混合機を用いて混一に混合した。この混合物2470gにステアリン酸マグネシウム30gを添加し、この混合物250mgを有核打錠機を用いて芯部錠剤の外側に被覆し、直径9mm,重量300mgの有核錠に打錠した。
【0016】
実施例2
ニフエジピン125g,HPC−L1420gおよびHPL−M470gを流動層造粒機を用いて均一に混合し、エタノール(95%)を結合液として流動造粒した。得られた造粒物をパワーミルにて整粒し、これにEC(平均粒子径約150μm)455gを加え、ボーレ混合機を用いて混合した。この混合物2470gにステアリン酸マグネシウム30gを混合した。この混合物250mgを有核打錠機を用いて実施例1で得た芯部錠剤の外側に被覆し、直径9mm,重量300mgの有核錠を製造した。
【0017】
実施例3
ニフエジピン125g,HPC−L1420gおよびHPC−M470gを流動層造粒機を用いて均一に混合し、エタノール(95%)を結合液として流動造粒した。得られた造粒物をパワーミルにて整粒し、これにリン酸水素カルシウム(平均粒子径約150μm)455gを加え、ボーレ混合機を用いて混合した。この混合物2470gにステアリン酸マグネシウム30gを混合した。この混合物250mgを有核打錠機を用いて実施例1で得た芯部錠剤の外側に被覆し、直径9mm,重量300mgの有核錠を製造した。
【0018】
実施例4
ニフエジピン125g,HPC−L1420g,HPC−M470gおよびEC(平均粒子径約150μm)655gを流動層造粒機を用いて均一に混合し、エタノール(95%)を結合液として流動造粒した。得られた造粒物をパワーミルにて整粒した。得られた整粒物2670gにステアリン酸マグネシウム30gを混合し、この混合物270mgを有核打錠機を用いて実施例1で得た芯部錠剤の外側に被覆し、直径9mm,重量320mgの有核錠を製造した。
【0019】
実施例5
ニフエジピン125g,HPC−L1420gおよびHPC−M470gを流動層造粒機を用いて均一に混合し、エタノール(95%)を結合液として流動造粒し、得られた造粒物をパワーミルにて整粒し、ニフエジピン含有顆粒を得た。
【0020】
別にリン酸水素カルシウム(平均粒子径約150μm)655gにショ糖脂肪酸エステル100gを加えて溶融コーティングし、平均粒子径約250μmの造粒物を得た。
【0021】
整粒したニフエジピン含有顆粒2015gとリン酸水素カルシウム造粒物755gをボーレ混合機で均一に混合し、これにステアリン酸マグネシウム30gを添加し、この混合物280mgを有核打錠機を用いて実施例1で得た芯部錠剤の外側に被覆し、直径9mm,重量330mgの有核錠を製造した。
【0022】
実施例6
ニフエジピン125g,HPC−L1420gおよびHPC−M470gを流動層造粒機を用いて均一に混合し、エタノール(95%)を結合液として流動造粒し、得られた造粒物をパワーミルにて整粒し、ニフエジピン含有顆粒を得た。
【0023】
別にタルク(200メッシュパス)655gにショ糖脂肪酸エステル100gを加えて溶融コーティングし、平均粒子径約150μmの造粒物とした。
【0024】
整粒したニフエジピン含有顆粒2015gとタルク造粒物755gをボーレ混合機で均一に混合し、これにステアリン酸マグネシウム30gを添加し、この混合物280mgを有核打錠機を用いて実施例1で得た芯部錠剤の外側に被覆し、直径9mm,重量330mgの有核錠を製造した。
【0025】
実施例7
ニフエジピン125g,HPC−L1420gおよびHPC−M470gを流動層造粒機を用いて均一に混合し、エタノール(95%)を結合液として流動造粒し、得られた造粒物をパワーミルにて整粒し、これにEC(平均粒子径約75μm)955gを加え、ボーレ混合機で均一に混合した。この混合物2970gにステアリン酸マグネシウム30gを混合し、混合物300mgを有核打錠機を用いて実施例1の芯部錠剤の外側に被覆し、直径9mm,重量350mgの有核錠を製造した。
【0026】
実施例8
ニフエジピン125g,HPC−L1420gおよびHPC−M470gを流動層造粒機を用いて均一に混合し、エタノール(95%)を結合液として流動造粒し、得られた造粒物をパワーミルにて整粒した。得られた顆粒にEC(平均粒子径約75μm)155gを加え、ボーレ混合機で均一に混合した。この混合物2170gにステアリン酸マグネシウネ30gを混合し、混合物220mgを有核打錠機を用いて実施例1の芯部錠剤の外側に被覆し、直径9mm,重量270mgの有核錠を製造した。
【0027】
比較例1
ニフエジピン125gとHPC−L2100gを流動層造粒機を用いて均一に混合し、エタノール(95%)を結合液として流動造粒し、得られた造粒物をパワーミルにて整粒した。得られた顆粒にEC(平均粒子径約10μm)245gを加え、ボーレ混合機で均一に混合した。得られた混合物2470gにステアリン酸マグネシウム30gを添加し、この混合物250mgを有核打錠機を用いて実施例1の芯部錠剤の外側に被覆し、直径9mm,重量300mgの有核錠を製造した。
【0028】
比較例2
ニフエジピン125g、HPC−L1420gおよびHPC−M470gを流動層造粒機を用いて均一に混合し、エタノール(95%)を結合液として流動造粒し、得られた造粒物をパワーミルにて整粒した。得られた顆粒にリン酸水素カルシウム(200メッシュパス)455gを加え、ボーレ混合機で均一に混合した。得られた混合物2470gにステアリン酸マグネシウム30gを混合し、混合物250mgを有核打錠機を用いて実施例1の芯部錠剤の外側に被覆し、直径9mm,重量300mgの有核錠を製造した。
【0029】
溶出試験
実施例および比較例で得た有核錠について、それぞれ局方第2法溶出試験法(シンカー使用)と、局方崩壊試験装置法(補助盤使用)に従って所定時間内のニフエジピンの溶出率を測定した。測定結果を表1に示す。
【0030】
【表1】

Figure 0004817562
【0031】
条件:特開平9−143073号記載の条件に準ずる。
1.第2法溶出試験法
試験液:ポリソルベート80の1%水溶液
温度:37℃
ハンギングシンカー使用、回転数100rpm
2.崩壊試験装置法
試験液:ポリソルベート80の1%水溶液
温度:37℃
補助盤使用
【0032】
表1に示すように、第2法溶出試験法に比較して崩壊試験法における溶出率は、実施例の有核錠にあっては120分において1.4倍未満に加速されるに過ぎないが、比較例の有核錠にあっては2倍以上に加速されることがわかる。これは、本発明によるニフエジピン有核錠の外殻部は、芯部が消化管下部の標的部位へ到達する以前に一挙にまたは急速に機械的ストレスによって崩壊することなしに、長時間にわたって徐々に侵食され、ニフエジピンを放出し続けることを意味している。さらに実施例1対比較例1、および実施例3対比較例2のデータの比較により、同量のECまたはリン酸水素カルシウムを含んでいても、それらの平均粒子径が75μm未満であれば満足な効果を示さず、水不溶性粒子の粒子径がこれに関係していることが明らかである。なお120分において比較するのは、錠剤のヒト小腸通過時間を考慮し、消化管下部(大腸)における芯部からの薬物の放出に影響されない溶出率を表すものと考えられるからである。[0001]
【Technical field】
The present invention relates to a long-lasting type, for example, a nifedipine dry-coated tablet whose effective blood concentration is sustained by administration once or twice a day.
[0002]
[Prior art and issues]
As one of the preparation techniques for achieving sustained release of a drug over a long period of time, a dry-coated tablet is known in which an immediate-release part is a core part and an outer shell is a sustained-release part. This type of dry-coated tablet is designed so that the outer shell is gradually eroded in the gastrointestinal tract to release the drug, and the remaining drug is released from the exposed core that reaches the lower part of the gastrointestinal tract.
[0003]
This type of sustained-release preparation contains a hydrophilic high-molecular substance that gels by water absorption, unlike a preparation with an enteric high-molecular substance coating whose solubility depends on the pH of the digestive fluid. The outer shell forms a gel matrix containing the drug in the digestive tract. Obviously, this gel matrix must collapse at once by peristaltic movement of the intestine before reaching the lower digestive tract, and the drug release from the fast dissolving part of the core must not end upstream of the target site. . For this reason, the gel matrix needs to have an appropriate mechanical strength that is gradually eroded in the digestive tract but does not collapse at once.
[0004]
Japanese Examined Patent Publication No. 6-11699 describes a dry tablet of nifedipine using a hydrophilic gel-forming polymer in the outer shell. Japanese Patent Laid-Open No. 9-143073 describes a nifedipine dry-coated tablet using a hydrophilic gel-forming polymer and an acrylic acid / methacrylic acid / methacrylic acid trimethylammoniumethyl terpolymer as an outer shell. The terpolymer is a substance used to improve the mechanical strength or disintegration property of the gel matrix of the hydrophilic polymer, but the outer shell is formed by using a more commonly available substance in the pharmaceutical technology. It is preferable to reinforce the gel matrix.
[0005]
[Solution]
In the present invention, the core and the outer shell both contain nifedipine and HPC-L or a combination of HPC-L and HPC-M, and the outer shell further contains water-insoluble particles having an average particle diameter of 75 to 150 μm. Alternatively, a long-lasting type nifedipine dry-coated tablet comprising a granulated product is provided .
[0006]
The main benefit of the present invention is that it uses more readily available materials that are more commonly used in the pharmaceutical industry, without the use of special polymeric materials such as the acrylic terpolymers described above. It is possible to reinforce the mechanical strength of the gel matrix of the shell. These substances can be formed into granules together with nifedipine and a water-soluble polymer substance that forms a gel, and the outer shell can be tableted, but granules containing no water-insoluble particles or granules are prepared. The outer shell portion can be tableted by mixing these particles or granulated product into the granule. This simplifies the formulation process.
[0007]
[Preferred embodiment]
The Nifedipine dry-coated tablet of the present invention comprises a core part and an outer shell part. Both the core part and the outer shell part contain nifedipine and a water-soluble organic polymer substance that forms a gel. Examples of water-soluble organic polymeric substances that form gels include water-soluble cellulose derivatives such as hydroxypropylcellulose (HPC), methylcellulose (MC), hydroxypropylmethylcellulose (HPMC), sodium carboxymethylcellulose (CMC), and polyvinyl alcohol Water-soluble vinyl polymers such as (PVA). Among them, HPC is preferable, and it is preferable to use low-viscosity HPC (HPC-L) alone for the core. In addition to nifedipine and a water-soluble polymer substance, the core can optionally contain auxiliary components such as conventional excipients, disintegrants, and solubilizing agents. In order to tablet into tablets, the above ingredients are granulated by a known technique, mixed with a lubricant and compressed into tablets with a diameter of about 3 to 7 mm. In order for the core part to form a gel matrix, the water-soluble organic polymer substance preferably accounts for 15 to 40% by weight of the core tablet.
[0008]
The outer shell can generally contain the same components as the core, except for particles or granules that enhance the mechanical strength of the gel matrix. That is, it can contain nifedipine, a water-soluble polymeric substance that forms a gel, and optionally auxiliary components such as excipients, disintegrants, and solubilizers. HPC is also preferable as the water-soluble polymer substance in the outer shell, and in this case, HPC-L alone or a mixture containing HPC-L as a main component and medium viscosity HPC (HPC-M) in a small proportion may be used. good. The ratio of the water-soluble polymer substance in the outer shell is preferably 30 to 70% by weight, particularly 40 to 60% by weight.
[0009]
According to the present invention, it has been found that the mechanical strength of the outer shell gel matrix is enhanced by water-insoluble particles or granules having a relatively large average particle size in a certain range. Such particles and granulates have an average particle size of 75 μm to 500 μm, examples of which are cellulose and water-insoluble cellulose derivatives such as ethyl cellulose, cellulose acetate and crystalline cellulose, calcium hydrogen phosphate, anhydrous calcium hydrogen phosphate Inorganic particles such as calcium citrate, magnesium aluminum metasilicate, calcium sulfate, aluminum silicate and magnesium silicate. Even particles having an average particle size of less than 75 μm can be coated with a wax that is solid at room temperature, or bonded to form a particle size in the above range. Particularly preferred such particles or granules are those obtained by melt coating sucrose fatty acid esters on ethyl cellulose (EC), calcium hydrogen phosphate, and talc (magnesium silicate) and calcium hydrogen phosphate. is there. Other examples of waxes that can be used for this purpose are higher fatty acids such as stearic acid and palmitic acid, hardened oils, their glycerin esters such as beef tallow, higher fatty alcohols such as stearyl alcohol and cetyl alcohol, tree waxes, Natural waxes such as refined beeswax and mineral oil-based waxes represented by paraffin wax are included. Waxes can be used in coatings that further enhance the gel matrix reinforcing effect of particles having a particle size in the range of 75-500 μm.
[0010]
The outer shell can be formed by granulating all of the ingredients described above into a granule, mixing a lubricant with this, and compressing it into a dry-coated tablet. Instead, after the above-mentioned water-insoluble particles or components excluding the granulated product are granulated into granules, the particles or granulated products are mixed with this, and a lubricant is further mixed into a dry-coated tablet. Can be tableted.
[0011]
In order for the gel matrix of the absorbed outer shell portion to exhibit sufficient strength to withstand mechanical stress in the digestive tract, the reinforcing particles or granules blended according to the present invention have a weight of 1 to 50 of the outer shell portion weight. % Is appropriate. The weight ratio of the core part to the outer shell part is suitably 1: 3 to 1: 6, and 50 to 75% of the total nifedipine content is suitably present in the outer shell part.
[0012]
The effect of the particles or granules used in accordance with the present invention for reinforcing the gel matrix of the outer shell is based on the pharmacopeia method 2 dissolution test method (using sinker) and the pharmacopeia test device It can be confirmed by measuring the elution rate of nifedipine by each method according to the method (using an auxiliary board) and comparing the obtained data. Since the dissolution rate by the local disintegration test method is accelerated by mechanical stress than the dissolution rate by the second method dissolution test method, the greater the degree of this acceleration, the lower the mechanical strength of the gel matrix. Means that. According to the present invention, this degree of acceleration can be kept below 200%, preferably below 150%, most preferably below 120%.
[0013]
【Example】
The following examples illustrate the invention without intending to be limiting.
[0014]
Example 1
1. Manufacture of the core 375 g of niphedipine crystals (average particle diameter 5 μm, the same applies hereinafter), 800 g of lactose, 100 g of crystalline cellulose, and HPC-L685 g were mixed uniformly using a fluidized bed granulator, and 500 g of polyvinylpyrrolidone was added to ethanol (95% The solution dissolved in (1) was used as a binding solution, and fluidized and granulated. The obtained granulated product was dried using a fluidized bed dryer and then sized using a power mill. 40 g of magnesium stearate was mixed with 2460 g of the obtained sized powder, and tableted into tablets having a weight of 50 mg and a diameter of 5 mm by a conventional method. This tablet was used as a core tablet in all examples and comparative examples.
[0015]
2. Production of outer shell portion 125 g of Nifedipine and 2100 g of HPC-L were mixed uniformly using a fluidized bed granulator, and fluidized granulated using ethanol (95%) as a binding liquid. The obtained granulated product was sized using a power mill, 245 g of EC (average particle size of about 150 μm) was added thereto, and mixed together using a Boule mixer. To 2470 g of this mixture, 30 g of magnesium stearate was added, 250 mg of this mixture was coated on the outside of the core tablet using a dry tableting machine, and tableted into dry tablets having a diameter of 9 mm and a weight of 300 mg.
[0016]
Example 2
125 g of Nifedipine, 1420 g of HPC-L, and 470 g of HPL-M were uniformly mixed using a fluidized bed granulator, and fluidized and granulated using ethanol (95%) as a binder solution. The obtained granulated product was sized using a power mill, 455 g of EC (average particle size of about 150 μm) was added thereto, and the mixture was mixed using a Boule mixer. To 2470 g of this mixture, 30 g of magnesium stearate was mixed. 250 mg of this mixture was coated on the outside of the core tablet obtained in Example 1 using a dry tableting machine to produce a dry tablet having a diameter of 9 mm and a weight of 300 mg.
[0017]
Example 3
125 g of Nifedipine, 1420 g of HPC-L, and 470 g of HPC-M were uniformly mixed using a fluidized bed granulator, and fluidized granulated using ethanol (95%) as a binding liquid. The obtained granulated product was sized with a power mill, and 455 g of calcium hydrogen phosphate (average particle diameter of about 150 μm) was added thereto and mixed using a Boule mixer. To 2470 g of this mixture, 30 g of magnesium stearate was mixed. 250 mg of this mixture was coated on the outside of the core tablet obtained in Example 1 using a dry tableting machine to produce a dry tablet having a diameter of 9 mm and a weight of 300 mg.
[0018]
Example 4
125 g of Nifedipine, 1420 g of HPC-L, 470 g of HPC-M and 655 g of EC (average particle diameter of about 150 μm) were mixed uniformly using a fluidized bed granulator, and fluidized granulated using ethanol (95%) as a binding liquid. The obtained granulated product was sized using a power mill. 3070 g of magnesium stearate was mixed with 2670 g of the obtained sized product, and 270 mg of this mixture was coated on the outside of the core tablet obtained in Example 1 using a dry tableting machine, and had a diameter of 9 mm and a weight of 320 mg. A nuclear tablet was produced.
[0019]
Example 5
Nifujipin 125g, HPC-L1420g and HPC-M470g are mixed uniformly using a fluidized bed granulator, fluidized granulation using ethanol (95%) as a binding liquid, and the resulting granulated product is sized using a power mill To obtain granules containing nifedipine.
[0020]
Separately, 100 g of sucrose fatty acid ester was added to 655 g of calcium hydrogen phosphate (average particle size of about 150 μm) and melt-coated to obtain a granulated product having an average particle size of about 250 μm.
[0021]
Example 1 Example: Using granulated tablet press, 2015 g of granulated nifedipine-containing granule and 755 g of calcium hydrogen phosphate granulate were uniformly mixed with a Boule mixer, and 30 g of magnesium stearate was added thereto. The core tablet obtained in 1 was coated on the outside to produce a dry-coated tablet having a diameter of 9 mm and a weight of 330 mg.
[0022]
Example 6
Nifujipin 125g, HPC-L1420g and HPC-M470g are mixed uniformly using a fluidized bed granulator, fluidized granulation using ethanol (95%) as a binding liquid, and the resulting granulated product is sized using a power mill To obtain granules containing nifedipine.
[0023]
Separately, 100 g of sucrose fatty acid ester was added to 655 g of talc (200 mesh pass) and melt-coated to obtain a granulated product having an average particle size of about 150 μm.
[0024]
The granulated nifedipine-containing granules (2015 g) and talc granulated product (755 g) were uniformly mixed with a Boule mixer, to which 30 g of magnesium stearate was added, and 280 mg of this mixture was obtained in Example 1 using a dry tableting machine. The core tablet was coated on the outside to produce a dry-coated tablet having a diameter of 9 mm and a weight of 330 mg.
[0025]
Example 7
Nifujipin 125g, HPC-L1420g and HPC-M470g are mixed uniformly using a fluidized bed granulator, fluidized granulation using ethanol (95%) as a binding liquid, and the resulting granulated product is sized using a power mill Then, 955 g of EC (average particle diameter of about 75 μm) was added thereto, and the mixture was uniformly mixed with a Boule mixer. 2970 g of this mixture was mixed with 30 g of magnesium stearate, and 300 mg of the mixture was coated on the outside of the core tablet of Example 1 using a dry tableting machine to produce dry tablets with a diameter of 9 mm and a weight of 350 mg.
[0026]
Example 8
Nifujipin 125g, HPC-L1420g and HPC-M470g are mixed uniformly using a fluidized bed granulator, fluidized granulation using ethanol (95%) as a binding liquid, and the resulting granulated product is sized using a power mill did. 155 g of EC (average particle diameter of about 75 μm) was added to the obtained granule, and the mixture was uniformly mixed with a Boule mixer. 2170 g of this mixture was mixed with 30 g of magnesium stearate, and 220 mg of the mixture was coated on the outside of the core tablet of Example 1 using a dry tableting machine to produce dry tablets having a diameter of 9 mm and a weight of 270 mg.
[0027]
Comparative Example 1
125 g of Nifedipine and 2100 g of HPC-L were uniformly mixed using a fluidized bed granulator, and fluidized granulation was performed using ethanol (95%) as a binder, and the resulting granulated product was sized with a power mill. To the obtained granules, 245 g of EC (average particle size of about 10 μm) was added and mixed uniformly with a Boule mixer. 30 g of magnesium stearate was added to 2470 g of the obtained mixture, and 250 mg of this mixture was coated on the outside of the core tablet of Example 1 using a dry tableting machine to produce dry tablets having a diameter of 9 mm and a weight of 300 mg. did.
[0028]
Comparative Example 2
Nifujipin 125g, HPC-L1420g and HPC-M470g are mixed uniformly using a fluidized bed granulator, fluidized granulation using ethanol (95%) as a binding liquid, and the resulting granulated product is sized using a power mill did. To the obtained granules, 455 g of calcium hydrogen phosphate (200 mesh pass) was added and mixed uniformly with a Boule mixer. 30 g of magnesium stearate was mixed with 2470 g of the obtained mixture, and 250 mg of the mixture was coated on the outside of the core tablet of Example 1 using a dry tableting machine to produce dry tablets with a diameter of 9 mm and a weight of 300 mg. .
[0029]
Dissolution test For the dry-coated tablets obtained in the examples and comparative examples, the dissolution within a predetermined time according to the pharmacopoeia second method dissolution test method (using sinker) and the pharmacopecial disintegration test method (using auxiliary board), respectively. The dissolution rate of nifedipine was measured. The measurement results are shown in Table 1.
[0030]
[Table 1]
Figure 0004817562
[0031]
Conditions: According to the conditions described in JP-A-9-143073.
1. Second Method Dissolution Test Method Test solution: 1% aqueous solution of polysorbate 80 Temperature: 37 ° C
Using hanging sinker, rotation speed 100rpm
2. Disintegration test apparatus test solution: 1% aqueous solution of polysorbate 80 Temperature: 37 ° C.
Use auxiliary panel [0032]
As shown in Table 1, the dissolution rate in the disintegration test method compared with the second method dissolution test method is only accelerated to less than 1.4 times in 120 minutes in the dry coated tablets of the examples. However, in the dry-coated tablet of the comparative example, it can be seen that the acceleration is twice or more. This is because the outer shell of the Nifedipine dry-coated tablet according to the present invention is gradually extended over a long period of time without collapsing at once or rapidly by mechanical stress before the core reaches the target site in the lower digestive tract. It means being eroded and keeps releasing nifedipine. Furthermore, by comparing the data of Example 1 vs. Comparative Example 1 and Example 3 vs. Comparative Example 2, even if the same amount of EC or calcium hydrogen phosphate is included, the average particle diameter is less than 75 μm, which is satisfactory. It is clear that the particle size of the water-insoluble particles is related to this. The reason for comparison at 120 minutes is that it is considered that the dissolution rate is not affected by the release of the drug from the core in the lower digestive tract (large intestine) in consideration of the passage time of the tablet through the human small intestine.

Claims (4)

芯部がニフエジピンと低粘度ヒドロキシプロピルセルロースを含有し、
外殻部がニフエジピンと、低粘度ヒドロキシプロピルセルロース、または、低粘度ヒドロキシプロピルセルロースと中粘度ヒドロキシプロピルセルロースの組み合わせを含有し、外殻部はさらに平均粒径75〜150μmの水に不溶性の粒子または造粒物を含有することを特徴とする長時間持続型ニフエジピン有核錠。
The core contains nifedipine and low-viscosity hydroxypropylcellulose,
The outer shell contains nifedipine and low-viscosity hydroxypropylcellulose, or a combination of low-viscosity hydroxypropylcellulose and medium-viscosity hydroxypropylcellulose , and the outer shell further contains water-insoluble particles having an average particle size of 75 to 150 μm. Or a long-lasting type nifedipine dry-coated tablet characterized by containing a granulated product.
平均粒径75〜150μmの水不溶性の粒子は、エチルセルロース、酢酸セルロース、結晶セルロース、リン酸水素カルシウム、無水リン酸水素カルシウム、クエン酸カルシウム、メタケイ酸アルミニウムマグネシウム、硫酸カルシウム、ケイ酸アルミニウムもしくはケイ酸マグネシウムの粒子、またはこれら物質の造粒物である請求項1のニフエジピン有核錠。Water-insoluble particles having an average particle diameter of 75 to 150 μm are ethyl cellulose, cellulose acetate, crystalline cellulose, calcium hydrogen phosphate, anhydrous calcium hydrogen phosphate, calcium citrate, magnesium aluminum metasilicate, calcium sulfate, aluminum silicate or silica. The nifedipine dry-coated tablet according to claim 1, which is magnesium acid particles or a granulated product of these substances. 均粒径75〜150μmの水不溶性粒子または造粒物はエチルセルロースもしくはリン酸水素カルシウムの粒子か、またはタルク造粒物である請求項1のニフエジピン有核錠。 Rights Hitoshitsubu径75 to 0.99 [mu] m of the water-insoluble particles or granulated product of claim 1 wherein the particles or talc granulated product ethylcellulose or calcium hydrogen phosphate Nifuejipin dry-coated tablet. 外殻部中の平均粒径75〜150μmの水不溶性の粒子または造粒物は、外殻部重量の1〜50%を占める請求項1のニフエジピン有核錠。The nifedipine dry-coated tablet according to claim 1, wherein water-insoluble particles or granules having an average particle diameter of 75 to 150 µm in the outer shell part account for 1 to 50% of the weight of the outer shell part.
JP2001292697A 2001-09-26 2001-09-26 Long-lasting nifedipine dry-coated tablets Expired - Fee Related JP4817562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001292697A JP4817562B2 (en) 2001-09-26 2001-09-26 Long-lasting nifedipine dry-coated tablets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001292697A JP4817562B2 (en) 2001-09-26 2001-09-26 Long-lasting nifedipine dry-coated tablets

Publications (2)

Publication Number Publication Date
JP2003095948A JP2003095948A (en) 2003-04-03
JP4817562B2 true JP4817562B2 (en) 2011-11-16

Family

ID=19114609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001292697A Expired - Fee Related JP4817562B2 (en) 2001-09-26 2001-09-26 Long-lasting nifedipine dry-coated tablets

Country Status (1)

Country Link
JP (1) JP4817562B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5669837B2 (en) * 2010-06-16 2015-02-18 帝人ファーマ株式会社 Controlled release nucleated tablets
GB201420306D0 (en) 2014-11-14 2014-12-31 Bio Images Drug Delivery Ltd Compositions
CN112592311B (en) * 2021-01-03 2023-01-31 迪沙药业集团有限公司 Nifedipine A crystal block crystal habit and controlled release tablet composition thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3720757A1 (en) * 1987-06-24 1989-01-05 Bayer Ag DHP COAT TABLET
JPH03169814A (en) * 1989-11-29 1991-07-23 Nippon Yakuhin Kogyo Kk Production of long-acting nifedipine formulation
JP3220373B2 (en) * 1995-11-28 2001-10-22 バイエル薬品株式会社 Long-acting nifedipine preparation

Also Published As

Publication number Publication date
JP2003095948A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
KR101862887B1 (en) Diversion-resistant microgranules and microtablets
JP2511054B2 (en) Sustained-release oral pharmaceutical solid composition and its preparation base
JP2514078B2 (en) Compressed formulation
JP2653996B2 (en) Sustained release drug
JPS629A (en) Sustained release compound unit pharmaceutical
WO1999016448A1 (en) Sustained-release theophylline tablet
CZ73298A3 (en) Pharmaceutical dosage form intended for administering into gastrointestinal tract of patient and containing darifenacin and process for preparing thereof
JPH05148159A (en) Release control composition for medicine
JPS62215519A (en) Slow release composition
JPH05201866A (en) Combination preparation
WO2006130703A2 (en) Modified release formulations of anti-irritability drugs
JPH02237918A (en) Sustained release diclofenac sodium preparation
JPH0733330B2 (en) Stable solid preparation having elastic coating and method for producing the same
Alhalmi et al. Sustained release matrix system: an overview
JP4636796B2 (en) Lumiracoxib-containing pharmaceutical composition
US20090130200A1 (en) Granules for controlled release of tamsulosin
WO1999053905A1 (en) Multiple-unit sustained release tablets
JPH0819003B2 (en) Nucleated granule and method for producing the same
WO2006130702A2 (en) Modified release formulations of antihypertensive drugs
JP4817562B2 (en) Long-lasting nifedipine dry-coated tablets
CA2757752A1 (en) Process for producing rapidly disintegrating spheroids (pellets), granules and/or mixtures thereof
JP4974419B2 (en) Drug-containing sustained release granules and tablets containing the same
JP3007387B2 (en) Base powder for sustained release formulation
JPS5873359A (en) Production of pharmaceutical tablet
GB2406517A (en) Controlled release micropellets of tetracyclines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4817562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees