JP4817409B2 - Wheel bearing device - Google Patents

Wheel bearing device Download PDF

Info

Publication number
JP4817409B2
JP4817409B2 JP2005191551A JP2005191551A JP4817409B2 JP 4817409 B2 JP4817409 B2 JP 4817409B2 JP 2005191551 A JP2005191551 A JP 2005191551A JP 2005191551 A JP2005191551 A JP 2005191551A JP 4817409 B2 JP4817409 B2 JP 4817409B2
Authority
JP
Japan
Prior art keywords
wheel
wheel bearing
bearing
knuckle
annular groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005191551A
Other languages
Japanese (ja)
Other versions
JP2007010041A (en
Inventor
功 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005191551A priority Critical patent/JP4817409B2/en
Publication of JP2007010041A publication Critical patent/JP2007010041A/en
Application granted granted Critical
Publication of JP4817409B2 publication Critical patent/JP4817409B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/067Fixing them in a housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/20Thermal properties
    • F16C2202/22Coefficient of expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/60Polyamides [PA]
    • F16C2208/62Polyamides [PA] high performance polyamides, e.g. PA12, PA46
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/10Force connections, e.g. clamping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)

Description

本発明は、自動車等の車輪を懸架装置に対して回転自在に支承する車輪用軸受装置、詳しくは、懸架装置を構成するナックルが軽合金製からなり、このナックルに取り付けられる車輪用軸受の改良に関するものである。   The present invention relates to a wheel bearing device for rotatably supporting a wheel of an automobile or the like with respect to a suspension device. More specifically, the knuckle constituting the suspension device is made of a light alloy, and the wheel bearing attached to the knuckle is improved. It is about.

従来、車輪用軸受装置は、車輪を固定する車輪取付フランジを一体に有するハブ輪と、そのハブ輪を回転自在に支持する車輪用軸受と、この車輪用軸受を車体に支持するナックルと、ハブ輪と連結してドライブシャフトの動力をこのハブ輪に伝達する等速自在継手とを主要部として構成されている。   Conventionally, a wheel bearing device includes a hub wheel integrally having a wheel mounting flange for fixing a wheel, a wheel bearing for rotatably supporting the hub wheel, a knuckle for supporting the wheel bearing on a vehicle body, and a hub. A constant velocity universal joint that is connected to a wheel and transmits the power of the drive shaft to the hub wheel is mainly configured.

従来からこの車輪用軸受装置を構成する部品、特にナックルには、線膨張係数がハブ輪等と同種の可鍛鋳鉄等の鉄系金属が採用されてきたが、近年、装置の軽量化を狙ってアルミ合金やマグネシウム合金等の軽合金製のものを採用する傾向がある。しかしながら、ナックルをこうした軽合金で形成した場合、ナックルと車輪用軸受の線膨張係数の違いにより、例えば、走行時の温度上昇によってナックルとの嵌合シメシロが少なくなったり、あるいは解放される恐れがあった。その結果、組立時の軸受予圧が維持できなくなる、所謂予圧抜けといった不具合が発生した。   Conventionally, ferrous metals such as malleable cast iron, whose linear expansion coefficient is the same as that of hub wheels, etc., have been used for the components that make up this wheel bearing device, especially the knuckle, but in recent years the aim has been to reduce the weight of the device. There is a tendency to use light alloys such as aluminum alloys and magnesium alloys. However, when the knuckle is made of such a light alloy, there is a risk that the fitting squealing with the knuckle may be reduced or released due to the temperature rise during traveling due to the difference in the linear expansion coefficient between the knuckle and the wheel bearing. there were. As a result, a problem such as so-called preload loss occurred in which the bearing preload during assembly cannot be maintained.

こうした問題を回避するために従来の車輪用軸受装置において、温度上昇時の軸受予圧を確保するため初期の予圧量を高く設定すると共に、クリープを防止するために、温度上昇時のシメシロ低下量を見込んで初期のシメシロを大きく設定していた。ここで、クリープとは、嵌合シメシロ不足や嵌合面の加工精度不良等により軸受が周方向に微動して嵌合面が鏡面化し、場合によってはかじりを伴い焼付きや溶着する現象をいう。   In order to avoid such a problem, in the conventional wheel bearing device, the initial preload amount is set high in order to secure the bearing preload at the time of temperature rise, and in order to prevent creep, the amount of decrease in shimeshiro at the time of temperature rise is set. In anticipation, the initial shiroshiro was set large. Here, creep refers to a phenomenon in which the bearing surface slightly moves in the circumferential direction due to a lack of mating squealing or poor mating surface processing accuracy, and the mating surface becomes a mirror surface, and in some cases, seizure or welding occurs with galling. .

しかしながら、予圧抜けを防止するために車輪用軸受の初期予圧量を高く設定すると、当然のことながら車輪用軸受に余分な荷重を常時負荷することになって軸受寿命が短くなる。また、温度変化によって予圧量が大きく変化するのに伴い軸受剛性が変動し、車両の走行安定性に悪影響を及ぼす。さらには、クリープを防止するために初期のシメシロを大きく設定すると、車輪用軸受を圧入する時にナックルをかじる恐れがあるため、ナックルを予め加熱した状態で車輪用軸受を圧入する必要がある。これでは組立工数がアップしてコスト高騰を招来することになる。   However, if the initial preload amount of the wheel bearing is set high in order to prevent the preload from being lost, as a matter of course, an extra load is always applied to the wheel bearing and the bearing life is shortened. Further, as the preload amount changes greatly due to temperature change, the bearing rigidity changes, which adversely affects the running stability of the vehicle. Furthermore, if the initial squeeze is set large in order to prevent creep, the knuckle may be gnawed when the wheel bearing is press-fitted, so that it is necessary to press-fit the wheel bearing while the knuckle is heated in advance. This increases the number of assembly steps and causes a cost increase.

ここで、本出願人は図8に示すような未公開の先行特許出願(特願2003−399127号)で、車輪用軸受装置を提案している。この車輪用軸受装置は、アウトボード側の端部に車輪WおよびブレーキロータBを取り付けるための車輪取付フランジ54を一体に有し、この車輪取付フランジ54から軸方向に延びる小径段部55が形成されたハブ輪51と、このハブ輪51に小径段部55に配設された複列の転がり軸受からなる車輪用軸受53と、軽合金からなるナックル52とを備えている。車輪用軸受53はナックル52に所定のシメシロで圧入されると共に、ナックル52に対してハブ輪51を回転自在に支承している。   Here, the present applicant has proposed a wheel bearing device in an unpublished prior patent application (Japanese Patent Application No. 2003-399127) as shown in FIG. This wheel bearing device integrally has a wheel mounting flange 54 for mounting the wheel W and the brake rotor B at an end portion on the outboard side, and a small diameter step portion 55 extending in the axial direction from the wheel mounting flange 54 is formed. The hub wheel 51 includes a wheel bearing 53 formed of a double row rolling bearing disposed on the small diameter step portion 55 of the hub wheel 51, and a knuckle 52 formed of a light alloy. The wheel bearing 53 is press-fitted into the knuckle 52 with a predetermined scissors, and supports the hub wheel 51 so as to be rotatable with respect to the knuckle 52.

ハブ輪51の小径段部55に圧入された車輪用軸受53は、等速自在継手57を構成する外側継手部材58の肩部59とハブ輪51とで挟持された状態で固定ナット61によって締結されている。外側継手部材58は、肩部59から軸方向に延びるステム部60が一体に形成されている。このステム部60の外周には、ハブ輪51のセレーション56に係合するセレーション60aとねじ部60bが形成され、エンジンからのトルクを図示しないドライブシャフトおよび等速自在継手57、そしてこのセレーション56、60aを介してハブ輪51に伝達している。   The wheel bearing 53 that is press-fitted into the small-diameter step portion 55 of the hub wheel 51 is fastened by the fixing nut 61 while being sandwiched between the shoulder portion 59 of the outer joint member 58 that constitutes the constant velocity universal joint 57 and the hub wheel 51. Has been. The outer joint member 58 is integrally formed with a stem portion 60 extending in the axial direction from the shoulder portion 59. A serration 60a and a threaded portion 60b that engage with the serration 56 of the hub wheel 51 are formed on the outer periphery of the stem portion 60, and a drive shaft and a constant velocity universal joint 57 (not shown) for torque from the engine, and the serration 56, It is transmitted to the hub wheel 51 via 60a.

車輪用軸受53は、図9に示すように、外輪62と一対の内輪63、63と複列のボール64、64とを備えた複列アンギュラ玉軸受からなる。外輪62の内周面には複列の外側転走面62a、62aが一体に形成され、内輪63の外周面には、複列の外側転走面62a、62aに対向する内側転走面63aが形成されている。複列のボール64、64がこれら転走面62a、63a間にそれぞれ収容され、保持器65、65で転動自在に保持されている。また、車輪用軸受53の端部にはシール66、67が装着され、軸受内部に封入された潤滑グリースの漏洩と、外部からの雨水やダスト等が軸受内部に侵入するのを防止している。   As shown in FIG. 9, the wheel bearing 53 includes a double-row angular ball bearing including an outer ring 62, a pair of inner rings 63 and 63, and double-row balls 64 and 64. Double row outer rolling surfaces 62a and 62a are integrally formed on the inner circumferential surface of the outer ring 62, and the inner rolling surface 63a facing the double row outer rolling surfaces 62a and 62a is formed on the outer circumferential surface of the inner ring 63. Is formed. Double-row balls 64 and 64 are accommodated between the rolling surfaces 62a and 63a, respectively, and are held by the retainers 65 and 65 so as to be freely rollable. Further, seals 66 and 67 are attached to the end of the wheel bearing 53 to prevent leakage of lubricating grease sealed inside the bearing and intrusion of rainwater and dust from the outside into the bearing. .

ここで、外輪62の外周には一対の環状溝68、68が形成されている。これらの環状溝68、68は、外側転走面62a、62aの溝底位置にそれぞれ形成されている。そして、これらの環状溝68、68には、PA(ポリアミド)11をベースとした耐熱性の熱可塑性合成樹脂が射出成形により充填され、樹脂バンド69が形成されている。   Here, a pair of annular grooves 68 are formed on the outer periphery of the outer ring 62. These annular grooves 68 and 68 are formed at the groove bottom positions of the outer rolling surfaces 62a and 62a, respectively. The annular grooves 68 and 68 are filled with a heat-resistant thermoplastic synthetic resin based on PA (polyamide) 11 by injection molding to form a resin band 69.

これにより、温度上昇時、ナックル52と車輪用軸受53の線膨張係数の違いにより、ナックル52が車輪用軸受53以上に熱膨張したとしても、樹脂バンド69がナックル52の熱膨張以上に膨張してその変化に追従することができる。したがって、嵌合シメシロの低下を抑制し、軸受クリープの発生を防止することができると共に、初期に設定した軸受予圧が低下するのを防止することができる。なお、係る先行技術は文献公知発明に係るものでないため、記載すべき先行技術文献情報はない。   Thereby, when the temperature rises, even if the knuckle 52 thermally expands beyond the wheel bearing 53 due to the difference in the linear expansion coefficient between the knuckle 52 and the wheel bearing 53, the resin band 69 expands more than the thermal expansion of the knuckle 52. Can follow the changes. Accordingly, it is possible to suppress a decrease in the fitting shimiro, prevent the occurrence of bearing creep, and prevent the initially set bearing preload from decreasing. Note that there is no prior art document information to be described because the prior art is not related to a known literature invention.

しかしながら、この従来の車輪用軸受装置において、車輪用軸受53の外輪62に設けられた樹脂バンド69は高温で射出成形されるため、図10(a)に示すように、成形直後は、環状溝68に充足しているが、成形後は、(b)に示すように、自然冷却されることで環状溝68の径方向・軸方向共に収縮する。径方向の収縮は、射出成形型を大径に設定し、この収縮分を見込んで大きめに成形することが可能であるが、軸方向の収縮分は、環状溝68の側壁68aで拘束されているため修正することは難しい。これにより、樹脂バンド69と環状溝68の側壁68aとの間に軸方向の空隙70が生じてしまう。   However, in this conventional wheel bearing device, since the resin band 69 provided on the outer ring 62 of the wheel bearing 53 is injection-molded at a high temperature, as shown in FIG. 68, but after the molding, as shown in (b), both the radial direction and the axial direction of the annular groove 68 contract by natural cooling. For the shrinkage in the radial direction, the injection mold can be set to a large diameter, and it is possible to mold it in a large size in anticipation of this shrinkage, but the shrinkage in the axial direction is constrained by the side wall 68a of the annular groove 68. It is difficult to correct. As a result, an axial gap 70 is generated between the resin band 69 and the side wall 68 a of the annular groove 68.

このような状態で車輪用軸受53がナックル52に圧入された場合、図11(a)に示すように、樹脂バンド69と環状溝68の側壁68aとの間に依然軸方向の空隙70が存在したままとなる。ここで、車両運転時、軸受温度が上昇した場合、(b)に示すように、樹脂バンド69が熱膨張し、体積膨張分が大半この空隙70を充足することになるため、嵌合シメシロの低下を抑制し、軸受クリープの発生を防止すると言った所望の効果を発揮することができなくなる。   When the wheel bearing 53 is press-fitted into the knuckle 52 in such a state, an axial gap 70 still exists between the resin band 69 and the side wall 68a of the annular groove 68, as shown in FIG. Will remain. Here, when the bearing temperature rises during vehicle operation, as shown in (b), the resin band 69 thermally expands, and the volume expansion part mostly fills this gap 70. The desired effect of suppressing the decrease and preventing the occurrence of bearing creep cannot be exhibited.

本発明は、このような事情に鑑みてなされたもので、軽量化を図った軽合金製ナックルに装着され、温度上昇による予圧低下と軸受クリープを防止した車輪用軸受装置を提供することを目的としている。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a wheel bearing device that is attached to a light alloy knuckle that is reduced in weight and prevents preload reduction and bearing creep due to temperature rise. It is said.

係る目的を達成すべく、本発明のうち請求項1に記載の発明は、懸架装置を構成し、軽合金からなるナックルと、一端部に車輪取付フランジを一体に有し、この車輪取付フランジから軸方向に延びる小径段部が形成されたハブ輪と、このハブ輪の小径段部と前記ナックルとの間に嵌合された車輪用軸受とを備え、この車輪用軸受が、内周に複列の外側転走面が形成された鉄系金属からなる外輪と、外周に前記複列の外側転走面に対向する内側転走面が形成された一対の内輪と、これら両転走面間に転動自在に収容された複列の転動体を有する複列の転がり軸受からなり、この複列の転がり軸受によって前記ハブ輪が前記ナックルに対して回転自在に支承された車輪用軸受装置において、前記外輪の外周に環状溝が形成され、この環状溝に耐熱性の合成樹脂からなる樹脂バンドが射出成形によって充填されると共に、前記環状溝の側壁が、開口方向に広がるように傾斜し、樹脂の収縮方向と前記側壁の傾斜角とが近くなるように設定され、当該環状溝の断面が略台形形状に形成されている構成を採用した。
In order to achieve such an object, the invention according to claim 1 of the present invention constitutes a suspension device, and has a knuckle made of a light alloy and a wheel mounting flange at one end integrally. A hub wheel formed with a small-diameter step portion extending in the axial direction, and a wheel bearing fitted between the small-diameter step portion of the hub wheel and the knuckle. An outer ring made of an iron-based metal in which an outer rolling surface of the row is formed, a pair of inner rings in which an inner rolling surface facing the outer rolling surface of the double row is formed on the outer periphery, and between these rolling surfaces In a wheel bearing device comprising a double row rolling bearing having a double row rolling element housed in a freely rotatable manner, the hub wheel being rotatably supported with respect to the knuckle by the double row rolling bearing. An annular groove is formed on the outer periphery of the outer ring, and the annular groove is heat resistant. Together with a resin band of synthetic resin is filled by injection molding, the side wall of the annular groove, and inclined so as to spread the opening direction, is set such that the inclination angle of the contraction direction of the resin side walls closer The configuration in which the cross section of the annular groove is formed in a substantially trapezoidal shape is adopted.

このように、軽合金からなるナックルとハブ輪の小径段部との間に嵌合された車輪用軸受を備え、ナックルに対してハブ輪が回転自在に支承された車輪用軸受装置において、外輪の外周に環状溝が形成され、この環状溝に耐熱性の合成樹脂からなる樹脂バンドが射出成形によって充填されると共に、環状溝の側壁が、開口方向に広がるように傾斜し、樹脂の収縮方向と側壁の傾斜角とが近くなるように設定され、当該環状溝の断面が略台形形状に形成されているので、射出成形直後、自然冷却されることで樹脂バンドが斜めに収縮し、樹脂バンドと環状溝の側壁との間に発生する軸方向の空隙を最小限に抑制することができる。したがって、温度上昇時、ナックルと車輪用軸受との線膨張係数の違いによりナックルが車輪用軸受以上に熱膨張したとしても、樹脂バンドが効果的に径方向に膨張して嵌合シメシロの低下を抑制し、軸受クリープの発生を防止することができると共に、初期に設定した軸受予圧の変化を最小限に抑制することができる。
Thus, in the wheel bearing device that includes the wheel bearing fitted between the knuckle made of light alloy and the small-diameter step portion of the hub wheel, and the hub wheel is rotatably supported with respect to the knuckle, the outer ring An annular groove is formed in the outer periphery of the resin, and a resin band made of a heat-resistant synthetic resin is filled in the annular groove by injection molding, and the side wall of the annular groove is inclined so as to spread in the opening direction, and the shrinkage direction of the resin Since the annular groove has a substantially trapezoidal cross section, the resin band contracts diagonally by being naturally cooled immediately after injection molding, And the gap in the axial direction generated between the side wall of the annular groove can be minimized. Therefore, when the temperature rises, even if the knuckle thermally expands more than the wheel bearing due to the difference in the coefficient of linear expansion between the knuckle and the wheel bearing, the resin band effectively expands in the radial direction, reducing the fitting shimiro. Thus, the occurrence of bearing creep can be prevented, and the change in the bearing preload set in the initial stage can be minimized.

好ましくは、請求項2に記載の発明のように、前記樹脂バンドがポリアミド系の合成樹脂からなり、その線膨張係数が8〜16×10−5/℃に設定されていれば、ナックルの線膨張係数よりも充分大きくなり、ナックルが車輪用軸受以上に熱膨張したとしても、この樹脂バンドがナックルの熱膨張以上に膨張してその変化に追従することができる。 Preferably, as in the invention described in claim 2, if the resin band is made of a polyamide-based synthetic resin and the linear expansion coefficient is set to 8 to 16 × 10 −5 / ° C., the knuckle line Even if the knuckle becomes larger than the expansion coefficient and the knuckle expands more than the wheel bearing, the resin band expands more than the knuckle thermal expansion and can follow the change.

また、請求項に記載の発明のように、前記樹脂バンドの外径が前記外輪の外径よりも僅かに大径に形成されていれば、温度上昇によるシメシロ低下を確実に防止することができる。
Further, as in the third aspect of the invention, if the outer diameter of the resin band is formed to be slightly larger than the outer diameter of the outer ring, it is possible to reliably prevent a decrease in squeezing due to a temperature rise. it can.

また、請求項に記載の発明のように、前記樹脂バンドが、成形後に研削加工により所定の外径寸法に形成されていれば、ナックルとのシメシロが安定し、予圧抜けと軸受クリープを一層効果的に防止することができると共に、圧入時、シメシロ過大による樹脂バンドの欠損もない。
Further, as in the invention according to claim 4 , if the resin band is formed to have a predetermined outer diameter by grinding after molding, the squeezing with the knuckle is stabilized, and preload loss and bearing creep are further reduced. It can be effectively prevented, and there is no loss of the resin band due to excessive squeezing at the time of press-fitting.

本発明に係る車輪用軸受装置は、懸架装置を構成し、軽合金からなるナックルと、一端部に車輪取付フランジを一体に有し、この車輪取付フランジから軸方向に延びる小径段部が形成されたハブ輪と、このハブ輪の小径段部と前記ナックルとの間に嵌合された車輪用軸受とを備え、この車輪用軸受が、内周に複列の外側転走面が形成された鉄系金属からなる外輪と、外周に前記複列の外側転走面に対向する内側転走面が形成された一対の内輪と、これら両転走面間に転動自在に収容された複列の転動体を有する複列の転がり軸受からなり、この複列の転がり軸受によって前記ハブ輪が前記ナックルに対して回転自在に支承された車輪用軸受装置において、前記外輪の外周に環状溝が形成され、この環状溝に耐熱性の合成樹脂からなる樹脂バンドが射出成形によって充填されると共に、前記環状溝の側壁が、開口方向に広がるように傾斜し、樹脂の収縮方向と前記側壁の傾斜角とが近くなるように設定され、当該環状溝の断面が略台形形状に形成されているので、射出成形直後、自然冷却されることで樹脂バンドが斜めに収縮し、樹脂バンドと環状溝の側壁との間に発生する軸方向の空隙を最小限に抑制することができる。したがって、温度上昇時、ナックルと車輪用軸受との線膨張係数の違いによりナックルが車輪用軸受以上に熱膨張したとしても、樹脂バンドが効果的に径方向に膨張して嵌合シメシロの低下を抑制し、軸受クリープの発生を防止することができると共に、初期に設定した軸受予圧の変化を最小限に抑制することができる。
The wheel bearing device according to the present invention constitutes a suspension device, and has a knuckle made of a light alloy and a wheel mounting flange integrally formed at one end, and a small-diameter step portion extending in the axial direction from the wheel mounting flange is formed. A hub wheel, and a wheel bearing fitted between the small-diameter step portion of the hub wheel and the knuckle. The wheel bearing has a double row outer raceway formed on the inner periphery. An outer ring made of an iron-based metal, a pair of inner rings having an inner rolling surface facing the outer rolling surface of the double row on the outer periphery, and a double row accommodated in a freely rolling manner between the two rolling surfaces In the wheel bearing device in which the hub wheel is rotatably supported with respect to the knuckle by the double row rolling bearing having the rolling elements, an annular groove is formed on the outer periphery of the outer ring. In this annular groove, a resin van made of heat-resistant synthetic resin Together but are filled by injection molding, the side wall of the annular groove, and inclined so as to spread the opening direction, is set such that the inclination angle of the contraction direction of the resin sidewall close, the cross-section of the annular groove Since it is formed in a substantially trapezoidal shape, the resin band contracts diagonally by natural cooling immediately after injection molding, and the axial gap generated between the resin band and the side wall of the annular groove is minimized. can do. Therefore, when the temperature rises, even if the knuckle thermally expands more than the wheel bearing due to the difference in the coefficient of linear expansion between the knuckle and the wheel bearing, the resin band effectively expands in the radial direction, reducing the fitting shimiro. Thus, the occurrence of bearing creep can be prevented, and the change in the bearing preload set in the initial stage can be minimized.

懸架装置を構成し、軽合金からなるナックルと、一端部に車輪取付フランジを一体に有し、この車輪取付フランジから軸方向に延びる小径段部が形成されたハブ輪と、このハブ輪の小径段部と前記ナックルとの間に嵌合された車輪用軸受とを備え、この車輪用軸受が、内周に複列の外側転走面が形成された鉄系金属からなる外輪と、外周に前記複列の外側転走面に対向する内側転走面が形成された一対の内輪と、これら両転走面間に転動自在に収容された複列の転動体を有する複列の転がり軸受からなり、この複列の転がり軸受によって前記ハブ輪が前記ナックルに対して回転自在に支承された車輪用軸受装置において、前記外輪の外周に環状溝が形成され、この環状溝に、ポリアミド系の合成樹脂からなり、その線膨張係数が8〜16×10 −5 /℃に設定された樹脂バンドが射出成形によって充填されると共に、前記環状溝の側壁が、開口方向に広がるように傾斜し、樹脂の収縮方向と前記側壁の傾斜角とが近くなるように設定され、当該環状溝の断面が略台形形状に形成されている。
A suspension wheel, a knuckle made of a light alloy, a hub wheel integrally formed with a wheel mounting flange at one end and a small-diameter step portion extending in the axial direction from the wheel mounting flange, and a small diameter of the hub wheel A wheel bearing fitted between the stepped portion and the knuckle, the wheel bearing comprising an outer ring made of a ferrous metal having a double row outer raceway formed on the inner circumference, and an outer circumference. A double-row rolling bearing having a pair of inner rings formed with an inner rolling surface facing the outer rolling surface of the double row, and a double-row rolling element accommodated between the two rolling surfaces so as to roll freely. In the wheel bearing device in which the hub ring is rotatably supported by the double row rolling bearing with respect to the knuckle, an annular groove is formed on the outer periphery of the outer ring. Made of synthetic resin, its linear expansion coefficient is 8-16 × 1 -5 / with the set resin band ℃ is filled by the injection molding, the side wall of the annular groove, and inclined so as to spread the opening direction, close and the inclination angle of the side wall and contraction direction of the resin so The cross section of the annular groove is formed in a substantially trapezoidal shape.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明に係る車輪用軸受装置の一実施形態を示す縦断面図、図2は、図1の車輪用軸受を示す縦断面図、図3は、図2の要部拡大図である。なお、以下の説明では、車両に組み付けた状態で、車両の外側寄りとなる側をアウトボード側(図面左側)、中央寄り側をインボード側(図面右側)という。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 is a longitudinal sectional view showing an embodiment of a wheel bearing device according to the present invention, FIG. 2 is a longitudinal sectional view showing a wheel bearing of FIG. 1, and FIG. 3 is an enlarged view of a main part of FIG. is there. In the following description, the side closer to the outside of the vehicle in the state assembled to the vehicle is referred to as the outboard side (left side in the drawing), and the side near the center is referred to as the inboard side (right side in the drawing).

この車輪用軸受装置は、ハブ輪1と、このハブ輪1に圧入され、ナックル2に対してハブ輪1を回転自在に支承する車輪用軸受3とを主たる構成としている。ハブ輪1はS53C等の炭素0.40〜0.80wt%を含む中炭素鋼で形成され、アウトボード側の端部に車輪WおよびブレーキロータBを取り付けるための車輪取付フランジ4と、この車輪取付フランジ4から軸方向に延びる円筒状の小径段部5が形成されている。車輪取付フランジ4には車輪WおよびブレーキロータBを締結するハブボルト4aが周方向等配に植設されている。また、ハブ輪1の内周面にはトルク伝達用のセレーション(またはスプライン)6が形成されると共に、小径段部5の外周面には後述する車輪用軸受3が圧入されている。   This wheel bearing device mainly includes a hub wheel 1 and a wheel bearing 3 that is press-fitted into the hub wheel 1 and rotatably supports the hub wheel 1 with respect to the knuckle 2. The hub wheel 1 is formed of medium carbon steel containing carbon of 0.40 to 0.80 wt% such as S53C, and the wheel mounting flange 4 for mounting the wheel W and the brake rotor B to the end on the outboard side, and the wheel A cylindrical small diameter step portion 5 extending in the axial direction from the mounting flange 4 is formed. Hub bolts 4 a that fasten the wheels W and the brake rotor B are planted on the wheel mounting flange 4 at equal intervals in the circumferential direction. Further, a serration (or spline) 6 for torque transmission is formed on the inner peripheral surface of the hub wheel 1, and a wheel bearing 3 described later is press-fitted on the outer peripheral surface of the small diameter step portion 5.

車輪用軸受3は、等速自在継手7を構成する外側継手部材8の肩部9とハブ輪1とで挟持された状態で固定されている。外側継手部材8は、肩部9から軸方向に延びるステム部10が一体に形成され、このステム部10の外周には、ハブ輪1のセレーション6に係合するセレーション(またはスプライン)10aとねじ部10bが形成されている。そして、エンジンからのトルクが図示しないドライブシャフトおよび等速自在継手7、およびこのステム部10のセレーション10aを介してハブ輪1に伝達される。   The wheel bearing 3 is fixed while being sandwiched between the shoulder 9 of the outer joint member 8 constituting the constant velocity universal joint 7 and the hub wheel 1. The outer joint member 8 is integrally formed with a stem portion 10 that extends in the axial direction from the shoulder portion 9, and a serration (or spline) 10 a that engages with the serration 6 of the hub wheel 1 and a screw on the outer periphery of the stem portion 10. Part 10b is formed. Torque from the engine is transmitted to the hub wheel 1 via a drive shaft and a constant velocity universal joint 7 (not shown) and a serration 10 a of the stem portion 10.

ここで、ステム部10のセレーション10aには、軸線に対して所定の角度傾斜した捩れ角が設けられ、外側継手部材8の肩部9が車輪用軸受3に当接するまでステム部10がハブ輪1に圧入嵌合されている。これにより、セレーション6、10aの嵌合部に予圧が付与されて周方向のガタが殺されている。また、ステム部10の端部に形成されたねじ部10bに固定ナット11が所定の締付トルクで締結されることにより、車輪用軸受3に所望の軸受予圧が得られる。すなわち、車輪用軸受3が、ハブ輪1に対して軸受クリープを防止し、かつ所望の予圧量になるように所定のシメシロで圧入されている。一方、ナックル2は、アルミ合金等の軽合金で形成されている。これにより、従来の鋳鉄等に比べ、剛性不足を補うために各部を肉厚に設計したとしてもその重量は半減し、軽量化が達成できる。そして、このナックル2に車輪用軸受3が所定のシメシロで圧入されている。   Here, the serration 10a of the stem portion 10 is provided with a torsion angle inclined at a predetermined angle with respect to the axis, and the stem portion 10 is a hub wheel until the shoulder portion 9 of the outer joint member 8 contacts the wheel bearing 3. 1 is press-fit. Thereby, the preload is given to the fitting part of the serrations 6 and 10a, and the play of the circumferential direction is killed. In addition, a desired bearing preload is obtained for the wheel bearing 3 by fastening the fixing nut 11 to the screw portion 10b formed at the end of the stem portion 10 with a predetermined tightening torque. That is, the wheel bearing 3 is press-fitted to the hub wheel 1 with a predetermined squeezing force so as to prevent bearing creep and achieve a desired preload amount. On the other hand, the knuckle 2 is formed of a light alloy such as an aluminum alloy. Thereby, compared with conventional cast iron etc., even if each part is designed to be thick in order to make up for lack of rigidity, the weight is reduced by half, and weight reduction can be achieved. A wheel bearing 3 is press-fitted into the knuckle 2 with a predetermined scissors.

車輪用軸受3は、図2に拡大して示すように、外輪12と、この外輪12に内挿された一対の内輪13、13と、内外輪13、12間に収容された複列の転動体(ボール)14、14とを備えた複列アンギュラ玉軸受からなる。外輪12はSUJ2等の高炭素クロム軸受鋼からなり、内周には複列の外側転走面12a、12aが一体に形成されている。   As shown in an enlarged view in FIG. 2, the wheel bearing 3 is composed of an outer ring 12, a pair of inner rings 13 and 13 inserted in the outer ring 12, and a double-row rolling accommodated between the inner and outer rings 13 and 12. It consists of a double row angular contact ball bearing provided with moving bodies (balls) 14 and 14. The outer ring 12 is made of high carbon chrome bearing steel such as SUJ2, and double row outer rolling surfaces 12a and 12a are integrally formed on the inner periphery.

内輪13はSUJ2等の高炭素クロム軸受鋼からなり、その外周には複列の外側転走面12a、12aに対向する内側転走面13aが形成されている。そして、複列の転動体14、14がこれら転走面12a、13a間にそれぞれ収容され、保持器15、15によって転動自在に保持されている。また、車輪用軸受3の端部にはシール16、17が装着され、軸受内部に封入された潤滑グリースの漏洩と、外部から雨水やダスト等が軸受内部に侵入するのを防止している。なお、本実施形態では、車輪用軸受3として転動体14にボールを用いた複列アンギュラ玉軸受を例示したが、これに限らず、例えば、転動体14に円すいころを用いた複列円すいころ軸受であっても良い。   The inner ring 13 is made of a high carbon chrome bearing steel such as SUJ2, and an inner rolling surface 13a facing the double row outer rolling surfaces 12a and 12a is formed on the outer periphery thereof. And the double row rolling elements 14 and 14 are accommodated between these rolling surfaces 12a and 13a, respectively, and are hold | maintained by the holder | retainers 15 and 15 so that rolling is possible. Further, seals 16 and 17 are attached to the end portion of the wheel bearing 3 to prevent leakage of lubricating grease sealed inside the bearing and prevent rainwater and dust from entering the bearing from the outside. In the present embodiment, the double-row angular contact ball bearing using balls as the rolling elements 14 is exemplified as the wheel bearing 3. However, the present invention is not limited thereto, and for example, double-row tapered rollers using tapered rollers as the rolling elements 14. It may be a bearing.

ここで、外輪12の外周には一対の環状溝18、18が形成されている。これらの環状溝18、18は、複列の外側転走面12a、12aの溝底位置にそれぞれ形成されている。これにより、予圧抜けと軸受クリープを効果的に防止することができる。また、これらの環状溝18、18には、PA(ポリアミド)11をベースとした耐熱性の熱可塑性合成樹脂が射出成形により充填され、樹脂バンド19が形成されている。   Here, a pair of annular grooves 18 and 18 are formed on the outer periphery of the outer ring 12. These annular grooves 18 and 18 are formed at the groove bottom positions of the double row outer rolling surfaces 12a and 12a, respectively. Thereby, preload loss and bearing creep can be effectively prevented. The annular grooves 18 and 18 are filled with a heat-resistant thermoplastic synthetic resin based on PA (polyamide) 11 by injection molding to form a resin band 19.

樹脂バンド19の材質は前記PA11に限らず、アルミ合金等の軽合金からなるナックル2の線膨張係数(2〜2.3×10−5/℃)よりも大きく、線膨張係数が8〜16×10−5/℃の範囲の合成樹脂なら良い。例えばPA66、さらにこれらの熱可塑性合成樹脂にGF(グラスファイバー)等の強化繊維を10〜30wt%の範囲で含有させたものを例示することができる。 The material of the resin band 19 is not limited to the PA 11 and is larger than the linear expansion coefficient (2 to 2.3 × 10 −5 / ° C.) of the knuckle 2 made of a light alloy such as an aluminum alloy, and the linear expansion coefficient is 8 to 16 Any synthetic resin in the range of × 10 −5 / ° C. is acceptable. For example, PA66 and those obtained by adding reinforcing fibers such as GF (glass fiber) in the range of 10 to 30 wt% to these thermoplastic synthetic resins can be exemplified.

本実施形態では、図3に示すように、環状溝18の側壁18aが開口方向に広がるように傾斜して形成され、環状溝18の断面が略台形形状になるように構成されている。図4は成形時の外輪12を示す説明図であるが、(a)に示すように、樹脂バンド19は径方向の収縮分を見込んで外径が大きめに成形されると共に、成形直後は、樹脂バンド19が環状溝18内に充足している。そして、成形後は、(b)に示すように、自然冷却されることで環状溝18の径方向・軸方向共に収縮する。すると、樹脂バンド19の外径が僅かに縮径すると共に、環状溝18の側壁18aが傾斜して形成されているため、樹脂バンド19は斜めに収縮することになる。すなわち、樹脂バンド19の軸方向の収縮分は、環状溝18の側壁18aに沿って収縮することになり、樹脂バンド19と環状溝18の側壁18aとの間に発生する軸方向の空隙20を最小限に抑制することができる(成形直後の状態を図中2点鎖線にて示す)。   In the present embodiment, as shown in FIG. 3, the side wall 18a of the annular groove 18 is formed to be inclined so as to spread in the opening direction, and the section of the annular groove 18 is configured to be substantially trapezoidal. FIG. 4 is an explanatory view showing the outer ring 12 at the time of molding. As shown in (a), the resin band 19 is molded with a larger outer diameter in anticipation of the shrinkage in the radial direction. The resin band 19 is filled in the annular groove 18. And after shaping | molding, as shown to (b), both radial direction and an axial direction of the annular groove 18 will shrink | contract by natural cooling. Then, since the outer diameter of the resin band 19 is slightly reduced, and the side wall 18a of the annular groove 18 is formed to be inclined, the resin band 19 contracts obliquely. That is, the axial contraction of the resin band 19 contracts along the side wall 18a of the annular groove 18, and the axial gap 20 generated between the resin band 19 and the side wall 18a of the annular groove 18 is reduced. It can be minimized (the state immediately after molding is indicated by a two-dot chain line in the figure).

ここで、環状溝18の側壁18aの傾斜角αは、樹脂の収縮方向と側壁の傾斜角が近くなるように、外輪12の外周面に対して30〜60°の範囲に設定されている。この傾斜角αが30°未満になると、樹脂の収縮方向と側壁18aの傾斜角αが異なり、反って外径部に大きな空隙20が発生して好ましくない。一方、傾斜角αが60°を超えると、側壁18aの傾斜による効果が薄れると共に、外輪12をナックル2に圧入または引き抜く際に、環状溝18のエッジ状の角部によってナックル2の内径を削って損傷させる恐れがある。 Here, the inclination angle α of the side wall 18a of the annular groove 18 is set in a range of 30 to 60 ° with respect to the outer peripheral surface of the outer ring 12 so that the shrinkage direction of the resin and the inclination angle of the side wall are close to each other. When the inclination angle α is less than 30 °, the shrinkage direction of the resin and the inclination angle α of the side wall 18a are different, and a large void 20 is generated in the outer diameter portion, which is not preferable. On the other hand, when the inclination angle α exceeds 60 °, the effect of the inclination of the side wall 18a is reduced, and the inner diameter of the knuckle 2 is shaved by the edge-shaped corners of the annular groove 18 when the outer ring 12 is press-fitted into or pulled out from the knuckle 2. There is a risk of damage.

この状態で車輪用軸受3をナックル2に圧入した場合、図5(a)に示すように、ナックル2と環状溝18との間には僅かな空隙20が存在するも、車両運転時、軸受温度が上昇した場合、(b)に示すように、樹脂バンド19の体積膨張分の一部がこの空隙20を充足することになるが、閉塞された環状溝18内で大半がナックル2の熱膨張以上に径方向に熱膨張し、ナックル2が外輪12以上に熱膨張したとしてもその変化に追従することができる。したがって、ナックル2との嵌合シメシロの低下を抑制し、軸受クリープの発生を確実に防止することができると共に、初期に設定した軸受予圧が低下するのを防止することができる。   When the wheel bearing 3 is press-fitted into the knuckle 2 in this state, a slight gap 20 exists between the knuckle 2 and the annular groove 18 as shown in FIG. When the temperature rises, as shown in (b), a part of the volume expansion of the resin band 19 will fill the gap 20, but most of the heat of the knuckle 2 in the closed annular groove 18. Even if the knuckle 2 is thermally expanded in the radial direction more than the expansion and the knuckle 2 is thermally expanded beyond the outer ring 12, the change can be followed. Therefore, it is possible to suppress a decrease in the fitting squeezing with the knuckle 2, to surely prevent the occurrence of bearing creep, and to prevent the initially set bearing preload from decreasing.

さらに、本実施形態では、環状溝18の側壁18aが開口方向に広がるように傾斜して形成されているため、環状溝18の角部が鈍角となり、外輪12をナックル2に圧入または引き抜く際に、ナックル2の内径を削って損傷させるのを防止することができる。   Furthermore, in this embodiment, since the side wall 18a of the annular groove 18 is formed to be inclined so as to spread in the opening direction, the corner of the annular groove 18 becomes an obtuse angle, and when the outer ring 12 is press-fitted into or pulled out from the knuckle 2. The inner diameter of the knuckle 2 can be prevented from being damaged.

なお、外輪12の環状溝18に樹脂バンド19が射出成形された後は、センタレス研削盤等で樹脂バンド19の外周面が研削加工され、所定の外径寸法に形成されている。これにより、ナックル2とのシメシロが安定し、予圧抜けと軸受クリープを一層効果的に防止することができると共に、圧入時、シメシロ過大により樹脂バンド19が欠損することもない。また、樹脂バンド19は、外輪12の外径より僅かに(0〜50μm)突出して形成されている。突出量が0以下では、温度上昇によるシメシロ低下を確実に防止することが難しい。   In addition, after the resin band 19 is injection-molded in the annular groove 18 of the outer ring 12, the outer peripheral surface of the resin band 19 is ground by a centerless grinder or the like to have a predetermined outer diameter. As a result, the squealing with the knuckle 2 can be stabilized, preload loss and bearing creep can be more effectively prevented, and the resin band 19 is not lost due to excessive squeezing during press-fitting. The resin band 19 is formed so as to protrude slightly (0 to 50 μm) from the outer diameter of the outer ring 12. When the protrusion amount is 0 or less, it is difficult to reliably prevent a decrease in squealing due to a temperature rise.

図6は、本出願人が実施した比較試験の結果、具体的には、樹脂バンドがない従来の車輪用軸受と外輪に樹脂バンドが設けられた車輪用軸受および本実施形態に係る車輪用軸受をそれぞれアルミ合金からなるナックルに圧入した状態で、温度変化と軸受内部すきまの変化との関係を比較測定した結果を示している。ここで、▲は外輪に樹脂バンドがない従来の車輪用軸受(比較例1)、■は外輪の外周面に断面矩形状の環状溝が形成され、この環状溝に樹脂バンドが充填された車輪用軸受(比較例2)、●は本発明に係る車輪用軸受を示している(実施例)。   FIG. 6 shows a result of a comparison test conducted by the present applicant, specifically, a conventional wheel bearing without a resin band, a wheel bearing in which a resin band is provided on an outer ring, and a wheel bearing according to the present embodiment. The results of comparative measurement of the relationship between the temperature change and the change in the internal clearance of the bearing are shown in a state where each is pressed into a knuckle made of an aluminum alloy. Here, ▲ is a conventional wheel bearing without a resin band in the outer ring (Comparative Example 1), and ■ is a wheel in which an annular groove having a rectangular cross section is formed on the outer peripheral surface of the outer ring, and the annular band is filled with a resin band. Bearings (Comparative Example 2) and ● indicate wheel bearings according to the present invention (Examples).

このグラフから明確なように、従来の車輪用軸受(比較例1)では、温度上昇に比例してリニアに軸受すきまが拡大しているが、樹脂バンドが設けられた車輪用軸受(比較例2)では、軸受すきまは60℃近傍までは漸次拡大するも、それ以降は樹脂バンドの効果が発揮され漸次軸受すきまが減少している。また、本実施形態に係る車輪用軸受(実施例)では、軸受すきまは40℃近傍までは漸次拡大するも、それ以降は環状溝の断面形状の違いが効果的に発揮され漸次軸受すきまが減少することが判る。   As is clear from this graph, in the conventional wheel bearing (Comparative Example 1), the bearing clearance linearly increases in proportion to the temperature rise, but the wheel bearing (Comparative Example 2) provided with a resin band is provided. ), The bearing clearance gradually increases to around 60 ° C., but after that, the effect of the resin band is exhibited and the bearing clearance gradually decreases. Further, in the wheel bearing according to this embodiment (example), the bearing clearance gradually increases up to about 40 ° C., but thereafter, the difference in the cross-sectional shape of the annular groove is effectively exhibited and the bearing clearance decreases gradually. I know that

このように、一般的な軸受使用温度範囲における軸受すきまの変化幅(A、B、C)が、樹脂バンドがない場合(C)が最も大きくC≫B>Aとなり、樹脂バンドの有無による効果が検証されると共に、環状溝の断面形状の違いが、軸受すきまの変化幅に顕著に影響を及ぼすことが判る。   Thus, the change width (A, B, C) of the bearing clearance in the general bearing operating temperature range is the largest when there is no resin band (C) and C >> B> A, and the effect of the presence or absence of the resin band As a result, it can be seen that the difference in the cross-sectional shape of the annular groove significantly affects the change width of the bearing clearance.

図7は、図6と同様、樹脂バンドがない従来の車輪用軸受と外輪に樹脂バンドが設けられた車輪用軸受および本実施形態に係る車輪用軸受をそれぞれアルミ合金からなるナックルに圧入した状態で、温度変化と軸受予圧の変化との関係、すなわち、軸受使用温度範囲における外輪の外側転走面の寸法変化との関係を比較測定した結果を示している。なお、図中の記号(▲、■、●)は、前述した比較試験結果に対応している。   FIG. 7 shows a state in which a conventional wheel bearing without a resin band, a wheel bearing with a resin band provided on the outer ring, and a wheel bearing according to the present embodiment are respectively press-fitted into an aluminum alloy knuckle, as in FIG. The results of comparative measurement of the relationship between the temperature change and the change in the bearing preload, that is, the relationship between the outer ring raceway surface change in the bearing operating temperature range are shown. The symbols (▲, ■, ●) in the figure correspond to the comparative test results described above.

この図でも明確なように、従来のもの(比較例1)では、温度上昇に比例してリニアに軸受予圧が低下しているが、樹脂バンドが設けられた車輪用軸受(比較例2)では、軸受予圧は60℃近傍までは漸次減少するも、それ以降は樹脂バンドの効果が発揮され漸次軸受予圧が復帰して大きくなっている。また、本実施形態に係る車輪用軸受(実施例)では、軸受予圧は40℃近傍までは漸次減少するも、それ以降は環状溝の断面形状の違いが効果的に発揮され漸次軸受予圧が大きくなることが判る。   As is clear from this figure, in the conventional one (Comparative Example 1), the bearing preload decreases linearly in proportion to the temperature rise, but in the wheel bearing provided with a resin band (Comparative Example 2). The bearing preload gradually decreases until around 60 ° C., but after that, the effect of the resin band is exhibited and the bearing preload is gradually increased and increased. Further, in the wheel bearing (example) according to the present embodiment, the bearing preload gradually decreases to around 40 ° C., but thereafter, the difference in the cross-sectional shape of the annular groove is effectively exhibited and the gradually increased bearing preload. It turns out that it becomes.

このように、軸受予圧の変化幅(A、B、C)が、樹脂バンドがない場合(C)が最も大きくC≫B>Aとなり、樹脂バンドの有無による効果が検証され、樹脂バンドにより所定の予圧適正範囲を維持することが判る。また、環状溝の断面形状を略台形形状に形成することにより、軸受予圧の変化幅を効果的に抑制することができる。したがって、軸受予圧量の設定範囲を狭い範囲に規制する必要がなくなるため、製造コストを抑えることができる。また、軸受剛性を確保するために軸受予圧の上限を狙うことも可能となり、多様化する客先仕様にリーズナブルに対応することができる。   As described above, the change width (A, B, C) of the bearing preload is largest when there is no resin band (C), and C >> B> A, and the effect due to the presence or absence of the resin band is verified. It can be seen that the appropriate preload range is maintained. Further, by forming the cross-sectional shape of the annular groove into a substantially trapezoidal shape, the change width of the bearing preload can be effectively suppressed. Therefore, since it is not necessary to restrict the setting range of the bearing preload amount to a narrow range, the manufacturing cost can be suppressed. In addition, it is possible to aim at the upper limit of the bearing preload in order to ensure the bearing rigidity, and it is possible to cope with diversifying customer specifications reasonably.

以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The embodiment of the present invention has been described above, but the present invention is not limited to such an embodiment, and is merely an example, and various modifications can be made without departing from the scope of the present invention. Of course, the scope of the present invention is indicated by the description of the scope of claims, and further, the equivalent meanings described in the scope of claims and all modifications within the scope of the scope of the present invention are included. Including.

本発明に係る車輪用軸受装置は、鋼よりも線膨張係数が大きなアルミ合金等の軽合金からなるナックルに車輪用軸受が圧入された第1世代構造の車輪用軸受装置に適用できる。   The wheel bearing device according to the present invention can be applied to a wheel bearing device having a first generation structure in which a wheel bearing is press-fitted into a knuckle made of a light alloy such as an aluminum alloy having a linear expansion coefficient larger than that of steel.

本発明に係る車輪用軸受装置の一実施形態を示す縦断面図である。It is a longitudinal section showing one embodiment of a wheel bearing device concerning the present invention. 図1の車輪用軸受を示す縦断面図である。It is a longitudinal cross-sectional view which shows the wheel bearing of FIG. 図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG. 2. 図2に示す車輪用軸受における外輪の環状溝に樹脂バンドを充填した状態を示す説明図で、 (a)は射出成形直後の状態を示している。 (b)は成形後に自然冷却された状態を示している。It is explanatory drawing which shows the state which filled the resin band in the annular groove of the outer ring | wheel in the wheel bearing shown in FIG. 2, (a) has shown the state immediately after injection molding. (B) has shown the state naturally cooled after shaping | molding. 同上、車輪用軸受の外輪をナックルに圧入した状態を示す説明図で、 (a)は常温時の状態を示している。 (b)は車両運転中の昇温時の状態を示している。It is explanatory drawing which shows the state which press-fitted the outer ring | wheel of the wheel bearing to the knuckle as above, (a) has shown the state at the time of normal temperature. (B) has shown the state at the time of the temperature rise during driving | running | working of a vehicle. 車輪用軸受の温度変化と軸受すきまの変化の関係を比較測定した結果を示すグラフである。It is a graph which shows the result of having comparatively measured the relationship between the temperature change of a wheel bearing, and the change of a bearing clearance. 車輪用軸受の温度変化と軸受予圧の変化の関係を比較測定した結果を示すグラフである。It is a graph which shows the result of having comparatively measured the relationship between the temperature change of a wheel bearing, and the change of a bearing preload. 本出願人が既に出願した車輪用軸受装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the wheel bearing apparatus which the present applicant has already applied for. 図8の車輪用軸受を示す縦断面図である。It is a longitudinal cross-sectional view which shows the wheel bearing of FIG. 図9に示す車輪用軸受における外輪の環状溝に樹脂バンドを充填した状態を示す説明図で、 (a)は射出成形直後の状態を示している。 (b)は成形後に自然冷却された状態を示している。It is explanatory drawing which shows the state which filled the annular band of the outer ring | wheel in the wheel bearing shown in FIG. 9 with the resin band, (a) has shown the state immediately after injection molding. (B) has shown the state naturally cooled after shaping | molding. 同上、車輪用軸受の外輪をナックルに圧入した状態を示す説明図で、 (a)は常温時の状態を示している。 (b)は車両運転中の昇温時の状態を示している。It is explanatory drawing which shows the state which press-fitted the outer ring | wheel of the wheel bearing to the knuckle as above, (a) has shown the state at the time of normal temperature. (B) has shown the state at the time of the temperature rise during driving | running | working of a vehicle.

符号の説明Explanation of symbols

1・・・・・・ハブ輪
2・・・・・・ナックル
3・・・・・・車輪用軸受
4・・・・・・車輪取付フランジ
4a・・・・・ハブボルト
5・・・・・・小径段部
6、10a・・セレーション
7・・・・・・等速自在継手
8・・・・・・外側継手部材
9・・・・・・肩部
10・・・・・ステム部
10b・・・・ねじ部
11・・・・・固定ナット
12・・・・・外輪
12a・・・・外側転走面
13・・・・・内輪
13a・・・・内側転走面
14・・・・・転動体
15・・・・・保持器
16、17・・シール
18・・・・・環状溝
18a・・・・側壁
19・・・・・樹脂バンド
20・・・・・空隙
51・・・・・・ハブ輪
52・・・・・・ナックル
53・・・・・・車輪用軸受
54・・・・・・車輪取付フランジ
55・・・・・・小径段部
56、60a・・セレーション
57・・・・・・等速自在継手
58・・・・・・外側継手部材
59・・・・・・肩部
60・・・・・ステム部
60b・・・・ねじ部
61・・・・・固定ナット
62・・・・・外輪
62a・・・・外側転走面
63・・・・・内輪
63a・・・・内側転走面
64・・・・・ボール
65・・・・・保持器
66、67・・シール
68・・・・・環状溝
68a・・・・側壁
69・・・・・樹脂バンド
70・・・・・空隙
B・・・・・・ブレーキロータ
W・・・・・・車輪
α・・・・・・傾斜角
1 ··· Hub wheel 2 ··· Knuckle 3 · · · Wheel bearing 4 · · · Wheel mounting flange 4a · · · Hub bolt 5 ···・ Small diameter step part 6, 10a .. Serration 7 ... Constant velocity universal joint 8 .... Outer joint member 9 ... Shoulder part 10 ... Stem part 10b ... Threaded part 11 ... Fixing nut 12 ... Outer ring 12a ... Outer rolling surface 13 ... Inner ring 13a ... Inner rolling surface 14 ... · Rolling elements 15 ··· Retainers 16 and 17 ··· Seal 18 ··· Annular groove 18a ··· Side wall 19 ··· Resin band 20 ··· Air gap 51 ··· ··· Hub wheel 52 ··· Knuckle 53 ··· Wheel bearing 54 ··· Wheel mounting flange 55 ··· Small diameter step 56, 60 · · Serration 57 · · · constant velocity universal joint 58 · · · outer joint member 59 · · · shoulder 60 · · · stem portion 60b · · · screw portion 61 · · · ······ Fixing nut 62 ··· Outer ring 62a ··· Outer rolling surface 63 ··· Inner ring 63a ··· Inner rolling surface 64 ··· Ball 65 ··· · Cages 66, 67 ··· Seal 68 ··· Annular groove 68a ··· Side wall 69 ··· Resin band 70 ··· Air gap B ··· Brake rotor W ··· .... Wheel α ... Inclination angle

Claims (4)

懸架装置を構成し、軽合金からなるナックルと、一端部に車輪取付フランジを一体に有し、この車輪取付フランジから軸方向に延びる小径段部が形成されたハブ輪と、このハブ輪の小径段部と前記ナックルとの間に嵌合された車輪用軸受とを備え、この車輪用軸受が、内周に複列の外側転走面が形成された鉄系金属からなる外輪と、外周に前記複列の外側転走面に対向する内側転走面が形成された一対の内輪と、これら両転走面間に転動自在に収容された複列の転動体を有する複列の転がり軸受からなり、この複列の転がり軸受によって前記ハブ輪が前記ナックルに対して回転自在に支承された車輪用軸受装置において、
前記外輪の外周に環状溝が形成され、この環状溝に耐熱性の合成樹脂からなる樹脂バンドが射出成形によって充填されると共に、前記環状溝の側壁が、開口方向に広がるように傾斜し、樹脂の収縮方向と前記側壁の傾斜角とが近くなるように設定され、当該環状溝の断面が略台形形状に形成されていることを特徴とする車輪用軸受装置。
A suspension wheel, a knuckle made of a light alloy, a hub wheel integrally formed with a wheel mounting flange at one end and a small-diameter step portion extending in the axial direction from the wheel mounting flange, and a small diameter of the hub wheel A wheel bearing fitted between the stepped portion and the knuckle, the wheel bearing comprising an outer ring made of a ferrous metal having a double row outer raceway formed on the inner circumference, and an outer circumference. A double-row rolling bearing having a pair of inner rings formed with an inner rolling surface facing the outer rolling surface of the double row, and a double-row rolling element accommodated between the two rolling surfaces so as to roll freely. In the wheel bearing device in which the hub wheel is rotatably supported with respect to the knuckle by the double row rolling bearing,
An annular groove formed on the outer periphery of the outer ring, together with a resin band of heat-resistant synthetic resin in the annular groove is filled by the injection molding, the side wall of the annular groove, and inclined so as to spread the opening direction, the resin The wheel bearing device is characterized in that the shrinking direction of the side wall and the inclination angle of the side wall are set close to each other, and the cross-section of the annular groove is formed in a substantially trapezoidal shape.
前記樹脂バンドがポリアミド系の合成樹脂からなり、その線膨張係数が8〜16×10−5/℃に設定されている請求項1に記載の車輪用軸受装置。 2. The wheel bearing device according to claim 1, wherein the resin band is made of a polyamide-based synthetic resin, and a linear expansion coefficient thereof is set to 8 to 16 × 10 −5 / ° C. 3. 前記樹脂バンドの外径が前記外輪の外径よりも僅かに大径に形成されている請求項1または2に記載の車輪用軸受装置。   The wheel bearing device according to claim 1 or 2, wherein an outer diameter of the resin band is formed to be slightly larger than an outer diameter of the outer ring. 前記樹脂バンドが、成形後に研削加工により所定の外径寸法に形成されている請求項1乃至3いずれかに記載の車輪用軸受装置。
The wheel bearing device according to any one of claims 1 to 3, wherein the resin band is formed to have a predetermined outer diameter by grinding after molding.
JP2005191551A 2005-06-30 2005-06-30 Wheel bearing device Expired - Fee Related JP4817409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005191551A JP4817409B2 (en) 2005-06-30 2005-06-30 Wheel bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005191551A JP4817409B2 (en) 2005-06-30 2005-06-30 Wheel bearing device

Publications (2)

Publication Number Publication Date
JP2007010041A JP2007010041A (en) 2007-01-18
JP4817409B2 true JP4817409B2 (en) 2011-11-16

Family

ID=37748825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005191551A Expired - Fee Related JP4817409B2 (en) 2005-06-30 2005-06-30 Wheel bearing device

Country Status (1)

Country Link
JP (1) JP4817409B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4788630B2 (en) * 2007-03-02 2011-10-05 株式会社ジェイテクト Rolling bearing device
DE102008053678B4 (en) * 2008-10-29 2016-03-31 Ab Skf Raceway element of a roller bearing
DE102012202900A1 (en) * 2012-02-27 2013-08-29 Aktiebolaget Skf Bearing arrangement of electric motor, has rolling bearing including ring element arranged in annular groove of outer bearing ring such that outer diameter of ring element is set based on outer diameter of outer bearing ring
JP6613845B2 (en) * 2015-11-25 2019-12-04 株式会社ジェイテクト Rolling bearing
DE102016224395A1 (en) * 2016-12-07 2018-06-07 Aktiebolaget Skf bearing arrangement

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2605959B1 (en) * 1986-10-31 1992-01-17 Bendix France BRAKING DEVICE FOR VEHICLE
JP2513724B2 (en) * 1987-09-18 1996-07-03 日立マクセル株式会社 Carrier tape for semiconductor device
JPH0629614B2 (en) * 1988-04-11 1994-04-20 株式会社不二越 Bearing fixing device
JPH06280865A (en) * 1993-03-30 1994-10-07 Ntn Corp Bearing device
JP2001140912A (en) * 1999-11-15 2001-05-22 Koyo Seiko Co Ltd Rolling bearing
JP2004011730A (en) * 2002-06-06 2004-01-15 Koyo Seiko Co Ltd Bearing with resin pulley
JP2004211820A (en) * 2003-01-06 2004-07-29 Ntn Corp Bearing device for wheel
JP2005180681A (en) * 2003-11-28 2005-07-07 Ntn Corp Bearing device for wheel

Also Published As

Publication number Publication date
JP2007010041A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP2005180681A (en) Bearing device for wheel
JP4557223B2 (en) Drive wheel bearing device
JP4526998B2 (en) Drive wheel bearing device
JP4940027B2 (en) Wheel bearing device
JP4817409B2 (en) Wheel bearing device
JP2005121120A (en) Bearing device for wheel
JP2008100632A (en) Bearing device for wheel
JP5077909B2 (en) Wheel bearing device
JP2006316804A (en) Bearing device for wheel
JP2006161856A (en) Wheel bearing device
JP2009150418A (en) Wheel bearing device
JP2007100844A (en) Bearing device for wheel
JP2006153096A (en) Bearing unit for wheel
JP2005306257A (en) Bearing device for wheel with brake rotor
JP2012132568A (en) Wheel bearing
JP2006118611A (en) Bearing device for wheel
JP2006153097A (en) Bearing unit for wheel
JP2004211820A (en) Bearing device for wheel
JP2006153073A (en) Bearing device for wheel
JP5415773B2 (en) Wheel bearing device
JP2008175276A (en) Wheel bearing device
JP5337495B2 (en) Wheel bearing device
JP2007326503A (en) Bearing device for driving wheel
JP4535394B2 (en) Wheel bearing device
JP4936373B2 (en) Wheel bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees